Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 22 maja 2025 21:21
  • Data zakończenia: 22 maja 2025 21:44

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Rozdział składników mieszaniny w chromatografii odbywa się dzięki ich różnym

A. adsorpcji
B. lotności
C. absorpcji
D. rozpuszczalności
Chromatograficzny rozdział składników mieszaniny oparty jest na różnicy w adsorpcji tych składników na fazie stacjonarnej i fazie ruchomej. Adsorpcja to proces, w którym cząsteczki substancji przyczepiają się do powierzchni innej substancji. W chromatografii, różne substancje mają różne właściwości adsorpcyjne, co prowadzi do ich odmiennych czasów przejścia przez kolumnę chromatograficzną. Na przykład, w chromatografii cienkowarstwowej (TLC) różne związki chemiczne mogą rozdzielać się na podstawie ich zdolności do adsorbowania się na warstwie stałej (np. silica gel) w porównaniu do ich rozpuszczalności w fazie ruchomej (np. rozpuszczalnik). Zrozumienie procesu adsorpcji jest kluczowe w zastosowaniach takich jak oczyszczanie substancji chemicznych, identyfikacja związków w analizach laboratoryjnych oraz w przemyśle farmaceutycznym do analizy jakości leków. Dobre praktyki chromatograficzne wymagają znajomości parametrów adsorpcyjnych różnych substancji, co umożliwia optymalne warunki rozdziału.

Pytanie 2

W celu usunięcia drobnych zawiesin z roztworu przed analizą spektrofotometryczną stosuje się:

A. dekantację bez sączenia
B. suszenie roztworu w suszarce laboratoryjnej
C. sączenie przez sączek o drobnych porach lub filtr membranowy
D. podgrzewanie roztworu do wrzenia
Sączenie przez sączek o drobnych porach lub filtr membranowy to standardowa metoda przygotowania próbek do analiz spektrofotometrycznych, szczególnie gdy zależy nam na usunięciu nawet najmniejszych cząstek zawieszonych. W branży laboratoryjnej takie podejście uchodzi za dobrą praktykę, bo pozwala skutecznie oddzielić fazę ciekłą od niepożądanych drobin, które mogłyby rozpraszać światło i zakłócać pomiar. Filtry membranowe wyróżniają się bardzo drobną porowatością (np. 0,22–0,45 µm), przez co nawet mikroskopijne cząstki nie przechodzą dalej. Użycie sączka o drobnych porach jest też bezpieczne dla składu chemicznego roztworu, nie powoduje dodatkowych reakcji i nie wpływa na wyniki analizy. Moim zdaniem, to wręcz obowiązkowa czynność przed większością analiz spektrofotometrycznych, szczególnie gdy pracujemy z próbkami środowiskowymi, farmaceutycznymi czy biologicznymi. Warto wspomnieć, że profesjonalne laboratoria stosują filtry strzykawkowe lub sączki z tworzyw sztucznych, bo są wygodne i minimalizują ryzyko zanieczyszczeń. Odpowiednia filtracja gwarantuje, że absorbancja mierzona spektrofotometrycznie odzwierciedla wyłącznie skład roztworu, a nie „szum” od cząstek zawieszonych. Takie przygotowanie próbek to po prostu podstawa rzetelnych wyników.

Pytanie 3

Reagenty o najwyższej czystości to reagenty

A. czyste do badań.
B. czyste.
C. spektralnie czyste.
D. chemicznie czyste.
Odpowiedź "spektralnie czyste" jest uznawana za właściwą, ponieważ odnosi się do odczynnika, który został oczyszczony w takim stopniu, że jego czystość jest wystarczająca do zastosowań w spektroskopii oraz innych czułych analizach chemicznych. W praktyce oznacza to, że odczynniki te mają bardzo niskie stężenia zanieczyszczeń, co jest kluczowe dla uzyskania dokładnych i powtarzalnych wyników w badaniach. W laboratoriach analitycznych i badawczych, gdzie precyzja wyników jest niezbędna, stosuje się odczynniki spektralnie czyste, aby uniknąć wpływu niepożądanych substancji na reakcje chemiczne lub pomiary. Przykładem może być analiza chromatograficzna, gdzie obecność zanieczyszczeń może prowadzić do fałszywych wyników. W standardach ISO oraz w pracach dotyczących analizy chemicznej, podkreśla się wagę używania odczynników o specjalistycznej czystości, co stanowi najlepszą praktykę w laboratoriach zajmujących się badaniami jakości oraz badaniami ilościowymi substancji chemicznych.

Pytanie 4

Na ilustracji zobrazowano urządzenie do

A. sublimacji
B. rektyfikacji
C. destylacji przy obniżonym ciśnieniu
D. destylacji pod ciśnieniem atmosferycznym
Destylacja pod zmniejszonym ciśnieniem jest techniką, która służy do separacji składników przy niższych temperaturach, co jest korzystne dla substancji wrażliwych na wysokie temperatury, ale nie jest odpowiednia w kontekście zastanawiania się nad destylacją w warunkach atmosferycznych. Takie podejście może prowadzić do mylnych wniosków, zwłaszcza gdy mówimy o substancjach, które nie powinny być poddawane wysokim temperaturze ze względu na ryzyko rozkładu. Rektyfikacja, z drugiej strony, to proces bardziej skomplikowany, który wymaga stosowania kolumny rektyfikacyjnej i jest używany do uzyskiwania bardzo czystych frakcji ze złożonych mieszanin, co znacznie różni się od prostszej destylacji. Z kolei sublimacja, czyli przejście substancji ze stanu stałego w gazowy bez przechodzenia przez stan ciekły, jest zupełnie odmiennym procesem, stosowanym głównie w przypadku substancji takich jak jod czy nafta. Typowym błędem jest mylenie tych procesów, ponieważ każdy z nich ma swoje specyficzne zastosowania, warunki i cele. Zrozumienie różnic między tymi technikami jest kluczowe dla efektywnego planowania eksperymentów i procesów przemysłowych, a także dla bezpieczeństwa w laboratoriach chemicznych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Które spośród substancji wymienionych w tabeli pozwolą pochłonąć wydzielający się tlenek węgla(IV)?

