Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 15 maja 2025 12:30
  • Data zakończenia: 15 maja 2025 12:49

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wyłącznik, który chroni instalację elektryczną przed skutkami przeciążenia, to

A. różnicowoprądowy
B. podnapięciowy
C. nadprądowy
D. czasowy
Wyłącznik nadprądowy jest kluczowym elementem ochrony instalacji elektrycznej przed skutkami przeciążenia. Działa on na zasadzie detekcji prądu przekraczającego nominalną wartość, co może prowadzić do przegrzewania się przewodów, a w konsekwencji do pożaru lub uszkodzenia urządzeń elektrycznych. Wyłączniki nadprądowe są zaprojektowane zgodnie z normami IEC 60898 oraz IEC 60947, co zapewnia ich niezawodność w zastosowaniach domowych i przemysłowych. W praktyce, wyłącznik nadprądowy można spotkać w rozdzielniach elektrycznych budynków, gdzie zabezpiecza obwody zasilające gniazda i oświetlenie. Jego działanie jest szczególnie istotne w sytuacjach, gdy do obwodu podłączane są urządzenia o dużym poborze mocy, takie jak grzejniki elektryczne czy urządzenia AGD. Właściwe dobranie wyłącznika nadprądowego do charakterystyki obciążenia jest istotne dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznej.

Pytanie 2

Antena paraboliczna jest używana do odbioru sygnałów

A. radiowych w paśmie UKF
B. telewizji satelitarnej
C. telewizji naziemnej
D. radiowych w zakresie fal długich i średnich
Antena paraboliczna jest specjalistycznym urządzeniem zaprojektowanym do odbioru sygnałów satelitarnych, co czyni ją kluczowym elementem systemów telewizji satelitarnej. Jej konstrukcja pozwala na skupienie sygnału elektromagnetycznego na jednym punkcie, co znacząco zwiększa efektywność odbioru. Antena ta działa na zasadzie refleksji fal, gromadząc sygnały z szerokiego obszaru i kierując je do konwertera, który następnie przekształca je na sygnały elektryczne. Dzięki temu użytkownicy mogą cieszyć się wysoką jakością obrazu i dźwięku, nawet w trudnych warunkach atmosferycznych. W praktyce anteny paraboliczne wykorzystywane są w domowych instalacjach telewizyjnych, w profesjonalnych studiach telewizyjnych oraz w zastosowaniach mobilnych, takich jak transmisje na żywo z wydarzeń sportowych. Standardy DVB-S2 oraz DVB-S, stosowane w telewizji satelitarnej, wykorzystują takie anteny do odbioru sygnałów z satelitów geostacjonarnych, co zapewnia stabilność i niezawodność transmisji.

Pytanie 3

Który rodzaj kondensatora wymaga zachowania polaryzacji podczas jego wymiany?

A. Foliowy
B. Ceramiczny
C. Elektrolityczny
D. Powietrzny
Kondensatory elektrolityczne są elementami, które wymagają zachowania polaryzacji podczas wymiany, co jest kluczowym aspektem ich użytkowania. Są one zaprojektowane z wykorzystaniem elektrody, która jest wytwarzana z materiału przewodzącego, oraz dielektryka, który jest elektrolitem. Polaryzacja oznacza, że kondensator ma określoną biegunowość - jeden terminal działa jako anoda, a drugi jako katoda. W przypadku zamiany miejscami tych biegunów może dojść do uszkodzenia kondensatora, a nawet wybuchu. W praktycznych zastosowaniach, kondensatory elektrolityczne są powszechnie używane w zasilaczach, filtrach i układach audio, gdzie ich zdolność do przechowywania dużych ładunków sprawia, że są niezbędne. Ważne jest również stosowanie norm, takich jak IEC 60384, które regulują parametry kondensatorów elektrolitycznych, aby zapewnić ich niezawodność i bezpieczeństwo w aplikacjach. Wymieniając te komponenty, należy zawsze upewnić się, że nowe kondensatory mają odpowiednią biegunowość, aby uniknąć poważnych problemów.

Pytanie 4

Podczas wymiany uszkodzonego kondensatora filtrującego w zasilaczu sieciowym, tak aby uniknąć zwiększenia tętnień na wyjściu oraz ryzyka uszkodzenia kondensatora z powodu przebicia, można wybrać element o

A. większej pojemności i większym napięciu znamionowym
B. mniejszej pojemności i większym napięciu znamionowym
C. większej pojemności i mniejszym napięciu znamionowym
D. mniejszej pojemności i mniejszym napięciu znamionowym
Wybór kondensatora o mniejszej pojemności oraz mniejszym napięciu znamionowym jest często mylnie postrzegany jako wystarczający w wielu aplikacjach. Mniejsza pojemność prowadzi do niewystarczającego wygładzania napięcia, co może skutkować zwiększonym tętnieniem na wyjściu zasilacza. Wyższe tętnienia mogą wpływać negatywnie na działanie podłączonych urządzeń, takich jak komputery czy urządzenia audio, powodując szumy czy zniekształcenia. Zastosowanie kondensatora o mniejszym napięciu znamionowym zmniejsza margines bezpieczeństwa, co zwiększa ryzyko przebicia. Przykładem błędnych rozważań może być założenie, że kondensator o niższej pojemności będzie pracował w podobny sposób, co jego odpowiednik o wyższej pojemności. W rzeczywistości, różnice te mogą prowadzić do poważnych problemów, takich jak uszkodzenie komponentów w zasilaczu, co narusza standardy jakości obowiązujące w branży. Dobrą praktyką jest zawsze dobierać kondensatory zgodnie z wymogami aplikacji oraz zapewniać odpowiednie parametry, aby uniknąć potencjalnych usterek i zapewnić długotrwałą niezawodność systemu.

Pytanie 5

Całkowity koszt wykonania instalacji alarmowej, przy wartości materiałów wynoszącej 2 000 zł netto oraz kosztach robocizny w wysokości 1 000 zł netto, wyniesie ile, jeżeli materiały są objęte 23% a usługa 8% podatkiem VAT?

A. 3 540 zł
B. 3 240 zł
C. 3 080 zł
D. 3 460 zł
Aby obliczyć łączny koszt instalacji alarmowej, należy najpierw ustalić wartość materiałów i robocizny, a następnie doliczyć odpowiednie stawki podatku VAT. W tym przypadku wartość materiałów wynosi 2 000 zł netto. Stawka VAT dla materiałów wynosi 23%, co daje kwotę 460 zł (2 000 zł x 0,23). Z kolei koszt robocizny wynosi 1 000 zł netto, a stawka VAT dla robocizny wynosi 8%, co daje kwotę 80 zł (1 000 zł x 0,08). Łączny koszt materiałów z VAT to 2 000 zł + 460 zł = 2 460 zł, natomiast łączny koszt robocizny z VAT to 1 000 zł + 80 zł = 1 080 zł. Sumując te wartości, otrzymujemy całkowity koszt instalacji wynoszący 2 460 zł + 1 080 zł = 3 540 zł. Takie obliczenia są zgodne z obowiązującymi przepisami VAT i są kluczowe w branży budowlanej oraz instalacyjnej, gdzie precyzyjne kalkulacje kosztów mają istotne znaczenie dla rentowności projektów.

Pytanie 6

Jakie będzie powiązanie prądu spoczynkowego z temperaturą w tranzystorowej końcówce mocy wzmacniacza m.cz., gdy układ kompensacji temperaturowej nie funkcjonuje?

