Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 maja 2025 14:11
  • Data zakończenia: 7 maja 2025 14:23

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką czynność powinno się wykonać w trakcie oględzin urządzenia napędowego z silnikiem pierścieniowym podczas jego pracy?

A. Sprawdzenie połączeń elementów urządzenia
B. Ocena stanu szczotek i szczotkotrzymaczy
C. Sprawdzenie poziomu drgań
D. Ocena stanu pierścieni ślizgowych
Sprawdzenie poziomu drgań jest kluczowym elementem oceny stanu technicznego urządzenia napędowego z silnikiem pierścieniowym. Drgania mogą być wskaźnikiem wielu problemów, takich jak niewyważenie wirnika, luzy w łożyskach czy nieprawidłowe ustawienie osi. Monitorowanie drgań podczas pracy urządzenia pozwala na wczesne wykrycie tych problemów i podjęcie działań naprawczych, co może znacznie wydłużyć żywotność maszyny. W praktyce, stosuje się różne metody pomiaru drgań, w tym analizatory drgań, które mogą dostarczyć szczegółowych informacji na temat amplitudy, częstotliwości oraz charakterystyki drgań. Zgodnie z normami ISO 10816, ocena drgań powinna być wykonywana regularnie, a wyniki należy porównywać z wartościami granicznymi, aby określić stan techniczny urządzenia. Dobra praktyka w branży mechanicznej zaleca prowadzenie dokumentacji pomiarów, co umożliwia śledzenie zmian w czasie i diagnozowanie potencjalnych usterek.

Pytanie 2

Który z podanych przewodów powinien zostać wybrany w celu zastąpienia uszkodzonego przewodu zasilającego silnik trójfazowy zainstalowany w odbiorniku ruchomym?

A. YDY 4x2,5 mm2
B. YLY 3x2,5 mm2
C. SM3x2,5 mm2
D. OP4x2,5 mm2
Odpowiedź OP4x2,5 mm2 jest prawidłowa, ponieważ przewód ten spełnia wymagania dotyczące zasilania silników trójfazowych w aplikacjach przemysłowych. Przewód OP (olejoodporny) charakteryzuje się dużą odpornością na działanie olejów i substancji chemicznych, co jest kluczowe w środowiskach, gdzie takie czynniki mogą występować. Przekrój 2,5 mm2 zapewnia odpowiedni przepływ prądu dla silników o mocy do około 5,5 kW, co jest standardem w wielu instalacjach. Użycie przewodów zgodnych z normami PN-IEC 60364-1 oraz PN-EN 60228 gwarantuje bezpieczeństwo i niezawodność systemu. W praktyce, przewody te stosuje się w różnych mechanizmach, takich jak taśmy transportowe czy maszyny produkcyjne, gdzie mobilność i odporność na uszkodzenia mechaniczne są kluczowe. Zastosowanie odpowiedniego przewodu zasilającego jest istotne nie tylko dla prawidłowego działania urządzeń, ale też dla zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 3

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB = 25 A, a maksymalna obciążalność długotrwała tych przewodów Idd = 30 A. Który z poniższych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed działaniem nadmiernego prądu?

A. B16
B. B25
C. B20
D. B32
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, w której prąd obciążenia wynosi 25 A, a obciążalność długotrwała przewodów to 30 A. Wyłączniki nadprądowe oznaczone literą 'B' charakteryzują się określoną charakterystyką działania, która zazwyczaj jest stosowana w instalacjach domowych i małych przedsiębiorstwach. W przypadku prądu znamionowego B25, wyłącznik ten będzie działał przy prądzie obciążenia do 25 A, co oznacza, że nie zadziała w warunkach normalnej pracy. Jednakże, dla prądów przekraczających ten poziom, wyłącznik zareaguje, zapewniając odpowiednią ochronę. W praktyce oznacza to, że B25 oferuje wystarczający margines bezpieczeństwa, aby chronić przewody przed przeciążeniem, które mogłoby prowadzić do uszkodzenia izolacji, przegrzania lub nawet pożaru. Stosując B25, przestrzegamy zasad dotyczących doboru zabezpieczeń, zgodnych z normami PN-IEC 60898, które rekomendują, aby prąd znamionowy wyłącznika był bliski wartości prądu obciążenia, ale nie mniejszy, aby uniknąć niepotrzebnych wyłączeń. Przykładowo, w instalacjach o dużych obciążeniach, takich jak warsztaty czy zakłady produkcyjne, dobór odpowiednich wyłączników nadprądowych jest kluczowy dla zapewnienia bezpieczeństwa i efektywności operacyjnej.

Pytanie 4

Jaka powinna być minimalna wartość znamionowego prądu wyłącznika nadprądowego chroniącego obwód zasilający jednofazowy piekarnik oporowy, aby przy napięciu 230 V mógł on pobierać moc elektryczną równą 2 kW?

A. 20 A
B. 10 A
C. 13 A
D. 16 A
Wybór zbyt wysokiej wartości znamionowego prądu wyłącznika nadprądowego może prowadzić do niewłaściwego zabezpieczenia obwodu. Jeżeli na przykład zdecydujemy się na wyłącznik o wartości 16 A, 20 A lub 13 A, może to doprowadzić do sytuacji, w której obwód nie będzie odpowiednio chroniony przed przeciążeniem. Wyłącznik nadprądowy ma na celu ochronę obwodu przed nadmiernym prądem, który może wystąpić w wyniku zwarcia lub przeciążenia. Zbyt wysoka wartość znamionowa wyłącznika może skutkować tym, że nie zadziała on, gdy prąd przekroczy bezpieczny poziom, co może prowadzić do uszkodzenia urządzeń lub nawet pożaru. Z drugiej strony, wybór wyłącznika o wartościach poniżej 10 A mógłby prowadzić do częstych wyłączeń w obwodzie, co jest niepożądane w normalnym użytkowaniu. W praktyce, dostosowanie wartości wyłącznika do mocy obciążenia oraz uwzględnienie marginesów bezpieczeństwa jest kluczowe. Ponadto, w kontekście dobrych praktyk, zaleca się konsultację z elektrykiem podczas doboru odpowiednich zabezpieczeń, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznej, zgodnie z normami obowiązującymi w danym kraju.

Pytanie 5

Jak zmienią się parametry napięcia wyjściowego prądnicy synchronicznej zasilającej oddzielną sieć energetyczną, jeśli prędkość obrotowa turbiny napędzającej tę prądnicę wzrośnie, a prąd wzbudzenia pozostanie bez zmian?

A. Wartość i częstotliwość napięcia zmniejszą się
B. Wartość napięcia wzrośnie, a częstotliwość zmaleje
C. Wartość i częstotliwość napięcia wzrosną
D. Wartość napięcia zmniejszy się, a częstotliwość wzrośnie
Odpowiedź jest poprawna, ponieważ w prądnicy synchronicznej napięcie wyjściowe jest ściśle związane z prędkością obrotową wirnika oraz z napięciem wzbudzenia. Zwiększenie prędkości obrotowej turbiny prowadzi do zwiększenia częstotliwości generowanego napięcia, co jest zgodne z zasadą synchronizacji prądnic. Wartość napięcia wyjściowego wzrasta, ponieważ prądnica synchroniczna działa na zasadzie indukcji elektromagnetycznej, gdzie zmieniające się pole magnetyczne wytwarzane przez wirnik indukuje prąd w uzwojeniach stojana. W praktyce, w systemach energetycznych, takie zjawisko często obserwuje się przy zwiększaniu mocy produkowanej przez elektrownie, co jest istotne dla utrzymania stabilności sieci. W przypadku prądnicy synchronicznej, przy stałym prądzie wzbudzenia, wzrost prędkości obrotowej skutkuje proporcjonalnym wzrostem zarówno wartości, jak i częstotliwości napięcia. Taki mechanizm jest zgodny z praktykami inżynieryjnymi oraz normami, co zapewnia efektywność i niezawodność działania systemów elektroenergetycznych.

