Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 15 maja 2025 22:04
  • Data zakończenia: 15 maja 2025 22:29

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jakie środki ochrony osobistej powinien założyć pracownik przy uruchamianiu prasy pneumatycznej przeznaczonej do nitowania?

A. Obuwie izolacyjne
B. Hełm ochronny
C. Okulary ochronne
D. Szelki bezpieczeństwa
Okulary ochronne są niezbędnym środkiem ochrony indywidualnej podczas pracy z prasą pneumatyczną do nitowania, ponieważ odpowiednio chronią oczy pracownika przed potencjalnymi zagrożeniami, takimi jak odpryski materiałów, pył czy metalowe drobiny. W przypadku pracy w środowiskach przemysłowych, gdzie odbywają się operacje związane z obróbką metali, użycie okularów ochronnych zgodnych z normami EN 166 jest kluczowe. Te normy określają wymagania dotyczące odporności na uderzenia, a także właściwości optyczne soczewek. Pracownicy powinni również zwracać uwagę na odpowiednią konserwację okularów, aby zapewnić ich skuteczność. Ponadto, w kontekście bezpieczeństwa, stosowanie okularów ochronnych w połączeniu z innymi środkami ochrony, takimi jak hełmy czy rękawice, staje się podstawą bezpiecznego środowiska pracy. Przykłady zastosowania obejmują prace w warsztatach, fabrykach czy na placach budowy, gdzie ryzyko uszkodzenia wzroku jest znaczne. Dlatego też, w każdej sytuacji potencjalnego zagrożenia dla oczu, użycie okularów ochronnych powinno być standardem.

Pytanie 8

Dwuwejściowa bramka NOR, w której wejścia zostały połączone, jest tożsame z bramką

A. AND
B. OR
C. NOT
D. NAND
Wybór odpowiedzi, która nie jest zgodna z rzeczywistością działania bramki NOR, może wynikać z błędnych założeń dotyczących logiki bramek. Odpowiedzi takie jak OR, AND, i NAND mają własne unikalne właściwości, które różnią się od zachowania bramki NOR. Bramka OR na przykład zwraca wynik prawdziwy, gdy przynajmniej jedno z wejść jest prawdziwe, co jest sprzeczne z definicją bramki NOR. W kontekście bram AND, te działają w odwrotny sposób, zwracając wynik prawdziwy tylko wtedy, gdy wszystkie wejścia są prawdziwe. Odpowiedź NAND, będąca negacją AND, również nie jest równoważna bramce NOR. Kluczowym błędem myślowym jest mylenie negacji z operacjami logicznymi. Aby zrozumieć różnice, warto przyjrzeć się tabelom prawdy dla każdej z bramek, co pozwoli dostrzec, że bramka NOR jest jedyną, która przy połączeniu wejść daje wynik odpowiadający funkcji NOT. W praktyce, takie pomyłki mogą prowadzić do niewłaściwego projektowania układów cyfrowych, co może skutkować błędami logicznymi w systemach. Zrozumienie podstawowych właściwości bramek logicznych i ich zastosowań jest kluczowe w inżynierii elektronicznej i projektowaniu układów cyfrowych.

Pytanie 9

Aby dokładnie ustalić kątową pozycję, przemieszczenie oraz zliczyć obroty silnika w systemie mechatronicznym, używa się