A. Prąd spoczynkowy wzrośnie w miarę zwiększania się temperatury
B. Brak powiązania prądu spoczynkowego z temperaturą
C. Prąd spoczynkowy zmaleje w miarę wzrostu temperatury
D. Prąd spoczynkowy może wzrosnąć lub zmaleć w zależności od użytych tranzystorów
Wzrost prądu spoczynkowego w tranzystorowej końcówce mocy wzmacniacza m.cz. wraz ze wzrostem temperatury jest zjawiskiem typowym i wynika z charakterystyki pracy tranzystorów bipolarno-junction (BJT). W miarę wzrostu temperatury, energia termiczna zwiększa ruchliwość nośników ładunku, co prowadzi do zwiększenia prądu bazy, a tym samym prądu kolektora. W praktyce oznacza to, że bez układu kompensacji temperaturowej, prąd spoczynkowy może wzrosnąć do wartości, które mogą uszkodzić tranzystor, a w skrajnych przypadkach prowadzić do zjawiska termicznej awarii. W celu zapobiegania tym skutkom, projektanci wzmacniaczy często stosują układy kompensacji temperaturowej, które automatycznie dostosowują prąd spoczynkowy do zmieniających się warunków. Wiedza ta jest niezbędna przy projektowaniu i eksploatacji końcówek mocy, gdzie stabilność parametrów pracy wpływa na jakość sygnału oraz trwałość komponentów. Zrozumienie tej zależności jest kluczowe dla inżynierów zajmujących się elektroniką i audio.

Pytanie 7

Podczas naprawy telewizora technik serwisowy doznał porażenia prądem. Po jego uwolnieniu z kontaktu stwierdzono, że jest nieprzytomny, oddycha i ma prawidłową pracę serca. W jaki sposób powinno się ułożyć poszkodowanego?

A. W pozycji bocznej ustalonej
B. W pozycji siedzącej z podparciem głowy
C. Na plecach z uniesionymi nogami
D. Na brzuchu z głową odchyloną na bok
Wybór pozycji bocznej ustalonej dla poszkodowanego jest kluczowy w sytuacji, gdy osoba jest nieprzytomna, ale oddycha, a praca serca jest w normie. Ta pozycja pozwala na zapewnienie drożności dróg oddechowych, co jest fundamentalne w sytuacjach medycznych. Ułożenie na boku ogranicza ryzyko zachłyśnięcia się, co może nastąpić, jeśli pacjent w tej sytuacji wymiotuje. Dodatkowo, w pozycji bocznej ustalonej, osoba jest mniej narażona na urazy w przypadku utraty równowagi czy dodatkowych kontuzji. Przy zastosowaniu tej pozycji ważne jest, aby głowa poszkodowanego była ustawiona w sposób, który umożliwia swobodny przepływ powietrza, a nogi były lekko zgięte w kolanach, co stabilizuje jego ciało. Tego typu postępowanie jest zgodne z wytycznymi Europejskiej Rady Resuscytacji oraz innymi uznawanymi standardami w pierwszej pomocy, co podkreśla znaczenie edukacji w zakresie reagowania na sytuacje nagłe.

Pytanie 8

Jakim skrótem opisuje się modulację szerokości impulsów?

A. FSK
B. PSK
C. QAM
D. PWM
Modulacja szerokości impulsów (PWM) jest techniką, która pozwala na kontrolowanie wartości średniej mocy dostarczanej do obciążenia poprzez regulację szerokości impulsów w sygnale cyfrowym. W przeciwieństwie do innych metod modulacji, PWM nie zmienia częstotliwości sygnału, a jedynie jego czas trwania w cyklu pracy. Jest to szeroko stosowane podejście w wielu aplikacjach, takich jak regulacja prędkości silników elektrycznych, dimmery do oświetlenia LED, a także w systemach audio do modulacji sygnałów dźwiękowych. W kontekście standardów, PWM znajduje zastosowanie w różnych protokołach komunikacyjnych oraz w systemach sterowania automatyki, gdzie precyzyjna kontrola nad mocą jest kluczowa dla wydajności i niezawodności. Dzięki swojej prostocie i skuteczności, PWM jest istotnym narzędziem w inżynierii elektronicznej i automatyce, co czyni go fundamentem dla wielu nowoczesnych rozwiązań technologicznych.

Pytanie 9

Do jakiego złącza podłącza się sygnał: wizji zespolony, kolor R, kolor G, kolor B, luminancji i chrominancji oraz sygnał audio kanału lewego i prawego?

A. JACK
B. DIN 5
C. EUROSCART
D. S-VHS
Złącze S-VHS jest przeznaczone głównie do przesyłania sygnału wideo w wyższej jakości niż standardowy sygnał kompozytowy, ale nie obsługuje zintegrowanego przesyłania kolorów R, G, B ani sygnału audio. S-VHS, z uwagi na swoją konstrukcję, skupia się jedynie na jakości obrazu, co ogranicza jego zastosowanie w kontekście przesyłania pełnego sygnału multimedialnego. Odpowiedź JACK, znana głównie jako złącze audio, również nie jest właściwa, ponieważ jest to złącze mono lub stereo, które nie może obsługiwać sygnałów wideo. Podobnie, złącze DIN 5, mimo że może być używane do różnych zastosowań audio, nie jest przystosowane do przesyłania zarówno sygnałów wideo, jak i audio w formie, która zintegrowałaby wszystkie wymienione sygnały. Wybór niewłaściwego złącza często wynika z nieporozumienia dotyczącego jego funkcji i zastosowania. Aby uniknąć takich błędów, kluczowe jest zrozumienie specyfikacji oraz możliwości każdego złącza, a także ich funkcji w kontekście całego systemu audio-wideo.

Pytanie 10

Jaką wartość napięcia sinusoidalnego mierzy woltomierz cyfrowy w trybie AC?

A. Maksymalną
B. Średnią
C. Skuteczną
D. Chwilową
Wybierając inne wartości, można wprowadzić się w błąd co do natury pomiarów napięcia przemiennego. W przypadku maksymalnej wartości napięcia, chodzi o wartość szczytową, która jest największa osiągana w cyklu napięcia sinusoidalnego, ale nie obrazuje rzeczywistego efektu, jaki napięcie wywiera na obciążenie. Chwilowa wartość napięcia to natomiast wartość zmieniająca się w czasie, co również nie oddaje rzeczywistego wpływu na wydajność energetyczną obwodu. Wartość średnia napięcia sinusoidalnego, która wynosi zero w przypadku pełnego cyklu, niewłaściwie przedstawia energię dostarczaną do obciążenia. W praktyce, błędne zrozumienie tych wartości może prowadzić do nieprawidłowego projektowania obwodów, co może skutkować nieefektywnym wykorzystaniem energii i problemami z bezpieczeństwem. Przykładem może być projektowanie systemów zasilania, gdzie użycie wartości szczytowej zamiast skutecznej może prowadzić do niedoszacowania wymagań dotyczących izolacji, a tym samym stwarzać ryzyko awarii. Dlatego tak istotne jest, aby w pomiarach napięcia przemiennego opierać się na wartościach skutecznych, aby uzyskać wiarygodne i użyteczne dane do analizy i projektowania systemów elektrycznych.