Pytanie 6

Który z podanych środków można uznać za metodę ochrony przed porażeniem w przypadku uszkodzenia?

A. Ogrodzenie
B. Umieszczenie części czynnych poza zasięgiem ręki
C. Samoczynne wyłączenie zasilania
D. Obudowa
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który automatycznie przerywa dopływ energii elektrycznej w przypadku wykrycia nieprawidłowości, takich jak zwarcie czy przeciążenie. To działanie jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 61140, które określają wymagania dotyczące ochrony przed porażeniem prądem elektrycznym. Samoczynne wyłączenie zasilania minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, a jego zastosowanie jest powszechne w instalacjach elektrycznych, w których występują urządzenia o podwyższonym ryzyku. Przykładem zastosowania może być automatyczny wyłącznik różnicowoprądowy, który nie tylko wyłącza zasilanie, ale także monitoruje różnicę prądów, co jest istotne w ochronie osób pracujących w pobliżu urządzeń elektrycznych. Dzięki takiemu rozwiązaniu, w przypadku wystąpienia niebezpiecznego prądu różnicowego, zasilanie jest natychmiastowo odłączane, co znacznie zwiększa bezpieczeństwo użytkowników.

Pytanie 7

Ruch napędu należy zatrzymać w sytuacji zagrożenia bezpieczeństwa operatora lub otoczenia, jak również w przypadku wykrycia uszkodzeń lub zakłóceń uniemożliwiających jego prawidłowe działanie, a szczególnie gdy występuje

A. znamionowe zużycie prądu
B. spadek napięcia zasilania poniżej 3 %
C. spadek rezystancji izolacji uzwojeń do 5 MΩ
D. nadmierne wibracje
Odpowiedź 3, dotycząca nadmiernych drgań, jest poprawna, ponieważ drgania w urządzeniach napędowych mogą prowadzić do poważnych problemów operacyjnych oraz uszkodzeń. Zgodnie z normami branżowymi, takim jak ISO 10816, nadmierne drgania mogą wskazywać na niewłaściwe osadzenie, zużycie łożysk czy też problemy z wirnikami. Przykładem może być sytuacja, gdy maszyna wibracyjna, taka jak silnik elektryczny, przekroczy dopuszczalne poziomy drgań, co może skutkować nie tylko uszkodzeniem samego urządzenia, ale również stanowić zagrożenie dla operatorów. W praktyce, w przypadku stwierdzenia nadmiernych drgań, należy natychmiast wstrzymać działanie urządzenia, aby przeprowadzić odpowiednią diagnostykę i naprawy, co jest zgodne z zasadą prewencji w zarządzaniu bezpieczeństwem pracy. Takie działania mają na celu minimalizację ryzyka obrażeń oraz zapewnienie ciągłości operacji, co jest kluczowe w przemyśle produkcyjnym.

Pytanie 8

Który z poniższych rodzajów silników wyróżnia się najlepszą kontrolą prędkości obrotowej poprzez modyfikację wartości napięcia zasilającego?

A. Prądu stałego
B. Asynchroniczny klatkowy
C. Synchroniczny jawnobiegunowy
D. Asynchroniczny pierścieniowy
Silniki prądu stałego charakteryzują się doskonałą regulacją prędkości obrotowej, co czyni je idealnym wyborem w aplikacjach wymagających precyzyjnego sterowania. Dzięki prostocie zmiany napięcia zasilającego, można łatwo dostosować prędkość obrotową silnika do konkretnego zadania. Przykłady zastosowania obejmują napędy w robotyce, gdzie wymagana jest zmienna prędkość w zależności od zadań do wykonania, czy też w wentylatorach, gdzie regulacja obrotów wpływa na efektywność energetyczną. W przemyśle, silniki prądu stałego są wykorzystywane w maszynach takich jak dźwigi czy taśmociągi, gdzie precyzyjne zarządzanie prędkością jest kluczowe dla bezpieczeństwa i efektywności procesu. Dobre praktyki wskazują na wykorzystanie kontrolerów PWM (Pulse Width Modulation) do efektywnej regulacji napięcia oraz ograniczenia strat energii. Warto również zauważyć, że silniki te są bardziej odpowiednie do zadań, gdzie wymagana jest często zmiana kierunku obrotów, co również wpływa na ich popularność w różnorodnych aplikacjach.

Pytanie 9

W przypadku instalacji o parametrach U0 = 230 V, Ia = 100 A oraz Zs = 3,1 Ω funkcjonującej w systemie TN-C nie ma efektywnej dodatkowej ochrony przed porażeniem prądem elektrycznym, ponieważ

A. opór izolacji miejsca pracy jest zbyt wysoki
B. impedancja pętli zwarcia jest zbyt wysoka
C. opór uziomu jest zbyt niski
D. impedancja sieci zasilającej jest zbyt niska
Impedancja pętli zwarcia jest kluczowym parametrem, który wpływa na bezpieczeństwo instalacji elektrycznych. W systemie TN-C, gdzie zneutralizowane przewody są połączone, niska impedancja pętli zwarcia jest niezbędna do szybkiego wyłączenia zasilania w przypadku wystąpienia zwarcia. W omawianym przypadku, wysoka impedancja pętli zwarcia oznacza, że prąd zwarciowy może być zbyt niski, aby wyzwolić odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe czy bezpieczniki. To prowadzi do sytuacji, w której czas reakcji zabezpieczeń jest zbyt długi, co w konsekwencji zwiększa ryzyko porażenia prądem elektrycznym. Przykładowo, w praktyce inżynieryjnej, zaleca się, aby impedancja pętli zwarcia nie przekraczała 1 Ω dla instalacji zasilających o napięciu 230 V, co pozwala na wyłączenie obwodu w czasie nieprzekraczającym 0,4 s. Takie podejście jest zgodne z normami IEC 60364 oraz PN-EN 61439, które podkreślają znaczenie odpowiednich wartości impedancji dla bezpieczeństwa użytkowników.

Pytanie 10

Określ prawidłową sekwencję działań przy wymianie uszkodzonego łącznika świecznikowego w instalacji elektrycznej.
włączenie napięcia, sprawdzenie prawidłowości działania.

A. Wyłączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, włączenie napięcia, sprawdzenie prawidłowości działania
B. Stwierdzenie braku napięcia, wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie
C. Sprawdzenie prawidłowości działania, włączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, wyłączenie napięcia
D. Wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie prawidłowości działania, stwierdzenie braku napięcia, włączenie napięcia
Kiedy zabierasz się za wymianę uszkodzonego łącznika świecznikowego, najważniejsze to zacząć od wyłączenia napięcia. Bez tego krok nie tylko porażka może się wydarzyć, ale coś gorszego. Potem, zanim zaczniesz grzebać w instalacji, dobrze jest upewnić się, że naprawdę nie ma napięcia w obwodzie. To trochę jak dobre nawyki, które mogą uratować życie. Jak już to masz za sobą, możesz zająć się demontażem starego łącznika, ale pamiętaj, żeby być ostrożnym – nigdy nie wiadomo, co może się zdarzyć. Po włożeniu nowego łącznika, dopiero wtedy możesz włączyć napięcie i sprawdzić, czy wszystko działa. Taka kolejność jest super ważna i zgadza się z normami bezpieczeństwa, jak PN-IEC 60364, które mówią, jak robić to bezpiecznie. W sumie, w domowym warsztacie to przydatna wiedza, bo często coś się psuje i warto wiedzieć, jak to zrobić porządnie i bezpiecznie.

Pytanie 11

Jakie z wymienionych działań należy do inspekcji urządzenia napędowego z elektrycznym silnikiem podczas jego pracy?

