Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 22 maja 2025 16:11
  • Data zakończenia: 22 maja 2025 16:29

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jaką kategorię urządzeń elektrycznych reprezentują przekładniki prądowe?

A. Do transformatorów
B. Do wzmacniaczy maszynowych
C. Do prądnic tachometrycznych
D. Do indukcyjnych sprzęgieł dwukierunkowych
Przekładniki prądowe są urządzeniami elektrycznymi, które zaliczają się do kategorii transformatorów. Ich podstawową funkcją jest pomiar prądu elektrycznego poprzez jego przekształcenie na mniejszy, proporcjonalny prąd, co pozwala na łatwiejsze i bezpieczniejsze wykonanie pomiarów oraz ochronę obwodów. Przekładniki prądowe są szeroko stosowane w systemach elektroenergetycznych, a ich zastosowanie jest kluczowe dla zapewnienia precyzyjnych odczytów w urządzeniach takich jak liczniki energii, systemy zabezpieczeń oraz różnego rodzaju apparatura kontrolno-pomiarowa. Standard IEC 61869 określa wymagania dotyczące budowy i testowania przekładników prądowych, co zapewnia ich wysoką jakość oraz niezawodność w eksploatacji. Umożliwiają one również zdalny monitoring, co zwiększa efektywność zarządzania infrastrukturą energetyczną, a ich poprawne zastosowanie ma istotne znaczenie dla bezpieczeństwa instalacji oraz optymalizacji kosztów eksploatacji.

Pytanie 3

Jakie z podanych usterek mogą powodować nadmierne wibracje w silniku indukcyjnym?

A. Przerwa w uzwojeniu stojana, zatarcie łożysk, nadmierna rezystancja uzwojeń wirnika
B. Skrzywienie wału, niewłaściwe wyważenie wirnika, zbyt duży luz na łożyskach
C. Zbyt niskie napięcie, przerwa w jednej z faz, przeciążenie silnika
D. Zwarcie w uzwojeniu wirnika, zmieniona kolejność faz
Twoja odpowiedź jest jak najbardziej trafna! Skrzywienie wału, niewłaściwe wyważenie wirnika i luz na łożyskach to faktycznie te rzeczy, które mogą mocno wpływać na to, jak silnik pracuje. Jak wał jest krzywy, to masa się rozkłada nierówno, co przyczynia się do wzrostu wibracji – to trochę jak z siedzeniem na krzywej ławce, nie? Z kolei kiepskie wyważenie wirnika, które często bierze się z jego zużycia, też powoduje, że silnik się męczy, bo łożyska dostają w kość. No i ten luz – luźne łożyska też robią swoje, bo wirnik nie działa jak powinien. Ważne, żeby regularnie sprawdzać sprzęt i dbać o niego, tak jak produkuje się w instrukcji. Stosując metody monitorowania, jak analiza drgań, można wcześnie zauważyć problemy i coś z tym zrobić. To wszystko pomoże w wydłużeniu życia silnika i uniknięciu przestojów w pracy.

Pytanie 4

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji podtynkowej, prowadzonej w rurach karbowanych, zauważono, że w wyniku poluzowania zacisku, izolacja jednego z przewodów na długości kilku centymetrów straciła swoją elastyczność i zmieniła kolor. Jak powinno się naprawić to uszkodzenie?

