Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 maja 2025 17:08
  • Data zakończenia: 3 maja 2025 17:09

Egzamin niezdany

Wynik: 3/40 punktów (7,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. DYt
B. XzTKMXpw
C. YADY
D. LgY
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 2

W instrukcji technicznej dotyczącej instalacji elektrycznej przewód uziemiający jest oznaczony symbolem literowym

A. TE
B. CC
C. E
D. FPE
Odpowiedź CC jest prawidłowa, ponieważ w dokumentacji technicznej instalacji elektrycznych przewód wyrównawczy rzeczywiście oznaczany jest symbolem literowym CC, co pochodzi od angielskiego terminu "Combined Conductor". Przewód wyrównawczy ma na celu zapewnienie ochrony przed porażeniem prądem elektrycznym poprzez wyrównanie potencjałów elektrycznych w instalacji. W praktyce oznacza to, że w przypadku wystąpienia uszkodzenia, prąd może być odprowadzany do ziemi, co minimalizuje ryzyko porażenia użytkowników sprzętu. Przewody te są szczególnie istotne w instalacjach przemysłowych oraz w obiektach użyteczności publicznej, gdzie istnieje duże ryzyko kontaktu z wodą lub innymi czynnikami mogącymi prowadzić do porażenia. Zgodnie z normami IEC 60364, każdy system elektryczny powinien być odpowiednio zabezpieczony, a przewody wyrównawcze odgrywają kluczową rolę w tych zabezpieczeniach, na przykład poprzez zastosowanie w instalacjach zasilających, gdzie wymagane jest zachowanie wysokiego poziomu bezpieczeństwa.

Pytanie 3

Aby zabezpieczyć silnik indukcyjny trójfazowy w układzie zasilania ze stycznikiem przed przeciążeniem, należy użyć przekaźnika termobimetalowego. Jaki typ przekaźnika powinien być zastosowany?

A. jednotorowy bez styku kontrolnego
B. trójtorowy bez styku kontrolnego
C. jednotorowy ze stykiem kontrolnym
D. trójtorowy ze stykiem kontrolnym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekaźnik termobimetalowy trójtorowy ze stykiem sterującym jest idealnym rozwiązaniem do zabezpieczania silników trójfazowych przed przeciążeniem. Dzięki zastosowaniu tego typu przekaźnika możemy monitorować prąd w trzech fazach jednocześnie, co pozwala na szybsze wykrycie nadmiernego obciążenia oraz wyłączenie silnika w przypadku wystąpienia awarii. W praktyce, takie rozwiązanie jest zgodne z normami ochrony silników, jak IEC 60947, które zalecają stosowanie przekaźników termicznych w celu zapewnienia bezpieczeństwa pracy urządzeń elektrycznych. Przykładowo, w przypadku silników o większej mocy lub w aplikacjach wymagających wysokiej niezawodności, takich jak przemysł ciężki, stosowanie trójtorowego przekaźnika termobimetalowego staje się standardem. Dodatkowo, styk sterujący umożliwia integrację z układami automatyki oraz systemami alarmowymi, co zwiększa efektywność i bezpieczeństwo operacji. W rezultacie, wybór przekaźnika trójtorowego ze stykiem sterującym jest nie tylko najlepszą praktyką, ale też wymogiem w wielu zastosowaniach przemysłowych.

Pytanie 4

Który z podanych łączników instalacyjnych dysponuje dwoma klawiszami i trzema zaciskami przyłączeniowymi?

A. Łącznik schodowy podwójny
B. Łącznik schodowy pojedynczy
C. Łącznik krzyżowy
D. Łącznik świecznikowy
Wybór innego typu łącznika, takiego jak łącznik schodowy podwójny, prowadzi do nieporozumienia dotyczącego jego funkcji i zastosowania. Łącznik schodowy podwójny jest zaprojektowany do pracy w układzie schodowym, gdzie umożliwia kontrolę nad tym samym źródłem światła z dwóch różnych miejsc. Posiada on jednak inną liczbę zacisków oraz inny sposób podłączenia w porównaniu do łącznika świecznikowego. Dodatkowo, łącznik schodowy pojedynczy również nie jest odpowiednią odpowiedzią, ponieważ jego konstrukcja zakłada jedynie jeden klawisz i dwa zaciski, co nie spełnia warunków postawionych w pytaniu. Z kolei łącznik krzyżowy, choć jest elementem integrującym w bardziej złożonych systemach oświetleniowych, nie odpowiada wymaganiom związanym z dwoma klawiszami i trzema zaciskami. Kluczowym błędem myślowym, który może prowadzić do nieprawidłowych wyborów, jest niezrozumienie różnicy między funkcjami różnych typów łączników i ich zastosowaniem w praktyce. Wybierając nieodpowiedni typ łącznika, można nie tylko zakłócić działanie całej instalacji elektrycznej, ale również zwiększyć ryzyko awarii. Świadomość różnic pomiędzy poszczególnymi typami łączników to klucz do efektywnego projektowania oraz bezpiecznej eksploatacji systemów oświetleniowych.

