Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 11 kwietnia 2025 10:00
  • Data zakończenia: 11 kwietnia 2025 10:28

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zasady zabraniają przeprowadzania prac serwisowych na instalacjach antenowych w warunkach

A. niskiej temperatury
B. wietrznej pogody
C. wyładowań atmosferycznych
D. ograniczonej widoczności
Prace serwisowe instalacji antenowych w warunkach wyładowań atmosferycznych są zabronione, ponieważ stanowią one poważne ryzyko dla bezpieczeństwa pracowników oraz integralności systemu. Wyładowania atmosferyczne mogą prowadzić do uszkodzeń sprzętu, a także zagrażać życiu ludzi pracujących na wysokości, gdzie instalacje antenowe są często montowane. Standardy BHP oraz przepisy dotyczące prac na wysokości jednoznacznie wskazują, że prace te powinny być wykonywane w warunkach minimalizujących ryzyko, a wyładowania atmosferyczne są jednym z najpoważniejszych zagrożeń. Na przykład, w przypadku burzy, potencjalne uderzenie pioruna może nie tylko uszkodzić sprzęt, ale także spalić instalację elektryczną, co może prowadzić do pożaru. Pracownicy powinni być w pełni świadomi tych zagrożeń i przestrzegać zasad bezpieczeństwa, takich jak monitorowanie prognoz pogody, aby unikać pracy w takich warunkach. Zastosowanie odpowiednich praktyk, takich jak planowanie prac serwisowych w czasie stabilnej pogody, jest kluczowe dla zapewnienia bezpieczeństwa.

Pytanie 2

Stabilizator o symbolu LM7812 charakteryzuje się

A. regulowanym dodatnim napięciem na wyjściu
B. nieregulowanym dodatnim napięciem na wyjściu
C. nieregulowanym ujemnym napięciem na wyjściu
D. regulowanym ujemnym napięciem na wyjściu
Wybór odpowiedzi dotyczącej regulowanego napięcia wyjściowego wskazuje na nieporozumienie w zrozumieniu funkcji stabilizatorów. Stabilizatory, takie jak LM7812, zostały zaprojektowane z myślą o dostarczaniu stałego napięcia, a nie regulowanego, co oznacza, że nie są przeznaczone do zmiany napięcia wyjściowego w zależności od potrzeb użytkownika. Typowe błędy myślowe prowadzące do takich wniosków mogą wynikać z pomylenia stabilizatora napięcia z regulatorem, który może dostosować wyjście do zmieniających się warunków obciążenia. Odpowiedź o nieregulowanym ujemnym napięciu jest również błędna, ponieważ LM7812 dostarcza napięcia dodatniego. Stabilizatory ujemne, takie jak LM7912, mają zastosowanie w sytuacjach wymagających zasilania ujemnego, jednak LM7812 nie jest ich odpowiednikiem. Niezrozumienie różnic między stabilizatorami dodatnimi i ujemnymi oraz ich regulowalnymi i nieregulowalnymi wersjami może prowadzić do nieprawidłowego doboru komponentów w projektach elektronicznych, co z kolei wpływa na nieprawidłowe działanie całego układu. Dlatego tak ważne jest, aby rozumieć specyfikacje i zastosowania poszczególnych stabilizatorów, co z pewnością przyczyni się do efektywniejszego projektowania i realizacji systemów elektronicznych.

Pytanie 3

W instalacjach telewizyjnych używa się standardu DVB-C w technologii

A. dozorowej
B. naziemnej
C. satelitarnej
D. kablowej
Standard DVB-C (Digital Video Broadcasting - Cable) jest kluczowym standardem wykorzystywanym w telekomunikacji kablowej, który umożliwia przesyłanie sygnałów telewizyjnych i multimedialnych przez sieci kablowe. Umożliwia on kodowanie oraz kompresję sygnałów wideo, co pozwala na efektywne wykorzystanie pasma i dostarczenie wielu kanałów telewizyjnych w wysokiej jakości. DVB-C opiera się na modulacji QAM (Quadrature Amplitude Modulation), co pozwala na przesyłanie danych o wysokiej prędkości. W praktyce, standard ten jest szeroko stosowany przez/operatorów telewizji kablowej na całym świecie, co pozwala na poprawę jakości transmisji oraz zwiększenie liczby dostępnych programów telewizyjnych. Przykładowo, wiele europejskich krajów korzysta z DVB-C jako standardu dla telewizji kablowej, oferując abonentom różnorodne pakiety kanałów oraz usługi VOD (Video on Demand). Dodatkowo, DVB-C wspiera interaktywność oraz usługi dodatkowe, co jest istotnym atutem w nowoczesnych instalacjach telewizyjnych.