A. Polakierować uszkodzoną izolację przewodu
B. Wymienić wszystkie przewody na nowe o większym przekroju
C. Wymienić uszkodzony przewód na nowy o takim samym przekroju
D. Nałożyć gumowy wąż na uszkodzoną izolację przewodu
Nałożenie gumowego wężyka na uszkodzoną izolację przewodu może wydawać się szybkim i prostym rozwiązaniem, jednak w rzeczywistości jest to bardzo niewłaściwe podejście. Tego typu naprawy są tymczasowe i nie eliminują podstawowego problemu, jakim jest uszkodzenie izolacji. Izolacja przewodów jest kluczowa dla bezpieczeństwa instalacji elektrycznych, a jej uszkodzenie może prowadzić do nieprzewidywalnych konsekwencji. Polakierowanie uszkodzonej izolacji nie tylko nie przywróci jej pierwotnych właściwości, ale może również zainicjować reakcje chemiczne, które dodatkowo osłabią izolację. Wymiana wszystkich przewodów na nowe o większym przekroju nie jest uzasadniona, ponieważ przewody muszą być dobrane zgodnie z obciążeniem instalacji oraz wymaganiami projektowymi. Takie podejście może prowadzić do nadmiernych kosztów oraz problemów ze zgodnością z obowiązującymi normami. Właściwe zarządzanie instalacjami elektrycznymi polega na precyzyjnym diagnozowaniu problemów i podejmowaniu kroków, które usuwają źródła ryzyka, a nie na powierzchownych naprawach. Dlatego kluczowym elementem w pracy z instalacjami elektrycznymi jest dążenie do całkowitego rozwiązania problemów, a nie ich maskowania.

Pytanie 5

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. raz na pół roku
B. raz na rok
C. co najmniej raz na 5 lat
D. co najmniej raz na 10 lat
Instalacja elektryczna oraz piorunochronna w budynkach mieszkalnych jest kluczowym elementem zapewniającym bezpieczeństwo użytkowników oraz ochronę mienia. Zgodnie z obowiązującymi przepisami prawa budowlanego, takie instalacje powinny być poddawane okresowym badaniom co najmniej raz na 5 lat. Taki harmonogram przeglądów ma na celu wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych zagrożeń, takich jak pożary czy porażenia prądowe. Regularne kontrole pozwalają na ocenę stanu technicznego instalacji, w tym ich zgodności z aktualnymi normami oraz skutecznością w ochronie przed skutkami wyładowań atmosferycznych. Przykładem praktycznego zastosowania tej wiedzy może być sytuacja, w której w wyniku regularnych przeglądów wykryto zużycie izolacji, co mogłoby prowadzić do niebezpiecznych warunków. W przypadku instalacji piorunochronnych, ich skuteczność w odprowadzaniu prądów piorunowych również wymaga regularnych ocen, aby zapewnić maksymalną ochronę budynku. Warto zaznaczyć, że zgodność z normami PN-IEC 62305 oraz PN-EN 61439 jest kluczowa dla bezpieczeństwa obiektów.

Pytanie 6

Jaka jest znamionowa sprawność silnika jednofazowego przy danych: PN = 3,7 kW (moc mechaniczna), UN = 230 V, IN = 21,4 A oraz cos φN = 0,95?

A. 0,71
B. 0,95
C. 0,75
D. 0,79
Znamionowa sprawność silnika jednofazowego obliczana jest na podstawie wzoru: η = P_N / (U_N * I_N * cos φ_N), gdzie P_N to moc mechaniczna, U_N to napięcie znamionowe, I_N to prąd znamionowy, a cos φ_N to współczynnik mocy. Podstawiając wartości: η = 3,7 kW / (230 V * 21,4 A * 0,95) ≈ 0,79. Zrozumienie sprawności silnika jest kluczowe dla efektywności energetycznej w zastosowaniach przemysłowych. Wysoka sprawność oznacza mniejsze straty energii, co przekłada się na niższe koszty eksploatacji oraz mniejszą emisję zanieczyszczeń. W praktyce, dobór silników o znamionowej sprawności powyżej 0,80 jest standardem w branży, co zgodne jest z normami IEC 60034-30, które promują silniki o wysokiej efektywności. Dlatego, przy wyborze silnika, warto zwrócić uwagę na jego sprawność, co przyczyni się do zrównoważonego rozwoju i oszczędności energetycznych w dłuższym okresie.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

W dokumentacji dotyczącej instalacji elektrycznej w wielopiętrowym budynku mieszkalnym wskazano, że konieczne jest użycie ochronników przeciwprzepięciowych klasy C. Gdzie powinny one zostać zamontowane?

