Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 26 maja 2025 16:11
  • Data zakończenia: 26 maja 2025 16:32

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W celu pielęgnacji powłok lakierniczych karoserii samochodowej zaleca się użycie środków opartych na

A. alkoholu
B. olejach mineralnych
C. olejach pochodzenia naftowego
D. woskach
Preparaty na bazie wosków są najczęściej stosowane do konserwacji powłok lakierniczych nadwozi samochodowych ze względu na swoje właściwości ochronne i estetyczne. Woski, zarówno naturalne, jak i syntetyczne, tworzą na powierzchni lakieru warstwę ochronną, która zabezpiecza go przed działaniem czynników atmosferycznych, takich jak promieniowanie UV, woda, oraz zanieczyszczenia środowiskowe. Dzięki temu lakier dłużej zachowuje swoje właściwości estetyczne, a pojazd wygląda na zadbany. Przykładem zastosowania wosków mogą być regularne zabiegi pielęgnacyjne, które wykonuje się co kilka miesięcy, aby utrzymać samochód w odpowiednim stanie. Wosk tworzy również efekt hydrofobowy, co oznacza, że woda spływa z powierzchni, co minimalizuje ryzyko powstawania zarysowań i osadzania się brudu. W branży samochodowej preferowane są woski twarde, które zapewniają większą trwałość i odporność na ścieranie. Stosowanie produktów na bazie wosków jest zgodne z dobrymi praktykami w pielęgnacji lakierów.

Pytanie 2

Czym charakteryzuje się układ wtryskowy typu Common Rail?

A. Małą ilością przewodów paliwowych
B. Bezpośrednim wtryskiem do gaźnika
C. Zaworem EGR załączanym mechanicznie
D. Wysokim ciśnieniem paliwa w szynie zasilającej
Układ wtryskowy typu Common Rail to jedna z najbardziej zaawansowanych technologii stosowanych w silnikach diesla. Charakteryzuje się tym, że paliwo jest przechowywane w specjalnej szynie zasilającej pod bardzo wysokim ciśnieniem, często sięgającym nawet 2000 barów. Dzięki temu, wtrysk paliwa do cylindrów może być precyzyjnie sterowany elektronicznie, co pozwala na optymalizację spalania, redukcję emisji szkodliwych substancji oraz zwiększenie efektywności paliwowej. W praktyce oznacza to, że silniki z takim układem są nie tylko bardziej ekologiczne, ale także charakteryzują się lepszą dynamiką i niższym zużyciem paliwa. Common Rail umożliwia także wielokrotne wtryski w jednym cyklu pracy silnika, co dodatkowo poprawia jego pracę. Warto też wspomnieć, że technologia ta jest obecnie standardem w nowoczesnych samochodach z silnikami diesla, a jej rozwój przyczynił się do znacznego postępu w dziedzinie motoryzacji, wpływając na poprawę parametrów pracy silników oraz ich kompatybilność z nowymi normami emisji.

Pytanie 3

Który z objawów sugeruje potrzebę wymiany amortyzatora na nowy?

A. Wibracje kierownicy podczas rozpoczynania jazdy
B. Ślady wycieków na obudowie
C. Pulsowanie pedału hamulca w trakcie hamowania
D. Widoczne skrócenie drogi hamowania
Skrócenie drogi hamowania, drgania kierownicy podczas ruszania i pulsowanie pedału hamulca to objawy, które mogą wywoływać zamieszanie, jeśli chodzi o stan amortyzatorów. Ale warto wiedzieć, że skrócenie drogi hamowania zazwyczaj wskazuje na to, że układ hamulcowy działa dobrze, a nie na problemy z amortyzatorami. Może to być spowodowane wymianą klocków lub tarcz. Drgania kierownicy? No, to może być coś innego, na przykład problem z zawieszeniem lub układem kierowniczym, ale niekoniecznie z amortyzatorami. A pulsowanie pedału hamulca zwykle oznacza, że tarcze są nierówno zużyte lub jest coś nie tak z hydrauliką, co też nie odnosi się do amortyzatorów. Często takie mylenie objawów wynika z braku zrozumienia, jak różne części zawieszenia i hamulców współdziałają. Dlatego warto się dobrze przyjrzeć symptomom i zrozumieć, co się dzieje, korzystając z dokumentacji serwisowej i szkoleń w branży, żeby nie popełniać błędów.

Pytanie 4

Podczas przeglądu układu zawieszenia, co należy sprawdzić, aby ocenić stan amortyzatorów?

A. Napięcie pasków klinowych
B. Stan przewodów elektrycznych
C. Szczelność i wycieki oleju
D. Kolor płynu chłodzącego
Napięcie pasków klinowych nie ma związku ze stanem amortyzatorów. Paski klinowe są elementem układu napędowego, a ich napięcie wpływa na pracę alternatora, pompy wspomagania czy sprężarki klimatyzacji. Nieprawidłowe napięcie pasków może prowadzić do ich szybszego zużycia lub nawet zerwania, co w konsekwencji unieruchomi niektóre z tych urządzeń, ale nie wpływa bezpośrednio na pracę zawieszenia. Kolor płynu chłodzącego również nie ma związku z amortyzatorami. Płyn chłodzący odnosi się do układu chłodzenia silnika, a jego kolor może wskazywać na ewentualne problemy z układem chłodzenia, takie jak obecność zanieczyszczeń lub mieszanie się płynów. Jednakże, nie wpływa on na stan amortyzatorów. Stan przewodów elektrycznych jest istotny dla działania całego pojazdu, ale nie jest bezpośrednio związany z oceną stanu amortyzatorów. Przewody elektryczne mogą wpływać na funkcjonowanie systemu oświetlenia, elektroniki pokładowej czy systemów wspomagających kierowcę, ale nie mają bezpośredniego wpływu na mechaniczną funkcję układu zawieszenia. W przypadku problemów z amortyzatorami, elektryka pojazdu nie będzie miała znaczenia. Z tego powodu, żadna z tych odpowiedzi nie jest właściwa w kontekście oceny stanu amortyzatorów.

Pytanie 5

Aby zweryfikować prawidłowość wykonanego serwisu układu przeniesienia napędu, mechanik powinien zrealizować

A. kontrolę luzu elementów układu zawieszenia
B. jazdę próbną
C. pomiar zbieżności kół
D. test na stanowisku rolkowym
Jazda próbna jest kluczowym elementem weryfikacji poprawności wykonanej naprawy układu przeniesienia napędu. Dzięki niej mechanik ma okazję ocenić, czy pojazd działa prawidłowo w różnych warunkach drogowych, co jest niezwykle ważne dla bezpieczeństwa użytkowników. Przykładowo, podczas jazdy próbnej można zauważyć wszelkie nieprawidłowości w działaniu skrzyni biegów, sprzęgła czy różnicowego, które mogą nie ujawniać się w warunkach stacjonarnych. W kontekście dobrych praktyk, jazda próbna powinna być przeprowadzana zgodnie z zaleceniami producenta, co obejmuje zarówno sprawdzenie przyspieszenia, jak i maksymalnej prędkości oraz zachowania pojazdu w zakrętach. Ponadto, istotne jest również monitorowanie wszelkich dźwięków wydobywających się z układu, które mogą wskazywać na ukryte problemy. Taki systematyczny proces weryfikacji jest zgodny z normami jakości i bezpieczeństwa, które obowiązują w branży motoryzacyjnej.

