Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 25 kwietnia 2025 15:03
  • Data zakończenia: 25 kwietnia 2025 15:24

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie narzędzie wykorzystuje się do weryfikacji współosiowości czopów wałka rozrządu?

A. czujnika zegarowego z podstawą
B. liniału sinusoidalnego
C. suwmiarki z wyświetlaczem elektronicznym
D. sprawdzianu tłokowego
Liniał sinusowy, sprawdzian tłoczkowy oraz suwmiarka z odczytem elektronicznym są narzędziami, które w pewnych przypadkach mogą być używane do pomiarów, ale nie są najlepszym wyborem do oceny współosiowości czopów wałka rozrządu. Liniał sinusowy, choć przydatny w pomiarach kątowych, nie oferuje wystarczającej precyzji przy pomiarze odchyleń osiowych. Tego typu narzędzie jest bardziej odpowiednie do sprawdzania płaszczyzn i kątów, a nie do analizy układów obrotowych. Sprawdzian tłoczkowy z kolei jest stosowany głównie do oceny wymiarów wewnętrznych lub zewnętrznych elementów, ale nie dostarcza informacji o współosiowości, co jest kluczowe przy montażu wałków rozrządu. Suwmiarka z odczytem elektronicznym, chociaż jest precyzyjnym narzędziem pomiarowym, jej zastosowanie w kontekście współosiowości jest ograniczone, ponieważ nie pozwala na pomiar małych, dynamicznych odchyleń, które mogą wystąpić podczas pracy silnika. Użycie tych narzędzi do pomiarów, w sytuacjach, w których wymagane są wysokie standardy dokładności, może prowadzić do błędnych wyników i potencjalnych uszkodzeń komponentów silnika, co podkreśla znaczenie stosowania odpowiednich narzędzi i metodyki w kontekście modernizacji i naprawy pojazdów.

Pytanie 2

Drutówka stanowi element

A. opony
B. obręczy koła
C. dętki
D. zaworu powietrza
Drutówka jest integralną częścią opony, stanowiącą jej zewnętrzną warstwę. Opony samochodowe są zbudowane z kilku warstw materiałów, a drutówka, wykonana z włókien stalowych lub syntetycznych, ma kluczowe znaczenie dla zapewnienia stabilności i wytrzymałości konstrukcji opony. Jej główną funkcją jest ochrona wewnętrznych warstw opony przed uszkodzeniami mechanicznymi oraz zapewnienie odpowiedniego kształtu opony podczas eksploatacji. Technologia produkcji drutówki opiera się na standardach określonych przez organizacje takie jak ISO oraz SAE, co gwarantuje wysoką jakość i bezpieczeństwo użytkowania. Przykładowo, w oponach do pojazdów ciężarowych, drutówka jest zaprojektowana tak, aby wytrzymać znaczne obciążenia, co minimalizuje ryzyko uszkodzeń podczas transportu. Dobrze zaprojektowana drutówka wpływa na osiągi opony, w tym przyczepność, odporność na zużycie oraz efektywność paliwową, co czyni ją kluczowym elementem w nowoczesnym inżynierii motoryzacyjnej.

Pytanie 3

Jakie jest znaczenie liczby cetanowej?

A. gazu LPG
B. oleju do silników
C. oleju napędowego
D. petrolu do samochodów
Liczba cetanowa jest kluczowym parametrem, który odnosi się do jakości oleju napędowego, czyli paliwa wykorzystywanego w silnikach diesla. Wartość ta wskazuje na zdolność paliwa do samoczynnego zapłonu w komorze spalania silnika. Im wyższa liczba cetanowa, tym krótszy czas, jaki upływa od momentu wtrysku paliwa do zapłonu. Jest to istotne dla efektywności pracy silnika, ponieważ paliwa o niskiej liczbie cetanowej mogą prowadzić do problemów takich jak trudności z uruchomieniem silnika, niestabilna praca i zwiększone emisje spalin. Standardy branżowe, takie jak normy EN 590, określają minimalną wartość liczby cetanowej, która powinna wynosić przynajmniej 51 dla oleju napędowego w Europie. Praktycznym przykładem zastosowania wiedzy o liczbie cetanowej jest dobór odpowiedniego paliwa w zależności od warunków eksploatacji pojazdu, co pozwala na optymalizację osiągów silnika oraz redukcję jego zużycia paliwa.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Czym jest liczba cetanowa?

A. zdolnością paliwa do samozapłonu
B. odpornością paliwa na niskie temperatury
C. odpornością paliwa na samozapłon
D. wartością opałową paliwa
Liczba cetanowa to kluczowy wskaźnik jakości paliw silnikowych, szczególnie olejów napędowych. Określa zdolność paliwa do samozapłonu, co jest istotne podczas jego spalania w silnikach wysokoprężnych. Wyższa liczba cetanowa oznacza lepszą zdolność paliwa do szybkiego zapłonu w komorze spalania, co przekłada się na bardziej efektywne i stabilne działanie silnika. Praktycznie, paliwa o wyższej liczbie cetanowej przyczyniają się do redukcji emisji szkodliwych substancji i poprawy osiągów silnika, co jest zgodne z normami emisji spalin, takimi jak Euro 6. W branży transportowej oraz motoryzacyjnej zaleca się stosowanie paliw o liczbie cetanowej nie mniejszej niż 51 dla osiągnięcia optymalnej wydajności pracy silnika. Dobrą praktyką jest także testowanie paliw pod kątem liczby cetanowej w celu uniknięcia problemów z zapłonem, co z kolei może prowadzić do uszkodzeń silnika oraz zwiększonego zużycia paliwa.