Pytanie 4

Utrzymanie w dobrym stanie elementów chłodzących w zasilaczach sprzętu elektronicznego polega na

A. oczyszczeniu ich za pomocą sprężonego powietrza
B. pomalowaniu ich lakierem elektroprzewodzącym
C. przetarciu ich drobnym papierem ściernym
D. zanurzeniu ich w wodnym roztworze detergentu
Odpowiedź dotycząca oczyszczenia elementów chłodzących w zasilaczach za pomocą sprężonego powietrza jest poprawna, ponieważ to podejście jest zgodne z najlepszymi praktykami w zakresie konserwacji elektroniki. Elementy chłodzące, takie jak radiatory, mogą zbierać kurz i inne zanieczyszczenia, które mogą negatywnie wpływać na efektywność chłodzenia. Użycie sprężonego powietrza pozwala na skuteczne usunięcie tych zanieczyszczeń bez ryzyka uszkodzenia delikatnych komponentów. Sprężone powietrze dostarcza energię kinetyczną, która pozwala na wypchnięcie cząsteczek brudu z trudno dostępnych miejsc, co jest kluczowe dla zachowania optymalnych parametrów pracy urządzenia. W praktyce, regularne stosowanie sprężonego powietrza w konserwacji zasilaczy i innych urządzeń elektronicznych jest zalecane co kilka miesięcy, a w warunkach intensywnego użytkowania może być konieczne nawet częściej. Tego rodzaju działania są zgodne z wytycznymi organizacji zajmujących się bezpieczeństwem i jakością elektroniki, co podkreśla ich znaczenie w dbałości o sprzęt.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Metalowa obudowa urządzenia elektronicznego powinna być połączona z przewodem ochronnym instalacji zasilającej poprzez przewód o izolacji w odcieniu

A. czerwonym
B. czarno-białym
C. niebieskim
D. żółto-zielonym
Metalowa obudowa urządzeń elektronicznych powinna być połączona z żyłą ochronną instalacji elektrycznej za pomocą przewodu o izolacji w kolorze żółto-zielonym, co wynika z europejskich norm dotyczących instalacji elektrycznych, takich jak norma PN-EN 60446. Kolor żółto-zielony jednoznacznie identyfikuje przewody ochronne, które mają na celu zabezpieczenie przed porażeniem prądem elektrycznym poprzez odprowadzenie ewentualnego prądu upływowego do ziemi. W praktyce, połączenie metalowej obudowy z żyłą ochronną minimalizuje ryzyko uszkodzenia ciała ludzkiego w przypadku awarii urządzenia. W kontekście praktycznym, stosowanie odpowiednich kolorów przewodów ułatwia identyfikację ich funkcji, co jest kluczowe przy konserwacji i naprawach. Przykładowo, w przypadku modernizacji instalacji w budynku, stosowanie przewodów o standardowej kolorystyce zapewnia bezpieczeństwo techniczne i zgodność z przepisami, co jest niezbędne do przeprowadzenia skutecznych prac instalacyjnych. Zrozumienie tej zasady jest kluczowe dla każdego elektryka, ponieważ nieprzestrzeganie norm może prowadzić do poważnych konsekwencji prawnych oraz zagrożeń zdrowotnych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Wzrost efektywnej pojemności torów przesyłowych dla kabla UTP wskazuje na