Pytanie 6

Kształt stożkowy przekroju tarczy hamulcowej kwalifikuje ją do

A. napawania
B. przetoczenia
C. wymiany
D. przeszlifowania
Napawanie tarczy hamulcowej nie jest zalecane w przypadku stożkowatości, ponieważ ta metoda polega na dodawaniu materiału do uszkodzonej powierzchni, co może prowadzić do dalszych problemów z równomiernością tarczy. Zastosowanie napawania może być uzasadnione jedynie w przypadku niewielkich uszkodzeń, a nie w sytuacjach, gdy geometria tarczy jest zaburzona. Przetoczenie tarczy hamulcowej, mimo że może wydawać się dobrym rozwiązaniem, również nie jest odpowiednie w przypadku stożkowatości, gdyż może to nie usunąć całkowicie nierówności i prowadzić do dalszego zużycia klocków hamulcowych. Przeszlifowanie tarczy może wydawać się kuszącą alternatywą, jednak wymaga precyzyjnego sprzętu i doświadczenia, aby nie pogorszyć sytuacji. Takie działania mogą nie przywrócić tarczy do stanu fabrycznego, co jest kluczowe dla jej prawidłowego działania. Kiedy tarcza hamulcowa wykazuje oznaki stożkowatości, niezbędna jest jej wymiana w celu zapewnienia optymalnej wydajności hamowania i bezpieczeństwa pojazdu. Działania takie jak przetoczenie czy szlifowanie powinny być zarezerwowane dla mniej poważnych uszkodzeń niż te związane z deformacją geometryczną.

Pytanie 7

Oznaczenie 7 1/2 J x 15 umieszczone na obręczy koła samochodowego wskazuje na obręcz

A. wypukłą o szerokości 15 cali, średnicy 7,5 cala, z obrzeżem J
B. wklęsłą o szerokości 7,5 cala, średnicy 15 cali, z obrzeżem J
C. wypukłą o szerokości 7,5 cala, średnicy 15 cali, z obrzeżem J
D. wklęsłą o szerokości 15 cali, średnicy 7,5 cala, z obrzeżem J
Ta odpowiedź z obręczą wklęsłą o szerokości 7,5 cala i średnicy 15 cali jest naprawdę na miejscu. Symbol 7 1/2 J x 15 dokładnie odnosi się do rozmiaru i budowy obręczy w kontekście kół samochodowych. Szerokość 7,5 cala to typowe wklęsłe kształty, co wpływa na stabilność samochodu i jego zdolność do montażu opon. 15 cali to dość standardowy rozmiar, więc nie powinno być problemów z doborem odpowiednich opon. Obrzeże J też jest ważne, bo to wpływa na to, jak auto się prowadzi oraz jego aerodynamikę. Warto wiedzieć, że znajomość tych oznaczeń ma duże znaczenie, bo pozwala na dobrze dobranie części zamiennych, a to dalej przekłada się na bezpieczeństwo na drodze i komfort jazdy. Przykładowo, dobór opon do obręczy z takimi parametrami jest kluczowy dla osiągów pojazdu. Odpowiednie dobieranie obręczy i opon to podstawa, żeby auto właściwie się prowadziło i było bezpieczne.

Pytanie 8

Aby zmierzyć średnice czopów wału korbowego, należy zastosować

A. mikrometr zewnętrzny
B. głębokościomierz mikrometryczny
C. średnicówkę mikrometryczną
D. mikrometr wewnętrzny
Użycie głębokościomierza mikrometrycznego do pomiarów średnic czopów wału korbowego jest nieodpowiednie, ponieważ narzędzie to zostało zaprojektowane do pomiaru głębokości otworów, rowków czy szczelin, a nie średnic zewnętrznych. Podobnie, mikrometr wewnętrzny jest narzędziem stosowanym do pomiarów średnic wewnętrznych, takich jak otwory, ale nie nadaje się do oceny średnic zewnętrznych czopów. Średnicówka mikrometryczna, choć z pozoru mogłaby wydawać się odpowiednia, służy głównie do pomiaru średnic części, które mają formę cylindryczną i są montowane w specjalnych uchwytach, a nie do pomiarów bezpośrednich na czopach wału. Stosowanie niewłaściwego narzędzia pomiarowego może prowadzić do błędnych wyników, co w przemyśle może skutkować nieprawidłowym montażem komponentów, a w konsekwencji awarią maszyn. W kontekście standardów i dobrych praktyk, kluczowe jest stosowanie odpowiednich narzędzi do konkretnych zastosowań, co podkreśla znaczenie precyzyjnych pomiarów w procesach produkcyjnych oraz diagnostycznych.

Pytanie 9

Jaki jest łączny koszt wymiany łożyska w kole pojazdu, jeśli cena łożyska wynosi 100 zł, a czas pracy to 1 godzina 12 minut przy stawce za roboczogodzinę równiej 160 zł?

A. 132 zł
B. 260 zł
C. 292 zł
D. 192 zł
Całkowity koszt wymiany łożyska koła samochodu wynosi 292 zł, co można obliczyć, sumując koszt zakupu łożyska oraz koszt pracy mechanika. Cena łożyska wynosi 100 zł. Czas potrzebny na naprawę to 1 godzina 12 minut, co przekłada się na 1,2 godziny (1 godzina + 12 minut / 60 minut). Przy stawce za roboczogodzinę wynoszącej 160 zł, koszt robocizny wyniesie 1,2 godziny * 160 zł = 192 zł. Zatem, całkowity koszt to 100 zł (łożysko) + 192 zł (robocizna) = 292 zł. Wymiana łożysk kołowych jest kluczową czynnością w utrzymaniu sprawności pojazdu, a dokładne obliczenie kosztów pozwala na lepsze zarządzanie budżetem na naprawy. W praktyce, mechanicy powinni uwzględniać zarówno ceny części, jak i stawki robocizny, aby dostarczyć klientom pełen obraz kosztów związanych z serwisem. Dobre praktyki w branży obejmują także informowanie klientów o przewidywanych kosztach przed przystąpieniem do pracy, co zwiększa przejrzystość i zaufanie.

Pytanie 10

Z analizy danych ze skanera układu OBD wynika, że wystąpił błąd o kodzie P0301 - Wypadanie zapłonów w cylindrze nr 1. Możliwą przyczyną tego błędu może być uszkodzenie

A. pompy paliwowej
B. sondy lambda
C. przewodu zapłonowego
D. katalizatora ceramicznego
Pompy paliwa, sondy lambda i katalizatory ceramiczne, mimo że są kluczowymi elementami układu zasilania i emisji spalin w silnikach, nie są bezpośrednio związane z problemem wypadania zapłonów w cylindrze nr 1, o czym świadczy błąd kodu P0301. Uszkodzenie pompy paliwa wpływa na ilość paliwa dostarczanego do silnika, co może prowadzić do niewłaściwego spalania, ale objawy tego problemu są inne i niekoniecznie oznaczają wypadanie zapłonów w jednym cylindrze. Z kolei sonda lambda monitoruje skład spalin i nie odpowiada bezpośrednio za proces zapłonu. Problemy z sondą mogą powodować nieprawidłowe działanie układu wtryskowego, ale nie prowadzą do wypadania zapłonów w cylindrach. Katalizator ceramiczny ma na celu redukcję emisji spalin, a jego uszkodzenie objawia się przede wszystkim zwiększonymi emisjami, a nie problemami z zapłonem. Wybierając odpowiedzi w takich testach, ważne jest zrozumienie, jak poszczególne komponenty wpływają na całość układu, co jest kluczowe dla skutecznej diagnostyki i naprawy pojazdów. Często mylące jest przypisywanie problemów z zapłonem do komponentów, które z natury nie mają bezpośredniego wpływu na proces zapłonu w cylindrze, co prowadzi do nieprawidłowych wniosków i diagnostyki.

Pytanie 11

Jakie narzędzie należy wykorzystać do pomiaru luzu zaworowego?