Pytanie 7

Klient zgłosił się do stacji obsługi pojazdów na przegląd techniczny swojego samochodu Po wykonaniu przeglądu wymieniono olej silnikowy, filtr oleju silnikowego, filtr paliwa, filtr powietrza, płyn hamulcowy oraz klocki hamulcowe przednie. Wszystkie płyny eksploatacyjne i części klient dostarczył we własnym zakresie. Pracownik stacji obsługi, na podstawie danych z tabeli, wystawił fakturę na sumę

Lp.Nazwa usługiCena
(brutto)
1przegląd techniczny pojazdu90,00 zł
2wymiana oleju przekładniowego, silnikowego20,00 zł
3wymiana przednich klocków hamulcowych60,00 zł
4wymiana tylnych klocków hamulcowych90,00 zł
5wymiana tarcz hamulcowych80,00 zł
6wymiana płynu hamulcowego30,00 zł
7wymiana płynu chłodzącego25,00 zł
8wymiana filtru kabinowego15,00 zł
10wymiana filtru paliwa lub oleju10,00 zł
11wymiana filtru powietrza15,00 zł

A. 235 zł
B. 145 zł
C. 265 zł
D. 175 zł
Poprawna odpowiedź to 235 zł, co wynika z dokładnego zsumowania cen brutto wszystkich usług wykonanych podczas przeglądu technicznego pojazdu. W szczególności zrealizowano wymianę oleju silnikowego, filtrów oleju, paliwa i powietrza, a także płynu hamulcowego oraz klocków hamulcowych. Obliczając koszty dla każdej z tych usług, należy pamiętać o uwzględnieniu nie tylko ceny części, ale również robocizny, jeśli była ona świadczona. Tego rodzaju obliczenia są kluczowe w branży motoryzacyjnej, ponieważ pomagają w przejrzystości kosztów oraz budowaniu zaufania między klientem a serwisem. Przykładem może być standardowy cennik usług stosowany w stacjach obsługi, który powinien być dostępny dla klientów, aby mogli oni zrozumieć, za co dokładnie płacą. Znajomość takich procedur oraz umiejętność ich zastosowania w praktyce jest niezbędna dla każdego pracownika branży motoryzacyjnej.

Pytanie 8

Wymiana 4 dm3 oleju silnikowego i filtra oleju trwa 1 godzinę. Na podstawie fragmentu cennika ustal koszt usługi.

Fragment cennika

WyszczególnienieJednostka miaryCena w zł
Robocziznaroboczogodzina50,00
Olej silnikowy1dm³20,00
Filtr olejusztuka20,00

A. 130,00 zł
B. 150,00 zł
C. 90,00 zł
D. 110,00 zł
Odpowiedź 150,00 zł jest poprawna, ponieważ dokładnie odzwierciedla całkowity koszt związany z wymianą oleju silnikowego i filtra. Koszt roboczogodziny wynosi 50,00 zł, co jest standardowym stawka w branży motoryzacyjnej, uwzględniającym wynagrodzenie technika oraz ogólne koszty operacyjne warsztatu. Następnie, do wymiany potrzebne są 4 dm³ oleju silnikowego, a przy cenie za 1 dm³ wynoszącej 20,00 zł, koszt oleju wyniesie 80,00 zł. Koszt filtra oleju, standardowo wynoszący 20,00 zł, również musi być uwzględniony w całkowitym kosztorysie. Sumując wszystkie składniki: 50,00 zł (robocizna) + 80,00 zł (olej) + 20,00 zł (filtr), otrzymujemy 150,00 zł. Takie podejście do kalkulacji kosztów jest zgodne z dobrymi praktykami w branży, co pozwala na przejrzystość w ustalaniu cen usług motoryzacyjnych, a także umożliwia klientom dokładne zrozumienie, za co płacą.

Pytanie 9

Stosunek rzeczywistej objętości powietrza w cylindrze do objętości powietrza niezbędnej do całkowitego spalenia paliwa znajdującego się w danym momencie w cylindrze nazywa się współczynnikiem

A. oporu powietrza
B. wypełnienia impulsu
C. nadmiaru powietrza
D. wzmocnienia
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumienia dotyczącego terminologii związanej z procesem spalania. Odpowiedzi takie jak 'wzmocnienia' czy 'oporu powietrza' nie mają bezpośredniego związku z omawianym zagadnieniem. Wzmocnienie odnosi się zazwyczaj do zwiększenia wydajności silnika przez optymalizację jego parametrów, ale nie dotyczy bezpośrednio stosunku powietrza do paliwa. Opór powietrza jest natomiast związany z oporem aerodynamicznym, który wpływa na zużycie paliwa, lecz nie jest tożsame z pojęciem nadmiaru powietrza. Natomiast termin 'wypełnienia impulsu' nie jest powszechnie stosowany w kontekście spalania i może prowadzić do zamieszania w zrozumieniu dynamiki pracy silnika. Ważne jest, aby zrozumieć, że nadmiar powietrza nie tylko wpływa na efektywność spalania, ale także na emisję zanieczyszczeń. W sytuacji, gdy dostarczona ilość powietrza jest zbyt mała, dochodzi do niedopałki paliwa, co prowadzi do zwiększonej emisji szkodliwych substancji, takich jak węglowodory i tlenki węgla. Rozpoznanie i zrozumienie tych pojęć jest kluczowe dla prawidłowej analizy działania silników spalinowych oraz ich wpływu na środowisko.