Pytanie 5

Jaki rodzaj wkładki topikowej powinien być użyty do ochrony nadprądowej obwodu jednofazowych gniazd do użytku ogólnego?

A. gL
B. gG
C. aM
D. aR
Wkładka topikowa typu gG jest rekomendowanym rozwiązaniem do zabezpieczenia nadprądowego obwodów jednofazowych gniazd ogólnego przeznaczenia. Charakteryzuje się ona zdolnością do ochrony przed przeciążeniami oraz krótkimi spięciami, a także do działania w obwodach wymagających wysokich zdolności zwarciowych. W praktyce, zastosowanie wkładki gG w instalacjach elektrycznych, takich jak gniazda w domach, biurach czy obiektach użyteczności publicznej, zapewnia skuteczną ochronę przed uszkodzeniami spowodowanymi nadmiernym przepływem prądu. Wkładki te są zgodne z normami IEC 60269 oraz PN-EN 60269, które regulują ich parametry techniczne. Dzięki zastosowaniu wkładek gG, można zminimalizować ryzyko uszkodzenia urządzeń elektrycznych oraz przeciążenia obwodów, co jest kluczowe dla bezpieczeństwa użytkowników oraz sprawności całego systemu elektrycznego.

Pytanie 6

Na które końce uzwojenia pracującego silnika prądu stałego doprowadza się napięcie elektryczne za pomocą szczotek?

A. Twornika
B. Kompensacyjnego
C. Komutacyjnego
D. Wzbudzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to "twornika". W silniku prądu stałego, to uzwojenie twornika jest kluczowym elementem, przez który przepływa prąd elektryczny dostarczany przez szczotki. Twornik jest odpowiedzialny za generowanie momentu obrotowego, który napędza wirnik silnika. W praktyce oznacza to, że odpowiedni przepływ prądu w uzwojeniu twornika wpływa na wydajność i moc silnika. W standardach branżowych, takich jak IEC 60034 dotyczący silników elektrycznych, podkreśla się znaczenie poprawnego podłączenia szczotek do uzwojeń twornika, aby zapewnić optymalną pracę i minimalizować straty energii. W zastosowaniach przemysłowych, silniki prądu stałego z odpowiednio skonstruowanym układem twornika są szeroko wykorzystywane w napędach, robotyce oraz w systemach automatyki, gdzie stabilność i kontrola prędkości obrotowej są istotne.

Pytanie 7

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. zdejmowania powłoki z przewodu.
B. zaciskania końcówek tulejkowych.
C. profilowania żył przewodów.
D. zaciskania końcówek oczkowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Profilowanie żył przewodów jest kluczowym procesem w pracach elektrycznych, który zapewnia właściwe przygotowanie przewodów do dalszej obróbki, takiej jak ich łączenie czy izolacja. Narzędzie przedstawione na ilustracji, mianowicie szczypce okrągłe, jest idealne do tego celu dzięki swojej stożkowej budowie, która umożliwia formowanie przewodów w różne kształty. Takie profilowanie pozwala na łatwe wprowadzenie żył do złączek, co zwiększa efektywność i bezpieczeństwo całej instalacji. Zgodnie z normami branżowymi, odpowiednie przygotowanie końców przewodów ma kluczowe znaczenie dla zapewnienia ich stabilności i minimalizacji ryzyka zwarć. W praktyce, profesjonalni elektrycy często korzystają z tego rodzaju narzędzi, aby dostosować przewody do specyficznych wymogów instalacji, co poprawia jakość wykonywanej pracy oraz wpływa na trwałość całej instalacji. Dobrą praktyką jest również przeszkolenie pracowników w zakresie używania takich narzędzi oraz regularne kontrolowanie ich stanu technicznego, aby uniknąć błędów w obróbce przewodów.

Pytanie 8

Co powoduje zwęglenie izolacji na końcu przewodu fazowego blisko zacisku w puszce rozgałęźnej?