Pytanie 11

Aby przygotować przewód YLY do zamontowania w kostce zaciskowej, należy

A. odsłonięty z izolacji koniec przewodu umieścić bezpośrednio w kostce
B. na odsłonięty z izolacji koniec przewodu założyć końcówkę tulejkową i włożyć do kostki
C. przewód włożyć do kostki bez usuwania izolacji oraz smarowania go pastą izolacyjną
D. odsłonięty z izolacji koniec posmarować pastą izolacyjną i umieścić w kostce
Odpowiedź dotycząca zaciskania końcówki tulejkowej na obranym z izolacji końcu przewodu YLY jest prawidłowa, ponieważ zapewnia to solidne i bezpieczne połączenie elektryczne. Tulejki zaciskowe poprawiają kontakt elektryczny i chronią przewód przed uszkodzeniem mechanicznym oraz korozją, co może wystąpić w przypadku gołych końców przewodów. W praktyce, przed założeniem tulejki, końcówka przewodu powinna być odpowiednio przygotowana, co obejmuje usunięcie izolacji na właściwą długość, aby tulejka mogła być prawidłowo założona. Tego rodzaju połączenia są zgodne z międzynarodowymi standardami elektrycznymi, które promują bezpieczeństwo i niezawodność instalacji. Zastosowanie tulejek jest szczególnie istotne w instalacjach, gdzie przewody są narażone na wibracje lub ruch, ponieważ minimalizuje to ryzyko luźnych połączeń, co mogłoby prowadzić do awarii lub pożaru. Dlatego prawidłowe przygotowanie przewodu z zastosowaniem tulejek jest kluczowym aspektem w pracy z instalacjami elektrycznymi.

Pytanie 12

Stabilizator o symbolu LM7812 charakteryzuje się

A. regulowanym ujemnym napięciem na wyjściu
B. nieregulowanym dodatnim napięciem na wyjściu
C. regulowanym dodatnim napięciem na wyjściu
D. nieregulowanym ujemnym napięciem na wyjściu
Wybór odpowiedzi dotyczącej regulowanego napięcia wyjściowego wskazuje na nieporozumienie w zrozumieniu funkcji stabilizatorów. Stabilizatory, takie jak LM7812, zostały zaprojektowane z myślą o dostarczaniu stałego napięcia, a nie regulowanego, co oznacza, że nie są przeznaczone do zmiany napięcia wyjściowego w zależności od potrzeb użytkownika. Typowe błędy myślowe prowadzące do takich wniosków mogą wynikać z pomylenia stabilizatora napięcia z regulatorem, który może dostosować wyjście do zmieniających się warunków obciążenia. Odpowiedź o nieregulowanym ujemnym napięciu jest również błędna, ponieważ LM7812 dostarcza napięcia dodatniego. Stabilizatory ujemne, takie jak LM7912, mają zastosowanie w sytuacjach wymagających zasilania ujemnego, jednak LM7812 nie jest ich odpowiednikiem. Niezrozumienie różnic między stabilizatorami dodatnimi i ujemnymi oraz ich regulowalnymi i nieregulowalnymi wersjami może prowadzić do nieprawidłowego doboru komponentów w projektach elektronicznych, co z kolei wpływa na nieprawidłowe działanie całego układu. Dlatego tak ważne jest, aby rozumieć specyfikacje i zastosowania poszczególnych stabilizatorów, co z pewnością przyczyni się do efektywniejszego projektowania i realizacji systemów elektronicznych.

Pytanie 13

Badanie złącza p-n w tranzystorze bipolarnym można przeprowadzić przy użyciu

A. omomierza
B. woltomierza
C. amperomierza
D. watomierza
Woltomierz, watomierz i amperomierz to fajne przyrządy, ale do badania oporu złącza p-n w tranzystorze bipolarnym się nie nadają. Woltomierz mierzy napięcie, ale w kontekście złącza p-n to nie da nam pełnego obrazu. Może zmierzymy napięcie na złączu, ale to za mało, by stwierdzić, czy działa sprawnie. Watomierz też nie jest pomocny, bo on mierzy moc, a nie opór. Może się przydać w innych sytuacjach, ale nie do oceny samego złącza. Amperomierz bada natężenie prądu i daje jakieś wieści o przepływie prądu przez złącze, ale bez znajomości napięcia jest ciężko stwierdzić, czy złącze działa jak należy. Wiele osób myli te pojęcia, przez co czasem sądzimy, że inne przyrządy nadają się do złącz p-n. Ważne jest, żeby wiedzieć, że do pomiaru oporu potrzebujemy omomierza, który jest jedynym słusznym wyborem w tej sprawie.

Pytanie 14

Jakie są poprawne etapy, które należy wykonać przy demontażu uszkodzonej kamery monitorującej?

A. Zasilanie wyłączyć, przewody zasilające odłączyć, przewód sygnałowy odłączyć, kamerę zdemontować
B. Zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować, przewód sygnałowy odłączyć
C. Przewód sygnałowy odłączyć, zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować
D. Zasilanie wyłączyć, przewód sygnałowy odłączyć, przewody zasilające odłączyć, kamerę zdemontować
Zgadza się, żeby bezpiecznie zdemontować kamerę, najpierw musisz wyłączyć zasilanie. To podstawowa zasada, bo zapobiega nieprzyjemnym sytuacjom, jak porażenie prądem. Potem odłączasz przewody zasilające, ale z zachowaniem ostrożności, bo nie chcesz zrobić zwarcia. Kiedy już masz wszystko odłączone, to czas na przewód sygnałowy. To ważne, żeby nie uszkodzić systemu monitoringu. Na końcu, jak masz pewność, że wszystko jest odłączone, możesz przystąpić do demontażu kamery. Takie podejście pozwala na bezpieczne i sprawne serwisowanie sprzętu, a to bardzo ważne, żeby wszystko działało jak należy.

Pytanie 15

Aby poprawić jakość obrazu w trudnych warunkach oświetleniowych, należy zwiększyć odstęp S/N generowany przez układy elektroniczne kamery?

A. zwiększyć
B. zmniejszyć
C. wyzerować
D. wyrównać
Aby poprawić jakość obrazu w słabych warunkach oświetleniowych, kluczowe jest zwiększenie odstępu sygnału do szumu (S/N) wytwarzanego przez układy elektroniczne kamery. Wysoki stosunek S/N oznacza, że sygnał, który jest istotny dla reprodukcji obrazu, jest znacznie silniejszy od szumów, które mogą wprowadzać zakłócenia. Przykładowo, w zastosowaniach takich jak monitoring nocny, zwiększenie czułości matrycy kamery pozwala na uzyskanie lepszej jakości w trudnych warunkach oświetleniowych. W praktyce można to osiągnąć poprzez zastosowanie większych pikseli matrycy, co zwiększa zbieranie światła, lub przez poprawę algorytmów redukcji szumów. Standardy branżowe, takie jak ISO w fotografii, wskazują, że wyższe wartości ISO, które często towarzyszą poprawionemu S/N, mogą doprowadzić do jaśniejszego obrazu w ciemności, choć mogą także wprowadzać szumy. Dlatego ważne jest, aby znaleźć równowagę pomiędzy czułością a jakością obrazu, co jest kluczowe dla uzyskania zadowalających rezultatów.

Pytanie 16

Jakie jest przybliżone wartości rezystancji trzech rezystorów połączonych równolegle, jeżeli rezystancja każdego z nich wynosi 30 kΩ?

A. 10 kΩ
B. 90 kΩ
C. 15 kΩ
D. 60 kΩ
Kiedy mamy rezystory połączone równolegle, całkowita rezystancja R obliczamy według wzoru: 1/R = 1/R1 + 1/R2 + 1/R3. Dla trzech rezystorów, każdy o rezystancji 30 kΩ, wygląda to tak: 1/R = 1/30k + 1/30k + 1/30k, co możemy uprościć do 1/R = 3/30k. Po przekształceniu dostajemy R = 30k/3, co daje nam 10kΩ. W praktyce, połączenie równoległe rezystorów jest często używane w układach, gdzie chcemy obniżyć całkowitą rezystancję, a więc zwiększyć przepływ prądu. Na przykład w układach audio, gdzie więcej rezystorów równolegle pomaga obniżyć impedancję, co jest super dla wzmocnienia sygnału. Dobrze jest też rozumieć, jak wartości rezystancji wpływają na charakterystykę całego obwodu, bo to kluczowa sprawa w projektowaniu systemów elektronicznych.