Pytanie 10

Funkcjonowanie hydraulicznego podnośnika pojazdów opiera się na zasadzie

A. Jonie'a-Lenza
B. Archimedesa
C. Pascala
D. Coulomba
Zrozumienie działania hydraulicznych podnośników samochodowych wymaga znajomości różnych praw fizycznych, jednak wybór nieodpowiednich zasad prowadzi do mylnych wniosków. Prawo Archimedesa dotyczy zasadniczo wyporu ciał w cieczy i nie ma zastosowania w kontekście działania hydraulicznych podnośników. W rzeczywistości, nie odnosi się ono do tematu siły i ciśnienia w układzie hydraulicznym. Kolejną nieodpowiednią koncepcją jest prawo Coulomba, które opisuje siły elektrostatyczne pomiędzy naładowanymi ciałami. Oczywiście, nie ma to nic wspólnego z hydrauliką, co może prowadzić do błędnych skojarzeń podczas analizy sił działających w systemie hydraulicznym. Wreszcie, prawo Jonie'a-Lenza, które dotyczy zjawisk związanych z energią elektryczną, również nie ma zastosowania w kontekście działania podnośników hydraulicznych. Te nieprawidłowe odpowiedzi wskazują na typowy błąd w myśleniu, polegający na myleniu różnych dziedzin fizyki i ich zastosowań. W systemach hydraulicznych kluczowe jest zrozumienie, jak ciśnienie działa w zamkniętych układach, a nie w kontekście wyporu czy sił elektrostatycznych, co prowadzi do błędnych wniosków i zrozumienia działania narzędzi i maszyn wykorzystywanych w przemyśle.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Aby czterosuwowy silnik zrealizował pełny cykl pracy (cztery suwy), wał korbowy musi wykonać obrót

A. o 720°
B. o 180°
C. o 540°
D. o 360°
Wybór innej odpowiedzi to trochę błąd w rozumieniu działania silnika czterosuwowego. Jak wybierasz "o 360°", to sugerujesz, że jeden obrót wału wystarczy na zakończenie całego cyklu, co jest nieprawidłowe. Pamiętaj, że jeden obrót to tylko dwa suwki, a nie cztery. Tak naprawdę po jednym obrocie silnik przechodzi tylko przez ssanie i sprężanie. Powinieneś wiedzieć, że to zrozumienie ma kluczowe znaczenie, bo mylące wyobrażenie o działaniu silnika może skutkować problemami podczas montażu czy diagnostyki. Nawet odpowiedź "o 540°" jest w tym kontekście myląca, bo w tym przypadku żaden z suwów się nie kończy. Widzisz, często ludzie mylą ilość obrotów z ilością suwów, przez co wyciągają złe wnioski. A jak weźmiesz obrót o 180°, to też jest to niezdrowe myślenie, bo to tylko fragment cyklu i nic się tam nie kończy. Podsumowując, zrozumienie pełnego cyklu czterosuwowego jest naprawdę ważne, żeby silnik działał sprawnie i żebyś mógł go dobrze konserwować.

Pytanie 14

Korzystając z tabeli, określ zakres wymiaru grubości półpanewki dla drugiego wymiaru naprawczego

Oznaczenie wymiaruNr katalogowy półpanewki (górnej lub dolnej)Grubość ścianki półpanewki (mm)Średnica wewnętrzna panewki po zamontowaniu (mm)
N000Produkcyjny0050/50-312/02.000+0.020-0.03060.00+0.079-0.040
N0251 naprawa0050/50-349/02.125+0.020-0.03059.75+0.079-0.040
N0502 naprawa0050/50-393/02.250+0.020-0.03059.50+0.079-0.040
N0753 naprawa0050/50-392/02.375+0.020-0.03059.25+0.079-0.040
N1004 naprawa0050/50-385/02.500+0.020-0.03059.00+0.079-0.040
N1255 naprawa0050/50-386/02.625+0.020-0.03058.75+0.079-0.040

A. 2,020-2,030 mm
B. 2,105-2,155 mm
C. 2,355-2,405 mm
D. 2,220-2,230 mm
Zakres wymiaru grubości półpanewki dla drugiego wymiaru naprawczego, wynoszący od 2,220 mm do 2,230 mm, jest wynikiem precyzyjnych obliczeń opartych na odchyłkach nominalnych. W praktyce oznacza to, że wytwarzane elementy muszą mieścić się w tych granicach, aby zapewnić odpowiednią funkcjonalność i trwałość w układzie mechanicznym. W branży motoryzacyjnej oraz w inżynierii mechanicznej, przestrzeganie precyzyjnych wymiarów jest kluczowe dla zapewnienia niezawodności komponentów. Na przykład, zbyt mała grubość półpanewki może skutkować nieodpowiednim dopasowaniem części, co prowadzi do zwiększonego tarcia i potencjalnego uszkodzenia. Z kolei zbyt duża grubość może generować nadmierne naprężenia, co także wpływa negatywnie na żywotność podzespołów. Dlatego istotne jest korzystanie z aktualnych standardów i norm, takich jak ISO, które definiują tolerancje wymiarowe i jakościowe dla tego typu elementów. Dzięki temu produkowane komponenty są nie tylko zgodne z wymaganiami, ale również optymalizują procesy produkcyjne i redukują koszty eksploatacji.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jakim przyrządem wykonujemy pomiar ciśnienia powietrza w oponach?

A. wakuometrem
B. pasametrem
C. manometrem
D. areometrem
Prawidłowa odpowiedź to manometr, który jest urządzeniem pomiarowym przeznaczonym do pomiaru ciśnienia. W kontekście ogumienia pojazdów, manometr pozwala na dokładne określenie ciśnienia powietrza w oponach, co jest kluczowe dla bezpieczeństwa jazdy oraz efektywności paliwowej. Odpowiednie ciśnienie w oponach zapewnia lepszą przyczepność, zmniejsza zużycie paliwa oraz obniża ryzyko uszkodzenia opon. Standardy dotyczące ciśnienia w oponach są określone przez producentów pojazdów i mogą różnić się w zależności od modelu oraz obciążenia. Regularne sprawdzanie ciśnienia za pomocą manometru to dobra praktyka, która powinna być wykonywana co najmniej raz w miesiącu oraz przed dłuższymi podróżami. Warto także pamiętać, że ciśnienie w oponach należy sprawdzać na zimno, czyli przed rozpoczęciem jazdy, aby uzyskać najbardziej dokładny wynik pomiaru.