A. Weryfikacja czystości obudowy
B. Sprawdzenie urządzeń ochronnych
C. Kontrola stanu zamocowania osłony wentylatora
D. Zbadanie poziomu nagrzewania obudowy i łożysk
Sprawdzanie stopnia nagrzewania obudowy i łożysk jest kluczową czynnością w oględzinach urządzenia napędowego z silnikiem elektrycznym podczas ruchu. Nagrzewanie tych elementów może wskazywać na potencjalne problemy, takie jak niewłaściwe smarowanie, nadmierne obciążenie lub awarię komponentów. Przykładowo, jeśli łożyska są zbyt gorące, może to oznaczać, że w systemie występuje zbyt duży opór lub że smarowanie jest niewystarczające, co może prowadzić do ich zatarcia. Zgodnie z normami branżowymi, regularne monitorowanie temperatury łożysk i obudowy jest zalecane w celu wykrywania usterek zanim dojdzie do poważniejszej awarii. Użytkownicy powinni korzystać z odpowiednich narzędzi, takich jak kamery termograficzne lub czujniki temperatury, aby dokładnie ocenić stan urządzenia. Wykrycie podwyższonej temperatury może skłonić do przeprowadzenia dalszych analiz i działań prewencyjnych, co jest zgodne z podejściem proaktywnym w zarządzaniu utrzymaniem ruchu.

Pytanie 12

Który z wymienionych czynników nie wpływa na dopuszczalne obciążenie długotrwałe przewodów stosowanych w instalacji elektrycznej?

A. Przekrój poprzeczny żył.
B. Rodzaj materiału izolacyjnego.
C. Metoda ułożenia przewodów.
D. Długość ułożonych przewodów.
Długość ułożonych przewodów nie wpływa na dopuszczalną obciążalność długotrwałą przewodów w instalacji elektrycznej, ponieważ obciążalność ta zależy od parametrów takich jak przekrój poprzeczny żył, materiał izolacji oraz sposób ułożenia przewodów. Przekrój żył determinuje opór elektryczny, co bezpośrednio wpływa na wydzielanie się ciepła i możliwość jego odprowadzania. Rodzaj materiału izolacji, takiego jak PVC czy XLPE, również ma kluczowe znaczenie, ponieważ różne materiały mają różne właściwości termiczne i odporność na wysoką temperaturę. Sposób ułożenia przewodów (np. w kanale kablowym, na otwartym powietrzu) wpływa na możliwość odprowadzania ciepła oraz na obciążalność cieplną. Przykładowo, przewody ułożone w pakietach mają ograniczone możliwości odprowadzania ciepła w porównaniu do przewodów luźno ułożonych. W praktyce, zgodność z normami, takimi jak PN-IEC 60364, jest kluczowa w projektowaniu i wykonaniu instalacji elektrycznych, co zapewnia bezpieczeństwo oraz efektywność energetyczną.

Pytanie 13

Jakim środkiem ochrony przeciwporażeniowej zapewnia się bezpieczeństwo przed dotykiem pośrednim?

A. Instalowania osłon i barier
B. Samoczynnego szybkiego wyłączenia napięcia
C. Umieszczenia elementów z napięciem poza zasięgiem ręki
D. Izolowania części czynnych
Wybierając odpowiedzi, które nie dotyczą samoczynnego szybkiego wyłączenia napięcia, można napotkać na szereg nieporozumień odnośnie metod ochrony przed dotykiem pośrednim. Instalowanie osłon i zagrodzeń, mimo że jest zalecaną praktyką w wielu instalacjach, nie zapewnia wystarczającej ochrony w sytuacji, gdy dojdzie do awarii izolacji. Osłony mogą jedynie ograniczyć dostęp do części czynnych, ale ich skuteczność zależy od prawidłowego ich montażu i utrzymania. Ponadto, umieszczanie elementów pod napięciem poza zasięgiem ręki, chociaż może zapobiec przypadkowemu dotykaniu, nie eliminuje ryzyka porażenia w przypadku uszkodzenia tych elementów. Ostatecznie, izolowanie części czynnych jest istotne, ale nie wystarczające jako jedyne zabezpieczenie. Gdy izolacja ulegnie uszkodzeniu, nie można polegać wyłącznie na niej dla bezpieczeństwa. Z perspektywy norm i przepisów, kluczowe jest implementowanie zintegrowanych systemów ochrony, gdzie samoczynne szybkie wyłączenie napięcia działa jako krytyczny mechanizm awaryjny, który powinien być stosowany równolegle z innymi metodami, aby zapewnić maksymalne bezpieczeństwo. Warto zauważyć, że błędne wnioski często wynikają z pomijania złożoności problemu oraz niepełnego zrozumienia zasady działania poszczególnych elementów ochrony przeciwporażeniowej.

Pytanie 14

Jakie zadanie związane z utrzymaniem sprawności technicznej instalacji elektrycznej spoczywa na dostawcy energii?

A. Zachowanie zasad bezpieczeństwa korzystania z urządzeń elektrycznych
B. Prowadzenie dokumentacji dotyczącej eksploatacji obiektu
C. Okresowa legalizacja, naprawa lub wymiana licznika energii
D. Nadzór nad jakością realizacji prac eksploatacyjnych
Odpowiedź dotycząca okresowej legalizacji, naprawy lub wymiany licznika energii jest poprawna, ponieważ dostawcy energii są odpowiedzialni za zapewnienie, że urządzenia pomiarowe są w dobrym stanie technicznym i zgodne z obowiązującymi normami. Legalizacja licznika oznacza jego zatwierdzenie przez odpowiednie organy, co gwarantuje, że pomiary energii są wiarygodne i zgodne z przepisami prawa. W praktyce, dostawcy przeprowadzają regularne kontrole i konserwacje liczników, aby upewnić się, że działają one z wymaganymi tolerancjami. Na przykład, zgodnie z normą PN-EN 62053-21, liczniki energii elektrycznej muszą być regularnie sprawdzane, aby zapewnić ich dokładność. Dobre praktyki w tym zakresie obejmują również prowadzenie szczegółowej dokumentacji dotyczącej stanu technicznego liczników oraz przeprowadzonych działań, co pozwala na łatwe monitorowanie i zarządzanie infrastrukturą pomiarową. Współpraca między dostawcami a organami regulacyjnymi w zakresie legalizacji liczników jest kluczowa dla utrzymania jakości usług i ochrony konsumentów.

Pytanie 15

Jakie działania mogą przyczynić się do poprawy współczynnika mocy?

A. Wyłączenie silników oraz transformatorów działających przy niskim obciążeniu
B. Uzyskanie w Zakładzie Energetycznym wyższego przydziału mocy
C. Zwiększenie częstotliwości regularnych przeglądów urządzeń elektrycznych
D. Podniesienie kwalifikacji personelu obsługującego maszyny elektryczne
Wyłączenie silników i transformatorów pracujących przy niewielkim obciążeniu jest kluczowym działaniem, które pozwala na poprawę współczynnika mocy. Współczynnik mocy (PF) odzwierciedla stosunek mocy rzeczywistej do mocy pozornej, a jego optymalizacja ma istotne znaczenie dla efektywności energetycznej. Silniki i transformatory, które działają przy niskich obciążeniach, mogą prowadzić do obniżenia PF, ponieważ wytwarzają dużą ilość mocy biernej. Wyłączenie tych urządzeń, gdy nie są potrzebne, zmniejsza zapotrzebowanie na moc bierną, co w rezultacie poprawia współczynnik mocy całego systemu. W praktyce, przedsiębiorstwa energetyczne często wykorzystują analizatory mocy do monitorowania PF i identyfikowania sprzętu, który można wyłączyć. Poprawa PF może również prowadzić do oszczędności w kosztach energii oraz zmniejszenia obciążeń dla systemu energetycznego, co jest zgodne z najlepszymi praktykami określonymi w normach ISO 50001 dotyczących zarządzania energią.

Pytanie 16

W jakim zakresie powinien znajdować się zmierzony rzeczywisty prąd różnicowy IΔN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby mógł być dopuszczony do użytkowania?