A. Zbyt mały przekrój użytego przewodu
B. Poluzowanie śruby mocującej w puszce
C. Zbyt wysoka wartość prądu długotrwałego
D. Wzrost napięcia zasilającego spowodowany przepięciem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poluzowanie się śruby dociskowej w puszce rozgałęźnej jest jedną z najczęstszych przyczyn zwęglenia izolacji na końcu przewodu fazowego. Kiedy śruba mocująca luzuje się, może to prowadzić do niewłaściwego kontaktu elektrycznego, co powoduje wzrost oporu na styku. W wyniku tego oporu generowane jest ciepło, które może spalić izolację przewodu, prowadząc do zwęglenia. Praktyczne przykłady wskazują, że regularne przeglądy instalacji elektrycznych oraz zastosowanie odpowiednich narzędzi do prawidłowego dokręcania połączeń są niezbędne dla zapewnienia bezpieczeństwa. W standardach branżowych, takich jak PN-IEC 60364, zwraca się uwagę na konieczność stosowania wysokiej jakości materiałów oraz odpowiednich technik montażu, aby zminimalizować ryzyko wystąpienia takich problemów. Dobrą praktyką jest także oznaczanie i dokumentowanie przeprowadzonych kontroli oraz konserwacji połączeń, co sprzyja długoterminowemu bezpieczeństwu użytkowania instalacji elektrycznej.

Pytanie 9

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Silnik będzie zasilany prądem w przeciwnym kierunku
B. Silnik będzie funkcjonować w trybie jałowym
C. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
D. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poślizg silnika indukcyjnego określa różnicę między prędkością synchroniczną a rzeczywistą prędkością wirnika. Gdy wirnik jest nieruchomy, oznacza to, że nie porusza się w stosunku do pola magnetycznego wytwarzanego przez uzwojenia statora. W takiej sytuacji prędkość wirnika wynosi 0, a prędkość synchroniczna, zależna od częstotliwości zasilania i liczby par biegunów, jest znacznie wyższa. Z tego powodu poślizg wynosi 100%, co oznacza maksymalne obciążenie silnika, a jego moment obrotowy jest równy zeru, co jest warunkiem niezbędnym do rozpoczęcia pracy silnika. W praktyce taka sytuacja ma miejsce podczas uruchamiania silników, gdy są one podłączane do zasilania, ale wirnik nie ma jeszcze możliwości obrotu, na przykład w przypadku zablokowania. W przemyśle, szczególnie w aplikacjach wymagających dużego momentu rozruchowego, jak w przypadku transportu materiałów, monitoruje się poślizg, aby zapewnić optymalne działanie silników. Zrozumienie poślizgu jest kluczowe dla efektywności energetycznej i żywotności silników indukcyjnych.

Pytanie 10

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
B. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
C. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
D. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na przewód oponowy mieszkaniowy trzyżyłowy w izolacji polwinitowej jest poprawna, ponieważ oznaczenie OMY 500 V 3x1,5 mm2 wskazuje na konkretny typ przewodu, który jest powszechnie stosowany w instalacjach elektrycznych w budynkach mieszkalnych. Oznaczenie 'OMY' odnosi się do przewodów oponowych, które charakteryzują się dużą elastycznością i odpornością na uszkodzenia mechaniczne. Izolacja polwinitowa (PVC) zabezpiecza przed działaniem wilgoci i substancji chemicznych, co czyni ten przewód idealnym do stosowania w warunkach domowych, gdzie często zachodzi ryzyko narażenia na różnorodne czynniki zewnętrzne. Przewód o przekroju 3x1,5 mm2 oznacza, że ma trzy żyły o średnicy 1,5 mm2, co jest standardowym przekrojem dla obwodów oświetleniowych i gniazd wtykowych w mieszkaniach. Przykłady zastosowania obejmują instalacje w domach jednorodzinnych, w których przewody te są używane do podłączenia oświetlenia oraz zasilania urządzeń elektrycznych. Zgodność z normą PN-EN 50525-2-21 potwierdza, że przewód spełnia wymagane standardy bezpieczeństwa oraz jakości.

Pytanie 11

W jakim układzie sieciowym punkt neutralny transformatora zasilającego sieć nie jest metalicznie połączony z ziemią?