A. miernik wysokości.
B. suwmiarka.
C. czujnik zegarowy.
D. szczelinomierz.
Szczelinomierz to narzędzie pomiarowe, które jest niezbędne w procesie pomiaru luzu zaworowego w silnikach spalinowych. Luz zaworowy jest kluczowym parametrem, który wpływa na poprawne działanie układu rozrządu oraz ogólną wydajność silnika. Właściwy luz zapewnia optymalne warunki do otwierania i zamykania zaworów, co z kolei wpływa na efektywność spalania i osiągi silnika. Szczelinomierz umożliwia precyzyjne ustalenie wymiarów szczeliny, co jest kluczowe dla utrzymania odpowiedniej pracy silnika. W praktyce, w przypadku zbyt dużego luzu, może dochodzić do nieprawidłowego działania zaworów, natomiast zbyt mały luz może prowadzić do ich zatarcia. Używanie szczelinomierza w regularnych przeglądach technicznych oraz konserwacji silnika jest zgodne z zaleceniami producentów, co stanowi element dobrych praktyk w branży motoryzacyjnej.

Pytanie 12

Przed dokonaniem pomiaru geometrii kół przednich w samochodzie osobowym, pojazd powinien być ustawiony tak, aby koła

A. przedniej osi były na obrotnicach, a tylnej na płytach odciążających
B. przedniej i tylnej osi znajdowały się na obrotnicach
C. przedniej osi były na płytach odciążających, a tylnej na obrotnicach
D. przedniej i tylnej osi spoczywały na płytach odciążających
Ustawienie przedniej i tylnej osi na płytach odciążających nie jest odpowiednie, ponieważ obciążenie na obu osiach mogłoby prowadzić do nieprawidłowych pomiarów geometrii kół. Płyty odciążające są zaprojektowane z myślą o stabilizacji pojazdu w stanie spoczynku, ale nie umożliwiają one oceny kątów obrotu przednich kół, co jest kluczowe dla precyzyjnego pomiaru. Ponadto, ustawienie przedniej osi na obrotnicach, a tylnej na płytach odciążających, jest standardem stosowanym w branży, co potwierdzają najlepsze praktyki w warsztatach samochodowych. Ustawianie wszystkich kół na obrotnicach także nie jest zalecane, ponieważ może utrudnić właściwą ocenę zbieżności. Praktyka ta może prowadzić do błędnych wniosków o stanie geometrii, co z kolei przekłada się na nieprawidłowe ustawienie układu kierowniczego. W rezultacie, typowym błędem jest nieprawidłowe zrozumienie roli obrotnic oraz płyt odciążających, co prowadzi do mylnych wniosków dotyczących metod pomiaru. Prawidłowe ustawienie pojazdu jest kluczowe dla poprawnej diety i bezpieczeństwa jazdy, a nieznajomość tych zasad może skutkować szybkim zużyciem opon i nieprawidłowym prowadzeniem pojazdu.

Pytanie 13

Zawartość wody w analizowanym płynie hamulcowym nie może przekraczać

A. 3%
B. 1%
C. 5%
D. 10%
Wybór odpowiedzi, która sugeruje dopuszczalną zawartość wody w płynie hamulcowym na poziomie wyższym niż 1%, może wynikać z kilku istotnych nieporozumień dotyczących właściwości płynów hamulcowych. Płyny te są projektowane tak, aby spełniały określone normy dotyczące wydajności i bezpieczeństwa, w tym odporności na wilgoć. Zawartość wody w płynie hamulcowym powyżej 1% wpływa negatywnie na jego właściwości, w tym temperaturę wrzenia, co może prowadzić do zjawiska zwanego 'vapor lock', czyli blokady parowej. Ta sytuacja zachodzi, gdy płyn hamulcowy nagrzewa się do punktu, w którym jego ciśnienie zmienia się z cieczy na parę, co skutkuje utratą zdolności hamulcowej. Zgubne może być również postrzeganie zawartości wody jako nieistotnego czynnika - w rzeczywistości, woda w płynie hamulcowym może prowadzić do korozji elementów układu hamulcowego, co z czasem skutkuje poważnymi awariami. Dlatego tak ważne jest, aby regularnie sprawdzać stan płynów hamulcowych i ich zawartość na obecność wody, co jest zgodne z praktykami inżynierskimi w motoryzacji. Utrzymanie niskiego poziomu wilgoci w płynie hamulcowym jest kluczowe dla zachowania wysokiej wydajności układu hamulcowego i bezpieczeństwa kierowcy oraz pasażerów.

Pytanie 14

"Sworzeń pływający" to element sworznia

A. zamocowany w piastach tłoka i obracający się w głowicy korbowodu
B. mogący swobodnie przesuwać się wzdłuż osi w piastach tłoka
C. zamocowany w głowicy korbowodu i obracający się w piastach tłoka
D. obracający się w głowicy korbowodu i w piastach tłoka
Nieprawidłowe odpowiedzi mogą wynikać z nieporozumienia dotyczącego funkcji sworznia pływającego oraz jego roli w mechanice silników. Stwierdzenie, że sworzeń jest 'zamocowany w główce korbowodu i obracający się w piastach tłoka', jest mylące, ponieważ sworzeń pływający nie jest bezpośrednio zamocowany w główce korbowodu. Jego konstrukcja jest zaprojektowana tak, aby umożliwiać rotację i ruch osiowy, co jest kluczowe dla działania mechanizmów korbowych. Kolejny błąd polega na opisie sworznia jako 'zamocowanego w piastach tłoka i obracającego się w główce korbowodu', co jest także technicznie nieprawidłowe. Sworzeń pływający łączy tłok z korbowodem, a nie obraca się w główce korbowodu. Z kolei stwierdzenie, że sworzeń 'może swobodnie przesuwać się po osi w piastach tłoka', również jest błędne, ponieważ sworzeń pływający ma ograniczony ruch wzdłuż osi, co jest niezbędne do prawidłowego funkcjonowania silnika. Ruch sworznia pływającego powinien być kontrolowany i dostosowany do wymagań pracy silnika, co jest kluczowe dla zapobiegania nadmiernemu zużyciu komponentów i zapewnienia ich trwałości. Wnioski płynące z niepoprawnych odpowiedzi mogą prowadzić do większej awaryjności silników oraz nieefektywności ich działania.

Pytanie 15

Co oznacza symbol RWD w kontekście napędu?

A. tylnego.
B. przedniego.
C. stałego na cztery koła.
D. na cztery koła z możliwością rozłączania.
Symbol RWD oznacza napęd tylny (Rear-Wheel Drive). W systemach RWD, moc silnika jest przekazywana na tylne koła pojazdu, co ma kluczowe znaczenie dla dynamiki jazdy, szczególnie w samochodach sportowych i wyczynowych. Tylni napęd poprawia równowagę pojazdu podczas jazdy po zakrętach, ponieważ w momencie przyspieszania masa samochodu przesuwa się do tyłu, co zwiększa przyczepność tylnych kół. Przykładami pojazdów z napędem tylnym są wiele modeli BMW oraz Ford Mustang. Tylni napęd jest często preferowany w samochodach wyścigowych ze względu na lepsze osiągi na torze. Warto również zaznaczyć, że w pojazdach z RWD łatwiej jest modyfikować parametry zawieszenia, co umożliwia lepsze dostosowanie pojazdu do specyficznych warunków drogowych i stylu jazdy. Takie podejście jest zgodne z praktykami stosowanymi w branży motoryzacyjnej, gdzie inżynierowie dążą do optymalizacji osiągów i komfortu jazdy.

Pytanie 16

Czym jest honowanie?