A. w złączu budynku
B. w rozdzielnicach mieszkaniowych
C. w puszkach instalacyjnych gniazd odbiorczych
D. na linii zasilającej budynek
Odpowiedź wskazująca na rozdzielnice mieszkaniowe jako miejsce instalacji ochronników przeciwprzepięciowych klasy C jest poprawna, ponieważ rozdzielnice te pełnią kluczową rolę w zarządzaniu i dystrybucji energii elektrycznej w budynku. Ochronniki klasy C są projektowane do ochrony przed przepięciami wynikającymi z różnorodnych zjawisk, takich jak wyładowania atmosferyczne czy zakłócenia w sieci. Montaż tych urządzeń w rozdzielnicach mieszkaniowych pozwala na skuteczną ochronę wszystkich obwodów, które z nich zasilają, co jest zgodne z normą PN-EN 61643-11 oraz wytycznymi zawartymi w dokumentach technicznych dotyczących instalacji elektrycznych. Przykładowo, w przypadku wyładowania atmosferycznego, przepięcia mogą przedostać się do instalacji, co może prowadzić do uszkodzenia sprzętu elektronicznego. Umiejscowienie ochronników w rozdzielnicach minimalizuje te ryzyka, zapewniając bezpieczeństwo i ciągłość działania urządzeń w gospodarstwie domowym.

Pytanie 9

Kontrolę przeciwpożarową wyłącznika prądu powinno się przeprowadzać w terminach określonych przez producenta, jednak nie rzadziej niż raz na

A. pięć lat
B. rok
C. trzy lata
D. dwa lata
Regularne przeglądy przeciwpożarowe wyłączników prądu są kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. Zgodnie z przepisami i zaleceniami producentów, przegląd powinien być przeprowadzany nie rzadziej niż raz do roku, co pozwala na wykrycie i naprawę ewentualnych usterek, które mogą prowadzić do poważnych zagrożeń. Przykładowo, niewłaściwe działanie wyłącznika może skutkować brakiem ochrony przed przeciążeniem lub zwarciem, co w skrajnych przypadkach prowadzi do pożaru. Warto również pamiętać, że w obiektach o wysokim ryzyku pożarowym, takich jak zakłady przemysłowe czy magazyny, częstotliwość przeglądów może być jeszcze wyższa, aby zapewnić maksymalne bezpieczeństwo. Współczesne normy i standardy branżowe, takie jak norma PN-EN 61439, podkreślają znaczenie regularnych inspekcji i konserwacji urządzeń elektrycznych w kontekście ochrony przeciwpożarowej. Praktyka ta nie tylko chroni mienie, ale również życie ludzi, co czyni ją niezbędnym elementem zarządzania bezpieczeństwem w każdym przedsiębiorstwie.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jaką proporcję strumienia świetlnego kieruje się w dół w oprawie oświetleniowej klasy V?

A. 40 ÷ 60%
B. 0 ÷ 10%
C. 90 ÷ 100%
D. 60 ÷ 90%
Odpowiedzi wskazujące na wyższe wartości strumienia świetlnego, takie jak 40 ÷ 60%, 60 ÷ 90% oraz 90 ÷ 100%, koncentrują się na nieprawidłowych założeniach dotyczących funkcji opraw V klasy. Te klasy oprawy oświetleniowej są zaprojektowane w taki sposób, aby dostarczać minimalną ilość światła w kierunku podłogi, co jest sprzeczne z ideą intensywnego oświetlenia. Błędne założenie, że oprawy V klasy mogą emitować znaczną ilość światła w dół, wynika z nieporozumienia dotyczącego ich zastosowań oraz sposobu działania. W praktyce, oprawy te powinny być wykorzystywane w takich miejscach, gdzie kontrola nad oświetleniem jest kluczowa, a intensywne oświetlenie w dół mogłoby powodować olśnienie lub zwiększać zużycie energii. Należy również zwrócić uwagę na to, że istnieją standardy dotyczące odpowiedniego oświetlenia w budynkach, które jednoznacznie określają dopuszczalne wartości strumienia świetlnego w zależności od jego zastosowania. Stosowanie opraw z niewłaściwą klasą efektywności może prowadzić do niekorzystnych warunków pracy, a także do naruszenia przepisów dotyczących ochrony środowiska oraz efektywności energetycznej. Dlatego tak ważne jest, aby projektanci oświetlenia oraz użytkownicy byli świadomi różnic między klasami opraw, aby uniknąć błędnych decyzji projektowych.