A. błędne podłączenie kabla
B. uszkodzenie izolacji
C. zbyt dużą rezystancję pętli
D. przerwanie jednej z żył
Zwiększenie pojemności skutecznej torów transmisyjnych w kablu UTP wskazuje na problemy z izolacją, co może prowadzić do zakłóceń w przesyłanym sygnale. Uszkodzenie izolacji pozwala na infiltrację wilgoci oraz innych zanieczyszczeń, co z kolei może prowadzić do zwiększonej pojemności w obwodach. W praktyce, taka sytuacja może skutkować pogorszeniem jakości sygnału, co jest szczególnie istotne w aplikacjach wymagających wysokiej wydajności, takich jak sieci Ethernet. Standardy takie jak IEEE 802.3, definiujące zasady działania sieci lokalnych, wymagają, aby kable UTP były w pełni sprawne, aby zapewnić odpowiednie prędkości transmisji. Dlatego w przypadku stwierdzenia wzrostu pojemności, kluczowe jest przeprowadzenie dokładnej analizy izolacji kabla oraz jego stanu technicznego, co może obejmować testy za pomocą specjalistycznych narzędzi, takich jak reflektometry. Regularne monitorowanie stanu kabli i ich izolacji jest zalecane zgodnie z normami branżowymi, aby zapobiegać awariom i zapewnić stabilność sieci.

Pytanie 11

Warystor to komponent, który zabezpiecza urządzenia elektroniczne przed skutkami działania

A. opadów deszczu.
B. promieniowania X.
C. wyładowań atmosferycznych.
D. niskich temperatur.
Warystor, znany również jako rezystor nieliniowy, to element elektroniczny, który chroni urządzenia przed przepięciami, zwłaszcza wyładowaniami atmosferycznymi. Działa na zasadzie zmiany swojej rezystancji w zależności od napięcia, co pozwala na skuteczne odprowadzanie nadmiaru energii. W praktyce warystory są powszechnie stosowane w zasilaczach, urządzeniach elektronicznych oraz systemach telekomunikacyjnych, gdzie mogą zapobiegać uszkodzeniom spowodowanym nagłymi wzrostami napięcia. Standardy takie jak IEC 61000-4-5 dotyczą ochrony przed przepięciami, a warystory są kluczowymi komponentami w spełnianiu tych norm. Dzięki swoim właściwościom, warystory mogą znacznie zwiększyć niezawodność sprzętu, co jest szczególnie istotne w branżach, gdzie przerwy w działaniu mogą prowadzić do dużych strat finansowych. Warto również zauważyć, że odpowiedni dobór warystora do konkretnej aplikacji, w tym jego napięcia przebicia i charakterystyki prądowej, ma kluczowe znaczenie dla skuteczności ochrony.

Pytanie 12

Czego nie uwzględnia się w dokumentacji dotyczącej montażu elektronicznego?

A. dokumentacji techniczno-ruchowej (DTR)
B. pełnej listy materiałowej (BOM)
C. współrzędnych podzespołów (pick&place)
D. zestawu rysunków montażowych (odnoszących się do wszystkich faz produkcji)
Dokumentacja techniczno-ruchowa (DTR) nie jest częścią dokumentacji montażu elektronicznego, ponieważ skupia się na eksploatacji i konserwacji urządzeń, a nie na ich produkcji czy montażu. DTR zawiera informacje dotyczące charakterystyki technicznej, działania oraz instrukcje serwisowe, co jest kluczowe w późniejszych fazach użytkowania sprzętu. W kontekście montażu elektronicznego, dokumentacja ta nie jest używana do procesów wytwarzania, co sprawia, że nie zalicza się do podstawowych materiałów niezbędnych na etapie produkcji. Przykład zastosowania to wprowadzenie procedur serwisowych dla urządzenia po jego zmontowaniu; DTR może być wykorzystywana przez techników serwisowych, którzy muszą znać specyfikacje oraz procedury konserwacji, ale nie jest bezpośrednio używana podczas samego montażu. Zgodnie z praktykami branżowymi, dokumentacja montażowa powinna zawierać rysunki montażowe, współrzędne elementów oraz listy materiałów, co jest zgodne z normami IPC (Institute for Printed Circuits) i innymi standardami branżowymi.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakie urządzenie jest przeznaczone do bezdotykowego pomiaru temperatury?