A. enkoder
B. czujnik ultradźwiękowy
C. licznik
D. akcelerometr
Wybór liczników, czujników ultradźwiękowych lub akcelerometrów zamiast enkodera może wynikać z niepełnego zrozumienia funkcji i zastosowań tych urządzeń. Liczniki, choć mogą zliczać pewne zdarzenia, nie są zaprojektowane do precyzyjnego pomiaru pozycji kątowej czy obrotów silnika. Zazwyczaj stosowane są do zliczania impulsów w prostszych systemach, gdzie nie jest wymagana wysoka dokładność lub gdzie pomiar odbywa się w sposób bardziej ogólny. Z kolei czujniki ultradźwiękowe są używane do pomiaru odległości, a nie do precyzyjnego określania pozycji kątowej. Ich funkcjonalność ogranicza się do wykrywania przeszkód lub mierzenia odległości do obiektów w przestrzeni, co nie ma zastosowania w kontekście zliczania obrotów silnika. Akcelerometry, mimo że mogą dostarczać informacji o przyspieszeniu, nie dostarczają dokładnych danych o pozycji kątowej, co czyni je nieodpowiednimi do zastosowań wymagających precyzyjnego sterowania. Często mylone są pojęcia związane z różnymi typami pomiarów, co prowadzi do błędnych wniosków na temat odpowiednich urządzeń do konkretnych zadań. W zastosowaniach mechatronicznych kluczowe jest rozróżnienie funkcjonalności tych różnych czujników, aby wybrać odpowiednie rozwiązania, które są zgodne ze standardami przemysłowymi i dobrymi praktykami inżynieryjnymi.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Która z poniższych zasad dotyczących rysowania schematów elektrycznych jest fałszywa?

A. Cewka oraz styki przekaźnika posiadają identyczne oznaczenia
B. Symbole zabezpieczeń przedstawia się w stanie spoczynku (podstawowym)
C. Symbole łączników rysuje się w momencie ich działania
D. Schematy tworzy się w stanie podstawowym (bezprądowym)
Odpowiedź jest poprawna, ponieważ zasady rysowania schematów elektrycznych określają, że symbole łączników, takich jak wyłączniki czy przyciski, powinny być przedstawiane w stanie spoczynku, a nie w stanie pracy. Rysowanie tych symboli w stanie pracy może prowadzić do nieporozumień, gdyż nie oddaje rzeczywistego stanu, w jakim urządzenia będą funkcjonować w normalnych warunkach. W praktyce, na przykład podczas tworzenia schematu dla instalacji elektrycznej, istotne jest, aby zapewnić jasność i przejrzystość, co ułatwia późniejsze analizowanie i wykonywanie prac serwisowych. Zgodnie z normami, takimi jak PN-EN 60617, symbole powinny być przedstawione zgodnie z ustalonymi standardami, co zwiększa bezpieczeństwo i efektywność w komunikacji technicznej. Rysowanie symboli w stanie spoczynku pozwala na jednoznaczne zrozumienie, jakie urządzenia są włączone lub wyłączone, co jest istotne dla prawidłowego funkcjonowania całego systemu elektrycznego.

Pytanie 13

Wysokoobrotowy silnik pneumatyczny o budowie turbinowej powinien być smarowany olejem mineralnym w sposób

A. ciągły, naolejonym powietrzem z instalacji zasilającej
B. ciągły, podawanym pompą olejową o stałej wydajności
C. cykliczny, smarownicą co dwa tygodnie
D. cykliczny, smarownicą przed uruchomieniem silnika
Poprawna odpowiedź to "ciągły, naolejonym powietrzem z instalacji zasilającej." Silniki pneumatyczne wysokoobrotowe o konstrukcji turbinowej wymagają ciągłego smarowania, aby zapewnić ich prawidłowe działanie i minimalizować zużycie komponentów. W praktyce, smarowanie ciągłe przy użyciu naolejonego powietrza z instalacji zasilającej pozwala na dostarczenie oleju do wszystkich ruchomych części silnika równomiernie i bez przerw. Taki system smarowania jest bardziej efektywny niż smarowanie okresowe, ponieważ eliminuje ryzyko niewystarczającego smarowania w trakcie pracy silnika. W branży inżynieryjnej stosuje się go zgodnie z normami, które podkreślają znaczenie ciągłego smarowania w aplikacjach wymagających dużych prędkości obrotowych, co przekłada się na dłuższą żywotność urządzenia i większą wydajność. Dodatkowo, odpowiednie smarowanie wpływa na redukcję tarcia oraz minimalizację ryzyka awarii, co jest kluczowe w zastosowaniach przemysłowych i energetycznych.