Pytanie 13

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. zamiana jednej fazy z przewodem neutralnym
B. brak podłączenia jednej fazy
C. zamiana dwóch faz miejscami
D. brak podłączenia dwóch faz
Zamiana dwóch faz między sobą jest kluczowym zjawiskiem w trójfazowych układach zasilania, które wpływa na kierunek obrotów silników asynchronicznych. W przypadku silników trójfazowych, kierunek ich obrotów można zmieniać poprzez zamianę miejscami dwóch dowolnych faz zasilających. W praktyce, jeśli podłączymy fazy w inny sposób, silnik zacznie obracać się w przeciwną stronę, co można zaobserwować w przypadku hydroforów, które są często używane do pompowania wody w różnych aplikacjach domowych. W takiej sytuacji, ważne jest, aby zwracać uwagę na prawidłowe oznaczenia faz oraz standardy instalacyjne, które powinny być przestrzegane dla zapewnienia prawidłowego działania urządzeń. Przykładem zastosowania tej wiedzy jest również sytuacja, gdy wykonujemy konserwację instalacji elektrycznej, w której zmieniamy przyłącze, co może prowadzić do niezamierzonych skutków, takich jak zmiana kierunku obrotów silnika. Dlatego ważne jest, aby zawsze upewnić się, że połączenia faz są zgodne z dokumentacją oraz zaleceniami producentów urządzeń.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Kontrola instalacji elektrycznych, które są narażone na szkodliwe działanie warunków atmosferycznych lub destrukcyjne oddziaływanie czynników występujących podczas eksploatacji budynku, powinna odbywać się nie rzadziej niż raz na

A. rok
B. kwartał
C. 4 lata
D. 2 lata
Przeprowadzanie kontroli instalacji elektrycznych narażonych na szkodliwe wpływy atmosferyczne co najmniej raz w roku jest zgodne z normami bezpieczeństwa oraz dobrymi praktykami w branży budowlanej. Regularne inspekcje pozwalają na wczesne wykrycie potencjalnych problemów, takich jak korozja czy uszkodzenia izolacji, co może znacząco obniżyć ryzyko awarii elektrycznych. Na przykład, w przypadku instalacji znajdujących się na zewnątrz budynków, narażonych na opady deszczu, śniegu czy zmiany temperatury, roczna kontrola pozwala na ocenę stanu technicznego wszystkich elementów. Dzięki temu możemy podjąć działania prewencyjne, takie jak wymiana uszkodzonych części czy poprawa izolacji, co przekłada się na bezpieczniejsze użytkowanie budynków. Dodatkowo, zgodnie z przepisami prawa budowlanego oraz normami PN-IEC 60364, regularne kontrole są niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z normami technicznymi.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Metoda montażu instalacji
B. Warunki zewnętrzne, którym instalacja jest poddawana
C. Kształt budynku w przestrzeni
D. Liczba urządzeń zasilanych z tej instalacji
Warunki zewnętrzne, na jakie jest narażona instalacja, mają kluczowe znaczenie dla określenia częstotliwości okresowych kontroli instalacji elektrycznej. W praktyce oznacza to, że instalacje znajdujące się w trudnych warunkach, takich jak znaczne zmiany temperatur, wilgotność, zanieczyszczenia chemiczne czy fizyczne uszkodzenia, wymagają częstszej inspekcji. Na przykład, instalacje elektryczne w zakładach przemysłowych, gdzie mogą występować agresywne substancje chemiczne, powinny być sprawdzane regularnie, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo pracowników. Ponadto, normy branżowe, takie jak PN-EN 60364, zaznaczają, że różne środowiska pracy mają różne wymagania dotyczące przeglądów. Przykładowo, instalacje w budynkach użyteczności publicznej powinny być kontrolowane co najmniej raz w roku, ale w warunkach ekstremalnych, takich jak miejsca o dużym natężeniu ruchu lub narażone na czynniki zewnętrzne, kontrole powinny być dokonywane jeszcze częściej. Dbanie o regularne przeglądy pozwala na identyfikację potencjalnych zagrożeń i utrzymanie wysokiego poziomu bezpieczeństwa.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jeśli do pomiaru napięcia w sieci 230 V zastosowano miernik analogowy o dokładności 0,5 i zakresie 300 V, jakie będą wskazania tego miernika?