A. multimetru
B. kalorymetru
C. pirometru
D. luksomierza
Pirometr jest urządzeniem służącym do bezdotykowego pomiaru temperatury obiektów. Działa na zasadzie rejestrowania promieniowania podczerwonego emitowanego przez ciało, co pozwala na określenie jego temperatury bez konieczności bezpośredniego kontaktu. Pirometry są niezwykle przydatne w sytuacjach, gdzie tradycyjne metody pomiaru, takie jak termometry, mogą być niepraktyczne lub niebezpieczne, na przykład w przypadku gorących powierzchni, elementów w ruchu lub materiałów szkodliwych. W przemyśle, medycynie, a także w laboratoriach, użycie pirometrów pozwala na szybkie i dokładne pomiary, co jest zgodne z najlepszymi praktykami w zakresie monitorowania procesów technologicznych oraz zapewnienia bezpieczeństwa. Warto również zaznaczyć, że wiele pirometrów jest wyposażonych w funkcje, które umożliwiają zapisywanie danych oraz ich analizę, co zwiększa efektywność monitorowania temperatury w dłuższym okresie czasu.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

W jakim celu nosi się opaskę antyelektrostatyczną na ręku podczas wymiany podzespołów lub układów scalonych w nowoczesnych urządzeniach elektronicznych?

A. Aby chronić układy scalone TTL przed niekorzystnym wpływem ładunków elektrostatycznych nagromadzonych na ciele montera
B. Aby chronić montera przed porażeniem prądem elektrycznym z zasilenia urządzenia elektronicznego
C. Aby chronić układy scalone CMOS przed szkodliwym działaniem ładunków elektrostatycznych gromadzących się na ciele montera
D. Aby zabezpieczyć montera przed szkodliwym działaniem ładunków elektrostatycznych nagromadzonych w urządzeniu
Wybór odpowiedzi dotyczącej zabezpieczenia układów scalonych TTL przed wpływem ładunków elektrostatycznych, porażenie prądem elektrycznym lub ochrony montera przed ładunkami zgromadzonymi w urządzeniu, jest niewłaściwy z kilku powodów. Po pierwsze, układy scalone TTL, mimo że również są wrażliwe na ładunki elektrostatyczne, nie są tak delikatne jak CMOS. Z tego powodu, w kontekście opasek antyelektrostatycznych, istotniejsza jest ochrona komponentów CMOS, które wymagają specjalistycznego podejścia. Po drugie, opaska nie chroni montera przed porażeniem prądem elektrycznym zasilającym urządzenie. Porażenie prądem jest zagrożeniem niezwiązanym z ładunkami elektrostatycznymi, a jego zapobieganiu służą inne środki, takie jak izolowane narzędzia, odpowiednia odzież ochronna oraz przestrzeganie procedur bezpieczeństwa. Wreszcie, ochrona przed ładunkami elektrostatycznymi zgromadzonymi w urządzeniu nie jest rolą opaski, lecz raczej odpowiednich praktyk przechowywania i transportu komponentów. Podsumowując, w kontekście zastosowania opasek antyelektrostatycznych, istotne jest zrozumienie specyfiki wrażliwości różnych typów układów scalonych oraz różnicy pomiędzy ochroną przed ładunkami elektrostatycznymi a innymi formami zagrożeń elektrycznych.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Oznaczenie RG6 odnosi się do typu kabla

A. współosiowego
B. symetrycznego
C. głośnikowego
D. ethernetowego
Wybór odpowiedzi dotyczącej kabla ethernetowego jest błędny, ponieważ kable ethernetowe, takie jak kategoria 5e (Cat 5e) czy 6 (Cat 6), są zaprojektowane do przesyłania danych w sieciach komputerowych, a nie do transmisji sygnałów telewizyjnych. Kable te składają się z kilku par skręconych przewodów, które minimalizują zakłócenia elektromagnetyczne i zapewniają wysoką prędkość transmisji, ale nie są stosowane w kontekście analogowego lub cyfrowego sygnału wideo. Ponadto, wybór odpowiedzi odnoszącej się do kabla głośnikowego jest również mylny; kable głośnikowe są zaprojektowane do przesyłania sygnałów audio w systemach audio i nie mają zastosowania w transmisji sygnałów telewizyjnych. Z kolei kable symetryczne, stosowane głównie w audio i telekomunikacji, różnią się konstrukcją, ponieważ składają się z dwóch przewodników, które przesyłają sygnały w przeciwnych fazach, co minimalizuje zakłócenia. Pomieszanie tych typów kabli wynika często z braku znajomości ich zastosowań oraz specyfikacji technicznych. Kluczowe jest zrozumienie, że każdy typ kabla ma swoje dedykowane zastosowania i powinien być wykorzystywany zgodnie z jego przeznaczeniem, co zapewnia optymalną jakość przesyłanego sygnału oraz minimalizuje problemy związane z zakłóceniami.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

W układzie sterowania automatyki przemysłowej został uszkodzony tyrystor BT138-600. Na podstawie parametrów przedstawionych w tabeli dobierz tyrystor zastępczy.