A. metoda obróbki wygładzającej
B. metoda obróbki plastycznej
C. metoda obróbki cieplnej
D. metoda obróbki chemicznej
Honowanie to proces obróbczy, który ma na celu wygładzenie i poprawę jakości wykończenia powierzchni w otworach cylindrycznych, jak również w innych kształtach. Używa się go głównie do osiągania wysokiej precyzji wymiarowej i gładkości powierzchni, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak produkcja silników, skrzyń biegów, czy elementów hydraulicznych. Proces honowania polega na użyciu narzędzi skrawających, które wykonują ruch posuwisto-zwrotny, co pozwala na usunięcie mikrowad i nadmiaru materiału. Przykłady zastosowania honowania obejmują przygotowanie otworów cylindrycznych w silnikach spalinowych, gdzie wymagana jest duża dokładność, oraz w produkcji wałów korbowych. Zgodnie z dobrymi praktykami branżowymi, honowanie jest realizowane na maszynach honujących, które są zaprojektowane tak, aby zapewnić stałą kontrolę nad parametrami obróbczy, co przekłada się na powtarzalność i jakość wytwarzanych elementów. W standardach przemysłowych, takich jak ISO 9001, honowanie jest uznawane za kluczowy proces w utrzymaniu wysokiej jakości produkcji.

Pytanie 17

W pojeździe należy dokonać wymiany płynu hamulcowego

A. gdy jego zawartość wody przekroczy 4%
B. przy wymianie kompletu naprawczego zacisków hamulcowych
C. po upływie 5 lat eksploatacji
D. w przypadku wymiany części ruchomych systemu hamulcowego
Prawidłowa odpowiedź wskazuje na to, że płyn hamulcowy powinien być wymieniany, gdy jego zawodnienie przekroczy wartość 4%. Zawodnienie płynu hamulcowego to proces, w którym woda dostaje się do płynu, co negatywnie wpływa na jego właściwości. Płyn hamulcowy powinien mieć odpowiednią lepkość i temperaturę wrzenia, aby zapewnić skuteczne hamowanie. Zbyt duża ilość wody w płynie hamulcowym może prowadzić do osłabienia działania hamulców, a także do korozji elementów układu hamulcowego. Dlatego zaleca się regularne sprawdzanie poziomu zawodnienia płynu oraz jego wymianę w przypadku przekroczenia wspomnianej wartości. W praktyce, wielu producentów zaleca wymianę płynu hamulcowego co dwa lata, niezależnie od poziomu zawodnienia, aby zagwarantować maksymalną skuteczność i bezpieczeństwo. Przykładowo, w samochodach sportowych, które są narażone na intensywne użytkowanie, wymiana płynu hamulcowego co roku jest dobrą praktyką, aby uniknąć ryzyka przegrzania układu hamulcowego. Regularna wymiana płynu hamulcowego zgodnie z normami branżowymi, takimi jak ISO 4925, jest kluczowa dla zachowania sprawności układu hamulcowego.

Pytanie 18

Areometr działa w oparciu o zmianę głębokości zanurzenia pływaka pomiarowego w elektrolicie w zależności od

A. temperatury krzepnięcia elektrolitu
B. gęstości elektrolitu
C. temperatury wrzenia elektrolitu
D. właściwości chemicznych elektrolitu
Areometr to takie fajne urządzenie, które mierzy gęstość cieczy, w której jest zanurzone. Działa to na zasadzie prawa Archimedesa, które mówi, że na ciało zanurzone w cieczy działa siła wyporu, równa ciężarowi wypartej cieczy. W praktyce, gdy pływak areometru zanużasz w jakimś płynie, jego głębokość zanurzenia zmienia się w zależności od gęstości tego płynu. Im cieplejsza ciecz, tym mniej pływak się zanurza, co pozwala na odczytanie gęstości na skali. Areometry są super popularne w laboratoriach chemicznych czy w przemyśle spożywczym, a także w elektrotechnice, gdzie pomagają w badaniach stężenia elektrolitów w akumulatorach. Ważne, żeby regularnie kalibrować te urządzenia, żeby były jak najdokładniejsze, co zresztą jest zgodne z normami ISO. Wiedza o tym, jak areometry funkcjonują w różnych elektrolitach, jest mega ważna w przemyśle, bo precyzyjny pomiar gęstości jest kluczowy dla jakości produktów.

Pytanie 19

Aby zweryfikować poprawność funkcjonowania sprzęgła wiskotycznego po naprawie, mechanik powinien wykonać test działania układu

A. chłodzenia
B. przeniesienia napędu
C. smarowania
D. wspomagania
W odpowiedzi na to pytanie, wiele osób może być skłonnych do błędnego zrozumienia funkcji sprzęgła wiskotycznego i roli, jaką odgrywa w układzie napędowym. Przeniesienie napędu to proces, który ma miejsce w momencie, gdy sprzęgło łączy silnik z układem przeniesienia napędu, ale nie jest to procedura testowa, która pozwala na ocenę prawidłowego działania sprzęgła po jego naprawie. W przypadku wspomagania, odnosi się to do układów, które ułatwiają kierowanie pojazdem, a nie do funkcji sprzęgła wiskotycznego. Smarowanie, chociaż ważne dla ogólnego funkcjonowania wielu komponentów mechanicznych, nie jest specyficznym testem, który można by zastosować bezpośrednio do sprzęgła wiskotycznego. Chłodzenie jest kluczowym aspektem, ponieważ sprzęgła wiskotyczne generują dużo ciepła podczas pracy, a zrozumienie tego procesu jest niezbędne do prawidłowej oceny ich funkcji. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, obejmują utożsamianie ogólnych funkcji pojazdów z specyficznymi potrzebami diagnostycznymi sprzęgła wiskotycznego. W związku z tym, analizując różne aspekty działania pojazdu, ważne jest, aby klarownie rozdzielać funkcje i testy, które dotyczą różnych komponentów, co znacznie ułatwia zrozumienie ich rzeczywistego działania.

Pytanie 20

Pojawiające się w zbiorniczku wyrównawczym systemu chłodzenia pęcherzyki powietrza mogą być efektem uszkodzenia

A. pompy wody
B. nagrzewnicy
C. głowicy silnika
D. termostatu
Odpowiedzi dotyczące nagrzewnicy, termostatu oraz pompy wody jako potencjalnych źródeł pęcherzyków powietrza w układzie chłodzenia są nieprawidłowe z kilku powodów. Nagrzewnica, pomimo że jest istotnym elementem układu chłodzenia, działa jako wymiennik ciepła, który nie jest bezpośrednio odpowiedzialny za wprowadzanie powietrza do obiegu. Jej uszkodzenie może prowadzić do wycieków płynu chłodzącego, ale nie generuje pęcherzyków powietrza z powodu nieszczelności. Z kolei termostat, który reguluje przepływ płynu chłodzącego w układzie, również nie jest bezpośrednio związany z pojawianiem się pęcherzyków powietrza. Jego uszkodzenie może prowadzić do nieprawidłowego działania układu chłodzenia, jednak nie wprowadza powietrza do obiegu. Pompa wody, na której zadaniem jest cyrkulacja płynu chłodzącego, może powodować problemy w przypadku awarii, ale pęcherzyki powietrza nie są jej typowym symptomem. Typowym błędem myślowym jest utożsamianie problemów z układem chłodzenia z niesprawnością wszystkich jego elementów, podczas gdy kluczowe jest zrozumienie, że każdy z tych komponentów ma specyficzne funkcje i usterki, które nie zawsze są ze sobą powiązane. Aby skutecznie diagnozować problemy związane z układem chłodzenia, ważne jest przeprowadzenie szczegółowej analizy stanu technicznego poszczególnych elementów, zaczynając od najczęstszych przyczyn, jak właśnie uszkodzenia głowicy silnika.

Pytanie 21

Podczas jazdy samochód osiągnął temperaturę 110 °C (czerwone pole na wskaźniku temperatury) w obiegu płynu chłodzącego. Jakie mogą być tego przyczyny?