A. TN-S
B. IT
C. TN-C
D. TT

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układ sieciowy IT jest charakterystyczny tym, że punkt neutralny transformatora nie jest połączony metalicznie z ziemią. W systemie tym, w przypadku awarii, nie występuje bezpośredni kontakt z ziemią, co minimalizuje ryzyko porażenia prądem. Zastosowanie układu IT ma istotne znaczenie w obiektach, gdzie wymagana jest wysoka niezawodność zasilania, takich jak szpitale czy obiekty przemysłowe. Dzięki temu, w przypadku uszkodzenia izolacji, prąd płynący do ziemi jest ograniczony, co pozwala na kontynuację pracy urządzeń. Praktyczne zastosowanie tego typu układu można zauważyć w sieciach niskiego napięcia, gdzie większy poziom bezpieczeństwa i ciągłość zasilania są priorytetem. Zgodnie z normami IEC 60364, system IT jest zalecany w środowiskach, gdzie awarie mogą prowadzić do poważnych konsekwencji, ponieważ zapewnia on możliwość pracy w warunkach awarii bez ryzyka porażenia."

Pytanie 12

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Przeciążenie obwodu
B. Upływ prądu
C. Zwarcie międzyfazowe
D. Skok napięcia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Upływ prądu' jest na pewno trafna, bo wyłącznik różnicowoprądowy, czyli RCD, działa dokładnie tak, jak powinien. On potrafi sprawdzać różnice w prądzie, który wpływa i wypływa z obwodu. Powiedzmy, że jak jest jakiś problem z izolacją, to prąd może wyciekać do ziemi. To właśnie wtedy RCD to zauważa i natychmiast odłącza zasilanie, co naprawdę zmniejsza ryzyko porażenia prądem albo pożaru. RCD często spotykamy w łazienkach, gdzie wilgoć sprawia, że ryzyko kontaktu z prądem jest większe. Warto też wiedzieć, że normy, takie jak PN-EN 61008, precyzują, jakie są wymagania dotyczące tych wyłączników i gdzie można je stosować, co podkreśla ich istotność dla bezpieczeństwa elektrycznego. Używanie RCD w instalacjach jest zgodne z dobrymi praktykami i przepisami budowlanymi, więc to naprawdę ważny temat.

Pytanie 13

Podczas korzystania z sprawnie działającego piekarnika elektrycznego z termostatem, żarówka oświetleniowa w pokoju często nieznacznie przygasa. Jakie mogą być przyczyny tego zjawiska?

A. Uszkodzony obwód zasilający piekarnik
B. Nadpalony styk wyłącznika światła
C. Słaby styk w lampie
D. Zbyt mały przekrój przewodów zasilających pomieszczenie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na za mały przekrój przewodów zasilających pomieszczenie jest poprawna, ponieważ zbyt mały przekrój może prowadzić do nadmiernego spadku napięcia w instalacji elektrycznej. W momencie, gdy piekarnik elektryczny, który pobiera znaczne ilości prądu, jest włączony, powoduje to wzrost obciążenia na obwodzie zasilającym. Jeśli przewody zasilające są niewłaściwie dobrane do obciążenia, mogą nie być w stanie dostarczyć wystarczającej ilości energii, co skutkuje chwilowym spadkiem napięcia i przygasaniem żarówek oświetleniowych. Praktycznym przykładem może być sytuacja, gdy piekarnik i inne urządzenia są podłączone do jednego obwodu, co zwiększa obciążenie. Zgodnie z normami PN-IEC 60364, projektując instalacje elektryczne, należy dobierać przekroje przewodów na podstawie przewidywanego obciążenia, co pozwala uniknąć takich problemów. W przypadku zauważenia takich objawów, warto skonsultować się z elektrykiem, który oceni sytuację i doradzi ewentualne zmiany w instalacji.

Pytanie 14

Która z wymienionych przyczyn może być odpowiedzialna za zwęglenie izolacji na końcu przewodu fazowego w okolicy zacisku w puszce rozgałęźnej?

A. Zbyt duży przekrój używanego przewodu
B. Niewystarczająca wartość prądu roboczego
C. Wzrost napięcia zasilającego na skutek przepięcia
D. Poluzowanie śruby mocującej w puszce

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poluzowanie się śruby zacisku w puszce rozgałęźnej to jedna z najczęstszych przyczyn zwęglenia izolacji przewodów. Gdy śruba zacisku nie jest odpowiednio dokręcona, może dojść do niewłaściwego kontaktu między przewodem a zaciskiem. Taki luźny kontakt generuje dodatkowe ciepło, co w dłuższej perspektywie prowadzi do degradacji materiałów izolacyjnych. W praktyce, w sytuacji gdy przewód nie jest stabilnie zamocowany, może wystąpić także arczenie, co dodatkowo zwiększa ryzyko uszkodzenia izolacji. Z tego powodu, podczas instalacji elektrycznych, kluczowe jest przestrzeganie standardów dotyczących momentu dokręcenia oraz regularna kontrola stanu złącz. Należy również zwrócić uwagę na jakość używanych materiałów, które powinny spełniać normy PN-EN 60947-1 oraz PN-IEC 60364. Regularne przeglądy mogą pomóc w identyfikacji potencjalnych problemów zanim staną się one poważne, a tym samym zwiększyć bezpieczeństwo instalacji.