A. Od 0,3 IΔN do 0,8 IΔN
B. Od 0,3 IΔN do 1,0 IΔN
C. Od 0,5 IΔN do 1,0 IΔN
D. Od 0,5 IΔN do 1,2 IΔN
Odpowiedź "Od 0,5 IΔN do 1,0 IΔN" jest jak najbardziej ok, bo mówi o zakresie prądu różnicowego, który wyłączniki różnicowoprądowe typu AC powinny mieć. Z normami, takimi jak PN-EN 61008-1, mamy pewność, że wyłącznik nie zareaguje zbyt szybko w normalnych warunkach, a jednocześnie ochrona przed porażeniem prądem jest na dobrym poziomie. Wiesz, gdyby ten prąd był za mały, to mogą pojawić się problemy z izolacją. Z kolei zbyt wysoka wartość mogłaby wyłączyć urządzenie przez zakłócenia, co jest niebezpieczne. Dlatego ważne, żeby przed włączeniem wyłącznika upewnić się, że prąd mieści się w tym zakresie. Dobrym przykładem jest wyłącznik w domu, który daje dodatkową ochronę dla domowników.

Pytanie 17

Która z wymienionych czynności nie jest częścią oceny stanu technicznego podczas przeglądu układu napędowego z wykorzystaniem przekształtnika energoelektronicznego?

A. Kontrola połączeń stykowych
B. Sprawdzenie natężenia oświetlenia na stanowisku obsługi układu napędowego
C. Ocena czystości filtrów powietrza chłodzącego
D. Weryfikacja jakości zabezpieczeń nadprądowych oraz zmiennozwarciowych
Sprawdzanie natężenia oświetlenia na stanowisku obsługi układu napędowego to nie to samo, co przegląd stanu technicznego tego układu. Jak dla mnie, w takim przeglądzie powinniśmy skupić się na kluczowych aspektach, które wpływają na to, czy układ działa wydajnie i bezpiecznie. Na przykład, trzeba by sprawdzić zabezpieczenia nadprądowe i zmiennozwarciowe, bo one chronią urządzenia przed uszkodzeniem, gdy coś idzie nie tak, jak powinno. I nie zapominajmy o połączeniach stykowych, które odpowiadają za przekazywanie sygnałów elektrycznych. Filtry powietrza chłodzącego też mają ogromne znaczenie, bo odpowiednia temperatura pracy układu wpływa na jego długowieczność. Zadbanie o te wszystkie aspekty to klucz do efektywności operacyjnej oraz bezpieczeństwa użycia systemów z przekształtnikami. Przeglądy zgodne z normami, jak IEC 60204, mogą pomóc w uniknięciu awarii i sprawić, że układy napędowe będą działały jak należy.

Pytanie 18

Jednofazowa grzałka o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm2. W jaki sposób zmienią się straty mocy w przewodzie zasilającym, gdy jego przekrój wyniesie 2,5 mm2?

A. Zmniejszą się o 100%
B. Zmniejszą się o 40%
C. Zwiększą się o 100%
D. Zwiększą się o 40%
Przy zwiększeniu przekroju przewodu z 1,5 mm² do 2,5 mm² straty mocy w przewodzie ulegają redukcji o 40%. Straty mocy w przewodach elektrycznych są funkcją oporu, który z kolei zależy od przekroju przewodu, długości oraz materiału, z którego jest wykonany. Opór przewodu można obliczyć ze wzoru: R = ρ * (L / A), gdzie ρ to oporność właściwa materiału, L to długość przewodu, a A to jego przekrój. Zwiększenie powierzchni przekroju przewodu zmniejsza opór, co prowadzi do mniejszych strat mocy na skutek efektu Joule'a, gdzie moc stratna P = I² * R. Przykładowo, w instalacjach przemysłowych, gdzie wykorzystywane są długie przewody zasilające, zastosowanie większego przekroju przewodu nie tylko poprawia efektywność energetyczną, ale także zmniejsza ryzyko przegrzewania się przewodów oraz awarii. Standardy takie jak PN-IEC 60364 zalecają stosowanie odpowiednich przekrojów przewodów, aby zminimalizować straty energii oraz zwiększyć bezpieczeństwo instalacji elektrycznych.

Pytanie 19

Jaką wielkość należy zmierzyć, aby ocenić skuteczność zabezpieczeń podstawowych w elektrycznej instalacji o napięciu znamionowym do 1 kV?

A. Rezystancji uziomu
B. Napięcia krokowego
C. Rezystancji izolacji
D. Impedancji zwarciowej
Wybór innych odpowiedzi na to pytanie może prowadzić do pewnych nieporozumień dotyczących bezpieczeństwa instalacji elektrycznych. Mierzenie rezystancji uziomu jest istotnym działaniem, jednak jego celem jest przede wszystkim ocena skuteczności systemu uziemiającego, a nie bezpośrednio ochrony podstawowej. Uziemienie zapewnia odprowadzenie prądów zwarciowych do ziemi, co jest ważne, ale nie eliminuje ryzyka porażenia prądem w przypadku wystąpienia uszkodzenia izolacji. Napięcie krokowe z kolei odnosi się do różnicy potencjałów, jaka może wystąpić na powierzchni ziemi podczas zwarcia, co nie jest miarą skuteczności samej izolacji. Pomiar impedancji zwarciowej jest również ważny, ale najczęściej używa się go do oceny zdolności instalacji do wytrzymania prądów zwarciowych, a nie do weryfikacji stanu izolacji. Właściwe zrozumienie tych koncepcji jest kluczowe, aby uniknąć błędnych wniosków. Zamiast polegać na pomiarach, które nie są bezpośrednio związane z izolacją, należy skupić się na testach, które dostarczą informacji na temat integralności systemu ochrony podstawowej, co jest kluczowe dla bezpieczeństwa użytkowników i trwałości instalacji.

Pytanie 20

Trójfazowy silnik indukcyjny, obciążony połową swojej mocy znamionowej, działa z prędkością n = 1450 obr/min. W pewnym momencie doszło do spadku prędkości obrotowej, co spowodowało charakterystyczne "buczenie" silnika. Jakie mogły być przyczyny tego zakłócenia w pracy silnika?

A. Odłączenie przewodu ochronnego od zacisku PE
B. Brak napięcia w jednej z faz
C. Podwojony moment obciążenia
D. Kilku procentowy wzrost napięcia zasilania
Zanik napięcia w jednej z faz silnika indukcyjnego trójfazowego prowadzi do nierównomiernego przepływu prądu w uzwojeniach, co skutkuje spadkiem momentu obrotowego oraz zwiększeniem prędkości ślizgu. Silnik, zamiast stabilnie pracować, zaczyna generować wibracje i dźwięki, co objawia się charakterystycznym "buczeniem". W przypadku pracy z obciążeniem wynoszącym połowę mocy znamionowej, silnik może być w stanie tolerować pewne zakłócenia, ale zanik napięcia w jednej fazie jest krytycznym problemem. Przykładowo, w przemyśle, awarie zasilania w jednej fazie mogą prowadzić do uszkodzeń silników oraz innych komponentów systemu, dlatego ważne jest stosowanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe oraz monitoring jakości zasilania. Aby poprawić niezawodność systemów elektrycznych, stosuje się również układy równoważące obciążenia międzyfazowe. Stosując te zasady, można znacząco zwiększyć bezpieczeństwo i efektywność pracy silników.

Pytanie 21

Jaka jest maksymalna wartość skuteczna napięcia przemiennego, która może być wykorzystana do zasilania lamp oświetleniowych umieszczonych w strefie 0 łazienki?