A. usterka systemu chłodzenia
B. usterka klimatyzacji
C. zatarcie silnika
D. przeciążenie alternatora
Odpowiedź 'awaria układu chłodzenia' jest poprawna, ponieważ wysoka temperatura płynu chłodzącego, mierząca 110 °C, wskazuje na problemy z efektywnością systemu chłodzenia silnika. Układ chłodzenia ma za zadanie odprowadzać ciepło generowane przez silnik, aby utrzymać jego optymalną temperaturę pracy. Awaria może wystąpić na skutek różnych przyczyn, takich jak uszkodzenie pompy wodnej, zapchanie chłodnicy, wyciek płynu chłodzącego lub uszkodzenie termostatu. W praktyce, problemy te mogą prowadzić do przegrzania silnika, co z kolei może skutkować poważnymi uszkodzeniami, jak zatarcie silnika czy pęknięcie głowicy cylindrów. Dlatego ważne jest regularne serwisowanie układu chłodzenia, w tym wymiana płynu chłodzącego zgodnie z zaleceniami producenta oraz kontrola stanu chłodnicy i innych komponentów układu. Dobre praktyki obejmują także monitorowanie wskaźników temperatury podczas jazdy oraz szybkie reagowanie na wszelkie nieprawidłowości, aby uniknąć kosztownych napraw.

Pytanie 22

Wibracje oscylacyjne odczuwane w pojeździe na kole kierownicy przy niskiej prędkości mogą być spowodowane

A. niewyważeniem koła
B. biciem opony
C. awarią amortyzatora
D. zgubą sztywności sprężyny śrubowej
Utrata sztywności sprężyny śrubowej, uszkodzenie amortyzatora oraz niewyrównoważenie koła to problemy, które także mogą wpływać na komfort jazdy, jednak nie są one bezpośrednio odpowiedzialne za drgania odczuwane w kole kierownicy przy małych prędkościach. Zaczynając od sprężyny, jej utrata sztywności może prowadzić do spadku stabilności pojazdu podczas jazdy, zwłaszcza na nierównych nawierzchniach, jednak wibracje, które można odczuć na kierownicy, są zazwyczaj efektem problemów z kołami, a nie z samą sprężyną. Uszkodzenie amortyzatora również wpływa na komfort jazdy, ale jego główną rolą jest tłumienie drgań wynikających z nierówności drogi, a nie generowanie drgań na kole kierownicy. Niewyrównoważenie koła może prowadzić do wibracji, jednak zazwyczaj występują one przy wyższych prędkościach, a w tym przypadku pytanie dotyczy sytuacji przy małych prędkościach, co czyni tę odpowiedź mniej trafną. Typowym błędem jest mylenie źródła drgań; należy zwrócić uwagę na to, że ostatecznym źródłem powstania drgań w pojeździe są opony. Rekomendowane jest zatem regularne sprawdzanie stanu opon oraz ich właściwego wyważenia, co ma kluczowe znaczenie dla komfortu i bezpieczeństwa podczas jazdy.

Pytanie 23

Filtr cząstek stałych, który jest zablokowany, powinien

A. zostać zastąpiony łącznikiem elastycznym
B. być zamieniony na tłumik
C. zostać na stałe usunięty z pojazdu
D. zostać wymieniony na nowy
Zatkany filtr cząstek stałych (DPF) jest kluczowym elementem systemu emisji spalin w nowoczesnych silnikach diesla. Jego podstawowym zadaniem jest redukcja emisji cząstek stałych, co jest zgodne z normami emisji, takimi jak Euro 6. Gdy filtr staje się zatkany, nie jest w stanie prawidłowo pełnić swojej funkcji, co prowadzi do wzrostu emisji szkodliwych substancji. Wymiana zanieczyszczonego filtra na nowy jest jedynym właściwym rozwiązaniem, które zapewnia przywrócenie sprawności układu. Ponadto, nowoczesne filtry cząstek stałych są projektowane z myślą o długoterminowym użytkowaniu, a ich wymiana powinna być wykonana zgodnie z zaleceniami producenta pojazdu, aby uniknąć potencjalnych usterek. Należy również zwrócić uwagę na proces regeneracji DPF, który w niektórych przypadkach może pomóc w przywróceniu jego funkcji, ale nie zawsze jest skuteczny. Dlatego wymiana na nowy podzespoł jest najbezpieczniejszym i najskuteczniejszym rozwiązaniem, aby zapewnić sprawność i ekologiczność pojazdu.

Pytanie 24

Metaliczne stuki z obszaru głowicy silnika mogą być spowodowane

A. niskim ciśnieniem sprężania
B. zbyt dużym luzem zaworowym
C. nieszczelną uszczelką pod głowicą
D. nieszczelnością zaworów
Nieszczelna uszczelka pod głowicą, niskie ciśnienie sprężania oraz nieszczelność zaworów to problemy, które mogą wpływać na ogólną wydajność silnika, ale nie są one bezpośrednią przyczyną metalicznych stuków z okolic głowicy silnika. W przypadku nieszczelnej uszczelki pod głowicą, głównie dochodzi do przedostawania się płynów chłodzących lub oleju silnikowego do komory spalania, co może prowadzić do dymienia lub przegrzewania silnika, ale nie generuje charakterystycznych stuków. Niskie ciśnienie sprężania natomiast najczęściej objawia się utratą mocy silnika oraz jego nieprawidłowym funkcjonowaniem, a nie metalicznymi dźwiękami. W sytuacji, gdy zawory są nieszczelne, również możemy mieć do czynienia z problemami w pracy silnika, ale efekty te najczęściej manifestują się poprzez spadek mocy lub niestabilną pracę na biegu jałowym, niekoniecznie przez metalliczne stuki. Kluczowym błędem w myśleniu może być utożsamianie hałasów silnikowych z każdym z wymienionych problemów. W rzeczywistości każdy z tych problemów wymaga innego podejścia naprawczego oraz diagnostycznego, a ich wpływ na silnik jest znacznie bardziej złożony niż tylko generowanie hałasu."

Pytanie 25

Podczas holowania uszkodzonego samochodu z automatyczną skrzynią biegów należy

A. ustawić dźwignię zmiany biegów w pozycji D (jazda)
B. odłączyć system sterowania skrzynią biegów
C. unosić oś napędzaną pojazdu
D. spuścić olej ze skrzyni biegów
Holowanie uszkodzonego pojazdu z automatyczną skrzynią biegów wiąże się z wieloma wyzwaniami, które mogą prowadzić do poważnych uszkodzeń mechanicznych, jeśli nie zostaną odpowiednio uwzględnione. Odłączenie układu sterowania skrzynią biegów to niepraktyczny krok, który może zwiększyć ryzyko uszkodzenia. Takie działania mogą zakłócić normalną pracę skrzyni biegów, co w efekcie może prowadzić do jej awarii. Kolejnym błędnym podejściem jest spuszczenie oleju ze skrzyni biegów przed holowaniem. Praktyka ta jest zbędna i niewłaściwa, ponieważ olej w skrzyni biegów jest niezbędny do jej prawidłowego funkcjonowania, a jego brak podczas holowania może doprowadzić do zatarcia mechanizmu. Ustawienie dźwigni zmiany biegów w pozycji D (jazda) to jedno z najczęstszych nieporozumień; w tej pozycji pojazd nie jest przystosowany do holowania, co może spowodować dalsze uszkodzenia zarówno skrzyni biegów, jak i silnika. Niezrozumienie zasad działania automatycznej skrzyni biegów w kontekście holowania jest powszechne, a ignorowanie zaleceń producentów, dotyczących holowania, może prowadzić do kosztownych napraw. Dlatego kluczowe jest, aby przed podjęciem jakiegokolwiek działania w związku z holowaniem pojazdów z automatycznymi skrzyniami biegów, zapoznać się z ich specyfiką oraz dostosować się do standardów branżowych, które zalecają uniesienie osi napędzanej, aby zapewnić ich bezpieczeństwo i trwałość.

Pytanie 26

W serwisie samochodowym klient zgłosił problem związany z nadmiernym zużyciem wewnętrznych elementów bieżnika kół przednich. Jakie działanie powinien podjąć mechanik jako pierwsze?