TypUDRMIT(RMS)ITSMIGTUGT
VAAmAV
BT136-500500425351,5
BT138-6006001290351,5
BT138-8008001290351,5
BT138-500F5001290351,5
BTA16-800B80016160501,5

A. BTA16-800B
B. BT138-500F
C. BT138-800
D. BT136-500
Tyrystor BT138-800 to doskonały wybór jako zamiennik dla uszkodzonego BT138-600, ponieważ charakteryzuje się parametrami, które są nie tylko równorzędne, ale wręcz lepsze. Przede wszystkim, maksymalne napięcie UDRM dla BT138-800 wynosi 800 V, co przewyższa 600 V uszkodzonego tyrystora. Taki parametr jest kluczowy, ponieważ zapewnia większą odporność na przebicia oraz stabilność w pracy w warunkach obciążenia. Dodatkowo, zachowanie identycznych wartości prądu oraz temperatury pracy oznacza, że BT138-800 będzie idealnie współpracował z resztą układu, co jest istotne dla zachowania ciągłości działania i bezpieczeństwa systemu. W praktyce, dobór odpowiednich tyrystorów do układów automatyki przemysłowej powinien opierać się na analizie danych katalogowych, co jest zgodne z zaleceniami branżowymi. Wybierając zamiennik, należy również zwrócić uwagę na producenta oraz oferowaną jakość komponentów, aby uniknąć problemów z kompatybilnością oraz niezawodnością, które mogą prowadzić do awarii całego systemu.

Pytanie 23

Na wychyłowym przyrządzie do pomiaru napięcia umieszczono symbol przedstawiony na rysunku. Jaki ustrój zastosowano w tym mierniku?

Ilustracja do pytania
A. Elektrodynamiczny
B. Ferrodynamiczny
C. Elektromagnetyczny
D. Magnetoelektryczny
Wybrane odpowiedzi, takie jak "Elektromagnetyczny", "Ferrodynamiczny" oraz "Elektrodynamiczny", opierają się na niepełnym zrozumieniu zasad działania mierników napięcia. Ustroje elektromagnetyczne są oparte na interakcji między polem elektromagnetycznym a przewodnikami, jednak nie są one stosowane w tradycyjnych miernikach analogowych, które wykorzystują magnes trwały. Z kolei ustroje ferrodynamiczne opierają się na ruchu elementów ferromagnetycznych w polu magnetycznym, co sprawia, że są bardziej skomplikowane w konstrukcji i zastosowaniu. Mierniki elektrodynamiczne, chociaż również stosują zasadę interakcji pola magnetycznego, różnią się od magnetoelektrycznych, ponieważ wykorzystują dwa zestawy cewek, co nie odpowiada symbolowi przedstawionemu na rysunku. Często pojawia się mylne przekonanie, że różne typy ustrojów pomiarowych mogą być stosowane zamiennie, co prowadzi do błędnych wniosków i wyników pomiarów. Zrozumienie różnic między tymi technologiami jest kluczowe dla skutecznego wykorzystania przyrządów pomiarowych w praktyce oraz dla zachowania standardów jakości w pomiarach elektrycznych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakim kablem należy połączyć antenę z odbiornikiem, aby przesłać sygnał cyfrowej telewizji naziemnej?