A. 60 V
B. 25 V
C. 12 V
D. 30 V
Maksymalna dopuszczalna wartość skuteczna napięcia przemiennego do zasilania lamp oświetleniowych zainstalowanych w strefie 0 łazienki wynosi 12 V. Strefa 0 to obszar, w którym istnieje bezpośrednie ryzyko kontaktu z wodą, co stwarza większe zagrożenie porażeniem prądem. Z tego powodu normy elektryczne, takie jak PN-IEC 60364, nakładają restrykcje na używanie napięcia w tych strefach. Użycie niskiego napięcia, takiego jak 12 V, minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, które mogłyby prowadzić do porażenia prądem. W praktyce, lampy LED, które są zaprojektowane do pracy w takich warunkach, zwykle wykorzystują zasilacze transformujące napięcie sieciowe na 12 V, a ich instalacja jest zgodna z zasadami ochrony przeciwporażeniowej. Ponadto, stosowanie niskonapięciowych źródeł światła w strefie 0 jest nie tylko zgodne z przepisami, ale również sprzyja efektywności energetycznej oraz wydłuża żywotność urządzeń oświetleniowych.

Pytanie 22

Który przekrój kabla najczęściej używa się do tworzenia obwodów gniazdek w instalacjach domowych podtynkowych?

A. 1,5 mm²
B. 2,5 mm²
C. 1 mm²
D. 4 mm²
Przekrój przewodu 2,5 mm² jest najczęściej stosowany do wykonywania obwodów gniazd wtyczkowych w instalacjach mieszkaniowych podtynkowych, ponieważ zapewnia odpowiednią nośność prądową oraz minimalizuje ryzyko przegrzewania się przewodów. Zgodnie z normą PN-IEC 60364, obwody gniazd wtyczkowych powinny być projektowane z uwzględnieniem maksymalnych obciążeń, które mogą wystąpić w gospodarstwie domowym. Obwody z przekrojem 2,5 mm² są w stanie obsłużyć obciążenie do 16A, co jest wystarczające dla większości sprzętu AGD oraz elektroniki. Przykładowo, standardowa pralka, zmywarka czy kuchenka elektryczna wymagają takiego przekroju, aby zapewnić ich prawidłowe działanie. Użycie mniejszych przekrojów, takich jak 1 mm² czy 1,5 mm², może prowadzić do nadmiernego nagrzewania się przewodów, co zwiększa ryzyko pożaru. Dlatego stosowanie przewodów o przekroju 2,5 mm² w gniazdach wtyczkowych jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami w zakresie instalacji elektrycznych.

Pytanie 23

Jaką wartość powinno mieć napięcie pomiarowe przy pomiarze rezystancji izolacji kabla umieszczonego w gruncie?

A. 250 V
B. 500 V
C. 2 500 V
D. 1 000 V
Odpowiedź 2 500 V jest prawidłowa, ponieważ podczas pomiarów rezystancji izolacji kabli ułożonych w ziemi, stosowanie napięcia rzędu 2 500 V jest standardem uznawanym w branży elektroenergetycznej. Taki poziom napięcia zapewnia wystarczającą siłę do wykrycia potencjalnych uszkodzeń izolacji, które mogą nie być widoczne przy niższych napięciach. W praktyce, zastosowanie wyższego napięcia pozwala na dokładniejsze określenie stanu izolacji, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności sieci zasilającej. Dobre praktyki zalecają, aby przed przystąpieniem do pomiarów, upewnić się, że kabel jest odłączony od źródła zasilania, co pozwoli na uzyskanie wiarygodnych wyników. Dodatkowo, pomiary powinny być przeprowadzane z użyciem odpowiednich narzędzi pomiarowych, które są przystosowane do pracy z takimi napięciami. Warto również zauważyć, że normy, takie jak PN-EN 61557-2, wskazują na znaczenie pomiaru rezystancji izolacji w celu zapobiegania awariom i zapewniania ciągłości dostaw energii.

Pytanie 24

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB wynosi 21 A, natomiast obciążalność długotrwała tych przewodów Idd to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do zabezpieczenia tej instalacji?

A. B10
B. B20
C. B16
D. B25
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, gdzie prąd obciążenia przewodów fazowych wynosi 21 A, a obciążalność długotrwała tych przewodów to 30 A. Zgodnie z normami, wyłącznik nadprądowy powinien mieć wartość znamionową, która pozwala na przepuszczenie prądu obciążenia, ale jednocześnie dostateczną, aby skutecznie zareagować w przypadku przeciążenia. W tym przypadku, z wyłączników B20, B16 i B10, żaden z nich nie spełnia wymogu, gdyż ich nominalne wartości są zbyt niskie w odniesieniu do obciążenia 21 A. Wybór B25 oznacza, że wyłącznik nadprądowy nie włączy się w normalnych warunkach pracy, ale zadziała w przypadku wyższych wartości prądu. W praktyce, zastosowanie wyłączników o zbyt niskich wartościach nominalnych prowadzi do ich częstego wyzwalania, co może być uciążliwe i powodować przerwy w dostawie energii. Zgodnie z dobrą praktyką, zawsze należy wybierać wyłączniki, które mają większą wartość niż maksymalne przewidziane obciążenie, ale nie więcej niż ich długotrwała obciążalność.

Pytanie 25

Które z poniższych stwierdzeńnie jest rezultatem przeglądu instalacji elektrycznej?

A. Na podstawie danych dostarczonych przez producenta, oznaczeń oraz certyfikatów, elementy instalacji są zgodne z normami bezpieczeństwa
B. Zachowana jest ciągłość przewodów ochronnych oraz połączeń wyrównawczych
C. Elementy instalacji zostały odpowiednio dobrane i poprawnie zainstalowane
D. W instalacji nie stwierdzono widocznych uszkodzeń, które mogłyby deteriorować bezpieczeństwo
Wnioskowanie na podstawie dostarczonych informacji dotyczących oznakowań, świadectw i oceny wizualnej elementów instalacji elektrycznej wymaga głębszego zrozumienia ich kontekstu i znaczenia. Wskazanie, że elementy instalacji spełniają wymagania bezpieczeństwa, jest niewystarczające bez potwierdzenia ich rzeczywistego stanu i sposobu użytkowania. Po pierwsze, informacje producentów mogą być nieaktualne lub nieprawdziwe w kontekście konkretnej instalacji. Sytuacje, w których elementy instalacji są zainstalowane zgodnie z wymaganiami, nie zawsze zapewniają ich długotrwałą funkcjonalność. W praktyce, nawet jeśli brak widocznych uszkodzeń może sugerować dobry stan techniczny, nie oznacza to automatycznie, że instalacja jest wolna od ukrytych wad. Zdarza się, że uszkodzenia są niewidoczne na pierwszy rzut oka, co może prowadzić do poważnych problemów eksploatacyjnych w przyszłości. Ponadto, każdy element instalacji elektrycznej powinien być regularnie poddawany przeglądom i testom, aby potwierdzić jego integralność. Ważnym aspektem jest także interpretacja wyników pomiarów, które mogą dostarczyć bardziej szczegółowych informacji o ciągłości przewodów ochronnych. Kluczowe jest, aby nie polegać wyłącznie na wnioskach wizualnych i dokumentacyjnych, lecz przeprowadzać systematyczne badania i inspekcje w celu zapewnienia najwyższych standardów bezpieczeństwa, zgodnych z normami takimi jak PN-EN 50110-1, które kładą nacisk na odpowiednie użytkowanie oraz konserwację instalacji elektrycznych.