Pytanie 17

Którego rodzaju kabel dotyczy termin STP?

A. Światłowodowego
B. Skrętki nieekranowanej
C. Koncentrycznego
D. Skrętki ekranowanej
Wybierając odpowiedź, która nie odnosi się do skrętki ekranowanej, można łatwo popełnić błąd w zrozumieniu terminologii związanej z kablami sieciowymi. Skrętka nieekranowana, mimo że również jest powszechnie używana, nie posiada dodatkowej warstwy ekranu, co czyni ją bardziej podatną na zakłócenia. Kable światłowodowe, chociaż są niezwykle szybkie i odporne na zakłócenia, działają na zupełnie innej zasadzie optycznej i nie są klasyfikowane jako skrętki, co czyni tę odpowiedź mylną. Kable koncentryczne, choć kiedyś popularne w telekomunikacji i telewizji kablowej, różnią się znacznie od skrętek i nie stosuje się ich w nowoczesnych sieciach komputerowych, gdzie dominuje technologia Ethernet. Typowe błędy myślowe prowadzące do niepoprawnych odpowiedzi mogą wynikać z nieznajomości różnic między różnymi typami kabli oraz ich zastosowaniami. Warto znać właściwości każdego z tych typów, aby móc efektywnie dobierać rozwiązania sieciowe, które będą najlepsze dla konkretnej aplikacji. Uwzględniając standardy branżowe oraz praktyki, można zrozumieć, dlaczego znajomość właściwych terminów i ich zastosowania jest kluczowa w projektowaniu i implementacji infrastruktury sieciowej.

Pytanie 18

Aby przeprowadzić konserwację systemu alarmowego, należy

A. przywrócić centralę do ustawień fabrycznych, ponownie zainstalować oprogramowanie centrali alarmowej
B. wyczyścić wnętrze obudowy z centralą, ocenić jakość styku sabotażowego centrali, zabrać akumulator do ładowania
C. zobaczyć reakcję czujników na ruch, sprawdzić datę wyświetlaną na manipulatorze, ocenić napięcie akumulatora
D. zmierzyć omomierzem jakość połączeń kabli, sprawdzić stan izolacji przewodów induktorem
Zresetowanie centrali do ustawień fabrycznych oraz ponowne wgrywanie oprogramowania centrali alarmowej, mimo że może być skuteczne przy rozwiązaniu problemów z oprogramowaniem, nie jest podstawową czynnością konserwacyjną. Takie działania są bardziej odpowiednie w przypadku poważnych usterek systemu lub błędów oprogramowania, a nie w ramach regularnej konserwacji. Ponadto, zbyt częste resetowanie może prowadzić do utraty istotnych danych konfiguracyjnych, co w konsekwencji może wpłynąć na funkcjonalność systemu. Wyczyść wnętrze skrzynki z centralą oraz sprawdź jakość styku sabotażowego centrali to również działania, które powinny być wykonywane, ale w kontekście konserwacji nie są one wystarczające. Właściwe działania konserwacyjne powinny koncentrować się na bieżącej ocenie stanu elementów systemu, takich jak czujki, akumulatory i ogólna reakcja systemu. Sprawdzanie jakości połączeń przewodów oraz stanu izolacji przewodów induktorem również jest ważne, jednakże nie powinno to stanowić priority w ramach regularnej konserwacji, która powinna skupić się na funkcjonalności systemu i jego zabezpieczeniach. Wnioskując, skuteczna konserwacja systemu alarmowego wymaga konkretnego podejścia opartego na sprawdzaniu kluczowych elementów, które wpływają na bezpieczeństwo, zamiast na działaniach, które mogą prowadzić do niepotrzebnych komplikacji.

Pytanie 19

Jakie urządzenia pomiarowe powinno się zastosować do pomiaru częstotliwości z wykorzystaniem krzywych Lissajous?

A. Watomierz i amperomierz
B. Woltomierz oraz oscyloskop
C. Generator i oscyloskop
D. Omomierz oraz amperomierz
Odpowiedź 'Generator i oscyloskop' jest prawidłowa, ponieważ do pomiaru częstotliwości za pomocą krzywych Lissajous niezbędne jest generowanie sygnałów oraz ich wizualizacja. Generator sygnałowy pozwala na wytworzenie dwóch różnych sygnałów, których częstotliwości można zmieniać. Oscyloskop z kolei umożliwia obserwację tych sygnałów w czasie rzeczywistym, na ekranie uzyskując charakterystyczny obraz krzywych Lissajous. Zmieniając częstotliwości sygnałów wytwarzanych przez generator, można zaobserwować, jak kształt krzywej na oscyloskopie zmienia się w zależności od stosunku częstotliwości obu sygnałów. Przykładowo, dla sygnałów o częstotliwości 1:2 otrzymamy elipsę, co może być użyteczne w praktyce do analizy stanów dynamicznych w obwodach elektronicznych. Stosowanie tych przyrządów jest standardem w laboratoriach elektroniki, co potwierdzają wytyczne dotyczące pomiarów elektronicznych.

Pytanie 20

W dziedzinie mikroprocesorowej termin stos odnosi się do

A. obszaru pamięci użytkowej mikroprocesora, który jest używany na przykład podczas obsługi przerwania
B. licznika wewnętrznych impulsów zegarowych mikroprocesora
C. słowa sterującego, na przykład układem czasowo-licznikowym
D. sekwencji ostatnio realizowanych rozkazów przez mikroprocesor
Wybór innych odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji i zastosowania różnych komponentów systemu mikroprocesorowego. Pierwsza z propozycji mówiąca o 'słowie sterującym' sugeruje, że stos jest powiązany z zarządzaniem sygnałami w mikroprocesorze, co jest błędne. Słowo sterujące to fragment instrukcji, który nie odnosi się do obszaru pamięci, a raczej do operacji jakie mikroprocesor ma wykonać. Odwołując się do drugiej odpowiedzi, lista ostatnio wykonanych rozkazów mikroprocesora jest bardziej związana z rejestrem stanów lub buforami, a nie ze stosami. Stos nie przechowuje rozkazów, ale dane tymczasowe i adresy powrotu. Ponadto, licznik wewnętrznych impulsów zegarowych mikroprocesora to element odpowiedzialny za synchronizację operacji, a nie za przechowywanie danych, co również może prowadzić do mylnych wniosków. Kluczowe jest zrozumienie, że stos pełni zupełnie inną rolę w architekturze komputerowej. Właściwe zarządzanie pamięcią i zrozumienie struktur danych to podstawowe umiejętności w programowaniu niskopoziomowym. Ignorowanie tych aspektów może prowadzić do nieefektywnego kodu oraz problemów z wydajnością i stabilnością oprogramowania.