A. Skrętki ekranowanej
B. Symetrycznego
C. Koncentrycznego
D. Skrętki nieekranowanej
Użycie kabla koncentrycznego do doprowadzenia sygnału cyfrowej telewizji naziemnej z anteny do odbiornika jest powszechnie uznawane za standard w branży telekomunikacyjnej. Kabel koncentryczny charakteryzuje się strukturą, która składa się z rdzenia, otoczonego dielektrykiem oraz ekranem, co sprawia, że jest on doskonałym przewodnikiem sygnałów wysokiej częstotliwości. Dzięki swoim właściwościom, takim jak niska tłumienność i odporność na zakłócenia elektromagnetyczne, kabel koncentryczny minimalizuje straty sygnału, co jest kluczowe dla jakości odbioru sygnałów telewizyjnych. W praktyce, stosuje się różne typy kabli koncentrycznych, takie jak RG-6 czy RG-59, które są używane w instalacjach domowych oraz przemysłowych. Kabli koncentrycznych używa się również w instalacjach satelitarnych, co podkreśla ich uniwersalność i niezawodność. Wybór kabla koncentrycznego zgodnego z normami, jak np. EN 50117, zapewnia wysoką jakość sygnału i zgodność z najlepszymi praktykami w zakresie instalacji telewizyjnych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Co należy zrobić, gdy pracownik omdleje w źle wentylowanej pracowni elektronicznej?

A. położyć poszkodowanego na plecach, umieścić zimny kompres na czole i monitorować tętno
B. wynieść poszkodowanego na świeże powietrze i ułożyć go na brzuchu
C. ustawić poszkodowanego w pozycji siedzącej i dać mu wodę do picia
D. wynieść poszkodowanego na świeże powietrze, położyć na plecach i unieść kończyny w górę
W przypadku omdlenia, odpowiedzi sugerujące ułożenie poszkodowanego na brzuchu, w pozycji siedzącej lub podawanie wody, są niewłaściwe i mogą narażać poszkodowanego na dodatkowe ryzyko. Ułożenie na brzuchu uniemożliwia swobodne oddychanie, co jest kluczowe w sytuacji, gdy osoba straciła przytomność lub ma trudności z oddychaniem. Pozycja siedząca natomiast, choć może wydawać się bardziej komfortowa, w rzeczywistości może pogłębiać problemy z krążeniem krwi i prowadzić do dalszego omdlenia. Podawanie wody w takiej sytuacji jest niebezpieczne, ponieważ poszkodowany, będąc w stanie nieprzytomności, może zakrztusić się, co grozi uduszeniem. Typowym błędem myślowym jest zakładanie, że poszkodowany potrzebuje natychmiastowego nawodnienia, zamiast skupić się na przywróceniu go do przytomności i zapewnieniu odpowiedniego krążenia. W przypadkach omdlenia kluczowe jest pierwsze wsparcie w formie stabilizacji pozycji ciała, co działa na zasadzie ograniczenia dalszych komplikacji. Zgodnie z wytycznymi medycznymi, w takich sytuacjach należy przede wszystkim zapewnić bezpieczeństwo i monitorować stan poszkodowanego, a nie podejmować działań, które mogą pogorszyć jego sytuację.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Zerowanie omomierza to proces polegający na

A. ustawieniu "0 Ohm" przy rozwartych zaciskach pomiarowych
B. dostosowaniu rezystancji bocznika
C. do wyboru odpowiedniego zakresu do przewidywanej wartości pomiarowej
D. ustawieniu "0 Ohm" przy zwartych zaciskach pomiarowych
Zerowanie omomierza to kluczowy proces kalibracji, który zapewnia dokładność pomiarów rezystancji. Ustawienie '0 Ohm' przy zwartych zaciskach pomiarowych oznacza, że omomierz jest w stanie określić, że rezystancja wewnętrzna urządzenia oraz wszelkie inne wpływy zewnętrzne są minimalne. Takie działanie eliminuje błędy pomiarowe, które mogą wynikać z oporu drutu, złączy czy innych komponentów. W praktyce, zanim przystąpimy do pomiaru rezystancji elementów, takich jak oporniki czy cewki, zawsze powinniśmy wykonać zerowanie omomierza. Standardy branżowe, takie jak IEC 61010, podkreślają znaczenie kalibracji urządzeń pomiarowych, aby zapewnić ich poprawne działanie i dokładność w pomiarze. Jeśli omomierz nie zostanie odpowiednio zerowany, wyniki mogą być znacząco zafałszowane, co prowadzi do błędnych ocen stanu urządzeń elektronicznych. Z tego względu, przestrzeganie procedur zerowania jest niezbędne dla każdego technika czy inżyniera pracującego z pomiarami elektrycznymi.