IIIIIIIVV
Ca(OH)2(aq)NaOH(s)HNO3(stęż)CuO(s)CaO(s)

A. I, II, V
B. II, IV, V.
C. I, II, IV.
D. I, III, IV.
W przypadku wyboru odpowiedzi, która nie obejmuje substancji I, II i V, można zauważyć, że nie uwzględnia się kluczowych właściwości reakcji chemicznych między tlenkiem węgla(IV) a substancjami, które są zasadami. Takie podejście prowadzi do nieporozumień dotyczących chemii gazów i ich interakcji z zasadami. Odpowiedzi zawierające substancje III (HNO3) i IV (CuO) są w rzeczywistości błędne, ponieważ HNO3 jest kwasem azotowym, który nie ma zdolności do reakcji z CO2 w sposób, który prowadziłby do jego absorpcji; zamiast tego reaguje on z zasadami, a jego właściwości jako kwasu oznaczają, że nie będzie on efektywnym reagentem w kontekście usuwania CO2. CuO, czyli tlenek miedzi(II), również nie jest substancją, która mogłaby reagować z CO2, a jego zastosowanie koncentruje się bardziej na reakcjach utleniania i redukcji metali, co nie ma związku z pochłanianiem tego gazu. Zrozumienie właściwości substancji chemicznych oraz ich reakcji jest kluczowe do prawidłowego wyboru reagentów w procesach przemysłowych. Ignorowanie tych faktów może prowadzić do nieefektywnych rozwiązań w kontekście zarządzania emisją CO2, co jest szczególnie istotne w dobie globalnych wysiłków na rzecz ochrony środowiska oraz zrównoważonego rozwoju.

Pytanie 7

Aby uzyskać roztwór AgNO3 (masa molowa AgNO3 to 169,8 g/mol) o stężeniu 0,1 mol/dm3, należy rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski.

A. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
B. odważyć 16,98 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
C. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
D. odważyć 169,80 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić
Wielu uczniów może popełniać typowe błędy przy obliczaniu masy substancji niezbędnej do przygotowania roztworu o określonym stężeniu. Niektóre odpowiedzi opierają się na błędnym założeniu co do pojemności kolby miarowej lub ilości użytej substancji. Na przykład, odważenie 16,98 g AgNO₃ jest błędne, ponieważ odpowiada to stężeniu 1 mol/dm³, a nie 0,1 mol/dm³, co skutkuje znacznym nadmiarem substancji. Podobnie, przygotowanie roztworu w kolbie o pojemności 1000 cm³ przy użyciu 1,698 g AgNO₃ również prowadzi do niepoprawnego stężenia, ponieważ stężenie byłoby znacznie niższe niż zakładane. Również odważenie 169,80 g AgNO₃ jest niewłaściwe, jako że jest to masa potrzebna do przygotowania 1 mol/dm³ w 1000 cm³, co nie odpowiada wymaganym warunkom pytania. Te błędy znajdują się w nieporozumieniach dotyczących podstawowych zasad obliczeń chemicznych, a także niewłaściwego zrozumienia, jak stężenie jest związane z objętością roztworu. Ważne jest, aby przy wykonywaniu takich obliczeń zwracać uwagę na jednostki oraz upewnić się, że wszystkie dane są prawidłowo zinterpretowane, aby uniknąć błędów, które mogą prowadzić do niepoprawnych wyników eksperymentalnych.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie urządzenie laboratoryjne jest używane do realizacji procesu ekstrakcji?

A. Biureta gazowa
B. Rozdzielacz
C. Kolba ssawkowa
D. Kolba stożkowa
Rozdzielacz to w sumie mega ważne narzędzie w laboratorium, bo pozwala oddzielić różne fazy, a to kluczowe podczas ekstrakcji. Jego główna rola to separacja cieczy o różnych gęstościach, co jest istotne w chemii i biochemii. Ekstrakcja to tak naprawdę wydobywanie substancji z jednego medium do drugiego, a rozdzielacz, dzięki swojej budowie, umożliwia to w fajny sposób. Na przykład, gdy chcemy wyciągnąć związki organiczne z roztworów wodnych, to właśnie rozdzielacz pozwala nam na zebranie frakcji organicznej po oddzieleniu od wody. W praktyce często korzysta się z rozdzielaczy w kształcie lejka, co jest zgodne z zasadami dobrej praktyki w labie (GLP), bo zapewnia dokładność i powtarzalność wyników. Oczywiście, użycie rozdzielacza ma też swoje zasady dotyczące bezpieczeństwa i efektywności, więc to narzędzie jest naprawdę niezastąpione w laboratoriach chemicznych.

Pytanie 10

Wskaż prawidłowo dobrany sposób kalibracji i zastosowanie szkła miarowego.