Pytanie 18

Substancja eksploatacyjna oznaczona symbolem 10W/40 to

A. olej silnikowy
B. ciecz chłodząca silnik.
C. ciecz do spryskiwaczy.
D. ciecz hamulcowa.
Pojęcia związane z płynami eksploatacyjnymi często są mylone, co prowadzi do nieprawidłowych wniosków. Płyn chłodzący silnika, będący substancją odpowiedzialną za utrzymanie optymalnej temperatury pracy silnika, nie ma nic wspólnego z oznaczeniem 10W/40. Chłodzenie silnika jest kluczowe dla zapobiegania przegrzewaniu się jednostki napędowej, ale jego właściwości i skład chemiczny są całkowicie odmienne od tych, które charakteryzują oleje silnikowe. Płyn do spryskiwacza to z kolei substancja wykorzystywana do czyszczenia szyb, nie mająca wpływu na pracę silnika. Użycie niewłaściwego płynu spryskiwacza może prowadzić do ograniczonej widoczności, ale nie wpływa na działanie silnika. Z kolei płyn hamulcowy, który także pełni odmienną rolę, odpowiada za hydrauliczne działanie układu hamulcowego. Prawidłowa klasyfikacja tych płynów jest kluczowa dla bezpieczeństwa i efektywności pojazdu. Pomieszanie tych terminów może prowadzić do krytycznych błędów w eksploatacji pojazdu, w tym do awarii silnika czy uszkodzeń układu hamulcowego. Wyraźne zrozumienie i umiejętność identyfikacji poszczególnych płynów eksploatacyjnych jest kluczowe dla każdego właściciela pojazdu.

Pytanie 19

W przypadku urazu mechanicznego oka, pierwsza pomoc polega na

A. próbie usunięcia ciała obcego z oka
B. aplikacji kropli do oczu
C. nałożeniu jałowej gazy na oko i wezwaniu pomocy medycznej
D. spłukaniu oka
Nałożenie wyjałowionej gazy na oko i wezwanie pomocy lekarskiej to kluczowy krok w udzielaniu pierwszej pomocy przy urazie mechanicznym oka. W przypadku kontuzji, takich jak uraz mechaniczny, istotne jest, aby nie próbować samodzielnie usunąć ciała obcego ani nie stosować płukania, ponieważ może to prowadzić do dalszych uszkodzeń lub zakażeń. Wyjałowiona gaza służy jako bariera ochronna, chroniąca oko przed zanieczyszczeniami oraz minimalizująca ryzyko pogorszenia stanu. Po nałożeniu gazy niezbędne jest jak najszybsze wezwanie pomocy medycznej, ponieważ urazy oka mogą prowadzić do poważnych komplikacji, w tym do utraty wzroku. Warto również podkreślić, że w przypadku urazów oka, czas reakcji jest kluczowy; jak najszybsze udzielenie profesjonalnej pomocy zwiększa szansę na pozytywne rokowanie. W sytuacjach takich jak te, stosuje się wytyczne i standardy dotyczące pierwszej pomocy, które podkreślają znaczenie ochrony urazu oraz unikania działań mogących pogorszyć stan pacjenta.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Aby przeprowadzić demontaż półosi napędowej z pojazdu, najpierw trzeba usunąć przegub

A. zewnętrzny z piasty koła
B. zewnętrzny z półosi napędowej
C. wewnętrzny z półosi napędowej
D. wewnętrzny z przekładni głównej
Demontaż półosi napędowej wymaga zrozumienia struktury układu napędowego oraz kolejności działań, które prowadzą do bezpiecznego i efektywnego rozłączenia poszczególnych elementów. Odpowiedzi, które sugerują demontaż przegubów wewnętrznych lub z innych części pojazdu, mogą prowadzić do nieporozumień i błędów w procesie naprawczym. Przegub wewnętrzny z półosi napędowej oraz przegub wewnętrzny z przekładni głównej są elementami, które nie są bezpośrednio związane z demontażem półosi w pierwszej kolejności. Ich demontaż może być konieczny w późniejszym etapie, jednak nie jest to zalecana metoda przy rozłączaniu półosi. Przegub wewnętrzny nie jest łatwo dostępny bez wcześniejszego zdjęcia zewnętrznego przegubu, co zwiększa ryzyko uszkodzenia konstrukcji. Podejście do demontażu powinno być zawsze przemyślane i zgodne z manualami producentów pojazdów oraz ogólnymi standardami branżowymi. W praktyce, ignorowanie właściwej kolejności demontażu może prowadzić do uszkodzeń elementów, a także do wydłużenia czasu pracy. Zrozumienie właściwych procedur jest kluczowe, aby uniknąć kosztownych błędów i zapewnić odpowiednią jakość napraw.

Pytanie 22

Podczas diagnostyki elektrycznej układu zapłonowego wykryto, że silnik nie uruchamia się z powodu braku iskry. Jaka może być przyczyna tego problemu?

A. Uszkodzona cewka zapłonowa
B. Niewłaściwe ciśnienie wtrysku paliwa
C. Zbyt niskie napięcie akumulatora
D. Zatkany filtr powietrza
Brak iskry w układzie zapłonowym jest najczęściej spowodowany problemem z cewką zapłonową. Cewka zapłonowa ma kluczowe znaczenie, ponieważ zamienia niskie napięcie z akumulatora na wysokie napięcie potrzebne do wytworzenia iskry w świecy zapłonowej. Gdy cewka jest uszkodzona, nie jest w stanie wytworzyć wymaganego napięcia, co prowadzi do braku iskry i uniemożliwia uruchomienie silnika. W praktyce, diagnoza uszkodzonej cewki zapłonowej może obejmować pomiar oporności uzwojeń cewki za pomocą multimetru oraz sprawdzenie fizycznego stanu cewki, takiego jak pęknięcia czy ślady przepaleń. Z mojego doświadczenia wynika, że dobrze jest również sprawdzić połączenia elektryczne i upewnić się, że nie ma korozji czy przerw. Wymiana uszkodzonej cewki zapłonowej jest standardową praktyką w naprawach układów zapłonowych i jest zgodna z dobrymi praktykami w branży motoryzacyjnej.