Pytanie 14

Początkowo operator frezarki powinien

A. wyczyścić łożyska silnika, styki przekaźników oraz styczników w systemie sterowania
B. sprawdzić kondycję techniczną łożysk silnika i w razie potrzeby je nasmarować
C. kilkakrotnie szybko uruchomić i wyłączyć frezarkę w celu sprawdzenia prawidłowego działania silnika
D. ocenić stan frezu oraz jego mocowanie
Poprawną odpowiedzią jest sprawdzenie stanu frezu i jego mocowania, ponieważ jest to kluczowy krok w zapewnieniu prawidłowego funkcjonowania frezarki. Frez jest narzędziem skrawającym, które wymagane jest do efektywnego usuwania materiału. Jego uszkodzenie lub niewłaściwe mocowanie mogą prowadzić do wadliwego przetwarzania materiału, co z kolei wpływa na jakość wykonanych detali oraz wydajność produkcji. Przykładowo, jeśli frez nie jest prawidłowo zamocowany, może dojść do jego wibracji, co prowadzi do nadmiernego zużycia narzędzia oraz ryzyka uszkodzenia maszyny. Dobrym praktyką przed rozpoczęciem pracy jest przeprowadzenie wizualnej kontroli frezu oraz zastosowanie odpowiednich narzędzi do pomiaru, takich jak suwmiarka, aby upewnić się, że jego średnica oraz długość są zgodne z wymaganiami. Dodatkowo, warto pamiętać o regularnych przeglądach stanu technicznego, co jest zgodne z normami ISO dotyczącymi zarządzania jakością w procesach produkcyjnych.

Pytanie 15

Jaki symbol literowy, zgodny z normą IEC 61131, wykorzystywany jest w oprogramowaniu sterującym dla PLC do identyfikacji jego fizycznych wejść dyskretnych?

A. R
B. Q
C. S
D. |
Symbol literowy "|" jest kluczowym elementem w standardzie IEC 61131, który definiuje sposób programowania sterowników PLC. W kontekście adresowania fizycznych wejść dyskretnych, ten symbol pełni rolę prefiksu przed numerem wejścia, co umożliwia jednoznaczne wskazanie, które z cyfrowych wejść jest używane w danym programie. Przykładowo, zapis "|X0" odnosi się do pierwszego wejścia dyskretnego, co jest zgodne z najlepszymi praktykami w branży automatyki. Taki system adresowania ułatwia programistom pracę, ponieważ pozwala na łatwe rozpoznanie, które urządzenie jest połączone z danym wejściem. Ponadto, posługiwanie się tym standardem sprzyja lepszej organizacji kodu oraz jego późniejszej konserwacji, co jest szczególnie istotne w długoterminowych projektach automatyzacji. Zrozumienie i umiejętność stosowania tego symbolu jest podstawą efektywnego programowania w kontekście automatyki przemysłowej.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jaką metodę pomiaru zastosowano w celu zmierzenia temperatury pracy urządzenia mechatronicznego, przy użyciu elementu pomiarowego Pt100?

A. Kontaktową termoelektryczną
B. Bezkontaktową termowizyjną
C. Bezkontaktową pirometryczną
D. Kontaktową rezystancyjną
Odpowiedź kontaktowa rezystancyjna jest poprawna, ponieważ czujnik Pt100 działa na zasadzie pomiaru oporu elektrycznego, który zmienia się w zależności od temperatury. W praktyce, w przypadku urządzeń mechatronicznych, czujniki tego typu są powszechnie stosowane do monitorowania temperatury w różnych aplikacjach, takich jak systemy HVAC, przemysłowe urządzenia przetwórcze czy automatyka przemysłowa. Standard Pt100 odnosi się do czujników, które mają nominalny opór 100 omów w temperaturze 0°C i ich charakterystyka oporowa jest liniowości opisana w przybliżeniu przez równanie Callendara-Van Dusena. Dzięki zastosowaniu czujników rezystancyjnych można uzyskać wysoką dokładność pomiaru, co jest zgodne z dobrymi praktykami w zakresie jakości pomiarów. Dlatego w większości przypadków, gdzie wymagana jest precyzyjność, to właśnie czujniki oporowe, jak Pt100, są preferowanym rozwiązaniem.

Pytanie 19

Która z podanych sieci w systemach mechatronicznych funkcjonuje jako sieć bezprzewodowa?