Nazwa naczyniaSposób kalibracjiZastosowanie
A.kolba miarowaExdo sporządzania roztworów mianowanych o określonej objętości
B.cylinder miarowyExdo sporządzania roztworów mianowanych o określonej objętości
C.pipeta MohraExdo odmierzania określonej objętości cieczy
D.biuretaIndo odmierzania określonej objętości cieczy

A. C.
B. B.
C. A.
D. D.
Wybór innych opcji niż C wskazuje na nieprawidłowe zrozumienie metod kalibracji i zastosowania narzędzi miarowych. Kolby miarowe, na przykład, są zaprojektowane do kalibracji metodą In, gdzie odczytywana jest objętość cieczy na wewnętrznej krawędzi menisku. Użycie kolby miarowej do precyzyjnych pomiarów wymaga znajomości jej zastosowania, co może prowadzić do błędów, jeśli zostanie użyta zamiast pipety Mohra. Cylindry miarowe oferują większą objętość, ale ich kalibracja również opiera się na odczycie wewnętrznej krawędzi menisku, co czyni je mniej idealnymi do precyzyjnych pomiarów objętości. Biurety są narzędziem do titracji, a ich kalibracja i zastosowanie są inne niż w przypadku pipety Mohra. Typowe błędy myślowe obejmują brak zrozumienia różnicy między metodami kalibracji oraz nieodpowiednie przypisanie narzędzi do ich zastosowania. Kluczowe jest zrozumienie, że wybór odpowiedniego narzędzia pomiarowego w laboratorium ma zasadnicze znaczenie dla uzyskania dokładnych i wiarygodnych wyników, co jest zgodne z normami jakości i standardami branżowymi. Brak tej wiedzy może prowadzić do poważnych błędów w analizach chemicznych lub biotechnologicznych.

Pytanie 11

Na podstawie danych w tabeli określ, jaką masę próbki należy pobrać, jeżeli wielkość ziarna wynosi 1·10-5 m.

Wielkość ziaren lub kawałków [mm]Poniżej 11-1011-50Ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 100 g
B. 1000 g
C. 2500 g
D. 200 g
Wybór masy próbki wynoszącej 100 g jest zgodny z normami obowiązującymi dla wielkości ziaren poniżej 1 mm. W praktyce, przy analizach materiałów sypkich, takich jak proszki czy granulaty, istotne jest, aby masa próbki była dostosowana do rozmiaru cząstek, co wpływa na dokładność wyników. W przypadku cząstek o wielkości 1·10^-5 m, co odpowiada 0,01 mm, ich właściwości fizyczne i chemiczne są różne od większych ziaren, co wymaga odpowiedniego podejścia do pobierania próbek. Dla takich cząstek, minimalna masa próbki określona w normach branżowych wynosi 100 g, co zapewnia reprezentatywność oraz wystarczającą ilość materiału do przeprowadzenia analizy. Przykładowo, w laboratoriach zajmujących się analizą materiałów budowlanych lub farmaceutycznych, przestrzeganie takich wytycznych jest kluczowe dla uzyskania wiarygodnych wyników badań.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakie urządzenie wykorzystuje się do pomiaru lepkości cieczy?

A. piknometr
B. kriometr
C. wiskozymetr
D. aparat Boetiusa
Piknometr, aparat Boetiusa i kriometr to trochę inna historia, a ludzie często mylą je z pomiarem lepkości, co prowadzi do różnych nieporozumień. Piknometr jest urządzonkiem do mierzenia gęstości cieczy, a to oznacza, że patrzy na masę substancji w porównaniu do jej objętości. Gęstość jest ważna, ale nie ma nic wspólnego z lepkością, która odnosi się do oporu cieczy na przepływ. Aparat Boetiusa z kolei mierzy ciśnienie pary, więc nie ma tu nic do rzeczy, gdy mówimy o lepkości. Kriometr z kolei bada temperaturę zamarzania cieczy i może dać nam jakieś wskazówki co do składu chemicznego, ale z lepkością nie ma nic wspólnego. Rozumienie tych różnic jest naprawdę istotne, gdy wybiera się odpowiednie narzędzia do badań w laboratoriach. Z tego, co zauważyłem, wielu ludzi myli te pojęcia, bo nie rozumie podstawowych różnic między parametrami fizycznymi cieczy oraz ich wpływem na różne procesy technologiczne. Lepkość to tylko jedna z wielu cech fizycznych, a jej pomiar wymaga odpowiedniego sprzętu, jakim jest wiskozymetr.

Pytanie 14

Który z poniższych sposobów homogenizacji próbki jest najbardziej odpowiedni do przygotowania próbki gleby do analizy chemicznej?

A. Przesianie gleby przez sitko o dużych oczkach bez mieszania
B. Dokładne wymieszanie i rozdrobnienie całej próbki
C. Pobranie losowego fragmentu bez rozdrabniania
D. Suszenie gleby przed pobraniem próbki bez mieszania
Homogenizacja próbki gleby to kluczowy etap przygotowania materiału do analiz chemicznych, bo tylko wtedy wyniki są powtarzalne i wiarygodne. Dokładne wymieszanie i rozdrobnienie całej próbki pozwala uzyskać reprezentatywną mieszaninę – każda pobrana część ma w przybliżeniu taki sam skład jak całość. W praktyce w laboratoriach stosuje się najpierw suszenie gleby, potem rozdrabnianie w moździerzu lub młynku, a następnie dokładne mieszanie, czasem dodatkowo przesiewanie przez drobne sito (np. 2 mm), żeby usunąć kamienie i korzenie. Bez tego etapu nie ma sensu przeprowadzać analiz, bo próbka może być niejednorodna i nie oddawać faktycznego składu gruntu. To podstawa w każdej procedurze dotyczącej badań środowiskowych, rolniczych czy przemysłowych. Moim zdaniem, jeśli ktoś pominie ten krok, to nawet najlepszy sprzęt i odczynniki nic nie dadzą – można otrzymać wyniki całkowicie przypadkowe. Dobre praktyki laboratoryjne (GLP) wręcz wymagają standaryzacji homogenizacji, bo to wpływa na jakość i porównywalność danych. Warto pamiętać, że nawet w terenie, tuż po pobraniu próbki, zaleca się wstępne wymieszanie, a dopiero potem dalsze przygotowanie w laboratorium.