Pytanie 33

Jaki czujnik pozwala na pomiar naprężeń mechanicznych w konstrukcjach?

A. Czujnik hallotronowy
B. Czujnik pojemnościowy
C. Czujnik tensometryczny
D. Czujnik magnetyczny
Czujnik tensometryczny jest specjalistycznym urządzeniem, które umożliwia pomiar naprężeń mechanicznych w elementach konstrukcyjnych poprzez wykorzystanie zasady zmiany oporu elektrycznego pod wpływem odkształceń. Tensometry działają na bazie efektu tensometrycznego, gdzie cienkie przewody lub folia, umieszczone na powierzchni mierzonego elementu, zmieniają swoją rezystancję w zależności od odkształceń mechanicznych. Przykłady zastosowania czujników tensometrycznych obejmują monitorowanie naprężeń w mostach, budynkach oraz innych konstrukcjach inżynierskich, co pozwala na wczesne wykrywanie uszkodzeń i zapewnia bezpieczeństwo użytkowników. Stanowią one integralną część systemów monitorowania strukturalnego, które są zgodne z normami, takimi jak ISO 3340, dotyczące oceny stanu technicznego obiektów. Dzięki ich wysokiej dokładności i niezawodności, czujniki tensometryczne są kluczowym narzędziem w inżynierii, umożliwiającym projektowanie bezpieczniejszych i bardziej efektywnych konstrukcji.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Sprawdzanie działania elektronicznego wzmacniacza akustycznego nie obejmuje

A. uaktualniania oprogramowania
B. kontroli temperatury elementów
C. znajdowania anomalii w działaniu urządzenia
D. pomiaru parametrów
Odpowiedź "uaktualnianie oprogramowania" jest poprawna, ponieważ testowanie elektronicznego wzmacniacza akustycznego koncentruje się głównie na aspektach związanych z jego wydajnością i funkcjonalnością w kontekście audio. W procesie testowania, kluczowe jest przeprowadzenie pomiaru parametrów, takich jak zniekształcenia harmoniczne, pasmo przenoszenia, czy moc wyjściowa, co pozwala na ocenę jakości dźwięku generowanego przez wzmacniacz. Kontrola temperatury elementów jest również istotna, aby zapewnić, że urządzenie nie przegrzewa się podczas pracy, co mogłoby prowadzić do uszkodzeń lub obniżenia jakości dźwięku. Dodatkowo, identyfikacja anomalii w działaniu urządzenia jest kluczowa w utrzymaniu jakości i niezawodności sprzętu. Uaktualnianie oprogramowania może być istotne w kontekście poprawy funkcjonalności, ale nie jest to kluczowy element testowania samego wzmacniacza akustycznego. Przykłady dobrych praktyk w tej dziedzinie obejmują korzystanie z analizatorów widma i oscyloskopów do dokładnej analizy parametrów akustycznych.

Pytanie 36

W trakcie serwisowania systemu alarmu przeciwwłamaniowego oraz napadowego konieczne jest sprawdzenie

A. poziomu naładowania akumulatora
B. ciągłości linii dozorowych za pomocą miernika
C. ustawienia lokalizacji czujników
D. dokumentu gwarancyjnego systemu
Sprawdzanie stanu naładowania akumulatora jest kluczowym elementem konserwacji systemu sygnalizacji włamania i napadu, ponieważ akumulator jest odpowiedzialny za zasilanie systemu w przypadku przerwy w dostawie energii elektrycznej. W praktyce, akumulatory, które są zbyt słabe lub całkowicie rozładowane, mogą prowadzić do awarii systemu, co z kolei naraża obiekt na ryzyko włamania lub usunięcia. Standardy branżowe, takie jak norma EN 50131, podkreślają znaczenie regularnych testów zasilania i stanu akumulatorów. Regularne pomiary napięcia i pojemności akumulatora pozwalają na wczesne wykrycie problemów oraz zapobiegają nieprzewidzianym przestojom w funkcjonowaniu systemu. Na przykład, jeśli akumulator nie jest w stanie utrzymać wymaganego napięcia w czasie testu, może to oznaczać konieczność jego wymiany, co powinno być częścią planu konserwacji. Działania te przyczyniają się do zachowania integralności systemu oraz ochrony mienia.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jakie urządzenie należy zastosować do mierzenia natężenia prądu w obwodzie elektrycznym?