Pytanie 23

Zbieżność kół przednich mierzona jest poprzez określenie różnicy

A. pomiędzy rozstawem kół po lewej i prawej stronie
B. odległości między obrzeżami obręczy kół przednią a tylną osią
C. przesunięcia kół tylnych w stosunku do kół przednich
D. kątów nachylenia kół jezdnych na osi napędowej
Pomiar zbieżności kół przednich jest kluczowym elementem w diagnostyce układów kierowniczych i zawieszenia pojazdów. Prawidłowy pomiar odległości między obrzeżami obręczy kół za i przed osią koła pozwala na ocenę, czy osie kół przednich są równolegle ustawione względem siebie oraz w stosunku do osi pojazdu. Zbieżność, czyli kąt ustawienia kół przednich, ma ogromny wpływ na stabilność jazdy, zużycie opon oraz efektywność paliwową. Przykładowo, zbyt duża zbieżność może prowadzić do nieprawidłowego zużycia opon, a w skrajnych przypadkach do niebezpiecznych sytuacji na drodze. Dobrym praktykom w diagnostyce zbieżności jest wykorzystywanie specjalistycznych urządzeń pomiarowych, takich jak stacje do pomiaru geometrii kół, które umożliwiają dokładne pomiary w warunkach warsztatowych. Regularne sprawdzanie zbieżności kół jest zalecane przez producentów pojazdów, szczególnie po zdarzeniach drogowych, które mogą wpłynąć na geometrię układu jezdnego, oraz po wymianie elementów zawieszenia.

Pytanie 24

Sprężarka Rootsa może być wykorzystana w systemie

A. paliwowym
B. wspomagania
C. chłodzenia silnika
D. doładowania silnika
Sprężarka Rootsa, znana również jako sprężarka z dwiema wirującymi łopatkami, jest wykorzystywana przede wszystkim w systemach doładowania silników spalinowych. Jej konstrukcja pozwala na efektywne sprężanie mieszanki powietrza i paliwa, co znacząco zwiększa moc silnika oraz jego wydajność. W praktyce, sprężarki Rootsa są stosowane w układach turbo doładowania, gdzie ich zdolność do dostarczania dużych ilości powietrza w krótkim czasie przyczynia się do poprawy osiągów silnika. Przykładami zastosowania są silniki sportowe oraz pojazdy wyścigowe, w których kluczowe jest uzyskanie maksymalnej mocy w jak najkrótszym czasie. Dobre praktyki branżowe zalecają korzystanie ze sprężarek Rootsa w połączeniu z systemami chłodzenia powietrza doładowanego, co podnosi efektywność całego układu. Dodatkowo, w kontekście norm emisji spalin, sprężarki te pozwalają na bardziej efektywne spalanie, co może przyczynić się do ograniczenia emisji szkodliwych substancji. Z tego powodu, ich zastosowanie w motoryzacji i innych dziedzinach przemysłu jest niezwykle istotne.

Pytanie 25

Który z wymienionych składników nie wchodzi w skład układu przeniesienia napędu?

A. Sprzęgło
B. Koło talerzowe
C. Wałek rozrządu
D. Przekładnia główna
Wszystkie pozostałe odpowiedzi dotyczą elementów układu przeniesienia napędu. Koło talerzowe to kluczowy komponent w mechanizmach przekładni automatycznej, który odpowiada za przekazywanie momentu obrotowego z silnika na układ napędowy. Z kolei przekładnia główna, jako element przenoszący napęd na osie pojazdu, jest niezbędna do zmiany kierunku i rozdziału mocy na koła. Sprzęgło odgrywa rolę w połączeniu i rozłączeniu silnika z skrzynią biegów, co umożliwia operatorowi płynne zmiany przełożeń bez szarpania. Często błędne wnioski dotyczące roli tych elementów wynikają z mylnego utożsamienia ich z innymi komponentami w silniku, co prowadzi do nieporozumień. Warto zwrócić uwagę, że układ przeniesienia napędu obejmuje elementy, które są zaangażowane bezpośrednio w transfer mocy, podczas gdy wałek rozrządu nie ma z tym nic wspólnego. Zrozumienie różnic między tymi elementami jest kluczowe w diagnostyce oraz doborze odpowiednich części zamiennych podczas napraw i konserwacji pojazdów, zgodnie z normami i standardami branżowymi.

Pytanie 26

Jaką metodą wykonuje się wały korbowe stosowane w silnikach spalinowych samochodów sportowych?

A. odlewu
B. łączenia
C. obróbki skrawaniem
D. kucia
Wały korbowe w silnikach spalinowych samochodów sportowych są najczęściej wytwarzane metodą kucia ze względu na wysokie wymagania dotyczące wytrzymałości oraz odporności na zmęczenie materiału. Proces kucia pozwala uzyskać jednorodną strukturę materiału, co znacząco zwiększa jego właściwości mechaniczne. Kucie na gorąco, stosowane w produkcji wałów korbowych, umożliwia formowanie skomplikowanych kształtów, które są konieczne do prawidłowego działania silnika. Ponadto, dzięki kuciu, możliwe jest osiągnięcie wysokiej precyzji wymiarowej, co jest kluczowe w zastosowaniach wyścigowych, gdzie nawet najmniejsza różnica w tolerancjach może wpłynąć na osiągi pojazdu. W praktyce, producenci stosują materiały stalowe o dużej wytrzymałości, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej, zapewniając jednocześnie długą żywotność i niezawodność komponentów. Dodatkowo, kute wały korbowe są często poddawane obróbce cieplnej w celu dalszej poprawy ich właściwości mechanicznych, co jest standardem w produkcji elementów silników wyczynowych.