Pytanie 15

Który przewód jest oznaczony literami PE?

A. Ochronno-neutralny
B. Neutralny
C. Ochronny
D. Fazowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Ochronny" jest poprawna, ponieważ przewód oznaczony symbolem literowym PE (Protective Earth) jest przewodem ochronnym, który ma na celu zapewnienie bezpieczeństwa użytkowników instalacji elektrycznych. Jego główną funkcją jest odprowadzenie prądu do ziemi w przypadku wystąpienia awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. W praktyce, przewód PE powinien być zawsze połączony z metalowymi częściami urządzeń elektrycznych, co tworzy skuteczną barierę ochronną. W zgodzie z normami IEC 60439 oraz PN-EN 60204-1, stosowanie przewodów ochronnych jest obowiązkowe w każdym systemie elektrycznym, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Warto również pamiętać, że przewód PE nie należy mylić z przewodem neutralnym (N), który pełni inną rolę w obiegu prądu, a ich pomylenie może prowadzić do poważnych problemów w instalacji. Dlatego wiedza o odpowiednich oznaczeniach przewodów jest kluczowa w zapewnieniu bezpieczeństwa i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 16

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Uszkodzenie izolacji przewodu ochronnego
B. Przerwa w przewodzie neutralnym
C. Zwarcie doziemne przewodu neutralnego
D. Przerwa w przewodzie ochronnym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie doziemne przewodu neutralnego to sytuacja, w której przewód neutralny styka się z ziemią lub innym przewodem, co prowadzi do nieprawidłowego działania instalacji elektrycznej. Taki stan może uniemożliwić prawidłowe funkcjonowanie wyłącznika różnicowoprądowego (RCD). RCD działa na zasadzie wykrywania różnic w prądach przepływających przez przewody fazowy i neutralny. W przypadku zwarcia doziemnego, prąd może niepoprawnie wracać przez ziemię, co powoduje, że RCD nie wykrywa różnicy, przez co nie może się załączyć. W praktyce, aby uniknąć takich sytuacji, ważne jest regularne kontrolowanie stanu instalacji oraz przestrzeganie norm zawartych w PN-IEC 60364, które dotyczą projektowania i wykonania instalacji elektrycznych. Dodatkowo, stosowanie odpowiednich zabezpieczeń, takich jak odpowiednio dobrane wyłączniki różnicowoprądowe, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz właściwego działania systemu. Zwracanie uwagi na te aspekty może pomóc w zapobieganiu poważnym zagrożeniom.

Pytanie 17

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
B. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
C. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
D. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrany zestaw narzędzi jest idealny do montażu aparatury oraz wykonywania połączeń elektrycznych w rozdzielnicy mieszkaniowej. Szczypce do cięcia przewodów umożliwiają precyzyjne przycinanie przewodów do żądanej długości, co jest kluczowe dla zapewnienia dobrego połączenia. Przyrząd do ściągania powłoki pozwala na łatwe usunięcie zewnętrznej izolacji z przewodów, dzięki czemu można uzyskać dostęp do żył przewodów. Z kolei przyrząd do ściągania izolacji jest niezbędny do delikatnego usunięcia izolacji z końców przewodów, co jest ważne dla uniknięcia uszkodzeń drutów. Zestaw wkrętaków jest kluczowy przy montażu elementów rozdzielnicy, takich jak złącza, bezpieczniki czy przekaźniki. Wszystkie te narzędzia są zgodne z najlepszymi praktykami w branży elektrycznej, co zapewnia bezpieczeństwo oraz efektywność pracy. Dobrze dobrany zestaw narzędzi znacząco wpływa na jakość i trwałość wykonanej instalacji elektrycznej.

Pytanie 18

Które z poniższych oznaczeń dotyczy wyłącznika silnikowego?