A. 230 V (±1,30 V)
B. 230 V (±1,20 V)
C. 230 V (±1,50 V)
D. 230 V (±1,40 V)
Wybór niepoprawnych wartości błędu wskazania pomiaru może wynikać z nieprawidłowej interpretacji klasy dokładności miernika. Klasa 0,5 jest często mylona z innymi klasami, co prowadzi do błędnych obliczeń. Na przykład, przy założeniu błędu ±1,30 V, ±1,20 V czy ±1,40 V, można zauważyć, że te wartości nie odpowiadają rzeczywistej wielkości dodatkowego błędu pomiarowego. Błąd pomiarowy powinien być zawsze obliczany na podstawie procentowej klasy dokładności w odniesieniu do wartości nominalnej, a nie bazować na subiektywnych ocenach czy zaokrągleniach. Tego rodzaju pomyłki mogą prowadzić do sytuacji, w których użytkownicy nie są świadomi rzeczywistego ryzyka, jakie niesie ze sobą stosowanie nieodpowiednich narzędzi pomiarowych. Użycie miernika z niewłaściwą klasą dokładności może skutkować poważnymi konsekwencjami, zwłaszcza w zastosowaniach przemysłowych, gdzie precyzyjne pomiary są kluczowe dla bezpieczeństwa operacji. Warto też zwrócić uwagę na to, że w praktyce inżynierskiej istotne jest nie tylko posiadanie miernika, ale także zrozumienie jego specyfikacji oraz umiejętność ich poprawnej interpretacji zgodnie z dobrą praktyką zawodową.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. żółty
B. niebieski
C. czerwony
D. szary
Wybór innych kolorów wkładek topikowych może prowadzić do poważnych błędów w zabezpieczeniach instalacji elektrycznych. Szary kolor odpowiada wkładkom o prądzie znamionowym 6 A, co oznacza, że zastosowanie go w miejscu o pełnym obciążeniu 20 A może skutkować ich zbyt wczesnym przepaleniem, co z kolei może doprowadzić do uszkodzeń sprzętu oraz potencjalnych zagrożeń pożarowych. Żółty oznacza wkładki o wartości 10 A, co również jest niewystarczające dla prądów sięgających 20 A. Czerwony kolor jest przypisany wkładkom o prądzie znamionowym 16 A, co również nie zabezpiecza adekwatnie instalacji, która wymaga wytrzymałości 20 A. Kluczowym błędem myślowym jest błędne założenie, że każdy kolor mógłby być stosowany wymiennie w zależności od dostępności, co jest absolutnie nieprawidłowe. Przy wyborze wkładek topikowych należy kierować się nie tylko ich dostępnością, ale przede wszystkim normami oraz prądami znamionowymi, by uniknąć ryzyka awarii. Wiedza na temat tych norm oraz ich praktyczne zastosowanie jest niezbędne dla każdego profesjonalisty w branży elektrycznej.

Pytanie 23

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Tylko metalowe
B. Metalowe lub gumowe
C. Z PVC lub gumowe
D. Tylko z PVC
Wybór rur z PVC czy gumy do układania przewodów na podłożu palnym to niezbyt mądra decyzja z kilku powodów. Po pierwsze, te materiały są palne, co naprawdę zwiększa ryzyko pożaru, jeśli instalacja się uszkodzi. PVC, mimo że jest popularne w budownictwie, nie spełnia wymogów bezpieczeństwa dla podłoży palnych, bo w wysokiej temperaturze może się deformować albo topnieć, przez co odsłania przewody elektryczne. Teoretycznie można by pomyśleć, że rury gumowe są jakąś alternatywą dla metalowych, ale w praktyce to się nie sprawdza, bo gumowe materiały, mimo że elastyczne i odporne na niektóre chemikalia, nie wytrzymują wysokich temperatur i są mniej trwałe. Normy, takie jak PN-IEC 60364 i przepisy przeciwpożarowe, jednoznacznie pokazują, że metalowe rury to najlepszy wybór tam, gdzie może wystąpić ryzyko pożaru. Wybierając złe materiały, narażamy nie tylko instalację, ale też zdrowie i życie ludzi w danym budynku, a to naprawdę nieodpowiedzialne podejście.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?