Pytanie 27

Ciśnienie definiujemy jako siłę działającą na jednostkę

A. długości
B. wagi
C. gęstości
D. powierzchni
Pojęcie ciśnienia jest często mylone z innymi właściwościami fizycznymi, co może prowadzić do błędnych wniosków. Odpowiedzi związane z długością, gęstością i wagą nie odnoszą się do definicji ciśnienia, które akcentuje zależność między siłą a powierzchnią. Długość nie ma wpływu na wartość ciśnienia, ponieważ to powierzchnia, na którą działa siła, jest kluczowa dla obliczeń. Gęstość, definiowana jako masa na jednostkę objętości, również nie ma związku z ciśnieniem, chociaż może oddziaływać na ciśnienie w kontekście płynów. Wiele osób myli pojęcia, nie dostrzegając, że ciśnienie to nie tylko wynik siły, ale również kontekstu, w którym ta siła działa, co prowadzi do nieporozumień. Podobnie, waga – będąca miarą siły grawitacji działającej na obiekt – nie jest tym samym, co ciśnienie. W rzeczywistości, choć waga może być użyta do obliczenia ciśnienia, jest tylko jednym z jego składników, a nie definicją. Tego rodzaju nieporozumienia mogą prowadzić do błędów w obliczeniach inżynieryjnych, co podkreśla znaczenie dokładnego rozumienia podstawowych pojęć w naukach przyrodniczych oraz ich właściwego stosowania w praktyce.

Pytanie 28

Podczas montażu pierścieni uszczelniających Simmera wyjętych ze skrzyni biegów należy

A. zamienić miejscami
B. zregenerować, gdy uległy zniszczeniu
C. pozostawić w oryginalnych gniazdach
D. wymienić na nowe
Wymiana pierścieni uszczelniających Simmera na nowe jest niezbędna, ponieważ te elementy są kluczowe dla zapewnienia szczelności układów mechanicznych, w tym skrzyń biegów. Uszczelnienia te często narażone są na działanie wysokich temperatur, ciśnień oraz substancji chemicznych, co prowadzi do ich zużycia i degradacji. Nowe uszczelnienia zapewniają optymalną funkcjonalność i minimalizują ryzyko wycieków oleju lub innych płynów eksploatacyjnych, co mogłoby prowadzić do poważnych uszkodzeń mechanicznych. Stosowanie nowych pierścieni jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie używania oryginalnych lub wysokiej jakości zamienników. Na przykład, w przypadku wymiany uszczelnień w samochodach, producenci zalecają stosowanie elementów zgodnych z ich specyfikacjami, co ma na celu zapewnienie długotrwałej i niezawodnej pracy pojazdu. Oprócz tego, wymiana starych uszczelnień na nowe w trakcie przeglądów technicznych lub napraw zwiększa bezpieczeństwo i efektywność urządzeń, co jest niezbędne w kontekście utrzymania właściwego stanu technicznego pojazdów.

Pytanie 29

Charakterystykę zewnętrzną silnika wykonuje się podczas

A. badania skanerem diagnostycznym
B. próby drogowej
C. testu dymomierzem
D. testu na hamowni
Test dymomierzem, próba drogowa oraz badanie skanerem diagnostycznym to metody, które mają swoje specyficzne zastosowania, ale nie są odpowiednie do określania charakterystyki zewnętrznej silnika w kontekście wydajności i mocy. Test dymomierzem koncentruje się na pomiarze emisji spalin, co jest istotne w kontekście oceny ekologicznej, ale nie dostarcza informacji o mocy czy momencie obrotowym silnika. Próba drogowa z kolei dostarcza informacji o zachowaniu pojazdu w realnych warunkach, jednak wyniki mogą być zafałszowane przez zmienne zewnętrzne, takie jak warunki atmosferyczne czy stan nawierzchni, przez co nie można uzyskać precyzyjnych danych dotyczących wydajności silnika. Badanie skanerem diagnostycznym skupia się na analizie błędów systemów elektronicznych i nie jest właściwym narzędziem do oceny charakterystyki silnika. Te podejścia mogą prowadzić do mylnego wniosku, że są one wystarczające do oceny silnika, co jest błędne. Zrozumienie różnicy między tymi metodami jest kluczowe dla profesjonalistów w dziedzinie mechaniki i inżynierii samochodowej, aby właściwie dobierać narzędzia do analizy silników i ich parametrów.

Pytanie 30

Jak powinno odbywać się przetransportowanie osoby poszkodowanej z podejrzeniem urazu kręgosłupa?

A. z użyciem miękkich noszy
B. z użyciem twardych noszy
C. na materacu piankowym
D. na wózku inwalidzkim
Transport poszkodowanego z podejrzeniem urazu kręgosłupa powinien być przeprowadzany z wykorzystaniem twardych noszy, ponieważ zapewniają one stabilizację i unieruchomienie kręgosłupa w trakcie transportu. W przypadku urazów kręgosłupa niezwykle istotne jest minimalizowanie ruchów, które mogą pogorszyć stan poszkodowanego lub prowadzić do dodatkowych obrażeń. Twarde nosze są zaprojektowane tak, aby równomiernie rozkładać ciężar ciała oraz skutecznie blokować wszelkie ruchy w obrębie kręgosłupa. Przykładem zastosowania twardych noszy jest ich wykorzystywanie w sytuacjach wypadków komunikacyjnych, gdzie konieczne jest szybkie, ale bezpieczne przeniesienie osoby poszkodowanej do szpitala. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji oraz standardami ratownictwa medycznego, użycie twardych noszy jest najlepszą praktyką, gdy istnieje ryzyko urazu kręgosłupa. Ponadto, stosowanie tych noszy ułatwia również dalszą diagnostykę oraz interwencje medyczne, ponieważ pacjent pozostaje w stabilnej pozycji do momentu podjęcia odpowiednich działań przez personel medyczny.