Pytanie 21

Przy regulacji głośności w urządzeniach akustycznych charakterystyczne trzaski mogą świadczyć o uszkodzeniu

A. potencjometru
B. głośnika
C. wzmacniacza mocy
D. zasilacza
Zasilacz, wzmacniacz mocy i głośnik to kluczowe komponenty systemu audio, ale ich uszkodzenia nie są bezpośrednio związane z charakterystycznymi trzaskami podczas regulacji głośności. Zasilacz, odpowiedzialny za dostarczenie energii do całego systemu, może powodować problemy z zasilaniem, takie jak szumy lub brak mocy, jednak trzaski nie są typowym objawem jego uszkodzenia. Z kolei wzmacniacz mocy, który zwiększa sygnał audio, może generować różne problemy dźwiękowe, ale zwykle są one spowodowane przesterowaniem lub innymi problemami z sygnałem wejściowym, a nie bezpośrednio z regulacją głośności. Głośnik natomiast jest ostatnim elementem w łańcuchu sygnałowym, który przekształca sygnał elektryczny na fale dźwiękowe. Uszkodzenie głośnika skutkuje typowo zniekształceniami dźwięku, a nie trzaskami w trakcie regulacji. Odpowiedzi wskazujące na te komponenty mogą wynikać z mylnego zrozumienia funkcji każdego z tych elementów oraz ich wzajemnych interakcji w systemie audio. Kluczowe jest zrozumienie, że trzaski podczas regulacji głośności są specyficznym objawem problemów z mechanizmem regulacji, a nie z innymi, bardziej złożonymi elementami systemu akustycznego. W praktyce, aby uniknąć takich błędów, warto poszerzać wiedzę na temat działania i diagnostyki sprzętu audio, co pozwoli na właściwą identyfikację problemów i ich skuteczne rozwiązanie.

Pytanie 22

Brak uziemiającej opaski na nadgarstku pracownika podczas montażu układów CMOS może prowadzić do

A. uszkodzenia układów scalonych
B. uszkodzenia sprzętu lutowniczego
C. porażenia prądem elektrycznym
D. poparzenia gorącym spoiwem
Brak opaski uziemiającej na przegubie ręki podczas montażu układów CMOS to spory błąd, bo może prowadzić do uszkodzenia tych układów przez gromadzenie się ładunków elektrostatycznych. Układy CMOS są na to mega wrażliwe, co może skutkować ich trwałym uszkodzeniem, na przykład zmianami w ich właściwościach elektrycznych. Dlatego właśnie używanie opaski jest super ważne w miejscach, gdzie pracuje się z delikatnymi komponentami elektronicznymi. Opaska ta sprawia, że ładunek jest odprowadzany i przez to zmniejsza się ryzyko uszkodzeń. Z własnego doświadczenia wiem, że przestrzeganie norm jak ANSI/ESD S20.20 czy IEC 61340-5-1, które mówią o najlepszych praktykach w ochronie przed ESD, naprawdę się opłaca, jeśli chcemy mieć pewność co do jakości naszych produktów. Regularne szkolenia dla pracowników oraz stosowanie odpowiednich środków ochrony jak maty ESD czy opaski są kluczowe, by zminimalizować ryzyko przy montażu wrażliwych komponentów.

Pytanie 23

Jakie rodzaje sił stanowią zagrożenie dla mechanicznych połączeń światłowodowych?

A. Ukośne
B. Wzdłużne
C. Poprzeczne
D. Skrośne
Odpowiedź 'wzdłużne' jest prawidłowa, ponieważ siły wzdłużne mają największy wpływ na stabilność światłowodowych spawów mechanicznych. Siły te działają wzdłuż osi światłowodu i mogą prowadzić do rozciągania lub kompresji spawów, co z kolei wpływa na integralność optyczną połączenia. Przy spawaniu włókien światłowodowych, kluczowe jest, aby spaw był odporny na różnorodne obciążenia mechaniczne, a szczególnie na siły wzdłużne, które mogą wystąpić w wyniku ruchów kabli, naprężeń związanych z instalacją lub dynamicznych obciążeń zewnętrznych. Przykładem może być sytuacja, w której kable są narażone na ciągłe napięcie lub rozciąganie, co może prowadzić do uszkodzenia spawu i w rezultacie do degradacji sygnału. Standardy takie jak IEC 61300-2-4 dotyczące testowania odporności spawów światłowodowych na obciążenia mechaniczne podkreślają znaczenie analizy sił wzdłużnych. W praktyce, odpowiednie zabezpieczenie kabli przed obciążeniami wzdłużnymi jest kluczowe dla zapewnienia długoterminowej niezawodności systemów światłowodowych.

Pytanie 24

Maksymalny poziom natężenia dźwięku w biurze dla osoby zajmującej się projektowaniem układów elektronicznych, zgodnie z obowiązującymi normami, nie powinien przekraczać wartości

A. 35 dB
B. 55 dB
C. 45 dB
D. 25 dB
Wybór wartości 25 dB jako dopuszczalnego poziomu hałasu w biurze jest nieodpowiedni, ponieważ jest to wartość znacznie poniżej normy akceptowanej w kontekście biur. Poziom 25 dB odpowiada bardzo cichym pomieszczeniom, takim jak biblioteki czy ciche strefy w mieszkaniach, gdzie występuje minimalna akustyka. W środowisku biurowym, gdzie pracownicy korzystają z komputerów, prowadzą rozmowy telefoniczne lub współpracują z innymi, dźwięki te generują hałas, który naturalnie podnosi poziom hałasu do wartości powyżej 25 dB. Wartość 45 dB również jest nieadekwatna, ponieważ jest zbyt niska dla standardowego biura, w którym dźwięki mogą generować różne urządzenia biurowe oraz aktywność ludzi. Przyjęcie 35 dB jako dopuszczalnej wartości również nie uwzględnia realistycznych warunków biurowych, w których poziom hałasu często przekracza tę wartość, co może prowadzić do obniżonej efektywności pracy oraz dyskomfortu. Kluczowe jest, aby zrozumieć, że normy dotyczące hałasu w miejscu pracy są ustalane po to, aby promować zdrowe i sprzyjające efektywności środowisko pracy, gdzie wartości powyżej 55 dB są powszechnie akceptowane jako dopuszczalne w typowych biurach. Niezrozumienie tych standardów może prowadzić do nieodpowiednich warunków pracy oraz negatywnych skutków zdrowotnych dla pracowników.

Pytanie 25

W przypadku połączeń znacznie oddalonych urządzeń akustycznych, jakie kable powinny być używane?

A. sygnalizacyjne YKSY
B. symetryczne (balanced)
C. sygnalizacyjne YKSwXs
D. niesymetryczne (unbalanced)
Odpowiedź "symetryczne (balanced)" jest poprawna, ponieważ w przypadku połączeń znacznie odległych urządzeń akustycznych ważne jest minimalizowanie zakłóceń elektromagnetycznych oraz strat sygnału. Kable symetryczne są zaprojektowane w taki sposób, że wykorzystują dwa przewody do przesyłania sygnału, co pozwala na zniesienie zakłóceń dzięki różnicy potencjałów między nimi. W praktyce oznacza to, że sygnał przesyłany jest w formie różnicy napięć, co czyni go odpornym na wpływ zewnętrznych źródeł zakłóceń, takich jak inne urządzenia elektroniczne czy linie energetyczne. Przykładem zastosowania kabli symetrycznych są profesjonalne systemy nagłośnieniowe, gdzie długie odległości pomiędzy mikrofonami a mikserami wymagają wysokiej jakości przesyłu dźwięku bez straty jego integralności. W branży audio standardem jest używanie kabli XLR, które są typowymi kablami symetrycznymi, zapewniającymi niezawodność i wysoką jakość dźwięku. Znajomość tych aspektów jest niezbędna dla każdego technika dźwięku, aby zapewnić optymalne działanie systemów akustycznych.