Pytanie 15

Metoda przygotowania próbki do badania, która nie jest

A. spopielenie
B. mineralizacja
C. miareczkowanie
D. stapianie
Spopielenie, stapianie i mineralizacja to różne metody przygotowania próbek do analizy, które mogą być stosowane w laboratoriach analitycznych. Spopielenie polega na poddawaniu próbki działaniu wysokiej temperatury w obecności tlenu, co prowadzi do usunięcia organicznych składników, pozostawiając jedynie popioły, które można następnie analizować. Ta technika jest często wykorzystywana w analizach materiałów stałych, takich jak gleby czy odpady. Z kolei stapianie to proces, w którym próbka jest poddawana wysokiej temperaturze w celu uzyskania jednorodnej masy, co ułatwia późniejszą analizę, zwłaszcza w przypadku minerałów. Mineralizacja to zaawansowana technika, która polega na rozkładzie próbki na jej składniki mineralne, zwykle przy użyciu kwasów, co jest kluczowe w analizach chemicznych, takich jak badania zawartości metali ciężkich w próbkach środowiskowych. Wybór odpowiedniej metody przygotowania próbki ma kluczowe znaczenie dla uzyskania dokładnych i wiarygodnych wyników analizy. Osoby przystępujące do analiz chemicznych muszą być świadome, że miareczkowanie to etap, który następuje po przygotowaniu próbki, a nie proces, który wchodzi w skład przygotowania samej próbki. Typowe błędy myślowe związane z tym zagadnieniem obejmują mylenie etapów analizy i niezrozumienie roli każdej z metod w kontekście całego procesu analitycznego.

Pytanie 16

Które z poniższych równań ilustruje reakcję, w której powstają produkty gazowe?

A. Fe + S —> FeS
B. 2HgO —> 2Hg + O2
C. Fe(CN)2 + 4KCN —> K4[Fe(CN)6]
D. AgNO3 + KBr —> AgBr↓ + KNO3
Reakcja przedstawiona w równaniu 2HgO —> 2Hg + O2 jest klasycznym przykładem reakcji rozkładu, która skutkuje wydzieleniem produktów gazowych. W tym przypadku, pod wpływem ciepła, woda utleniona (HgO) rozkłada się na rtęć metaliczną (Hg) oraz tlen (O2), który jest gazem. Proces ten ilustruje zasady termodynamiki oraz mechanizm reakcji chemicznych. W praktyce rozkład wody utlenionej jest ważny w różnych dziedzinach, w tym w chemii analitycznej, gdzie tlen jest wykorzystywany w reakcjach utleniających. Tego typu reakcje są również istotne w kontekście bezpieczeństwa, gdyż uwolnienie gazów może mieć wpływ na warunki pracy w laboratoriach. Dobrą praktyką w chemii jest stosowanie zasad BHP w obecności gazów, które mogą być wybuchowe lub toksyczne. W związku z tym, zrozumienie reakcji gazowych jest niezbędne do prowadzenia bezpiecznych eksperymentów chemicznych oraz skutecznego zarządzania ryzykiem.

Pytanie 17

Do pojemników na odpady stałe, które są przeznaczone do utylizacji, nie można wprowadzać bezpośrednio cyjanków oraz związków kompleksowych zawierających jony cyjankowe z powodu

A. produkcji toksycznych par lub gazów
B. zajścia nagłej, egzotermicznej reakcji
C. powolnego rozkładu związków
D. uwalniania związków o drażniącym zapachu
Wybór odpowiedzi dotyczącej zajścia gwałtownej, egzotermicznej reakcji jest błędny, ponieważ procesy egzotermiczne nie są jedynym lub najważniejszym zagrożeniem związanym z cyjankami. Choć niektóre reakcje chemiczne mogą wydzielać ciepło, to w przypadku cyjanków kluczowym zagrożeniem jest ich zdolność do generowania toksycznych gazów, które stanowią poważne ryzyko dla zdrowia. Wydanie cyjanków do utylizacji prowadzi do sytuacji, w której ich reakcje z innymi substancjami mogą generować niebezpieczne produkty, jednak nie każde zajście reakcji chemicznej jest oparte na gwałtowności. W kontekście drugiej odpowiedzi, powolne rozkładanie się związków nie odzwierciedla natury cyjanków - w rzeczywistości ich toksyczne właściwości nie są związane z ich rozkładem, ale z ich zdolnością do przekształcania się w jeszcze bardziej niebezpieczne formy. Z kolei koncepcja wydzielania się związków o drażniącym zapachu również jest nieadekwatna, ponieważ nie wszystkie cyjanki emitują zauważalne zapachy, a ich obecność w środowisku może być wykrywana jedynie dzięki specjalistycznym metodom analitycznym. Dlatego kluczowe jest, aby zrozumieć, że cyjanki i ich pochodne wymagają szczególnej uwagi i procedur w zakresie ich zarządzania oraz utylizacji, a nie koncentrowania się na nieodpowiednich aspektach ich chemii. W praktyce, nieprzestrzeganie odpowiednich standardów może prowadzić do poważnych zagrożeń zdrowotnych i środowiskowych, a także naruszenia przepisów dotyczących ochrony środowiska.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Eliminacja substancji organicznych z próbki poprzez jej spalenie nazywa się