Pytanie 26

Podczas wymiany trójfazowego wyłącznika różnicowoprądowego należy mieć na uwadze, że do wyłącznika nie może być podłączony przewód

A. fazowy L2
B. fazowy LI
C. neutralny N
D. ochronny PE
Odpowiedź dotycząca przewodu ochronnego PE jako nieodpowiedniego do podłączenia do trójfazowego wyłącznika różnicowoprądowego jest poprawna. Przewód ochronny PE ma za zadanie zapewnienie bezpieczeństwa użytkowników poprzez odprowadzenie prądu w przypadku awarii do ziemi, co zmniejsza ryzyko porażenia prądem elektrycznym. Wyłącznik różnicowoprądowy jest zaprojektowany do monitorowania różnicy prądów między przewodami fazowymi a neutralnym. Podłączenie przewodu PE do tego urządzenia nie tylko jest niezgodne z jego przeznaczeniem, ale również może prowadzić do niebezpiecznych sytuacji, w których wyłącznik nie zadziała w przypadku wykrycia różnicy prądu. Zgodnie z normami PN-IEC 61008-1, wyłączniki różnicowoprądowe powinny być podłączane w sposób, który umożliwia ich prawidłowe działanie i spełnienie wymogów związanych z ochroną przeciwporażeniową. Przykładem poprawnej instalacji jest wykorzystanie wyłącznika różnicowoprądowego w połączeniu z przewodami fazowymi i neutralnym, co zapewnia skuteczną ochronę i minimalizuje ryzyko uszkodzeń.

Pytanie 27

Jakie będą konsekwencje podniesienia częstotliwości napięcia zasilającego stojan w trakcie działania trójfazowego silnika indukcyjnego?

A. Wzrost prędkości obrotowej wirnika silnika
B. Całkowite zniszczenie wirnika silnika
C. Nawrót wirnika silnika
D. Spadek prędkości obrotowej wirnika silnika
Zwiększenie częstotliwości napięcia zasilania stojana trójfazowego silnika indukcyjnego prowadzi do podwyższenia prędkości obrotowej wirnika zgodnie z zasadą synchronizacji. W silnikach indukcyjnych prędkość obrotowa wirnika jest ściśle związana z częstotliwością zasilania, co wynika z relacji: n = 120 * f / p, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość w Hz, a p to liczba par biegunów. Zwiększenie częstotliwości powoduje, że wirnik osiąga wyższą prędkość, co ma zastosowanie w różnych procesach przemysłowych, gdzie wymagana jest regulacja prędkości napędu, na przykład w systemach transportowych czy w automatyce przemysłowej. W praktyce możemy wykorzystać falowniki, które umożliwiają precyzyjne sterowanie częstotliwością, a tym samym prędkością obrotową silnika, co optymalizuje zużycie energii i zwiększa efektywność procesów. Warto również zauważyć, że zgodnie z normami IEC 60034, projektowanie systemów napędowych powinno uwzględniać odpowiednie parametry zasilania, co wpływa na trwałość i wydajność silników."

Pytanie 28

W jaki sposób zmieni się spadek napięcia na przewodzie zasilającym przenośny odbiornik, jeśli zamienimy przewód OWY 5×4 mm2 o długości 5 m na przewód OWY 5×6 mm2 o długości 15 m?

A. Zwiększy się trzykrotnie
B. Zmniejszy się dwukrotnie
C. Zmniejszy się trzykrotnie
D. Zwiększy się dwukrotnie
Wybór odpowiedzi sugerujących, że spadek napięcia zwiększy się trzykrotnie lub zmniejszy się trzykrotnie, opiera się na błędnym rozumieniu zasad obliczania spadku napięcia i wpływu długości oraz przekroju przewodu na ten parametr. Niektórzy mogą myśleć, że zwiększenie długości przewodu automatycznie prowadzi do proporcjonalnego wzrostu spadku napięcia, jednak to nie jest jedyny czynnik. Oporność przewodu zależy od jego długości oraz przekroju. Chociaż długość przewodu wzrasta, co sprzyja wzrostowi oporności, również zmienia się pole przekroju, które wpływa na opór. W przypadku zamiany przewodu o mniejszym przekroju na większy przy jednoczesnym wydłużeniu, wynikowy efekt na spadek napięcia nie jest prostą proporcją, ale wymaga złożonych obliczeń. Odpowiedzi sugerujące, że spadek napięcia zmniejszy się, pomijają aspekt, że większa długość przewodu, mimo lepszego przekroju, może generować większą oporność, co prowadzi do wyższego spadku napięcia. W praktyce, montując długie przewody, należy zawsze brać pod uwagę zarówno długość, jak i rozmiar przekroju, aby uzyskać optymalne parametry elektryczne. Użycie algorytmów obliczeniowych oraz norm branżowych, jak PN-IEC 60364, powinno zawsze towarzyszyć tym decyzjom. Błędne podejście do oceny wpływu długości i przekroju na spadek napięcia może prowadzić do poważnych problemów z jakością zasilania i naruszeniem zasad bezpieczeństwa.

Pytanie 29

Która z podanych przyczyn prowadzi do włączenia przekaźnika Buchholtza w celu odłączenia transformatora?

A. Niesymetryczne obciążenie transformatora
B. Zwarcie pomiędzy uzwojeniem pierwotnym a wtórnym
C. Przerwa w uziemieniu neutralnego punktu
D. Przerwa w uzwojeniu pierwotnym
Zwarcie między uzwojeniem pierwotnym a wtórnym transformatora jest jednym z najpoważniejszych zagrożeń, które mogą prowadzić do uszkodzenia urządzenia. Przekaźnik Buchholtza działa jako ochrona transformatora przed skutkami zwarcia, gdyż monitoruje przepływ oleju w transformatorze. W przypadku zwarcia, dochodzi do nagłego wzrostu temperatury i ciśnienia, co powoduje ruch oleju, a to z kolei uruchamia przekaźnik. Odpowiedź na to pytanie odnosi się do podstawowych zasad ochrony urządzeń elektrycznych. Działanie przekaźnika Buchholtza jest zgodne z normami IEC 60214, które określają wymagania dla transformatorów olejowych. W praktyce, stosowanie przekaźników Buchholtza pozwala na wczesne wykrywanie problemów oraz minimalizowanie ryzyka poważnych awarii, co jest kluczowe dla zapewnienia ciągłości pracy systemów energetycznych. W przypadku zadziałania przekaźnika, operator jednostki powinien niezwłocznie przeprowadzić diagnostykę w celu ustalenia przyczyny i podjąć odpowiednie działania naprawcze.

Pytanie 30

Korzystając z przedstawionej tabeli obciążalności długotrwałej dobierz minimalny przekrój przewodów dla instalacji trójfazowej ułożonej przewodami YDY w rurze instalacyjnej na ścianie drewnianej (sposób B2).
Wartość przewidywanego prądu obciążenia instalacji wynosi 36 A.

Obciążalność prądowa długotrwała przewodów miedzianych, w amperach
Izolacja PVC, trzy żyły obciążone
Temperatura żyły: 70°C. Temperatura otoczenia: 30°C w powietrzu, 20°C w ziemi
ułożenieA1A2B1B2CD
Przekrój
żyły
4 mm2242328273231
6 mm2312936344139
10 mm2423950465752
16 mm2565268627667

A. 6 mm2
B. 16 mm2
C. 10 mm2
D. 4 mm2
Wybór niewłaściwego przekroju przewodów dla instalacji trójfazowej może prowadzić do poważnych konsekwencji, zarówno w aspekcie bezpieczeństwa, jak i efektywności energetycznej. W przypadku odpowiedzi 6 mm2, chociaż teoretycznie zbliżone do wartości 36 A, przekrój ten jest na granicy obciążalności, co w praktyce może powodować ryzyko przegrzewania się przewodów, a w konsekwencji ich uszkodzenia. Przekrój 4 mm2 jest zdecydowanie niewystarczający, ponieważ jego obciążalność wynosi tylko 25 A, co stanowi poważne zagrożenie dla instalacji, a w skrajnych przypadkach może prowadzić do pożaru. Wybór przekroju 16 mm2, mimo iż wydaje się bezpieczny, jest nieekonomiczny i niepraktyczny dla danego obciążenia, co skutkuje niepotrzebnymi kosztami materiałowymi. Wszystkie te błędy są wynikiem braku zrozumienia podstawowych zasad dotyczących doboru przekrojów przewodów, które powinny bazować na przewidywanych obciążeniach oraz specyfice instalacji. Zgodnie z wytycznymi norm, takich jak PN-IEC 60364, powinno się stosować przekroje adekwatne do warunków pracy, aby zapewnić bezpieczeństwo i efektywność energetyczną systemu. Odpowiednie podejście do doboru przekrojów jest kluczem do minimalizacji ryzyka awarii oraz zwiększenia trwałości systemu elektrycznego.