Pytanie 31

Podczas spalania mieszanki paliwa z powietrzem w silniku ZI maksymalna temperatura w cylindrze osiąga wartość

A. 300°C
B. 2 500°C
C. 220°C
D. 800°C
Wynik 2500°C jako maksymalna temperatura w cylindrze silnika zapłonowego (ZI) jest zgodny z danymi technicznymi. W procesie spalania mieszanki paliwowo-powietrznej, temperatura wewnętrzna cylindra może osiągać wartości sięgające 2500°C, co jest kluczowe dla efektywności procesu spalania. Tak wysokie temperatury są wynikiem wysokiego stopnia sprężania oraz optymalnych warunków spalania, co prowadzi do lepszej wydajności silnika. W praktyce, osiągnięcie takich temperatur jest istotne dla zjawiska spalania detonacyjnego, które może wpłynąć na moc i moment obrotowy silnika. Dobre praktyki w inżynierii silników, takie jak odpowiednie dobieranie paliw oraz systemów zasilania, są niezbędne dla efektywnego zarządzania temperaturą w cylindrze, co przekłada się na długowieczność i wydajność jednostki napędowej.

Pytanie 32

Jakie narzędzie należy wykorzystać do pomiaru luzu zaworowego?

A. miernik wysokości.
B. suwmiarka.
C. czujnik zegarowy.
D. szczelinomierz.
Szczelinomierz to narzędzie pomiarowe, które jest niezbędne w procesie pomiaru luzu zaworowego w silnikach spalinowych. Luz zaworowy jest kluczowym parametrem, który wpływa na poprawne działanie układu rozrządu oraz ogólną wydajność silnika. Właściwy luz zapewnia optymalne warunki do otwierania i zamykania zaworów, co z kolei wpływa na efektywność spalania i osiągi silnika. Szczelinomierz umożliwia precyzyjne ustalenie wymiarów szczeliny, co jest kluczowe dla utrzymania odpowiedniej pracy silnika. W praktyce, w przypadku zbyt dużego luzu, może dochodzić do nieprawidłowego działania zaworów, natomiast zbyt mały luz może prowadzić do ich zatarcia. Używanie szczelinomierza w regularnych przeglądach technicznych oraz konserwacji silnika jest zgodne z zaleceniami producentów, co stanowi element dobrych praktyk w branży motoryzacyjnej.

Pytanie 33

Jaki łączny wydatek wiąże się z wymianą oleju silnikowego, jeśli w silniku znajduje się 3,5 litra, cena za litr wynosi 21 zł, a koszt filtra oleju to 65 zł? Cały proces trwa 30 minut przy stawce robocizny wynoszącej 120 zł za godzinę?

A. 138,50 zł
B. 198,50 zł
C. 146,00 zł
D. 258,50 zł
Całkowity koszt wymiany oleju silnikowego wynosi 198,50 zł. Można to obliczyć na podstawie kilku rzeczy. Po pierwsze, w silniku jest 3,5 litra oleju, a litr kosztuje 21 zł, więc za olej wychodzi 73,50 zł. Potem mamy filtr oleju, który kosztuje 65 zł. Jak to wszystko zsumujemy, to 73,50 zł plus 65 zł daje w sumie 138,50 zł. Następnie musimy doliczyć koszt robocizny. Jeśli wymiana trwa pół godziny, a stawka za godzinę wynosi 120 zł, to robocizna kosztuje 60 zł. Czyli 138,50 zł plus 60 zł to razem 198,50 zł. Te obliczenia są zgodne z tym, co się praktykuje w serwisach, bo liczy się zarówno materiały, jak i praca przy samochodach.

Pytanie 34

Jakie właściwości mierzona są przy użyciu lampy stroboskopowej?

A. podciśnienia w cylindrze
B. kąta wyprzedzenia zapłonu
C. czasu wtrysku paliwa
D. natężenia oświetlenia
Pomiar czasu wtrysku paliwa, podciśnienia w cylindrze oraz natężenia oświetlenia wiąże się z innymi technologiami i metodami, które różnią się od działania lampy stroboskopowej. Czas wtrysku paliwa można monitorować za pomocą oscyloskopu, który pozwala na wizualizację sygnałów elektrycznych z wtryskiwaczy. Z kolei podciśnienie w cylindrze najczęściej mierzy się za pomocą manometrów lub czujników podciśnienia, które są w stanie dostarczyć dokładnych informacji o ciśnieniu wewnętrznym silnika. Lampy stroboskopowe nie są zaprojektowane do tego typu pomiarów, ponieważ ich działanie polega na wizualizacji ruchu obrotowego, a nie na pomiarze ciśnienia czy czasu. Natężenie oświetlenia, z kolei, wymaga użycia fotometrów, które są specjalistycznymi narzędziami zaprojektowanymi do pomiaru intensywności światła w różnych warunkach. Użycie lampy stroboskopowej w tych kontekstach może prowadzić do mylnych wniosków, co jest wynikiem niepełnego zrozumienia zakresu działania i zastosowania konkretnego narzędzia. W każdym przypadku, kluczowe jest dostosowanie metody pomiaru do specyfiki sytuacji, aby uniknąć błędów diagnostycznych i zapewnić precyzyjne wyniki w analizie samochodowych układów mechanicznych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Urządzenie (elektryczne lub hydrodynamiczne) wykorzystywane do długotrwałego hamowania pojazdu, stosowane w pojazdach ciężarowych o wysokiej ładowności oraz w autobusach, to