A. Z-MS-16/3
B. Ex9BP-N 4P C10
C. FRCdM-63/4/03
D. SM 25-40

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie Z-MS-16/3 odnosi się do wyłącznika silnikowego, który jest kluczowym elementem w instalacjach elektrycznych zasilających silniki. Wyłączniki silnikowe są zaprojektowane, aby zabezpieczać silniki przed przeciążeniem, zwarciem oraz innymi nieprawidłowościami w pracy. Z-MS-16/3 to przykład wyłącznika, który może być stosowany w instalacjach przemysłowych, gdzie ochrona silników jest niezbędna dla zapewnienia ciągłości pracy oraz bezpieczeństwa. Wyłączniki te działają na zasadzie automatycznego wyłączenia zasilania w przypadku wykrycia nieprawidłowego prądu, co zapobiega uszkodzeniom zarówno silnika, jak i samej instalacji elektrycznej. W praktyce, ich zastosowanie jest szczególnie istotne w aplikacjach takich jak pompy, wentylatory, kompresory czy maszyny robocze. Przykładowo, w przypadku silnika napędzającego dużą maszynę, zastosowanie Z-MS-16/3 pozwala na szybkie odłączenie zasilania, co minimalizuje ryzyko kosztownych awarii i przestojów. Ponadto, wyłączniki te powinny być zgodne z normami IEC 60947-4-1, co zapewnia ich wysoką jakość oraz niezawodność.

Pytanie 19

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa, aby chronić przewody przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. aM 20 A
C. aR 16 A
D. gB 20 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładka topikowa oznaczona jako gG 16 A jest odpowiednia do ochrony obwodów elektrycznych, w tym przypadku obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V. Oznaczenie gG (ogólne zabezpieczenie, przystosowane do ochrony obwodów przed przeciążeniami oraz zwarciami) wskazuje, że wkładka ta ma zdolność do przerwania obwodu zarówno w przypadku zwarcia, jak i przeciążenia. Analizując parametry bojlera, obliczamy prąd znamionowy przy pomocy wzoru: I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A będzie odpowiednia, ponieważ jej nominalny prąd przewyższa obliczony prąd znamionowy bojlera, a jednocześnie zapewnia odpowiednie zabezpieczenie przed skutkami zwarć. W praktyce wkładki gG są powszechnie stosowane w instalacjach domowych oraz przemysłowych, co gwarantuje ich niezawodność oraz efektywność w odpowiednich zastosowaniach. Dla bezpieczeństwa zaleca się również regularne kontrolowanie stanu wkładek oraz ich wymianę, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 20

Jakie z podanych usterek mogą powodować nadmierne wibracje w silniku indukcyjnym?

A. Przerwa w uzwojeniu stojana, zatarcie łożysk, nadmierna rezystancja uzwojeń wirnika
B. Zwarcie w uzwojeniu wirnika, zmieniona kolejność faz
C. Skrzywienie wału, niewłaściwe wyważenie wirnika, zbyt duży luz na łożyskach
D. Zbyt niskie napięcie, przerwa w jednej z faz, przeciążenie silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Twoja odpowiedź jest jak najbardziej trafna! Skrzywienie wału, niewłaściwe wyważenie wirnika i luz na łożyskach to faktycznie te rzeczy, które mogą mocno wpływać na to, jak silnik pracuje. Jak wał jest krzywy, to masa się rozkłada nierówno, co przyczynia się do wzrostu wibracji – to trochę jak z siedzeniem na krzywej ławce, nie? Z kolei kiepskie wyważenie wirnika, które często bierze się z jego zużycia, też powoduje, że silnik się męczy, bo łożyska dostają w kość. No i ten luz – luźne łożyska też robią swoje, bo wirnik nie działa jak powinien. Ważne, żeby regularnie sprawdzać sprzęt i dbać o niego, tak jak produkuje się w instrukcji. Stosując metody monitorowania, jak analiza drgań, można wcześnie zauważyć problemy i coś z tym zrobić. To wszystko pomoże w wydłużeniu życia silnika i uniknięciu przestojów w pracy.

Pytanie 21

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Brak ochrony przed wilgocią i pyłem.
B. Wykorzystanie separacji ochronnej.
C. Brak klasy ochronności przed porażeniem.
D. Najwyższy poziom ochrony.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Napis IP00 na obudowie urządzenia elektrycznego oznacza brak ochrony przed wilgocią i kurzem. Klasyfikacja IP (Ingress Protection) jest standardem opracowanym przez Międzynarodową Organizację Normalizacyjną (IEC), który określa poziomy ochrony oferowane przez obudowy urządzeń elektrycznych. W przypadku IP00, brak jakiejkolwiek cyfry oznacza, że urządzenie nie jest chronione ani przed wnikaniem ciał stałych, ani przed wilgocią. W praktyce oznacza to, że takie urządzenia powinny być używane w suchych, czystych i kontrolowanych warunkach, przez co minimalizuje się ryzyko uszkodzenia komponentów w wyniku nadmiernego zapylenia lub kontaktu z wodą. Przykładem zastosowania urządzeń oznaczonych jako IP00 mogą być niektóre elementy wewnętrzne systemów elektronicznych, które są odpowiednio zabezpieczone w zamkniętych obudowach i nie są narażone na działanie czynników zewnętrznych.