A. Ochronne obniżenie napięcia
B. Izolowanie miejsca pracy
C. Podwójna lub wzmocniona izolacja
D. Izolacja odbiornika
Separacja odbiornika to jedna z podstawowych metod ochrony przed dotykiem pośrednim, szczególnie w układach zasilania, gdzie izolacja galwaniczna jest kluczowa. W przypadku analizy transformatora o przekładni 230 V/230 V, zastosowanie tej metody oznacza, że urządzenie zasilane jest z transformatora, który nie jest połączony elektrycznie z innymi obwodami. Dzięki temu, jeśli dojdzie do awarii w jednym z obwodów, prąd nie popłynie do innych części instalacji, co znacząco zwiększa bezpieczeństwo użytkowania. W praktyce oznacza to, że w różnych obszarach zastosowań, takich jak instalacje w laboratoriach czy w obiektach służby zdrowia, separacja odbiornika jest stosowana do zapewnienia minimalnego ryzyka porażenia prądem. Dodatkowo, zgodnie z normami IEC 61140, separacja odbiornika jest uznawana za istotny element projektowania instalacji elektrycznych, co podkreśla jej znaczenie w zapewnieniu bezpieczeństwa użytkowników.

Pytanie 28

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Megaomomierza
B. Omomierza
C. Megawoltomierza
D. Watomierza
Megaomomierz, znany również jako miernik izolacji, jest specjalistycznym urządzeniem stosowanym do pomiaru rezystancji izolacji instalacji elektrycznych. Jego głównym celem jest ocena stanu izolacji przewodów oraz urządzeń elektrycznych, co ma kluczowe znaczenie dla zapewnienia bezpieczeństwa systemu. Pomiar rezystancji izolacji przeprowadza się zazwyczaj przy zastosowaniu napięcia wyższego niż standardowe napięcie robocze, co pozwala na wykrycie potencjalnych uszkodzeń i degradacji materiałów izolacyjnych. Przykładowo, w instalacjach o napięciu 230V, pomiar izolacji przeprowadza się zazwyczaj przy napięciu 500V lub 1000V, co jest zgodne z normami IEC 61010 oraz IEC 60364. Dzięki temu jesteśmy w stanie zidentyfikować uszkodzenia, które mogą prowadzić do porażeń prądem lub zwarć, co czyni ten pomiar niezbędnym w każdej rutynowej konserwacji instalacji elektrycznych.

Pytanie 29

Który z urządzeń elektrycznych, zainstalowany w obwodzie systemu zasilania elektrycznego kuchenki trójfazowej, jest w stanie zidentyfikować przerwę w ciągłości przewodów jednej z faz?

A. Czujnik zaniku fazy
B. Stycznik elektromagnetyczny
C. Odgromnik
D. Przekaźnik priorytetowy
Czujnik zaniku fazy to urządzenie, którego głównym zadaniem jest monitorowanie i wykrywanie ewentualnych przerw w zasilaniu w poszczególnych fazach obwodu elektrycznego. W kontekście kuchenek trójfazowych, które wymagają stabilnego zasilania z trzech faz, czujnik ten odgrywa kluczową rolę w zapewnieniu bezpieczeństwa oraz sprawnego funkcjonowania urządzenia. Gdy zachodzi przerwa w jednej z faz, czujnik natychmiast wykrywa ten stan i może zainicjować odpowiednie działania, takie jak odłączenie urządzenia od zasilania, co zapobiega jego uszkodzeniu. Przykładowo, w kuchniach przemysłowych, gdzie kuchenki trójfazowe są wykorzystywane na dużą skalę, zastosowanie czujników zaniku fazy jest standardem, co wpływa na zwiększenie niezawodności i bezpieczeństwa operacji. Zgodnie z normami branżowymi, takie jak PN-EN 61439, zaleca się stosowanie czujników do monitorowania ciągłości zasilania w instalacjach elektrycznych, co w praktyce przekłada się na wyższą efektywność i minimalizację ryzyka awarii.