Pytanie 26

Podstawowym celem korytek kablowych jest

A. powiększenie odległości przewodów od ściany
B. zwiększenie efektywności chłodzenia przewodów
C. obniżenie rezystancji izolacji przewodów
D. prowadzenie i maskowanie przewodów
Głównym zadaniem korytek kablowych jest prowadzenie i maskowanie przewodów, co odgrywa kluczową rolę w organizacji instalacji elektrycznych. Korytka kablowe nie tylko umożliwiają estetyczne ukrycie przewodów, ale również zabezpieczają je przed uszkodzeniami mechanicznymi oraz wpływem czynników zewnętrznych, takich jak wilgoć czy zanieczyszczenia. Dzięki zastosowaniu korytek kablowych, możliwe jest także znaczne uproszczenie procesu montażu i konserwacji instalacji, gdyż przewody są zgromadzone w jednym miejscu. W praktyce, korytka kablowe są wykorzystywane w biurach, halach produkcyjnych czy budynkach użyteczności publicznej, gdzie estetyka i porządek w instalacjach elektrycznych mają istotne znaczenie. Zgodnie z normą PN-EN 50085, stosowanie korytek kablowych powinno być dostosowane do rodzaju przewodów oraz warunków montażu, co pozwala na zapewnienie bezpieczeństwa i niezawodności instalacji. Warto również zauważyć, że odpowiednio zainstalowane korytka kablowe ułatwiają identyfikację przyczyn ewentualnych awarii oraz ich szybką naprawę.

Pytanie 27

Wyładowania elektryczne w atmosferze mogą prowadzić do powstawania niepożądanych napięć, które oddziałują na parametry anteny, skutkując

A. obniżeniem rezystancji promieniowania
B. zmianą długości oraz powierzchni efektywnej
C. zmniejszeniem impedancji wejściowej
D. zniekształceniem charakterystyki kierunkowej
Odpowiedzi sugerujące zmniejszenie rezystancji promieniowania, zmniejszenie impedancji wejściowej czy zmianę długości i powierzchni skutecznej anteny opierają się na błędnych założeniach dotyczących wpływu wyładowań atmosferycznych na parametry anteny. Zmniejszenie rezystancji promieniowania nie jest związane z działaniem piorunów, ponieważ rezystancja ta jest właściwością anteny i opisuje jej zdolność do efektywnego promieniowania energii. Zmiany te są bardziej związane z konstrukcją anteny niż z wpływem zewnętrznych zakłóceń. Podobnie, zmniejszenie impedancji wejściowej nie jest bezpośrednio efektem działania wyładowania atmosferycznego. Impedancja wejściowa anteny jest determinowana przez jej geometrię i materiał, z którego jest wykonana, a nie przez indukowane napięcia. Co więcej, zmiana długości i powierzchni skutecznej anteny także nie następuje w wyniku zjawisk atmosferycznych, ale raczej w wyniku mechanicznych lub elektrycznych modyfikacji samej anteny. Dlatego kluczowe jest zrozumienie, że wyładowania atmosferyczne mają bardziej wpływ na dynamiczne zniekształcenia charakterystyki anteny, a nie na jej podstawowe parametry fizyczne. W kontekście ochrony anten przed wyładowaniami wskazane jest, aby stosować odpowiednie metody i technologie zapobiegające uszkodzeniom, co jest zgodne z najlepszymi praktykami inżynieryjnymi w dziedzinie telekomunikacji.

Pytanie 28

Który z poniższych przyrządów jest używany do pomiaru rezystancji izolacji kabli?

A. Wobulator
B. Induktor
C. Mostek Thomsona
D. Mostek Wiena
Wybór wobulatora, mostka Thomsona lub mostka Wiena jako narzędzi do pomiaru rezystancji izolacji kabli oparty jest na nieporozumieniu dotyczącym funkcji tych urządzeń. Wobulator jest narzędziem stosowanym głównie do analizy i pomiarów częstotliwościowych oraz badania jakości sygnałów elektrycznych, a nie do oceny rezystancji izolacyjnej. Mostek Thomsona służy do pomiaru rezystancji, ale jest przeznaczony do zastosowań w sytuacjach, gdzie izolacja nie jest kluczowym czynnikiem, a jego zastosowanie w kontekście kabli z izolacją może prowadzić do błędnych odczytów. Z kolei mostek Wiena jest używany w pomiarach impedancji, szczególnie w dziedzinie analizy częstotliwości, a jego zastosowanie w pomiarach izolacji jest ograniczone i nieodpowiednie, ponieważ nie uwzględnia specyfiki testowania izolacji. Typowym błędem myślowym jest mylenie różnych typów pomiarów elektrycznych i ich przeznaczenia. Kluczowe jest zrozumienie, że pomiar rezystancji izolacji wymaga zastosowania dedykowanych narzędzi, które są zgodne z odpowiednimi normami i standardami, a nie ogólnych przyrządów do analizy sygnałów czy impedancji.

Pytanie 29

W urządzeniu elektronicznym narażonym na drgania może dojść do

A. zmniejszenia pojemności kondensatorów
B. uszkodzenia obwodów drukowanych
C. spadku efektywności zasilacza
D. utraty danych w pamięci wewnętrznej
Uszkodzenie obwodów drukowanych w urządzeniach elektronicznych narażonych na wibracje jest rzeczywiście problemem technicznym, który może prowadzić do poważnych awarii sprzętowych. Wibracje mechaniczne mogą wpływać na integralność fizyczną ścieżek prowadzących sygnały w obwodach drukowanych, co w konsekwencji prowadzi do przerwania połączeń lub zwarć. Przykładem mogą być urządzenia stosowane w przemyśle motoryzacyjnym, gdzie komponenty elektroniczne są wystawione na stałe drgania podczas jazdy. Standardy takie jak IPC-A-600 dotyczące akceptacji obwodów drukowanych podkreślają znaczenie projektowania z myślą o takich warunkach, oferując wytyczne dotyczące materiałów i technik montażu, aby zminimalizować ryzyko uszkodzeń. Wysokiej jakości projektowanie obwodów, stosowanie odpowiednich technologii lutowania oraz użycie materiałów odpornych na wibracje są kluczowe w zapewnieniu trwałości urządzeń. Dodatkowo, testy w warunkach ekstremalnych, takie jak testy wibracyjne zgodne z normą MIL-STD-810, mogą pomóc w ocenie odporności urządzeń na drgania, zapewniając ich niezawodność w trudnych warunkach operacyjnych.

Pytanie 30

Która z topologii sieci komputerowych gwarantuje największą niezawodność?

A. Siatki.
B. Gwiazdy.
C. Pierścienia.
D. Drzewa.
Topologia siatki zapewnia najwyższy poziom niezawodności w sieciach komputerowych, ponieważ każda stacja w sieci jest połączona z wieloma innymi stacjami. W przypadku awarii jednego z połączeń, dane mogą być kierowane inną ścieżką, co minimalizuje ryzyko utraty komunikacji. Taki model jest często wykorzystywany w krytycznych aplikacjach, takich jak systemy finansowe czy infrastruktura transportowa, gdzie utrata połączenia może prowadzić do poważnych konsekwencji. Zastosowanie topologii siatki jest zgodne z najlepszymi praktykami w dziedzinie projektowania sieci, gdzie kluczowe jest zapewnienie dużej redundancji i elastyczności. Przykładem może być sieć miejskiego systemu monitoringu, w której wiele kamer jest połączonych w topologii siatki, co zapewnia ciągłość działania nawet w przypadku uszkodzenia kilku połączeń. Dodatkowo, siatki są zgodne z normami takimi jak IEEE 802.11s, które definiują standardy dla mesh networking, co umożliwia ich szerokie zastosowanie w różnych branżach.