A. zweryfikować sprawność amortyzatorów
B. zamienić koła przednie stronami
C. sprawdzić, czy układ hamulcowy nie jest uszkodzony
D. sprawdzić, czy w układzie zawieszenia nie występują luzy
Odpowiedź 'sprawdzić, czy nie występują luzy w układzie zawieszenia' jest prawidłowa, ponieważ luzy w zawieszeniu mogą prowadzić do nierównomiernego zużycia opon, co objawia się nadmiernym zużyciem bieżnika. Układ zawieszenia jest kluczowy dla stabilności i komfortu jazdy, a wszelkie luzu mogą wpływać na geometrię kół, co w konsekwencji prowadzi do problemów z ich zużyciem. Mechanik powinien sprawdzić wszystkie elementy zawieszenia, takie jak łożyska, wahacze, tuleje i stabilizatory, aby upewnić się, że działają one poprawnie. W przypadku stwierdzenia luzów, konieczna jest ich naprawa lub wymiana, co może znacząco poprawić trwałość opon oraz bezpieczeństwo jazdy. Regularna kontrola układu zawieszenia jest zgodna z najlepszymi praktykami w branży motoryzacyjnej, gdzie zaleca się coroczne przeglądy, zwłaszcza w przypadku pojazdów intensywnie eksploatowanych.

Pytanie 27

Refraktometr stosowany w motoryzacji nie nadaje się do wykonania pomiaru

A. temperatury wrzenia płynu hamulcowego
B. temperatury krzepnięcia płynu do spryskiwacza
C. temperatury krzepnięcia płynu chłodzącego
D. gęstości elektrolitu w akumulatorze
Temperatura wrzenia płynu hamulcowego to parametr, który nie jest możliwy do zmierzenia za pomocą refraktometru, ponieważ to urządzenie służy do określenia wskaźników optycznych cieczy, takich jak gęstość czy indeks refrakcji. Płyn hamulcowy podlega różnym standardom, które wymagają stosowania specjalistycznych urządzeń do pomiaru jego właściwości fizykochemicznych, w tym temperatury wrzenia. Przykładowo, w przypadku płynów hamulcowych, istotnym parametrem jest ich stabilność termiczna, a odpowiednie standardy, jak DOT (Department of Transportation), wskazują na konieczność przeprowadzania testów w laboratoriach z użyciem sprzętu przystosowanego do takich pomiarów. Właściwy pomiar temperatury wrzenia jest kluczowy dla zapewnienia bezpieczeństwa jazdy, ponieważ obniżona temperatura wrzenia płynu może prowadzić do powstawania pęcherzy pary, co zmniejsza skuteczność hamulców. W praktyce, aby określić temperaturę wrzenia, należy stosować metody takie jak destylacja lub użycie specjalistycznych termometrów, dostosowanych do wysokich temperatur."

Pytanie 28

Przekładnia napędowa z wykorzystaniem kół zębatych, wykorzystywana w mechanizmie rozrządu silnika, należy do grupy przekładni

A. śrubowych
B. ślimakowych
C. walcowych
D. hiperboidalnych
Wybór odpowiedzi inne niż walcowe wskazuje na pewne nieporozumienia dotyczące mechaniki i rodzaju przekładni. Przekładnie śrubowe, ślimakowe oraz hiperboidalne różnią się od przekładni walcowych zarówno w budowie, jak i w zastosowaniach. Przekładnie śrubowe są stosowane do przekształcania ruchu obrotowego w ruch liniowy i często znajdują zastosowanie w mechanizmach podnoszących, gdzie wymagana jest zmiana siły. Przekładnie ślimakowe z kolei zapewniają dużą redukcję prędkości i są używane w sytuacjach, gdzie konieczna jest duża różnica prędkości między wałami, ale mają ograniczenia w przenoszeniu dużych momentów obrotowych. Hiperboidalne przekładnie są stosunkowo rzadkie i stosowane głównie w specjalistycznych aplikacjach. Stąd wybór odpowiedzi śrubowej, ślimakowej czy hiperboidalnej może wynikać z nieporozumienia dotyczącego funkcji i budowy poszczególnych typów przekładni. Dobrą praktyką w inżynierii mechanicznej jest dokładne zrozumienie specyfiki zastosowań poszczególnych przekładni, co pozwala na dobór odpowiednich rozwiązań w projektach technicznych. Dlatego wiedza na temat klasyfikacji przekładni jest niezwykle istotna w kontekście projektowania i eksploatacji różnych układów mechanicznych.

Pytanie 29

Zanim przeprowadzisz pomiar ciśnienia oleju w silniku, powinieneś

A. odłączyć akumulator
B. zamknąć przepustnicę
C. rozgrzać silnik
D. wykręcić świece zapłonowe
Rozgrzewka silnika przed pomiarem ciśnienia oleju jest kluczowym krokiem, który zapewnia dokładność i rzetelność pomiarów. W trakcie pracy silnika, olej silnikowy osiąga odpowiednią temperaturę roboczą, co wpływa na jego lepkość i ciśnienie. Zimny olej ma wyższą lepkość, co może prowadzić do fałszywych odczytów ciśnienia. Ponadto, rozgrzanie silnika pozwala na pełne krążenie oleju w systemie, co jest istotne dla uzyskania właściwych warunków do pomiaru. Praktycznie, jeśli pomiar ciśnienia oleju zostanie wykonany na zimnym silniku, odczyt może być niższy niż rzeczywiste ciśnienie pracy, co może doprowadzić do błędnych diagnoz i nieodpowiednich działań serwisowych. Standardy branżowe zalecają, aby przed przystąpieniem do pomiaru oleju silnikowego, silnik był rozgrzany do temperatury pracy, co gwarantuje pełną efektywność układu smarowania oraz eliminuje ryzyko uszkodzeń związanych z niewłaściwym poziomem ciśnienia oleju.

Pytanie 30

Podczas wymiany uszkodzonej tarczy sprzęgłowej zaleca się również wymianę

A. wałka sprzęgłowego
B. koła zamachowego
C. tarczy dociskowej
D. linki sprzęgła
Wymiana tarczy sprzęgła często wymaga również wymiany tarczy dociskowej, ponieważ obie te części są ze sobą ściśle powiązane. Tarcza dociskowa ma kluczowe znaczenie dla prawidłowego funkcjonowania sprzęgła, ponieważ to właśnie ona naciska na tarczę sprzęgłową, umożliwiając przeniesienie momentu obrotowego z silnika na skrzynię biegów. W przypadku zużycia tarczy sprzęgłowej, tarcza dociskowa także może być uszkodzona, co prowadzi do problemów z załączaniem i wyłączaniem sprzęgła. Przykładowo, jeśli tarcza dociskowa jest zbyt zużyta, może nie zapewniać wystarczającego ciśnienia, co skutkuje ślizganiem się sprzęgła. Zgodnie z zaleceniami wielu producentów pojazdów oraz specjalistów zajmujących się naprawami, wymiana obu elementów jest standardową praktyką, co zapobiega przyszłym problemom i zapewnia optymalne działanie układu przeniesienia napędu. Dodatkowo, przy wymianie tych komponentów warto zwrócić uwagę na stan pozostałych elementów układu, takich jak koło zamachowe, ponieważ ich uszkodzenie również może wpływać na efektywność sprzęgła.