A. Profinet
B. ZigBee
C. ModbusTCP
D. Ethernet/IP
ZigBee jest siecią bezprzewodową, która działa w oparciu o standard IEEE 802.15.4. Jest to protokół zaprojektowany z myślą o komunikacji w małych, niskonapięciowych urządzeniach, co czyni go idealnym rozwiązaniem dla aplikacji IoT (Internet of Things) oraz systemów automatyki domowej. ZigBee charakteryzuje się niskim poborem mocy, co pozwala na długotrwałe działanie zasilanych bateryjnie urządzeń. Przykłady zastosowań ZigBee obejmują inteligentne oświetlenie, systemy monitorowania środowiska oraz urządzenia wearable. W kontekście mechatroniki, ZigBee może być wykorzystywane do komunikacji między różnymi komponentami systemów automatyki w sposób, który minimalizuje potrzebę okablowania. Warto również zaznaczyć, że ZigBee obsługuje topologie sieci typu mesh, co zwiększa zasięg i niezawodność komunikacji, a także umożliwia łatwe dodawanie nowych urządzeń do istniejącej sieci.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Badanie szczelności układu hydraulicznego powinno być wykonane przy ciśnieniu

A. wyższym o 100% od ciśnienia roboczego
B. wyższym o 50% od ciśnienia roboczego
C. równym ciśnieniu roboczemu
D. niższym o 20% od ciśnienia roboczego
Ocena szczelności układu hydraulicznego przy ciśnieniu równym roboczemu nie jest wystarczająca, ponieważ nie pozwala na identyfikację potencjalnych słabości układu. Ustalenie, że ciśnienie testowe powinno być mniejsze o 20% od roboczego, może prowadzić do niebezpiecznych sytuacji, gdyż nie bada się wówczas charakterystyki układu przy warunkach przeciążeniowych. Należy zauważyć, że przy korzystaniu z ciśnienia roboczego jako punktu odniesienia nie identyfikuje się potencjalnych nieszczelności, które mogą wystąpić tylko przy wyższych ciśnieniach. Z kolei testowanie układu przy ciśnieniach mniejszych o 20% wprowadza dodatkowe ryzyko, gdyż nie odzwierciedla rzeczywistych warunków pracy, jakie mogą wystąpić w wyniku wahań ciśnienia czy awarii. Praktyka ta może być szczególnie niebezpieczna w kontekście systemów hydraulicznych, gdzie w przypadku niewłaściwego przygotowania do pracy może dojść do poważnych uszkodzeń lub wypadków. Dlatego istotne jest, aby przy przeprowadzaniu testów szczelności zawsze stosować się do sprawdzonych standardów i procedur, które zalecają przeprowadzanie testów ciśnieniowych wyższych od roboczych, co zwiększa bezpieczeństwo i niezawodność systemów hydraulicznych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Modulacja PWM (Pulse-Width Modulation), wykorzystywana w elektrycznych impulsowych systemach sterowania i regulacji, polega na modyfikacji

A. fazy sygnału.
B. częstotliwości sygnału.
C. szerokości sygnału.
D. amplitudy sygnału.
Modulacja PWM, czyli modulacja szerokości impulsu, jest techniką, która pozwala na kontrolowanie średniej mocy dostarczanej do obciążenia poprzez zmianę szerokości impulsów w trakcie cyklu pracy. W praktyce oznacza to, że stosując PWM, możemy efektywnie regulować jasność diod LED, prędkość silników elektrycznych, a także temperaturę w układach grzewczych. Technika ta jest szeroko stosowana w systemach automatyki oraz w elektronice użytkowej, ponieważ pozwala na oszczędność energii oraz lepszą kontrolę nad działaniem urządzeń. Zrozumienie, jak działa modulacja PWM, jest kluczowe dla inżynierów elektryków, którzy projektują nowoczesne urządzenia. W standardach branżowych, takich jak IEC 61131, modulacja PWM jest opisane jako jedna z metod sterowania, co podkreśla jej znaczenie w automatyce przemysłowej.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Na podstawie przedstawionych danych katalogowych narzędzia skrawającego określ wartość grubości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej stali.