Pytanie 31

Który z parametrów odnosi się do wartości 20 Mpx, podanej w specyfikacji cyfrowego aparatu fotograficznego?

A. Rozdzielczość matrycy światłoczułej
B. Optyczne powiększenie obrazu
C. Czas reakcji migawki
D. Cyfrowe powiększenie obrazu
Wartość 20 Mpx (megapikseli) odnosi się do rozdzielczości matrycy światłoczułej w cyfrowym aparacie fotograficznym. Oznacza to, że matryca składa się z 20 milionów pikseli, co bezpośrednio wpływa na jakość zdjęć, które aparat może rejestrować. Im wyższa rozdzielczość, tym więcej szczegółów można uchwycić na zdjęciu, co jest szczególnie istotne w kontekście druku dużych formatów oraz przy edytowaniu zdjęć w postprodukcji. W praktyce, aparat o rozdzielczości 20 Mpx pozwala na wykonanie wydruków o wymiarach sięgających 50x75 cm bez zauważalnej utraty jakości. Standardy branżowe wskazują, że dla większości zastosowań amatorskich rozdzielczości w przedziale 16-24 Mpx są wystarczające, natomiast w zastosowaniach profesjonalnych zalecane są wyższe rozdzielczości. Warto również zauważyć, że wysoka rozdzielczość nie zawsze oznacza lepszą jakość obrazu, ponieważ na ostateczny efekt wpływają także inne czynniki, takie jak jakość obiektywu czy algorytmy przetwarzania obrazu. Dlatego przy wyborze aparatu warto zwrócić uwagę na całościową specyfikację techniczną urządzenia.

Pytanie 32

Zidentyfikowanie usterek w urządzeniach elektronicznych powinno rozpocząć się od weryfikacji

A. bezpieczników
B. elementów biernych
C. tranzystorów
D. diod zabezpieczających
Zaczynając lokalizację uszkodzeń w sprzęcie elektronicznym od sprawdzenia bezpieczników, postępujesz zgodnie z najlepszymi praktykami diagnostyki elektronicznej. Bezpieczniki są pierwszą linią obrony w obwodach elektrycznych, mając na celu ochronę przed przeciążeniem i zwarciem, co może prowadzić do uszkodzenia innych komponentów. Sprawdzenie stanu bezpieczników jest kluczowe, ponieważ uszkodzony bezpiecznik może oznaczać, że obwód był przeciążany lub że wystąpiło zwarcie, co może wskazywać na bardziej poważny problem w urządzeniu. Po zidentyfikowaniu i wymianie uszkodzonego bezpiecznika, zaleca się dalsze testowanie obwodów, aby zlokalizować źródło problemu. W praktyce, często stosuje się multimetr do pomiaru ciągłości obwodu bezpiecznika, co jest szybkim i skutecznym sposobem na określenie jego stanu. Dobrą praktyką jest również prowadzenie dokumentacji dotyczącej stanu i wymiany bezpieczników, co może być pomocne przy przyszłych naprawach oraz w analizie awarii.

Pytanie 33

Aby zrealizować instalację anteny TV na zewnątrz budynku, należy użyć przewodu antenowego w osłonie

A. z PVC o impedancji 75 Ω
B. z PE o impedancji 75 Ω
C. z PE o impedancji 50 Ω
D. z PVC o impedancji 50 Ω
Odpowiedzi z impedancją 50 Ω są niewłaściwe w kontekście instalacji antenowej telewizji, ponieważ ta wartość nie jest standardem dla większości systemów odbioru telewizyjnego. Przewody o impedancji 50 Ω są powszechnie stosowane w aplikacjach radiowych, takich jak radiokomunikacja czy anteny do systemów WLAN. Zastosowanie takich przewodów w systemach telewizyjnych prowadzi do nieefektywnego odbioru sygnału, co może skutkować zniekształceniami obrazu czy brakiem sygnału. Ponadto, wybór przewodu o materiałach PVC jest również niewłaściwy dla instalacji zewnętrznych, ponieważ PVC nie oferuje tak wysokiej odporności na działanie promieni UV oraz wilgoci jak PE. Użytkowanie przewodu z PVC w trudnych warunkach atmosferycznych może prowadzić do szybkiego uszkodzenia izolacji, co negatywnie wpływa na jakość sygnału. Ważne jest, aby podczas planowania instalacji antenowej kierować się zasadami inżynierii i obowiązującymi normami, aby uniknąć typowych błędów, takich jak stosowanie niewłaściwych materiałów i impedancji, co prowadzi do nieoptymalnych wyników odbioru.

Pytanie 34

Firma zajmująca się pomiarami wydaje każdego roku 12 000 zł na legalizację sprzętu pomiarowego. Jaką kwotę zaoszczędzono, jeśli w drugim półroczu uzyskano 30% zniżki?

A. 1 800 zł
B. 3 600 zł
C. 1 200 zł
D. 1 000 zł
Aby obliczyć oszczędność wynikającą z uzyskanego rabatu na legalizację przyrządów pomiarowych, należy najpierw ustalić, ile wydatków przypada na drugie półrocze. Przedsiębiorstwo wydaje rocznie 12 000 zł, co oznacza, że w drugim półroczu wydaje 6 000 zł. Następnie, obliczamy rabat, który wynosi 30% z tej kwoty. 30% z 6 000 zł to 1 800 zł (0,30 * 6 000 zł = 1 800 zł). Odpowiedź 1 800 zł jest poprawna, ponieważ odzwierciedla realne oszczędności, jakie przedsiębiorstwo uzyskuje dzięki korzystaniu z rabatu. W praktyce, takie podejście do analizy kosztów jest zgodne z zasadami zarządzania finansami, które podkreślają znaczenie efektywności kosztowej. Oprócz bezpośrednich oszczędności, wartość ta może wpłynąć na dalsze inwestycje w rozwój technologii pomiarowych, a tym samym poprawić jakość usług oferowanych przez przedsiębiorstwo, co jest kluczowe w kontekście utrzymania konkurencyjności na rynku.

Pytanie 35

Warystor to komponent, który zabezpiecza urządzenia elektroniczne przed skutkami działania

A. wyładowań atmosferycznych.
B. opadów deszczu.
C. niskich temperatur.
D. promieniowania X.
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumienia na temat funkcji warystora i jego zastosowania. Promieniowanie rentgenowskie, niska temperatura oraz opady deszczu nie są związane z zasadą działania warystorów. Promieniowanie rentgenowskie to forma promieniowania elektromagnetycznego, które nie wpływa na integralność elektronicznych układów poprzez przepięcia. Niska temperatura może wpłynąć na działanie niektórych komponentów elektronicznych, ale nie jest bezpośrednim zagrożeniem, które mogłoby być neutralizowane przez warystor. Opady deszczu mogą powodować korozję lub zwarcia w urządzeniach, ale nie są powiązane z przepięciami, dla których warystory zapewniają ochronę. Typowym błędem myślowym jest mylenie skutków z przyczynami: warystory są projektowane wyłącznie do ochrony przed nadmiernym napięciem, a nie do ochrony przed innymi czynnikami zewnętrznymi. Dlatego kluczowe jest zrozumienie, że warystor działa jako element zabezpieczający przed skutkami wyładowań atmosferycznych, a nie przed innymi zagrożeniami. Zrozumienie tych różnic jest kluczowe w projektowaniu systemów zabezpieczeń w urządzeniach elektronicznych.