A. ekstrakcja do fazy stałej
B. mineralizacja mokra
C. mineralizacja sucha
D. roztworzenie
Mineralizacja sucha to proces, w którym substancje organiczne w próbce ulegają całkowitemu spaleniu w wysokotemperaturowym piecu, co prowadzi do ich przekształcenia na minerały oraz gazy, takie jak dwutlenek węgla i woda. Metoda ta jest powszechnie stosowana w laboratoriach analitycznych do oznaczania zawartości węgla organicznego w glebie, osadach czy próbkach biologicznych. Proces mineralizacji suchej zapewnia pełne utlenienie materiału organicznego, co umożliwia dokładne pomiary pozostałych składników mineralnych. Przykładem zastosowania tej metody może być analiza gleby w kontekście oceny jej jakości oraz możliwości rolniczych, gdzie istotne jest określenie zawartości substancji organicznych. Mineralizacja sucha jest zgodna z normami ISO, co podkreśla jej znaczenie w standardowych procedurach analitycznych. Wiedza na temat tej techniki jest kluczowa dla specjalistów zajmujących się analizą chemiczną, geologiczną, czy ochroną środowiska, ponieważ pozwala na uzyskanie rzetelnych danych o składzie próbek.

Pytanie 21

Jakie jest pH 0,001-molowego roztworu NaOH?

A. 1
B. 3
C. 13
D. 11
pH 0,001-molowego roztworu NaOH wynosi 11, bo NaOH to mocna zasada, która całkowicie rozdziela się w wodzie na jony Na+ i OH-. W takim roztworze stężenie tych jonów OH- to 0,001 mol/L. Jak wyliczysz pOH używając wzoru pOH = -log[OH-], dostaniesz -log(0,001), co równa się 3. Pamiętaj, że jest związek między pH i pOH, który można zapisać jako pH + pOH = 14. Więc pH = 14 - pOH = 14 - 3 = 11. To, jak się to wszystko ze sobą wiąże, ma dużą wagę w chemii analitycznej i w laboratoriach, ponieważ pH pokazuje, czy roztwór jest kwasowy czy zasadowy. W wielu dziedzinach, jak biochemia, farmacja czy inżynieria chemiczna, ta wiedza to podstawa. Na przykład, w neutralizacji i różnych reakcjach chemicznych, kontrola pH może znacząco wpłynąć na skuteczność tych procesów.

Pytanie 22

Preparaty zawierające KOH (tzw. żrący potaż), oznaczone są symbolem S 1/2. Na podstawie informacji zawartych w tabeli, określ zasady przechowywania tych preparatów.

Numer zwrotu SWarunki bezpiecznego stosowaniaNumer zwrotu SWarunki bezpiecznego stosowania
S1Przechowywać pod zamknięciemS12Nie przechowywać pojemnika szczelnie zamkniętego
S2Chronić przed dziećmiS13Nie przechowywać razem z żywnością, napojami i karmą dla zwierząt
S3Przechowywać w chłodnym miejscuS15Przechowywać z dala od źródeł ciepła
S4Nie przechowywać w pomieszczeniach mieszkalnychS16Nie przechowywać w pobliżu źródeł zapłonu – nie palić tytoniu

A. Przechowywać w zamknięciu, z daleka od dzieci.
B. Przechowywać w zamkniętym, chłodnym miejscu.
C. Nie przechowywać w szczelnie zamkniętym pojemniku.
D. Przechowywać z dala od źródeł ciepła i ognia.
Przechowywanie substancji chemicznych, takich jak preparaty zawierające KOH, wymaga szczególnej uwagi i zrozumienia zasad bezpieczeństwa. Odpowiedzi, które sugerują przechowywanie w otwartych pojemnikach, daleko od źródeł ciepła lub ognia, mogą wydawać się logiczne, ale w rzeczywistości ignorują kluczowe aspekty bezpieczeństwa. Zasady dotyczące przechowywania substancji niebezpiecznych, takie jak KOH, są ściśle określone i opierają się na regulacjach dotyczących ochrony zdrowia i środowiska. Przechowywanie w zamknięciu jest absolutnie niezbędne, aby zapobiec dostępowi osób nieuprawnionych, w tym dzieci, które mogą nie być świadome niebezpieczeństw związanych z tymi substancjami. Co więcej, przechowywanie w chłodnym miejscu, mimo że może wydawać się korzystne, nie rekompensuje braku zamknięcia, co jest kluczowe dla zapobiegania przypadkowemu dostępowi. Zdarza się, że osoby sądzą, iż preparaty chemiczne mogą być przechowywane w specyficznych warunkach, takich jak blisko źródeł ciepła, co jest niezgodne z podstawowymi zasadami bezpieczeństwa. Ignorowanie tych zasad nie tylko naraża zdrowie osób w otoczeniu, ale również może prowadzić do poważnych wypadków chemicznych. Dlatego tak ważne jest przestrzeganie standardów i dobrych praktyk w zakresie przechowywania substancji chemicznych.

Pytanie 23

Jakiego koloru nabierze lakmus w roztworze NaOH?

A. czerwony
B. fioletowy
C. niebieski
D. malinowy
Lakmus jest wskaźnikiem pH, który zmienia kolor w zależności od kwasowości lub zasadowości roztworu. W roztworze sodu wodorotlenku (NaOH), który jest silną zasadą, lakmus zabarwia się na kolor niebieski. To zjawisko jest wynikiem reakcji chemicznych zachodzących w obecności zasad, które zmieniają konfigurację cząsteczek lakmusu. NaOH, jako substancja alkaliczna, podnosi pH roztworu powyżej 7, co skutkuje zmianą koloru wskaźników pH z czerwonego (typowego dla kwasów) na niebieski. W praktyce, lakmus jest często stosowany w laboratoriach i edukacji, aby szybko ocenić pH różnych substancji, co jest niezwykle istotne w chemii analitycznej oraz w przemyśle chemicznym. Zrozumienie reakcji lakmusu z różnymi substancjami jest kluczowe dla wielu procesów, takich jak kontrola jakości wody czy reakcje chemiczne w przemyśle farmaceutycznym.