A. retarder
B. rezonator
C. rekuperator
D. dyfuzor
Rezonator, rekuperator i dyfuzor, mimo że są terminami technicznymi, nie są związane z długotrwałym hamowaniem pojazdów. Rezonator, wykorzystywany głównie w systemach audio oraz niektórych układach wydechowych, ma na celu poprawę akustyki, a nie wpływa na proces hamowania. Rekuperator, który jest urządzeniem stosowanym w systemach odzyskiwania energii, ma zastosowanie w kontekście zwiększenia efektywności energetycznej, ale nie jest przeznaczony do długotrwałego hamowania dużych pojazdów. Dyfuzor natomiast jest elementem aerodynamiki, używanym głównie w kontekście poprawy przepływu powietrza wokół pojazdów, co wpływa na ich osiągi, a nie na systemy hamulcowe. Typowym błędem myślowym jest mylenie urządzeń służących do regulacji różnych aspektów działania pojazdu. Użytkownicy często nie dostrzegają, że każdy z tych komponentów ma zupełnie inne funkcje, co prowadzi do mylnych konkluzji na temat ich zastosowania w kontekście hamowania. Właściwe zrozumienie funkcji tych urządzeń jest kluczowe, aby uniknąć nieporozumień w ich eksploatacji.

Pytanie 37

Która z podanych metod łączenia elementów karoserii jest najczęściej wykorzystywana w procesie produkcji oraz nowoczesnych metodach naprawy?

A. Lutowanie lutem miękkim
B. Zgrzewanie
C. Nitowanie
D. Lutowanie lutem twardym
Zgrzewanie to jedna z najczęściej używanych metod łączenia elementów nadwozia w produkcji samochodów i w naprawach. W skrócie, chodzi o to, że materiały są miejscowo topione, co daje naprawdę mocne i trwałe połączenia. W auto przemyśle zgrzewanie jest na czołowej pozycji, bo jest szybkie i efektywne pod względem kosztów. Moim zdaniem to super, że można łączyć blachy o różnych grubościach, bo w nowoczesnych konstrukcjach nadwozi to naprawdę ważne. Przestrzegają też norm ISO i SAE, co zapewnia, że połączenia są zgodne z tym, co powinno być. Tak naprawdę zgrzewanie można spotkać nie tylko w fabrykach, ale i w warsztatach naprawczych. Zgrzewanie punktowe to chyba najpopularniejsza metoda, a jej zaleta to minimalne odkształcenia materiału, co jest istotne dla integralności pojazdu.

Pytanie 38

Wartość luzu zmierzonego w zamku pierścienia tłokowego umieszczonego w cylindrze silnika po naprawie wynosi 0,6 mm. Producent wskazuje, że luz ten powinien mieścić się w zakresie od 0,25 do 0,40 mm. Ustalony wynik wskazuje, że

A. luz mieści się w podanych zaleceniach
B. luz jest zbyt mały
C. luz zamka pierścienia powinien być powiększony
D. luz jest zbyt duży
To, że luz jest za duży, to rzeczywiście dobra ocena. Zmierzony luz 0,6 mm wyraźnie przekracza to, co zaleca producent, który mówi, że powinno być od 0,25 mm do 0,40 mm. Wiesz, że luz w zamku pierścienia tłokowego jest mega ważny dla tego, jak silnik działa? Zbyt duży luz może sprawić, że pierścień się nie osadzi dobrze, co prowadzi do utraty kompresji i do większego zużycia paliwa. No i jeszcze pierścień może się szybciej zużywać. W silnikach spalinowych często korzysta się z różnych metod pomiaru luzu, takich jak feeler gauge, żeby wszystko pasowało idealnie. Różne firmy w branży samochodowej zalecają, żeby regularnie sprawdzać te luzki, żeby silnik działał jak najlepiej i długo. Zbyt duży luz to także wibracje i hałas, co psuje komfort jazdy i może zniszczyć inne elementy silnika. Dlatego przed uruchomieniem silnika trzeba sprawdzić, czy wszystko jest w normie.

Pytanie 39

Zanim przystąpi się do diagnostyki geometrii kół kierowniczych, najpierw powinno się

A. zablokować pedał hamulca
B. sprawdzić ciśnienie w oponach
C. sprawdzić poziom tłumienia amortyzatorów
D. zablokować kierownicę
Sprawdzenie ciśnienia w oponach to bardzo ważny krok, zanim zaczniemy zajmować się geometrią kół. Dobre ciśnienie w oponach ma ogromny wpływ na to, jak samochód się prowadzi, jak trzyma się drogi i jak równomiernie zużywają się opony. Jeśli ciśnienie jest złe, możemy dostać błędne wyniki podczas pomiarów geometrii, co może skutkować niewłaściwym ustawieniem kół. W efekcie, pojazd może się gorzej prowadzić. Z moich doświadczeń wynika, że przed każdym przeglądem geometrii warto sprawdzić, czy ciśnienie w oponach zgadza się z tym, co podaje producent. Na przykład, opony z niskim ciśnieniem mogą się szybciej zużywać, co nie tylko zwiększa koszty, ale też ma wpływ na nasze bezpieczeństwo. Warto pamiętać, żeby sprawdzać ciśnienie na zimnych oponach, bo to daje najdokładniejszy wynik. Regularne monitorowanie ciśnienia nie tylko poprawi dokładność pomiarów, ale i sprawi, że jazda będzie bezpieczniejsza i bardziej komfortowa.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.