A. omomierz
B. amperomierz
C. woltomierz
D. watomierz
Amperomierz to przyrząd pomiarowy, który służy do pomiaru natężenia prądu elektrycznego w obwodzie. Zasada jego działania opiera się na wykorzystaniu efektu elektromagnetycznego. Amperomierze są podstawowymi narzędziami w elektrotechnice, które pozwalają na monitorowanie przepływu prądu, co jest kluczowe dla analizy i diagnozowania pracy obwodów elektrycznych. Przykład zastosowania to pomiar natężenia prądu w obwodzie zasilającym silnik elektryczny, co pozwala na określenie, czy silnik pracuje w normie i czy nie jest przeciążony. W standardowych praktykach przemysłowych stosuje się amperomierze cyfrowe, które oferują większą precyzję i dodatkowe funkcje, takie jak pomiar średniego i maksymalnego natężenia prądu oraz rejestrowanie zmian w czasie. Dobrą praktyką jest także stosowanie amperomierzy z odpowiednimi zakresami pomiarowymi, aby uniknąć uszkodzenia urządzenia oraz zapewnić dokładność pomiarów. Znajomość działania amperomierza i jego zastosowań jest niezbędna dla każdego technika czy inżyniera zajmującego się elektrycznością.

Pytanie 39

Po uruchomieniu regulowanego zasilacza laboratoryjnego zauważono, że urządzenie nie funkcjonuje, a wskaźnik (dioda LED) nie jest aktywowany. Sprawdzono stan gniazda, do którego podłączono zasilacz i nie wykryto w nim uszkodzeń. Proces lokalizacji awarii w zasilaczu należy rozpocząć od weryfikacji

A. prostownika
B. bezpiecznika aparatowego
C. podzespołów pasywnych
D. dioda elektroluminescencyjna
Bezpiecznik aparatu to taki kluczowy element, który chroni obwody elektryczne przed zbyt dużym prądem. To ważne, bo jak prąd jest za wysoki, to może zniszczyć różne części w układzie. Gdy korzystasz z laboratoryjnego zasilacza regulowanego i zauważysz, że dioda LED nie świeci, a gniazdo zasilające działa normalnie, to pierwszą rzeczą, którą warto sprawdzić, jest bezpiecznik. Jeśli jest przepalony, to zasilacz w ogóle nie będzie działał, co może być frustrujące. Regularne sprawdzanie bezpieczników i ich wymiana na właściwe wartości to dobra praktyka, żeby sprzęt działał bez problemu. A jak już znajdziesz uszkodzony bezpiecznik, to pamiętaj, żeby go wymienić z zachowaniem zasad bezpieczeństwa. Warto też zapisywać, kiedy i co się wymienia, bo to pomaga w lepszym zarządzaniu sprzętem elektronicznym.

Pytanie 40

Jaką rolę w systemie automatyki przemysłowej odgrywa przetwornik?

A. Rejestruje działanie sieci
B. Wizualizuje procesy przemysłowe
C. Kontroluje pracę siłownika
D. Przekształca sygnał z czujnika
Przetwornik w sieci automatyki przemysłowej pełni kluczową rolę w przekształcaniu sygnałów z czujników na formaty odpowiednie do analizy i dalszego przetwarzania. Przykładem może być przetwornik temperatury, który konwertuje sygnał analogowy z czujnika na sygnał cyfrowy, który może być następnie interpretowany przez systemy sterowania. Takie przetworniki są standardowym elementem w systemach SCADA oraz w projektach związanych z monitorowaniem i kontrolą procesów przemysłowych. Dobre praktyki w zakresie użycia przetworników obejmują ich odpowiedni dobór do rodzaju sygnału oraz zastosowanie w kontekście wymaganych norm, takich jak IEC 61131-9, która definiuje standardy dla systemów automatyki. Oprócz przekształcania sygnałów, przetworniki często posiadają dodatkowe funkcje, takie jak filtracja szumów, co zwiększa dokładność pomiarów. Zrozumienie tej funkcji jest kluczowe dla efektywnego projektowania systemów automatyki, gdzie precyzyjne dane są fundamentem dla podejmowania decyzji operacyjnych.