Pytanie 24

W laboratorium chemicznym przewody instalacji rurowych są oznaczane różnymi kolorami, zgodnie z obowiązującymi normami. Polska Norma PN-70 N-01270/30 określa kolor dla wody jako

A. żółty
B. zielony
C. czerwony
D. niebieski
Odpowiedź "zielony" jest poprawna, ponieważ według Polskiej Normy PN-70 N-01270/30 kolor zielony jest przypisany dla instalacji wodnych. W praktyce oznakowanie rur wodociągowych tym kolorem ma na celu poprawę bezpieczeństwa w laboratoriach chemicznych oraz w innych obiektach, gdzie może wystąpić współistnienie różnych substancji. Oznakowanie ma na celu jednoznaczne wskazanie, jakiego medium można się spodziewać w danej instalacji, co ma kluczowe znaczenie w kontekście ewentualnych wypadków lub niebezpieczeństw. Na przykład w laboratoriach, gdzie używa się wielu substancji chemicznych, a także rozmaitych płynów, właściwe oznaczenie rur wodnych pozwala uniknąć pomyłek, które mogłyby prowadzić do poważnych konsekwencji. Przestrzeganie tego rodzaju norm w instalacjach przemysłowych oraz badawczych jest częścią szerokiego systemu zarządzania bezpieczeństwem, który powinien być wdrażany w każdym laboratorium.

Pytanie 25

Zgodnie z instrukcją dotyczącą pobierania próbek nawozów (na podstawie normy PN-EN 12579:2001), liczbę punktów pobierania próbek pierwotnych ustala się według wzoru nsp = 0,5·√V, gdzie V oznacza objętość jednostki badanej w m3. Wartość nsp zaokrągla się do liczby całkowitej, a dodatkowo nie może być mniejsza niż 12 ani większa niż 30.
Dlatego dla objętości V = 4900 m3, nsp wynosi

A. 30
B. 12
C. 35
D. 70
Niepoprawne odpowiedzi wskazują na nieporozumienia dotyczące zasad pobierania próbek nawozów oraz zastosowania odpowiednich wzorów obliczeniowych. Odpowiedzi takie jak 12, 35, czy 70, wynikają z błędnych założeń. Przykładowo, wartość 12 jest minimalną liczbą próbek, którą można wykorzystać, ale nie jest zgodna z obliczeniami, które jasno wskazują na liczbę 35, co wskazuje na niepełne zrozumienie normy. Z kolei odpowiedzi 35 i 70 ignorują regulacje dotyczące maksymalnej wartości nsp, która wynosi 30. Tego typu nieścisłości mogą prowadzić do niedoszacowania lub przeszacowania liczby próbek, co bezpośrednio wpływa na jakość i reprezentatywność wyników analiz. Ponadto, nie uwzględnienie zaokrąglenia wartości do liczby całkowitej narusza zasady określone w normie, co skutkuje niską jakością pobierania próbek. W praktyce, nieprawidłowe podejście do obliczeń może prowadzić do błędnych wniosków dotyczących skuteczności stosowanych nawozów, co ma wpływ na decyzje agronomiczne i strategie zarządzania glebą. Zrozumienie tych zasad jest kluczowe dla zapewnienia jakości analiz i wspierania decyzji w zakresie upraw rolnych.

Pytanie 26

Którego z poniższych naczyń laboratoryjnych nie powinno się używać do podgrzania 100 cm3wody?

A. Zlewki o pojemności 200 cm3
B. Zlewki o pojemności 150 cm3
C. Kolby stożkowej o pojemności 200 cm3
D. Kolby miarowej o pojemności 100 cm3
Kolby miarowe, ze względu na swoją konstrukcję i przeznaczenie, nie są odpowiednie do stosowania jako naczynia do ogrzewania cieczy, w tym przypadku 100 cm³ wody. Ich główną funkcją jest dokładne mierzenie objętości cieczy, a nie ich podgrzewanie. Kolby miarowe wykonane są z cienkiego szkła, co sprawia, że są bardziej wrażliwe na zmiany temperatury i mogą łatwo pęknąć pod wpływem ciepła. W praktyce laboratoryjnej, do ogrzewania cieczy zaleca się używanie naczyń takich jak zlewki czy kolby stożkowe, które są zaprojektowane do wytrzymywania wysokich temperatur. Na przykład, zlewki wykonane z borokrzemowego szkła, które charakteryzuje się wysoką odpornością na temperaturę, są powszechnie stosowane do takich zadań. Dobre praktyki laboratoryjne nakazują wybieranie naczyń dostosowanych do specyficznych zastosowań, aby zapewnić bezpieczeństwo i efektywność pracy.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Z 250 g benzenu (M = 78 g/mol) uzyskano 350 g nitrobenzenu (M = 123 g/mol). Jaka jest wydajność reakcji nitrowania?

A. 83,5%
B. 88,8%
C. 93,4%
D. 77,7%
Wydajność reakcji nitrowania obliczamy, porównując masę uzyskanego produktu z maksymalną masą, którą moglibyśmy otrzymać, bazując na ilości reagenta. W przypadku benzenu, z jego masy molowej (M = 78 g/mol) możemy obliczyć, ile moli benzenu mamy w 250 g: 250 g / 78 g/mol = 3,21 mol. Reakcja nitrowania benzenu do nitrobenzenu produkuje jeden mol nitrobenzenu na każdy mol benzenu. Dlatego teoretycznie moglibyśmy otrzymać 3,21 mol nitrobenzenu, co przekłada się na masę: 3,21 mol * 123 g/mol = 394,83 g nitrobenzenu. Jednak w praktyce uzyskaliśmy tylko 350 g. Aby obliczyć wydajność, stosujemy wzór: (masa uzyskana / masa teoretyczna) * 100%. W naszym przypadku wydajność wynosi (350 g / 394,83 g) * 100% = 88,8%. Taka analiza i obliczenia są kluczowe w przemyśle chemicznym, ponieważ pozwalają na ocenę skuteczności procesów oraz optymalizację wykorzystania surowców, co jest zgodne z najlepszymi praktykami w zakresie zarządzania produkcją chemiczną.