Pytanie 22

Aby chronić przewód przed przeciążeniem i zwarciem, wykorzystuje się wyłącznik

A. który działa z przekaźnikiem czasowym
B. z wyzwalaczami przeciążeniowymi oraz zwarciowymi
C. posiadający aparat różnicowoprądowy
D. który współdziała z przekaźnikiem sygnalizacyjnym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik zabezpieczający przewody przed przeciążeniem i zwarciem jest kluczowym elementem systemu elektroinstalacyjnego. Właściwie dobrany wyłącznik, wyposażony w wyzwalacze przeciążeniowe i zwarciowe, automatycznie odcina zasilanie w przypadku, gdy prąd przekroczy dozwoloną wartość. Wyzwalacze przeciążeniowe działają na zasadzie detekcji nadmiernego natężenia prądu, co może prowadzić do przegrzania przewodów i ryzyka pożaru. Z kolei wyzwalacze zwarciowe są odpowiedzialne za natychmiastowe odłączenie obwodu w przypadku zwarcia, co chroni zarówno urządzenia, jak i instalację elektryczną. Przykładem zastosowania takiego wyłącznika może być jego instalacja w domowych instalacjach elektrycznych, gdzie chroni obwody zasilające gniazda elektryczne i urządzenia gospodarstwa domowego. Zgodnie z normami IEC oraz polskimi standardami, instalacje powinny być zabezpieczone przed skutkami przeciążeń i zwarć, co podkreśla znaczenie tego typu wyłączników w zapewnieniu bezpieczeństwa.

Pytanie 23

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
B. Wiertarkę, punktak, zestaw wkrętaków
C. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
D. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór punktaka, młotka, wiertarki udarowej, wiertła widiowego dopasowanego do rozmiarów kołka rozporowego, piły do metalu oraz kompletu wkrętaków jest odpowiedni do montażu rurek PVC na ścianie działowej z cegły pełnej. Punktak i młotek są niezbędne do precyzyjnego wyznaczania miejsc, w których będą wiercone otwory, co pozwala na uniknięcie uszkodzeń materiału oraz zachowanie dokładności w montażu. Wiertarka udarowa, w połączeniu z wiertłem widiowym, zapewnia skuteczne wiercenie w twardym materiale, jakim jest cegła pełna, a odpowiednie dopasowanie wiertła do rozmiaru kołka gwarantuje stabilne mocowanie rurek. Piła do metalu umożliwia precyzyjne przycinanie elementów instalacji, a komplet wkrętaków jest niezbędny do montażu uchwytów mocujących. Taki zestaw narzędzi wpisuje się w dobre praktyki branżowe, gdzie kluczową rolę odgrywa precyzja i odpowiednie przygotowanie do wykonania zadania, co przekłada się na trwałość i bezpieczeństwo instalacji. Przykładem może być sytuacja, w której nieodpowiednie narzędzia mogą prowadzić do uszkodzenia materiałów lub nietrwałego montażu, co w efekcie wiąże się z dodatkowymi kosztami i czasem potrzebnym na poprawki.

Pytanie 24

Jakie urządzenie powinno zastąpić bezpieczniki topikowe 25 A, które chronią obwody silnika trójfazowego?

A. S193C25
B. S191B25
C. S193B25
D. S191C25

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór wyłącznika S193C25 jako zamiennika dla bezpieczników topikowych 25 A, zabezpieczających obwody silnika trójfazowego, jest właściwy ze względu na jego parametry techniczne oraz zgodność z obowiązującymi normami. Wyłącznik S193C25 charakteryzuje się prądem nominalnym 25 A oraz odpowiednią charakterystyką zabezpieczającą, co sprawia, że jest idealnym rozwiązaniem dla obwodów silnikowych. Zastosowanie wyłączników instalacyjnych zamiast bezpieczników topikowych przyczynia się do większej wygody użytkowania, gdyż wyłączniki są wielokrotnego użytku, a ich resetowanie jest prostsze. Ponadto, wyłączniki te oferują lepszą ochronę przed przeciążeniem i zwarciem, co jest kluczowe dla bezpieczeństwa instalacji. Przykładem praktycznego zastosowania wyłącznika S193C25 jest jego montaż w systemach automatyki przemysłowej, gdzie ochrona silników przed różnymi rodzajami awarii ma kluczowe znaczenie dla ciągłości produkcji. Warto również zwrócić uwagę, że wyłącznik S193C25 spełnia normy IEC, co potwierdza jego wysoką jakość oraz bezpieczeństwo użytkowania.