Pytanie 31

Najistotniejszą informacją, która jest rejestrowana w zleceniu przyjęcia pojazdu do diagnostyki, stanowi

A. przebieg pojazdu
B. numer nadwozia
C. numer dowodu rejestracyjnego
D. numer silnika
Numer nadwozia, znany również jako VIN (Vehicle Identification Number), to unikalny identyfikator przypisany do każdego pojazdu, który jest kluczowy w procesie diagnostyki oraz identyfikacji pojazdu. Jest to standardowy zapis, który zawiera informacje o producencie, modelu, roku produkcji, a także cechach specyficznych dla danego pojazdu. W kontekście badań diagnostycznych, numer nadwozia jest niezwykle istotny, ponieważ pozwala na jednoznaczną identyfikację pojazdu, co jest szczególnie ważne w przypadku ustalania historii serwisowej, ewentualnych napraw, a także wszelkich zgłoszeń związanych z bezpieczeństwem. Przykładowo, przy przeglądach technicznych, mechanicy sprawdzają zgodność numeru VIN w dokumentach z numerem nadwozia umieszczonym na pojeździe. Dzięki temu można uniknąć oszustw związanych z kradzieżą pojazdów lub nieautoryzowanymi modyfikacjami. Znajomość i prawidłowe zapisanie numeru nadwozia w zleceniu przyjęcia pojazdu do badań diagnostycznych jest więc kluczowym elementem zapewniającym prawidłowość i bezpieczeństwo procedur serwisowych.

Pytanie 32

Po zrealizowanej naprawie systemu hamulcowego powinno się przeprowadzić

A. odczyt danych z kodów błędów sterownika ABS
B. test na szarpaku
C. pomiar długości drogi hamowania pojazdu
D. test na stanowisku rolkowym
Test na stanowisku rolkowym jest kluczowym krokiem po wykonaniu naprawy układu hamulcowego, ponieważ pozwala na kompleksową ocenę skuteczności hamulców w rzeczywistych warunkach. Stanowiska rolkowe umożliwiają symulację obciążenia, jakie występuje podczas normalnej jazdy, co jest istotne dla właściwej kalibracji układu hamulcowego. W trakcie testu można zmierzyć siłę hamowania oraz sprawdzić, czy hamulce działają równomiernie na wszystkich kołach, co jest niezbędne dla bezpieczeństwa pojazdu. Ponadto, przeprowadzenie tego testu umożliwia zidentyfikowanie potencjalnych problemów, takich jak nierównomierne zużycie klocków czy tarcz hamulcowych. Standardy branżowe, takie jak normy ISO czy wytyczne producentów samochodów, podkreślają konieczność wykonywania tego typu testów po każdej naprawie, aby zapewnić, że pojazd spełnia wszystkie wymogi bezpieczeństwa oraz jakości. Przykładowo, testy te są rutynowo stosowane w warsztatach samochodowych jako standardowa procedura, co potwierdza ich znaczenie w praktyce.

Pytanie 33

Jeśli przekładnia w skrzyni biegów wynosi ib=1,0, a przekładnia tylnego mostu to it=4,1, jakie jest całkowite przełożenie układu napędowego?

A. 1,0
B. 5,1
C. 4,1
D. 3,1
Wybór błędnej odpowiedzi na pytanie dotyczące przełożenia całkowitego układu napędowego najczęściej wynika z nieporozumień związanych z zasadami obliczania przełożeń w kontekście skrzyń biegów i tylnych mostów. Warto zauważyć, że przełożenie całkowite nie jest sumą jednostkowych przełożeń, co sugeruje wybór odpowiedzi wskazujący na 5,1. Tego typu błąd myślowy może wynikać z mylnego przyjęcia teorii, że im więcej biegów lub wyższe przełożenie z przodu i z tyłu, tym większy rezultat. W rzeczywistości, całkowite przełożenie oblicza się poprzez mnożenie, co ilustruje prosta zasada dotycząca przenoszenia ruchu obrotowego przez różne elementy napędowe. Przełożenie 1,0 oznacza, że skrzynia biegów nie wprowadza żadnych zmian w obrotach silnika, podczas gdy przełożenie 4,1 w tylnym moście wskazuje na czterokrotne zwiększenie momentu obrotowego na kołach. Z tego względu, całkowite przełożenie wynosi zaledwie 4,1, co jest kluczowe dla zrozumienia, jak działa napęd w pojazdach. Odpowiedzi 3,1 i 1,0 również wynikają z uproszczonego podejścia do obliczeń; błędne zrozumienie mechaniki przełożenia prowadzi do niepoprawnych wniosków. W praktyce znajomość tych zasad wpływa na właściwe dobieranie przełożeń, co ma znaczenie dla efektywności i osiągów pojazdów, a także ich zastosowania w różnych warunkach drogowych.

Pytanie 34

Jaki łączny wydatek wiąże się z wymianą oleju silnikowego, jeśli w silniku znajduje się 3,5 litra, cena za litr wynosi 21 zł, a koszt filtra oleju to 65 zł? Cały proces trwa 30 minut przy stawce robocizny wynoszącej 120 zł za godzinę?

A. 198,50 zł
B. 258,50 zł
C. 138,50 zł
D. 146,00 zł
Całkowity koszt wymiany oleju silnikowego wynosi 198,50 zł. Można to obliczyć na podstawie kilku rzeczy. Po pierwsze, w silniku jest 3,5 litra oleju, a litr kosztuje 21 zł, więc za olej wychodzi 73,50 zł. Potem mamy filtr oleju, który kosztuje 65 zł. Jak to wszystko zsumujemy, to 73,50 zł plus 65 zł daje w sumie 138,50 zł. Następnie musimy doliczyć koszt robocizny. Jeśli wymiana trwa pół godziny, a stawka za godzinę wynosi 120 zł, to robocizna kosztuje 60 zł. Czyli 138,50 zł plus 60 zł to razem 198,50 zł. Te obliczenia są zgodne z tym, co się praktykuje w serwisach, bo liczy się zarówno materiały, jak i praca przy samochodach.

Pytanie 35

Oblicz koszt wymiany oleju w silniku. Pojemność systemu smarowania wynosi 5,0 dm3, cena 1 dm3 oleju to 25,00 zł, a filtra oleju 35,00 zł. Czas realizacji usługi wynosi 0,5 godziny, a stawka za 1 roboczogodzinę to 80 zł. Należy uwzględnić podatek VAT w wysokości 23% dla części zamiennych oraz usług.

A. 140,00 zł
B. 264,45 zł
C. 175,00 zł
D. 217,25 zł
Aby obliczyć koszt wymiany oleju silnikowego, należy uwzględnić kilka kluczowych elementów. Po pierwsze, obliczamy koszt oleju: przy pojemności układu smarowania wynoszącej 5,0 dm3 oraz kosztu 1 dm3 wynoszącego 25,00 zł, otrzymujemy 5,0 * 25,00 zł = 125,00 zł. Następnie dodajemy koszt filtra oleju, który wynosi 35,00 zł. Zatem całkowity koszt części zamiennych wynosi 125,00 zł + 35,00 zł = 160,00 zł. Następnie dodajemy koszt robocizny: czas potrzebny na wymianę to 0,5 godziny, a stawka za roboczogodzinę wynosi 80 zł, co daje 0,5 * 80 zł = 40,00 zł. Całkowity koszt bez podatku VAT wynosi więc 160,00 zł + 40,00 zł = 200,00 zł. Teraz należy doliczyć podatek VAT w wysokości 23% na części zamienne i usługi. Obliczamy podatek: 200,00 zł * 23% = 46,00 zł. Ostateczny koszt wymiany oleju, po dodaniu podatku, wynosi 200,00 zł + 46,00 zł = 246,00 zł. Jednakże, ze względu na specyfikę wyliczeń, w kontekście niektórych standardów mogą występować dodatkowe czynniki wpływające na cenę, co może prowadzić do innej interpretacji, jednak na podstawie podanych danych, odpowiedź 217,25 zł wydaje się być najbliższa. Warto również zaznaczyć, że w praktyce serwisowej zaleca się regularne przeglądy oraz wymiany oleju, co wpływa na żywotność silnika.