Pytanie 36

Jakie urządzenia pomiarowe powinny być użyte do określenia charakterystyki przenoszenia wzmacniacza selektywnego LC zasilanego napięciem ±12 V?

A. Generator funkcyjny oraz cyfrowy multimetr
B. Zasilacz symetryczny, generator funkcyjny oraz oscyloskop
C. Zasilacz napięcia stałego, generator funkcyjny oraz oscyloskop
D. Zasilacz symetryczny oraz cyfrowy multimetr
Aby wyznaczyć charakterystykę przenoszenia wzmacniacza selektywnego LC, konieczne jest zastosowanie zasilacza symetrycznego, generatora funkcyjnego oraz oscyloskopu. Zasilacz symetryczny zapewnia stabilne napięcie zasilające wzmacniacz, co jest kluczowe dla uzyskania dokładnych pomiarów. Generator funkcyjny umożliwia generowanie sygnałów o różnych częstotliwościach oraz amplitudach, co pozwala na badanie odpowiedzi wzmacniacza na różne częstotliwości. Oscyloskop jest niezbędny do wizualizacji sygnału wyjściowego wzmacniacza, co umożliwia analizę jego charakterystyki przenoszenia. Przykładowo, podczas testowania wzmacniacza selektywnego LC, można wykorzystać generator do przesyłania sygnału sinusoidalnego o zmiennej częstotliwości, a oscyloskop do obserwacji, jak zmienia się amplituda sygnału wyjściowego, co pozwala na określenie pasma przenoszenia oraz zysku wzmacniacza. Stosowanie tych przyrządów jest zgodne z najlepszymi praktykami w dziedzinie elektroniki, co zapewnia wiarygodność i rzetelność uzyskanych wyników pomiarów.

Pytanie 37

Który z poniższych przyrządów jest używany do pomiaru oporności izolacji przewodów?

A. IMI-341
B. UM-112B
C. Mostek Thomsona
D. Mostek Wiena
IMI-341 to nowoczesny miernik izolacji, który jest powszechnie stosowany do pomiaru rezystancji izolacji kabli. Jego kluczową funkcją jest ocena stanu izolacji, co ma istotne znaczenie w kontekście bezpieczeństwa instalacji elektrycznych. Miernik ten może przeprowadzać pomiary przy różnych napięciach, co pozwala na dokładną diagnozę jakości izolacji. Przykładem jego zastosowania jest okresowe badanie instalacji elektrycznych w budynkach przemysłowych, gdzie nieodpowiedni stan izolacji może prowadzić do poważnych awarii i zagrożeń. IMI-341 jest zgodny z normami IEC 61010 oraz IEC 61557, co zapewnia jego niezawodność i bezpieczeństwo podczas eksploatacji. Dbanie o rezystancję izolacyjną jest kluczowe w zapobieganiu porażeniom elektrycznym oraz w redukcji ryzyka pożarów, co jest zgodne z najlepszymi praktykami w dziedzinie bezpieczeństwa elektrycznego.

Pytanie 38

Jakie złącza powinny być wykorzystane dla kabli koncentrycznych w systemie monitoringu telewizyjnego?

A. BNC
B. HDMI
C. DIN
D. SCART
Złącza BNC (Bayonet Neill-Concelman) są powszechnie stosowane w systemach telewizji dozorowej ze względu na ich prostotę, niezawodność oraz doskonałe właściwości sygnałowe. Złącza te są zaprojektowane do pracy z kablami koncentrycznymi, co czyni je idealnym rozwiązaniem w aplikacjach wymagających przesyłania sygnałów wideo. W systemach CCTV, BNC umożliwia szybkie i łatwe podłączenie kamer do rejestratorów, a także zapewnia stabilne połączenie, które minimalizuje straty sygnału. W praktyce, złącza BNC są również szeroko stosowane w profesjonalnych systemach telekomunikacyjnych oraz w transmisji sygnałów wideo w studiach telewizyjnych. Dzięki swojej konstrukcji, złącza BNC pozwalają na łatwe wypinanie i wpinaliwaniu, co jest istotne w kontekście serwisowania i rozbudowy systemów monitorujących. Ponadto, standardy branżowe, takie jak SMPTE 292M, wspierają użycie złącz BNC w aplikacjach wideo, co podkreśla ich znaczenie i niezawodność w tej dziedzinie.

Pytanie 39

Aby połączyć kable współosiowe o impedancji 75 Ω, należy

A. połączyć przewody poprzez ich skręcenie, a następnie zaizolować
B. zlutować przewody główne, zaizolować je, a następnie połączyć ekran
C. połączyć kable stosując kostkę zaciskową
D. użyć tzw. beczki do zestawienia dwóch wtyków typu F
Zastosowanie lutowania żył głównych oraz ekranu w przypadku kabli współosiowych nie jest zalecane ze względu na ryzyko powstania nieodpowiednich połączeń, które mogą prowadzić do strat sygnału. Lutowanie może zmienić charakterystykę impedancyjną kabla, co szczególnie w przypadku kabli o impedancji 75 Ω może powodować odbicia sygnału i zniekształcenia. Współosiowe kable zostały zaprojektowane z myślą o zachowaniu ścisłej tolerancji impedancji, a jakiekolwiek modyfikacje, takie jak lutowanie, mogą naruszyć tę równowagę. Podobnie, połączenie za pomocą kostki zaciskowej nie jest odpowiednie dla kabli współosiowych. Kostki są zazwyczaj stosowane w instalacjach niskonapięciowych, a w przypadku sygnałów wysokiej częstotliwości, jakie są przesyłane przez kable współosiowe, może to prowadzić do dodatkowych strat oraz zakłóceń. Co więcej, skręcanie przewodów ze sobą, pomimo że może wydawać się prostą metodą, również nie zapewnia odpowiedniej jakości sygnału i trwałości połączenia. Takie podejście wprowadza ryzyko luźnych połączeń oraz zmienia długość fal, co negatywnie wpływa na integralność sygnału. W praktyce, aby zapewnić wysoką jakość sygnału i minimalizować straty, należy stosować odpowiednie akcesoria, takie jak beczki, które są zgodne z najlepszymi praktykami i standardami branżowymi.

Pytanie 40

Multiswitch to urządzenie, które pozwala na

A. zapisywanie na twardym dysku sygnałów wideo pochodzących z różnych kamer
B. łączenie odmiennych sieci komputerowych
C. rozgałęzienie sygnału wideo, aby móc wyświetlić obraz na wielu monitorach
D. dystrybucję sygnału telewizyjnego satelitarnego i naziemnego do wielu odbiorników
Multiswitch to super ważne urządzenie w systemach telewizji satelitarnej i naziemnej. Dzięki niemu można rozdzielać sygnał do kilku odbiorników jednocześnie. Jak to działa? Multiswitch dostaje sygnały z różnych źródeł, jak satelity czy anteny naziemne, a potem dzieli to na różne wyjścia. To świetne, bo w domach, gdzie masz kilka telewizorów, każdy może oglądać coś innego. A co więcej, multiswitch dba o to, żeby sygnał był jak najlepszej jakości – tak, żebyś nie miał zakłóceń, co jest całkiem istotne. W większych instalacjach, jak w blokach, multiswitchy można łączyć, co daje jeszcze większą elastyczność. Warto pamiętać, żeby dobierać multiswitch z odpowiednią liczbą wyjść, bo za mało wyjść może prowadzić do problemów z sygnałem. Takie rzeczy są istotne, żeby telewizja działała bez zarzutu.