Pytanie 29

W przypadku rozlania żrącego odczynnika chemicznego na skórę pierwszym poprawnym działaniem jest:

A. Posypanie miejsca solą kuchenną
B. Pocieranie miejsca kontaktu papierowym ręcznikiem
C. Zaklejenie miejsca plastrem
D. Natychmiastowe spłukanie miejsca kontaktu dużą ilością wody
Postępowanie w przypadku kontaktu skóry z substancją żrącą jest jednym z podstawowych elementów bezpieczeństwa w laboratorium chemicznym. Najważniejsze jest, żeby działać szybko i skutecznie. Od razu po rozlaniu żrącego odczynnika trzeba spłukać miejsce kontaktu dużą ilością wody – najlepiej bieżącej. To nie tylko rozcieńcza szkodliwy związek, ale przede wszystkim usuwa go z powierzchni skóry, zmniejszając ryzyko głębszych uszkodzeń tkanek. Praktyka ta wynika z ogólnych zasad BHP obowiązujących w laboratoriach oraz wytycznych instytutów takich jak CIOP czy OSHA. Efektywność tej metody potwierdzają liczne badania. Szybka reakcja pozwala ograniczyć wchłanianie substancji i minimalizuje skutki poparzeń chemicznych. Nawet jeśli żrący środek wydaje się mało agresywny, nie wolno tego bagatelizować. Dobrze mieć też pod ręką prysznic bezpieczeństwa lub zestaw do płukania oczu, zwłaszcza w laboratoriach chemicznych. Warto pamiętać, że niektóre substancje wymagają dłuższego płukania – nawet do 15 minut. Dodatkowo po takim incydencie zawsze należy zgłosić zdarzenie przełożonemu i skonsultować się z lekarzem. Z mojego doświadczenia, szybkie działanie i wiedza o pierwszej pomocy to rzeczy, które naprawdę robią różnicę w laboratoriach. Ostatecznie – lepiej spłukać odczynnik za długo, niż za krótko. To jedna z tych zasad, które zawsze warto mieć z tyłu głowy podczas pracy z chemikaliami.

Pytanie 30

Technika oddzielania płynnych mieszanin, w której wykorzystuje się różnice w prędkości migracji składników przez odpowiednią bibułę, nazywa się

A. destylacją
B. chromatografią
C. filtracją
D. adsorpcją
Każda z niepoprawnych odpowiedzi odnosi się do różnych technik separacyjnych, które nie są zgodne z opisanym procesem. Adsorpcja to proces, w którym cząstki z jednego medium zbierają się na powierzchni innego, co nie wiąże się z różnicą w szybkości wędrowania składników, lecz z ich przyleganiem do powierzchni. Technika ta jest używana w różnych aplikacjach, ale nie jest odpowiednia do rozdzielania składników w mieszaninach, jak to ma miejsce w przypadku chromatografii. Z kolei destylacja polega na rozdzielaniu cieczy na podstawie różnicy w ich temperaturach wrzenia. Jest to skuteczna metoda dla mieszanin cieczy, ale nie opiera się na różnicy w wędrowaniu składników, a raczej na ich właściwościach fizycznych. Filtracja natomiast dotyczy separacji ciał stałych od cieczy lub gazów przy użyciu porowatych materiałów, co również nie pasuje do mechanizmu działania chromatografii. Wybór jednej z tych metod mógłby wynikać z błędnego zrozumienia procesów rozdzielania, gdzie myli się fizyczne właściwości substancji z ich interakcjami w kontekście metod chromatograficznych. Kluczowe dla zrozumienia chromatografii jest pojęcie mobilności i powinowactwa składników do różnych faz, co nie jest adekwatne dla pozostałych wymienionych technik separacyjnych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Aby oszacować czystość MgCO3, poddano prażeniu próbkę o wadze 5 g tej soli aż do osiągnięcia stałej masy. W trakcie prażenia zachodzi reakcja:
MgCO3 → MgO + CO2 Całkowity ubytek masy wyniósł 2,38 g.
(Masy molowe reagentów to: MgCO3 – 84 g/mol, MgO – 40 g/mol, CO2 – 44 g/mol) Jaką czystość miała próbka węglanu magnezu?

A. bliżej nieokreśloną masę domieszek
B. 90,7% czystej substancji
C. 100% czystej substancji
D. około 50% czystej substancji
Aby określić czystość węglanu magnezu (MgCO3), rozważamy reakcję jego prażenia, w wyniku której MgCO3 rozkłada się na tlenek magnezu (MgO) i dwutlenek węgla (CO2). Ubytek masy wynoszący 2,38 g odnosi się do masy CO2, która powstała podczas tego procesu. Zgodnie z równaniem reakcji, każdy mol MgCO3 (84 g) produkuje jeden mol CO2 (44 g). Dzięki tej relacji możemy obliczyć ilość czystego MgCO3 w próbce. Wyliczając procent czystej substancji, stwierdzamy, że 2,38 g CO2 odpowiada około 5,5 g MgCO3 (obliczone jako 2,38 g * (84 g / 44 g)). Ostatecznie, z próbki o masie 5 g, czystość wynosi 90,7%. Wiedza ta jest niezwykle istotna w analizie chemicznej, gdzie precyzyjne określenie czystości substancji jest niezbędne do oceny ich jakości i zastosowania w przemyśle chemicznym, farmaceutycznym czy materiałowym.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

W przypadku kontaktu ze stężonym roztworem zasady, co należy zrobić jak najszybciej?