Pytanie 31

Zamiana przewodu OWY 2,5 mm2 na YKY 2,5 mm2 w odbiorniku ruchomym doprowadzi do

A. podniesienia obciążalności prądowej
B. wzrostu wytrzymałości mechanicznej przewodu
C. zmiany wytrzymałości mechanicznej przewodu
D. obniżenia obciążalności prądowej
Wybór odpowiedzi dotyczącej zmniejszenia wytrzymałości mechanicznej przewodu YKY 2,5 mm² w porównaniu do OWY 2,5 mm² jest trafny z kilku powodów. Przewody OWY, wykonane z miedzi i zwykle stosowane w instalacjach, charakteryzują się większą elastycznością i odpornością na uszkodzenia mechaniczne. W przeciwieństwie do nich, przewody YKY, chociaż mają lepsze właściwości izolacyjne i są bardziej odporne na działanie chemikaliów, są również sztywniejsze. Zmiana na przewód YKY w zastosowaniach, gdzie przewód jest narażony na ruch, może prowadzić do łatwiejszych uszkodzeń związanych z nadmiernym zginaniem czy przecieraniem. To bardzo ważne w kontekście projektowania instalacji elektrycznych, gdzie przewody często muszą być elastyczne, aby wytrzymać różne ruchy i wibracje. W praktyce, standardy takie jak PN-EN 60228 definiują różne parametry przewodów i ich zastosowań, co podkreśla znaczenie wyboru odpowiedniego typu w zależności od środowiska operacyjnego. Dlatego w kontekście zastosowania przewodów w instalacjach ruchomych, zmiana na YKY może nie być optymalnym rozwiązaniem.

Pytanie 32

Podczas badania transformatora średniej mocy stwierdzono, że jego temperatura wzrosła ponad normę. Co może być tego przyczyną?

A. Przerwa w uzwojeniu
B. Przeciążenie transformatora
C. Uszkodzenie rdzenia
D. Zwarcie międzyzwojowe
Uszkodzenie rdzenia transformatora może wprawdzie prowadzić do problemów z przenoszeniem mocy, ale nie jest bezpośrednią przyczyną wzrostu temperatury ponad normę. Rdzeń, zbudowany z cienkich, izolowanych blach, jest zaprojektowany tak, aby minimalizować straty mocy i uniknąć przegrzewania. Jeśli jednak rdzeń jest uszkodzony, np. przez mechaniczne zniekształcenia lub korozję, może to wpływać na sprawność transformatora, ale zwykle nie powoduje natychmiastowego wzrostu temperatury. Przerwa w uzwojeniu z kolei skutkuje całkowitym brakiem przepływu prądu przez uszkodzone uzwojenie, co zazwyczaj prowadzi do wyłączenia transformatora. W takim przypadku transformator nie będzie pracował prawidłowo, ale samo uszkodzenie nie podnosi jego temperatury. Zwarcie międzyzwojowe w uzwojeniach transformatora jest poważnym problemem, który może prowadzić do lokalnego wzrostu temperatury. Jednakże, w porównaniu do przeciążenia całego transformatora, zwarcie międzyzwojowe zwykle prowadzi do szybkiego uszkodzenia i wyłączenia się transformatora z eksploatacji. Jest to bardziej katastrofalne uszkodzenie wymagające natychmiastowej naprawy. Warto pamiętać, że wszystkie te problemy wymagają regularnych przeglądów technicznych, aby w porę wykrywać potencjalne usterki i zapobiegać poważnym awariom.

Pytanie 33

Jak wpłynie na wartość mocy generowanej przez elektryczny grzejnik, jeśli długość jego spirali grzejnej zostanie skrócona o 50%, a napięcie zasilające pozostanie niezmienne?

A. Zwiększy się czterokrotnie
B. Zmniejszy się czterokrotnie
C. Zmniejszy się dwukrotnie
D. Zwiększy się dwukrotnie
Gdy skracasz długość spirali grzejnej w grzejniku elektrycznym o połowę, to ma to spory wpływ na opór elektryczny. Zgodnie z prawem Ohma, im krótszy przewodnik, tym jego opór jest mniejszy. Więc jak długość spirali zmniejszamy, mamy też mniejszy opór, co automatycznie zwiększa naszą moc. Wzór na moc grzejnika to P = U²/R, więc jak R spada o połowę, to P rośnie dwa razy, zakładając, że napięcie U zostaje takie samo. Na przykład, jeśli miałeś grzejnik na 1000 W, to po skróceniu spirali do 2000 W to już nie taka niespodzianka. Tego typu zmiany są istotne, bo prowadzą do lepszej efektywności energetycznej i lepszego używania nowoczesnych materiałów w grzejnikach. Takie rozwiązania pozwalają na szybsze nagrzewanie pomieszczeń, co jest mega praktyczne w codziennym użytkowaniu.

Pytanie 34

Podczas wykonywania pomiarów okresowych na kablowej linii zasilającej 110 kV będzie mierzona rezystancja izolacji jednego z żył kabla w stosunku do pozostałych uziemionych żył. Jaki zakres pomiarowy powinien być ustawiony na urządzeniu pomiarowym, aby dokonany pomiar był poprawny?

A. 200 MΩ, 2500 V
B. 2000 MΩ, 1000 V
C. 200 MΩ, 1000 V
D. 2000 MΩ, 2500 V
Pomiar rezystancji izolacji kabli elektroenergetycznych jest kluczowym elementem diagnostyki stanu technicznego instalacji. Użycie zakresu 2000 MΩ oraz napięcia 2500 V zapewnia, że wykonany pomiar będzie zarówno bezpieczny, jak i precyzyjny. Wysoka wartość rezystancji izolacji (2000 MΩ) jest niezbędna w kontekście kabli wysokiego napięcia, gdzie izolacja musi utrzymywać wyjątkowo dużą odporność elektryczną, aby zapobiec przebiciom i innym awariom. Napięcie 2500 V jest standardowym wyborem w branży do testowania izolacji, ponieważ pozwala na uzyskanie wiarygodnych wyników, które odzwierciedlają rzeczywistą kondycję izolacji. Przykładowe zastosowanie to regularne pomiary przed rozpoczęciem sezonu zimowego, co pozwala na zidentyfikowanie ewentualnych defektów izolacji, które mogą prowadzić do awarii w trudnych warunkach atmosferycznych. Dobrą praktyką w branży elektroenergetycznej jest przestrzeganie norm IEC 60216 oraz PN-EN 60529, które określają wymagania dotyczące pomiarów izolacji.

Pytanie 35

Podczas wymiany uzwojeń w jednofazowym transformatorze o parametrach: SN = 200 VA , U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
B. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
C. o tej samej średnicy i większej liczbie zwojów niż uzwojenie wtórne
D. o większej średnicy i mniejszej liczbie zwojów w porównaniu do uzwojenia wtórnego
Udzielenie odpowiedzi dotyczącej większej średnicy i mniejszej liczby zwojów niż uzwojenie wtórne, czy jakiejkolwiek innej nieprawidłowej odpowiedzi, opiera się na zrozumieniu podstawowych zasad działania transformatorów. Prawidłowe projektowanie uzwojeń wymaga znajomości zależności między napięciem, liczbą zwojów oraz prądem. Uzwojenie pierwotne musi mieć większą liczbę zwojów, aby zapewnić odpowiedni spadek napięcia, gdyż transformator działa na zasadzie indukcji elektromagnetycznej, gdzie stosunek napięcia do liczby zwojów jest kluczowy. W transformatorze, na podstawie wzoru: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia uzwojeń, a N1 i N2 to liczby zwojów, możemy zobaczyć, że musimy mieć więcej zwojów w uzwojeniu pierwotnym. Ponadto, koncepcja zastosowania drutu mniejszej średnicy w uzwojeniu pierwotnym prowadzi do problemów z wytrzymałością na prąd oraz ciepłem, co może skutkować przeciążeniem i awarią transformatora. W praktyce, stosowanie odpowiednich norm, takich jak IEC 60076, pozwala na zapobieganie takim błędom projektowym poprzez określenie minimalnych wymagań dotyczących materiałów i konstrukcji uzwojeń. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się projektowaniem systemów elektroenergetycznych.