Rodzaj obróbkiDokładność obróbkiChropowatość powierzchni
(Ra) μm
Zakres posuwów
mm/obr
Zakres głębokości
mm
Obróbka dokładnaIT6-IT90,32÷1,250,05÷0,30,5÷2
Obróbka średniodokładnaIT9-IT112,5÷50,2÷0,52÷4
Obróbka zgrubnaIT12-IT1410÷40≥0,4≥4

A. 2,0 mm
B. 5,0 mm
C. 0,5 mm
D. 0,8 mm
Odpowiedź "5,0 mm" jest poprawna, ponieważ odpowiada minimalnej wartości głębokości skrawania dla obróbki zgrubnej stali, która według danych katalogowych narzędzia skrawającego powinna wynosić co najmniej 4 mm. W obróbce zgrubnej kluczowe jest zastosowanie odpowiedniej głębokości skrawania, aby efektywnie usunąć większe ilości materiału w krótszym czasie, co jest szczególnie istotne w przypadku stali, gdzie twardość materiału wymaga zastosowania bardziej agresywnych parametrów obróbczych. Dodatkowo, wybór głębokości skrawania na poziomie 5,0 mm pozwala na zminimalizowanie liczby przejść, co przekłada się na oszczędności czasu i kosztów produkcji. Zgodnie z normami branżowymi, takie zgrubne obróbki powinny być wykonywane z uwzględnieniem odpowiednich parametrów skrawania, aby uniknąć uszkodzeń narzędzia oraz zapewnić jakość powierzchni obrabianej. W praktyce, stosując głębokość skrawania równą 5,0 mm, operatorzy maszyn CNC mogą osiągnąć optymalne wyniki produkcyjne, co jest kluczowe w przemyśle obróbczo-mechanicznym.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jakie kluczowe warunki powinien spełniać system regulacji automatycznej, aby mógł funkcjonować w pełnym zakresie zmian wartości zadanej?

A. Stabilność
B. Brak uchybu w stanie ustalonym
C. Krótki czas regulacji
D. Niewielkie przeregulowanie
Wybór odpowiedzi innej niż stabilność odzwierciedla pewne nieporozumienia dotyczące kluczowych zasad regulacji automatycznej. Zerowy uchyb w stanie ustalonym, mimo że jest istotnym aspektem w kontekście dokładności regulacji, nie jest warunkiem koniecznym do zapewnienia, że układ działa w pełnym zakresie wartości zadanej. Układ może być z założenia zbliżony do stanu ustalonego, ale bez stabilności może doświadczać niekontrolowanych wahań. Minimalne przeregulowanie, choć korzystne w niektórych scenariuszach, może w rzeczywistości wprowadzać dodatkowe oscylacje, które mogą prowadzić do niestabilności. Minimalny czas regulacji, choć ważny dla efektywności, również nie zapewnia stabilności systemu; szybka reakcja na zmiany nie gwarantuje, że system nie będzie oscylować wokół wartości zadanej. Fundamentalnym błędem w analizie odpowiedzi jest mylenie efektów czasu reakcji i uchybu z wymaganiami dotyczącymi stabilności. W kontekście regulacji automatycznej, stabilność jest nadrzędnym warunkiem, który zapewnia, że system może funkcjonować w zmieniających się warunkach, a inne aspekty, takie jak czas regulacji czy uchyb, są wtórne w stosunku do tego kluczowego wymogu.

Pytanie 33

Jakiej z wymienionych aktywności nie powinien wykonywać operator pras hydraulicznych sterowanych przez sterownik PLC?