Pytanie 30

Która z wymienionych czynności należy do konserwacji elektrycznej w mieszkaniach?

A. Sprawdzenie stanu izolacji oraz powłok przewodów
B. Zamiana wszystkich źródeł oświetlenia w oprawach
C. Weryfikacja czasu działania zabezpieczenia przeciwzwarciowego
D. Zmiana wszystkich końcówek śrubowych w puszkach rozgałęźnych
Wymiana wszystkich źródeł światła w oprawach nie jest bezpośrednio związana z konserwacją instalacji elektrycznej, lecz dotyczy czynności eksploatacyjnych. Choć wymiana żarówek jest konieczna, nie wpływa na ogólny stan instalacji ani nie zaspokaja wymogów przepisów dotyczących bezpieczeństwa. Z kolei sprawdzenie czasu zadziałania zabezpieczenia zwarciowego, mimo iż istotne, koncentruje się na aspektach ochronnych, a nie na konserwacji samej instalacji. Praktyka ta nie obejmuje analizy stanu izolacji przewodów, co jest fundamentalne dla długoterminowej funkcjonalności systemu. Wymiana wszystkich zacisków śrubowych w puszkach rozgałęźnych również nie stanowi konserwacji w rozumieniu stanu technicznego instalacji, a raczej działania prewencyjnego, które powinno być realizowane w odpowiednich interwałach czasowych. Konserwacja instalacji elektrycznej wymaga całościowego podejścia, które skupia się na ocenie i utrzymaniu integralności systemu, a nie tylko na pojedynczych elementach. Zrozumienie, że konserwacja to znacznie więcej niż proste działania eksploatacyjne, jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych w mieszkaniach.

Pytanie 31

Który z poniższych jest podstawowym elementem ochrony przeciwporażeniowej w instalacjach elektrycznych?

A. Bezpiecznik topikowy
B. Przekaźnik czasowy
C. Wyłącznik nadprądowy
D. Wyłącznik różnicowoprądowy
Wyłącznik różnicowoprądowy jest kluczowym komponentem systemu ochrony przeciwporażeniowej w instalacjach elektrycznych. Jego główną funkcją jest wykrywanie prądów upływowych, które mogą świadczyć o uszkodzeniu izolacji lub innym zagrożeniu dla bezpieczeństwa użytkowników. Gdy wyłącznik różnicowoprądowy wykryje prąd upływowy przekraczający określoną wartość, zazwyczaj 30 mA, natychmiast odłącza zasilanie, co skutecznie zapobiega porażeniu prądem elektrycznym. Jest to szczególnie ważne w miejscach, gdzie użytkownicy mogą mieć kontakt z wodą, np. w łazienkach czy kuchniach. Wyłączniki różnicowoprądowe są zgodne z normami międzynarodowymi, takimi jak IEC 61008 i IEC 61009, oraz stanowią część standardowych wymagań instalacyjnych w wielu krajach. Ich zastosowanie w praktyce pozwala na zwiększenie bezpieczeństwa eksploatacji instalacji elektrycznych, dlatego są one nieodzownym elementem każdej nowoczesnej instalacji. Poprawna instalacja i regularne testowanie wyłączników różnicowoprądowych są kluczowe dla skutecznej ochrony użytkowników przed skutkami porażenia prądem elektrycznym.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Przeglądy instalacji elektrycznej w budynkach mieszkalnych powinny być przeprowadzane nie rzadziej niż co