Pytanie 36

Jakie grupy połączeń transformatorów trójfazowych działających w konfiguracji trójkąt-gwiazda są rekomendowane przez PN do zastosowań praktycznych?

A. Dy5 i Dy11
B. Dy1 i Dy5
C. Dy3 i Dy9
D. Dy7 i Dy11
Wybór innych grup połączeń transformatorów, takich jak Dy3, Dy9, Dy1, Dy7, czy Dy11 nie jest w pełni uzasadniony w kontekście zastosowań praktycznych, co prowadzi do zrozumienia nieprawidłowości w podejściu do wyboru odpowiedniej konfiguracji. Połączenie Dy3, oparte na trójkącie, jest wykorzystywane, gdy nie ma potrzeby redukcji harmonik, co skutkuje większymi stratami mocy w niektórych warunkach eksploatacyjnych. Z kolei Dy9, mimo że również ma swoje zastosowanie, nie jest rekomendowane do ogólnych zastosowań z uwagi na większe ryzyko wystąpienia problemów z jakością energii. Odpowiedzi takie jak Dy1 i Dy5 mogą prowadzić do nieefektywności, ponieważ Dy1 nie jest standardowym ani zalecanym połączeniem w normach, co przypisuje mu mniejsze zastosowanie w praktycznych systemach. Dy7 ma swoje specyficzne zastosowania, ale w kontekście ogólnych norm i praktyk, nie jest zalecanym wyborem. Istotne jest, aby przy podejmowaniu decyzji o wyborze połączeń brać pod uwagę nie tylko teoretyczne aspekty, ale także praktyczną efektywność, niezawodność oraz zgodność z normami branżowymi, co jest kluczowe w projektowaniu i eksploatacji systemów zasilania.

Pytanie 37

Która z poniższych tachoprądnic, poza pomiarem prędkości obrotowej wirującego wału, pozwala również na określenie kierunku jego obrotu?

A. Prądu stałego
B. Synchroniczna
C. Dwufazowa z wirnikiem klatkowym
D. Dwufazowa z wirnikiem kubkowym
Tachoprądnice prądu stałego to takie fajne urządzenia, które nie tylko mierzą, jak szybko kręci się wał, ale też potrafią rozpoznać, w którą stronę ten wał się obraca. Działają na zasadzie indukcji elektromagnetycznej, co oznacza, że jak zmienia się pole magnetyczne, to tworzy się prąd w uzwojeniach. Jeśli wirnik zmienia kierunek, to też zmienia się polaryzacja sygnału, co jest mega ważne, gdy chcemy wiedzieć, w którą stronę coś się kręci. To przydaje się szczególnie w automatyce przemysłowej, gdzie kontrola kierunku obrotów silnika jest kluczowa. W praktyce spotkasz je w systemach regulacji prędkości silników, na przykład w robotach czy pojazdach elektrycznych, gdzie precyzyjne sterowanie ruchem ma ogromne znaczenie. Fajnie też wiedzieć, że branżowe standardy, jak IEC 60034, regulują wymagania dotyczące tych urządzeń, co pokazuje, jak ważne są w przemyśle.

Pytanie 38

Jaką charakterystykę powinien mieć wyłącznik instalacyjny nadprądowy, aby zapewnić, że nie wystąpi przypadkowe zadziałanie zabezpieczenia podczas uruchamiania urządzenia o dużym momencie rozruchowym?

A. Charakterystykę B
B. Charakterystykę D
C. Charakterystykę Z
D. Charakterystykę C
Wyłącznik nadprądowy z charakterystyką D to całkiem fajna opcja, zwłaszcza jeśli pracujesz z urządzeniami, które mają duży pobór prądu, jak na przykład silniki. Wiesz, różni się on trochę od charakterystyk B i C, które nie pozwalają na takie chwilowe przeszalenie prądu. A w przypadku silników, to może być naprawdę ważne, bo w momencie startu potrafią pobierać nawet 5-7 razy więcej prądu niż w normalnych warunkach. Taki wyłącznik D pomoże uniknąć niepotrzebnych wyłączeń, co jest kluczowe w przemyśle, gdzie maszyny muszą działać bez przerwy. Dobrze jest też pamiętać o normach, jak IEC 60947-2, bo wskazują one, jak ważne jest dobranie odpowiedniej charakterystyki do konkretnego obciążenia. Dzięki temu możesz być pewny, że wszystko będzie działać sprawnie i bezpiecznie.

Pytanie 39

Jakiego składnika nie może mieć kabel zasilający do rozdzielnicy głównej w pomieszczeniu przemysłowym uznawanym za niebezpieczne pod kątem pożaru?

A. Powłoki polietylenowej
B. Pancerza stalowego
C. Żył aluminiowych
D. Zewnętrznego oplotu włóknistego
Zewnętrzny oplot włóknisty w kablach zasilających nie jest zalecany w pomieszczeniach przemysłowych, które są klasyfikowane jako niebezpieczne pod względem pożarowym, ponieważ może on stanowić dodatkowe źródło łatwopalne. W takich środowiskach ważne jest, aby stosować zabezpieczenia, które minimalizują ryzyko pożaru. Zamiast oplotu włóknistego, lepszym rozwiązaniem są materiały odporniejsze na działanie wysokich temperatur oraz ognia, takie jak pancerz stalowy lub powłoka polietylenowa, które zapewniają lepszą ochronę mechaniczną oraz zabezpieczenie przed uszkodzeniami. Przykładem zastosowania mogą być różnego rodzaju zakłady przemysłowe, w których występują substancje łatwopalne, takie jak chemikalia, co wymusza na projektantach instalacji elektrycznych przestrzeganie standardów, takich jak norma IEC 60079 dotycząca urządzeń elektrycznych przeznaczonych do pracy w atmosferze wybuchowej. Wybór odpowiednich kabli zasilających jest kluczowy dla zapewnienia bezpieczeństwa pracy i ochrony mienia.

Pytanie 40

Aby zapewnić skuteczną ochronę przed porażeniem prądem dla użytkowników gniazd wtyczkowych z prądem nieprzekraczającym 32 A, należy je chronić wyłącznikiem różnicowoprądowym o nominalnym prądzie różnicowym wynoszącym

A. 100 mA
B. 500 mA
C. 1 000 mA
D. 30 mA
Wyłącznik różnicowoprądowy o znamionowym prądzie różnicowym równym 30 mA jest uważany za standard w przypadku ochrony użytkowników obwodów gniazd wtyczkowych o prądzie nieprzekraczającym 32 A. Jego głównym zadaniem jest szybka detekcja prądów upływowych, które mogą stwarzać zagrożenie porażenia prądem elektrycznym. Prąd różnicowy 30 mA jest skutecznym zabezpieczeniem, które wyłącza obwód w przypadku wykrycia różnicy prądów powyżej tej wartości, co znacząco redukuje ryzyko poważnych obrażeń ciała. W praktyce, w przypadku zastosowań w domach i lokalach użyteczności publicznej, wyłączniki te są często stosowane w obwodach zasilających gniazda, gdzie użytkownicy mogą mieć styczność z wodą lub wilgotnymi warunkami. Dodatkowo, zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe o prądzie różnicowym 30 mA powinny być standardem w instalacjach elektrycznych, gdzie występuje ryzyko porażenia ciała ludzkiego.