A. Konfigurować parametrów urządzenia
B. Uruchamiać programu sterującego
C. Modernizować urządzenia
D. Weryfikować stan osłon urządzenia
Poprawna odpowiedź to "modernizować urządzenia". Pracownik obsługujący prasę hydrauliczną sterowaną za pośrednictwem sterownika PLC nie powinien podejmować się modernizacji tych urządzeń, ponieważ działania te wymagają specjalistycznej wiedzy i umiejętności, które posiadają jedynie wykwalifikowani inżynierowie lub technicy zajmujący się modernizacją maszyn. Zmiany w konstrukcji lub oprogramowaniu mogą mieć istotny wpływ na bezpieczeństwo i funkcjonowanie całego systemu. Dlatego zgodnie z normami branżowymi, takimi jak ISO 12100, które dotyczą bezpieczeństwa maszyn, wszelkie modyfikacje powinny być przeprowadzane przez osoby posiadające odpowiednie kwalifikacje. Tego rodzaju zmiany mogą obejmować aktualizacje oprogramowania sterującego, co jest kluczowe dla poprawy wydajności oraz funkcjonalności maszyny. Odpowiedzialne podejście do takich działań pomaga w minimalizacji ryzyka awarii oraz zapewnienia ciągłości produkcji.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

W przypadku, gdy w obwodzie wymagany jest kondensator o pojemności rzędu kilku tysięcy µF, należy wybrać kondensator

A. ceramiczny
B. foliowy
C. elektrolityczny
D. powietrzny
Kondensatory powietrzne, ceramiczne i foliowe nie są odpowiednie do aplikacji wymagających dużej pojemności, jak w przypadku kondensatorów elektrolitycznych. Kondensatory powietrzne, mimo że mogą mieć długą żywotność i wysoką odporność na napięcia, nie są w stanie zaoferować wymaganej pojemności rzędu kilku tysięcy µF. Zastosowanie takich kondensatorów w dużych pojemnościach prowadziłoby do nieefektywności i znacznego wzrostu rozmiarów układu, co czyniłoby je niepraktycznymi w większości zastosowań elektronicznych. Kondensatory ceramiczne, chociaż popularne w aplikacjach wysokoczęstotliwościowych, charakteryzują się ograniczoną pojemnością i mogą szybko tracić swoją efektywność przy wyższych wartościach pojemności. Z kolei kondensatory foliowe, znane ze swojej stabilności i niskiego współczynnika strat, również nie osiągają wymaganych pojemności, co sprawia, że są bardziej odpowiednie do zastosowań w filtracji sygnałów, a nie w sytuacjach wymagających dużych ładunków. W praktyce, wybór niewłaściwego typu kondensatora może prowadzić do poważnych problemów z wydajnością układu, a także zwiększać ryzyko uszkodzeń komponentów. Dlatego prawidłowy dobór kondensatora do aplikacji jest kluczowy dla zapewnienia optymalnej pracy całego układu elektronicznego.

Pytanie 38

Jakim napięciem powinien być zasilany cyfrowy mikroprocesorowy regulator DCRK 12 przeznaczony do kompensacji współczynnika mocy w układach napędów elektrycznych, o danych znamionowych zamieszczonych w tabeli?

Ilość stopni regulacji12
Regulacja współczynnika mocy0,8 ind. – 0,8 pojem.
Napięcie zasilania i kontroli Ue380...415V, 50/60Hz
Roboczy zakres działania Ue- 15% ... +10% Ue
Wejście pomiarowe prądu5 A
Typ pomiaru napięcia i prąduRMS
Ilość wyjść przekaźnikowych12
Maksymalny prąd załączenia12 A

A. 230 V DC
B. 400 V AC
C. 400 V DC
D. 230 V AC
Wybór napięcia 400 V DC, 230 V AC, lub 230 V DC jako źródła zasilania dla cyfrowego mikroprocesorowego regulatora DCRK 12 prowadzi do nieporozumień dotyczących zasadności stosowania tych wartości. Napięcie 400 V DC nie jest typowe w zastosowaniach przemysłowych, gdzie standardowe napięcie zasilające to napięcie przemienne AC. W przypadku systemów zasilania, które wymagają wysokiego napięcia stałego, często korzysta się z rozwiązań, które są ściśle dostosowane do specyficznych potrzeb, takich jak zasilacze impulsowe, natomiast w tym przypadku regulator nie jest przystosowany do pracy z napięciem stałym. Odpowiedź 230 V AC, chociaż powszechnie używana w domowych instalacjach elektrycznych, nie mieści się w zakresie zasilania regulatora DCRK 12, który wymaga wyższego napięcia dla zapewnienia odpowiedniej wydajności w aplikacjach przemysłowych. Odpowiedź 230 V DC również jest niewłaściwa, ponieważ napięcie stałe nie jest standardem w kontekście zasilania regulacji mocy w układach napędowych. Często, nieprawidłowe odpowiedzi wynikają z mylnego rozumienia różnicy między napięciem stałym a przemiennym oraz braku znajomości specyfikacji technicznych urządzeń. Przekonanie, że niższe napięcia mogą być zastosowane w systemach o wyższej mocy, prowadzi do niewłaściwych decyzji inżynieryjnych. Również zrozumienie zasadnych zastosowań energii elektrycznej jest kluczowe dla skutecznego projektowania i implementacji systemów zasilania.