A. 10 lat
B. 1 rok
C. 2 lata
D. 5 lat
Przeglądy mieszkaniowej instalacji elektrycznej należy wykonywać nie rzadziej niż co 5 lat, zgodnie z obowiązującymi normami i przepisami prawa, w tym z ustawą Prawo budowlane oraz normami PN-IEC 60364. Regularne przeglądy są kluczowe dla zapewnienia bezpieczeństwa użytkowania instalacji elektrycznych oraz zapobiegania pożarom i porażeniom prądem. W ramach takiego przeglądu oceniana jest nie tylko stan techniczny przewodów i osprzętu elektrycznego, ale także zgodność z aktualnymi przepisami. Przykład: jeśli w ciągu 5 lat nie zrealizujesz przeglądu, możesz być narażony na ryzyko awarii instalacji, co może prowadzić do poważnych konsekwencji. Dobrą praktyką jest dokumentowanie wykonanych przeglądów oraz przechowywanie protokołów w celu ułatwienia ewentualnych kontroli oraz zapewnienia, że instalacja jest w dobrym stanie przez cały okres jej użytkowania.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Klasę III
B. Klasę 0
C. Klasę II
D. Klasę I
Wybór odpowiedzi dotyczących klas 0, II, czy III wiąże się z błędnym zrozumieniem podstawowych zasad dotyczących ochrony przed porażeniem elektrycznym. Klasa 0 odnosi się do urządzeń, które nie mają uziemienia ani dodatkowej izolacji, co stawia je w niebezpiecznej sytuacji w przypadku wystąpienia awarii. Oprawy oświetleniowe tej klasy są mało zalecane w zastosowaniach, gdzie może dojść do kontaktu z wodą lub wilgocią, co czyni je niewłaściwymi dla większości zastosowań domowych czy przemysłowych. Klasa II natomiast oznacza, że urządzenia te są podwójnie izolowane, co w rzeczywistości nie wymaga uziemienia, ale nie spełnia wymagań dla opraw, które mogą być narażone na kontakt z wodą. Klasa III odnosi się do urządzeń o niskim napięciu, które również nie są odpowiednie dla typowych opraw oświetleniowych. Rozumienie różnic między tymi klasami jest kluczowe dla zapewnienia bezpieczeństwa, a błędne interpretacje mogą prowadzić do niebezpiecznych sytuacji. Dlatego też, podczas doboru opraw oświetleniowych, istotne jest, aby zwracać uwagę na odpowiednią klasę ochronności i dostosowywać ją do specyfiki środowiska, w którym będą eksploatowane.

Pytanie 38

Jaką wartość ma znamionowa sprawność silnika jednofazowego, którego dane to: PN = 3,7 kW (moc mechaniczna na wale), UN = 230 V, IN = 21,4 A, cos φ = 0,95?

A. 0,79
B. 0,95
C. 0,71
D. 0,75
Prawidłowe zrozumienie sprawności silnika elektrycznego jest kluczowe dla oceny jego efektywności. Błędne odpowiedzi, takie jak 0,71, 0,95 czy 0,75, wynikają z niepoprawnego zastosowania wzorów lub mylnych założeń. Na przykład, wybór 0,95 może prowadzić do wniosku, że silnik przekształca większość energii elektrycznej w pracę mechaniczną, co jest nierealistyczne. W rzeczywistości żaden silnik nie osiąga 100% sprawności ze względu na straty związane z oporem wewnętrznym, tarciem oraz stratami cieplnymi. Współczynniki sprawności w zakresie 0,7 do 0,9 są powszechnie akceptowane dla silników jednofazowych, a ich wartość zależy od konstrukcji oraz zastosowanych materiałów. Typowym błędem jest także nieprawidłowe zrozumienie pojęcia współczynnika mocy (cos φ), który wskazuje na efektywność wykorzystania energii elektrycznej. Zbyt mała wartość tego współczynnika oznacza, że więcej energii jest tracone w formie ciepła, co negatywnie wpływa na ogólną sprawność. Dlatego ważne jest, aby właściwie obliczać sprawność silnika, uwzględniając wszystkie wymienione parametry, co pozwala na lepsze zarządzanie energią i kosztami w zakładach przemysłowych.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.