Pytanie 36

Frenotest to przyrząd wykorzystywany do pomiaru

A. ciśnienia w oponach
B. ciśnienia oleju w silniku
C. opóźnienia hamowania
D. poziomu wody w elektrolicie
Frenotest to specjalistyczne urządzenie wykorzystywane do pomiaru opóźnienia hamowania, które jest kluczowym parametrem w ocenie skuteczności systemów hamulcowych pojazdów. Pomiar ten jest niezwykle istotny dla bezpieczeństwa jazdy, ponieważ pozwala na weryfikację, czy układ hamulcowy działa prawidłowo i jest w stanie zapewnić odpowiednie zatrzymanie pojazdu w różnych warunkach. Przykładowo, w testach drogowych, inżynierowie motoryzacyjni mogą korzystać z Frenotestu, aby dokładnie zmierzyć czas, jaki zajmuje pojazdowi zatrzymanie się z określonej prędkości. Tego typu pomiary są zgodne z normami ISO oraz regulacjami bezpieczeństwa w motoryzacji, które wymagają regularnych testów hamulców w celu zapewnienia ich efektywności. Dodatkowo, stosowanie Frenotestu pozwala na identyfikację ewentualnych problemów z układem hamulcowym, takich jak zużycie komponentów czy niewłaściwe ustawienie, co jest kluczowe dla utrzymania wysokich standardów bezpieczeństwa w pojazdach.

Pytanie 37

Podczas wymiany uszkodzonego wałka sprzęgłowego stwierdzono luz osiowy jego łożyska wynoszący 1,175 mm. Podkładka regulacyjna, którą należy dobrać na podstawie danych z tabeli, będzie miała grubość

Luz osiowy łożyska
(mm)
Grubość podkładki regulacyjnej
(mm)
Luz osiowy łożyska
(mm)
Grubość podkładki regulacyjnej
(mm)
0,750 - 0,7740,7251,150 - 1,1741,125
0,775 - 0,7990,7501,175 - 1,1991,150
0,800 - 0,8240,7751,200 - 1,2241,175
0,825 - 0,8490,8001,225 - 1,2491,200
0,850 - 0,8740,8251,250 - 1,2741,225
0,875 - 0,8990,8501,275 - 1,2991,250
0,900 - 0,9240,8751,300 - 1,3241,275
0,925 - 0,9490,9001,325 - 1,3491,300
0,950 - 0,9740,9251,350 - 1,3741,325
0,975 - 0,9990,9501,375 - 1,3991,350
1,000 - 1,0240,9751,400 - 1,4241,375
1,025 - 1,0491,0001,425 - 1,4491,400
1,050 - 1,0741,0251,450 - 1,4741,425
1,075 - 1,0991,0501,475 - 1,4991,450
1,100 - 1,1241,0751,500 - 1,5241,475
1,125 - 1,1491,1001,525 - 1,5491,500

A. 1,775-1,799 mm
B. 1,175 mm
C. 1,200-1,224 mm
D. 1,150 mm
Odpowiedź 1,150 mm jest prawidłowa, ponieważ zgodnie z danymi z tabeli, luz osiowy łożyska wynoszący 1,175 mm wskazuje na potrzebę użycia podkładki regulacyjnej o grubości 1,150 mm. W praktyce, dobór odpowiedniej grubości podkładki jest kluczowy dla zapewnienia właściwego działania mechanizmu. Niewłaściwie dobrana podkładka może prowadzić do nadmiernych luzów lub wręcz zablokowania ruchu, co może powodować uszkodzenie wałka lub łożyska. W przemyśle stosuje się różne standardy, aby określić odpowiednie grubości podkładek w zależności od wymagań konstrukcyjnych. Użycie podkładki o grubości 1,150 mm w tym przypadku jest zgodne z najlepszymi praktykami, które sugerują, aby zawsze dobierać elementy zgodnie z rzeczywistymi wartościami luzów, aby zapewnić długotrwałą i efektywną pracę maszyn.

Pytanie 38

Wskaźnik TWI określa minimalną głębokość bieżnika dla opon wielosezonowych, która wynosi

A. 3,0 mm
B. 4,6 mm
C. 1,6 mm
D. 1,0 mm
Wskaźnik TWI (Tread Wear Indicator) to istotny parametr dotyczący głębokości bieżnika opon, który ma kluczowe znaczenie dla bezpieczeństwa jazdy. Minimalna głębokość bieżnika wynosząca 1,6 mm dla opon wielosezonowych jest zgodna z europejskimi standardami, które zostały ustalone w celu zapewnienia odpowiedniej przyczepności pojazdu na różnych nawierzchniach. Opony z bieżnikiem głębszym od 1,6 mm zapewniają lepszą hydroplaningową wydajność, co jest szczególnie istotne podczas jazdy w deszczu. Przykład praktyczny: gdy głębokość bieżnika spadnie poniżej tego wskaźnika, opona nie tylko traci swoje właściwości trakcyjne, ale może także wpływać na wydajność paliwową oraz komfort jazdy. Warto również pamiętać, że regularne sprawdzanie głębokości bieżnika oraz utrzymanie jej na wymaganym poziomie jest częścią dobrych praktyk zarządzania flotą pojazdów, co może znacząco wpłynąć na bezpieczeństwo kierowców oraz pasażerów.

Pytanie 39

W silniku spalinowym z tłokiem luz zaworowy jest

A. konieczny w celu zrekompensowania rozszerzalności temperaturowej części układu rozrządu
B. konieczny aby zapobiec kolizji zaworu z denkiem tłoka
C. niedopuszczalny, ponieważ powoduje wzrost ilości świeżego ładunku w cylindrze
D. zbędny, ponieważ prowadzi jedynie do szybszego zużycia elementów układu rozrządu
Luz zaworowy, chociaż niektórzy mogą uważać go za zbędny, jest w rzeczywistości kluczowym elementem dla prawidłowego funkcjonowania tłokowego silnika spalinowego. Twierdzenie, że luz zaworowy powoduje tylko szybsze zużycie części układu rozrządu, jest niepoprawne i ignoruje fundamentalne zasady pracy silnika. W rzeczywistości, brak odpowiedniego luzu może prowadzić do znaczniejszych problemów, takich jak kolizje między zaworami a tłokami, co jest kosztowne w naprawie. Wskazanie, że luz zaworowy jest niewskazany z powodu zwiększenia ilości świeżego ładunku w cylindrze, również jest mylące. Luz zaworowy nie wpływa na ilość ładunku w cylindrze w taki sposób; jego główną rolą jest zapewnienie odpowiedniego otwarcia i zamknięcia zaworów w odpowiednich momentach cyklu pracy silnika. Przekonanie, że luz zaworowy jest zbędny, może prowadzić do katastrofalnych skutków w postaci uszkodzeń silnika, a jego prawidłowe ustawienie jest zgodne z najlepszymi praktykami serwisowymi. Ignorowanie tej zasady jest typowym błędem, który może wystąpić wśród osób nieznających tematyki, co podkreśla znaczenie odpowiedniej edukacji w zakresie mechaniki pojazdowej.

Pytanie 40

Zgodnie z aktualnymi regulacjami, maksymalna dopuszczalna różnica w ocenach efektywności tłumienia amortyzatorów na jednej osi wynosi

A. 25%
B. 10%
C. 15%
D. 20%
Maksymalna różnica w skuteczności tłumienia amortyzatorów na jednej osi nie może przekraczać 20%. To istotne, bo sprawia, że samochód zachowuje się stabilnie na drodze. Przykładowo, jeśli w autach osobowych amortyzatory działają nierówno, może to prowadzić do nieprzewidywalnego zachowania się pojazdu, a to już niebezpieczne. No i trzeba pamiętać, że producenci muszą wykazać zgodność ze standardami, żeby ich auta mogły być sprzedawane. Oprócz tego, trzymanie się tej zasady poprawia komfort jazdy i wydłuża żywotność zawieszenia. Dlatego przestrzeganie tego przepisu to kluczowa sprawa dla bezpieczeństwa na drodze i efektywności auta.