Pytanie 39

Jaką z poniższych czynności konserwacyjnych można przeprowadzić podczas pracy silnika prądu stałego?

A. Przeczyścić elementy wirujące silnika za pomocą odpowiednich środków
B. Oczyścić łopatki wentylatora
C. Zmierzyć prędkość obrotową metodą stroboskopową
D. Zamienić szczotki komutatora
Wyczyścić łopatki wentylatora, wymienić szczotki komutatora oraz przeczyścić elementy wirujące silnika to działania konserwacyjne, które w większości przypadków powinny być przeprowadzane tylko po wyłączeniu silnika. Wykonywanie takich zabiegów podczas jego pracy stwarza niebezpieczeństwo zarówno dla technika, jak i dla samego urządzenia. Bezpośrednia interwencja w mechanizm silnika, jak wymiana szczotek komutatora, wiąże się z ryzykiem zwarcia elektrycznego oraz uszkodzenia elementów silnika, które są w ruchu. Dodatkowo, czyszczenie wirników może prowadzić do niekontrolowanego usunięcia elementów, które mogą wpłynąć na równowagę i stabilność pracy silnika. Stosowanie niewłaściwych metod konserwacji może również prowadzić do degradacji sprzętu i obniżenia wydajności energetycznej. W każdym przypadku, kluczowe jest przestrzeganie zasad bezpieczeństwa oraz procedur producenta, co powinno być fundamentem wszelkich działań konserwacyjnych. Zrozumienie różnicy między działaniami, które można wykonać w trakcie pracy urządzenia a tymi, które wymagają zatrzymania silnika, jest esencjonalne dla optymalizacji procesów konserwacyjnych i zapewnienia długoterminowej sprawności silników prądu stałego.

Pytanie 40

Która z podanych kategorii regulatorów powinna być brana pod uwagę w projekcie systemu mechatronicznego o nieciągłej regulacji temperatury?

A. Proporcjonalny
B. Całkujący
C. Różniczkujący
D. Dwustawny
Wybór odpowiedzi inne niż "dwustawny" wskazuje na pewne nieporozumienia dotyczące sposobu działania różnych typów regulatorów. Regulator całkujący jest stosowany w systemach, gdzie istotne jest uwzględnienie długu regulacyjnego, co czyni go nieodpowiednim w przypadku nieciągłej regulacji temperatury. Jego działanie polega na ciągłym dostosowywaniu sygnału wyjściowego na podstawie skumulowanej różnicy między wartością zadaną a rzeczywistą, co nie jest skuteczne przy prostym włączaniu i wyłączaniu. Regulator różniczkujący z kolei reaguje na szybkość zmian, co również nie jest istotne w kontekście systemu, który wymaga jedynie dwóch stanów. Z kolei regulator proporcjonalny, który dostosowuje sygnał wyjściowy w oparciu o bieżące odchylenie wartości, także nie pasuje do opisanej sytuacji, ponieważ nie zapewnia jednoznacznej kontroli temperatury w trybie on/off. Często przyczyną błędnych odpowiedzi jest mylenie charakterystyk różnych typów regulatorów z ich praktycznymi zastosowaniami w systemach automatyki. Kluczowe jest zrozumienie, że regulator dwustawny najlepiej odpowiada wymaganiom nieciągłego sterowania, co odróżnia go od pozostałych typów, które są bardziej odpowiednie w kontekście regulacji ciągłej.