A. zastosować 5% roztwór wodorowęglanu sodu
B. skorzystać z amoniaku
C. zmyć bieżącą wodą
D. polać 3% roztworem wody utlenionej
W przypadku oblania się stężonym roztworem zasady kluczowe jest jak najszybsze zneutralizowanie i usunięcie kontaktu z substancją. Zmycie bieżącą wodą jest najbardziej efektywną i odpowiednią metodą, ponieważ pozwala na rozcieńczenie zasady oraz fizyczne usunięcie jej z powierzchni skóry lub materiału. Woda działa jako rozpuszczalnik, który zmniejsza stężenie zasady, co z kolei minimalizuje ryzyko uszkodzenia tkanek. W praktyce, zaleca się pod bieżącą wodą przepłukać obszar kontaktu przez co najmniej 15 minut, aby zapewnić skuteczne usunięcie substancji. Ponadto, w sytuacjach laboratoryjnych, przestrzega się standardów BHP, które nakładają obowiązek posiadania odpowiednich stacji do płukania oczu i ciała, aby szybko reagować na takie wypadki. Warto również pamiętać o noszeniu odpowiednich środków ochrony osobistej, takich jak rękawice i gogle, co może zminimalizować ryzyko kontaktu z niebezpiecznymi substancjami. Tylko w przypadku, gdy zasada nie jest zmyta, można myśleć o dalszym postępowaniu, jednak zawsze należy wrócić do podstawowej metody usuwania substancji.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Przebieg: Po zważeniu dwóch suchych zlewek, odważ kolejno: do jednej 3,63 g Co(NO3)2·6H2O, a do drugiej 3,75 g Na2CO3·10H2O. Następnie do obu zlewek wlej 25 cm3 gorącej wody i mieszając za pomocą bagietki doprowadź do całkowitego rozpuszczenia soli. Do roztworu Co(NO3)2 dodaj gorący roztwór Na2CO3 podczas mieszania. Otrzymany roztwór schłodź w łaźni wodnej z 3 kostkami lodu do temperatury pokojowej. Schłodzony roztwór przefiltruj przy użyciu zestawu do sączenia pod próżnią. Osad na lejku przepłucz wodą destylowaną, aż osiągnie obojętny odczyn przesączu. Przesączony osad osusz z sączkiem międzyposiadającym złożone arkusze bibuły w temperaturze pokojowej. Po wyschnięciu osad zważ i oblicz wydajność. Określ, jaki czynnik wpływa na skład jakościowy uzyskanego węglanu kobaltu(II)?

A. Wpływ przemycia osadu
B. Precyzja obliczeń wydajności
C. Tempo sączenia
D. Kolejność ważenia reagentów
Efekt przemycia osadu ma istotny wpływ na skład jakościowy otrzymanego węglanu kobaltu(II), ponieważ skuteczne przemywanie osadu pozwala usunąć zanieczyszczenia, które mogą wpływać na właściwości fizyczne i chemiczne finalnego produktu. W praktyce laboratorium chemicznego, przemywanie osadu wodą destylowaną jest kluczowym krokiem, który pozwala na eliminację rozpuszczalnych w wodzie związków, takich jak pozostałości reagentów czy inne sole, które mogą skompromitować czystość końcowego produktu. Przykładem mogą być zanieczyszczenia anionowe, które mogą wchodzić w reakcje z produktem końcowym, co wpływa na jego właściwości reaktancyjne czy rozpuszczalność. Dobre praktyki laboratoryjne sugerują, że przemywanie powinno być kontynuowane do momentu uzyskania obojętnego odczynu przesączu, co zapewnia, że resztki reagenta zostały skutecznie usunięte. Zastosowanie tego standardu w procesie syntezy chemicznej jest niezbędne dla uzyskania materiałów o wysokiej czystości, co jest kluczowe w wielu zastosowaniach przemysłowych i badawczych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Aby przygotować 150 g roztworu jodku potasu o stężeniu 10% (m/m), konieczne jest użycie
(zakładając, że gęstość wody wynosi 1 g/cm3)

A. 15 g KI oraz 135 cm3 wody destylowanej
B. 10 g KI oraz 150 cm3 wody destylowanej
C. 10 g KI oraz 140 g wody destylowanej
D. 15 g KI oraz 145 g wody destylowanej
Stężenie 10% (m/m) oznacza, że na każde 100 g roztworu przypada 10 g substancji czynnej, czyli jodku potasu (KI). Aby przygotować 150 g roztworu, musimy obliczyć masę KI: 150 g x 10% = 15 g. Pozostała masa roztworu to woda, która będzie stanowić 135 g (150 g - 15 g). Woda ma gęstość 1 g/cm³, co oznacza, że 135 g wody to 135 cm³. Ta odpowiedź jest zgodna z zasadami przygotowywania roztworów, które wymagają zachowania proporcji masowych dla określonego stężenia. Przykładem zastosowania tego procesu może być przygotowanie roztworu do badań chemicznych, gdzie precyzyjne stężenie reagentów jest kluczowe dla uzyskania wiarygodnych wyników. Ponadto, zgodnie z dobrą praktyką laboratoryjną, zawsze warto sprawdzić obliczenia i użyć wagi analitycznej oraz menzurki, aby zapewnić dokładność pomiarów.