Pytanie 25

Jakie elementy nie są kontrolowane podczas oględzin urządzeń napędowych w czasie ich postoju?

A. poziomu drgań i skuteczności układu chłodzenia
B. ustawienia zabezpieczeń i stanu osłon części wirujących
C. stanu przewodów ochronnych oraz ich połączeń
D. stanu pierścieni ślizgowych oraz komutatorów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca stanu pierścieni ślizgowych i komutatorów jest właściwa, ponieważ podczas przeprowadzania oględzin urządzeń napędowych w czasie postoju nie jest to element, który zazwyczaj podlega rutynowym kontrolom. Pierścienie ślizgowe i komutatory są kluczowymi komponentami w silnikach prądu stałego oraz w niektórych alternatorach, jednak ich stan ocenia się głównie podczas przeglądów większych, planowanych konserwacji. W codziennych oględzinach, które mają na celu zapewnienie bezpieczeństwa i operacyjności urządzeń, bardziej koncentruje się na aspektach takich jak kontrola przewodów ochronnych, które zapewniają bezpieczeństwo operatorów, poziom drgań, które mogą wskazywać na problemy mechaniczne, oraz działania układu chłodzenia, aby zapobiec przegrzewaniu. Przykładowo, w praktyce inżynieryjnej standardy takie jak ISO 9001 obejmują kontrolę jakości i bezpieczeństwa, kładąc nacisk na utrzymanie systemów w dobrym stanie operacyjnym, co potwierdza, że elementy takie jak osłony części wirujących oraz zabezpieczenia są kluczowe w codziennych kontrolach.

Pytanie 26

Jaka jest znamionowa efektywność silnika trójfazowego, jeśli P = 2,2 kW (mocy mechanicznej), UN = 400 V, IN = 4,6 A oraz cos φ = 0,82?

A. 0,84
B. 0,39
C. 0,49
D. 0,69

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Znamionowa sprawność silnika trójfazowego obliczana jest na podstawie stosunku mocy mechanicznej do mocy czynnej dostarczonej do silnika. W tym przypadku, moc mechaniczna wynosi 2,2 kW, a moc czynna można obliczyć z wzoru: P = U * I * √3 * cos φ, gdzie U to napięcie, I to prąd, a cos φ to współczynnik mocy. Podstawiając dane: P = 400 V * 4,6 A * √3 * 0,82, otrzymujemy moc czynną równą około 2,63 kW. Następnie sprawność obliczamy jako: η = P_moc / P_czynna = 2,2 kW / 2,63 kW, co daje wartość około 0,84. W praktyce, znajomość sprawności silników elektrycznych jest kluczowa w doborze odpowiednich jednostek napędowych do maszyn i urządzeń, a także w ocenie efektywności energetycznej systemów. Standardy takie jak IEC 60034-30 definiują klasy sprawności dla silników elektrycznych, co pozwala na ich porównywanie i wybór najbardziej efektywnych rozwiązań.

Pytanie 27

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. zamiana dwóch faz miejscami
B. brak podłączenia jednej fazy
C. brak podłączenia dwóch faz
D. zamiana jednej fazy z przewodem neutralnym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zamiana dwóch faz między sobą jest kluczowym zjawiskiem w trójfazowych układach zasilania, które wpływa na kierunek obrotów silników asynchronicznych. W przypadku silników trójfazowych, kierunek ich obrotów można zmieniać poprzez zamianę miejscami dwóch dowolnych faz zasilających. W praktyce, jeśli podłączymy fazy w inny sposób, silnik zacznie obracać się w przeciwną stronę, co można zaobserwować w przypadku hydroforów, które są często używane do pompowania wody w różnych aplikacjach domowych. W takiej sytuacji, ważne jest, aby zwracać uwagę na prawidłowe oznaczenia faz oraz standardy instalacyjne, które powinny być przestrzegane dla zapewnienia prawidłowego działania urządzeń. Przykładem zastosowania tej wiedzy jest również sytuacja, gdy wykonujemy konserwację instalacji elektrycznej, w której zmieniamy przyłącze, co może prowadzić do niezamierzonych skutków, takich jak zmiana kierunku obrotów silnika. Dlatego ważne jest, aby zawsze upewnić się, że połączenia faz są zgodne z dokumentacją oraz zaleceniami producentów urządzeń.

Pytanie 28

Jaki rodzaj złączki stosowanej w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Śrubową.
B. Gwintową.
C. Samozaciskową.
D. Skrętną.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Samozaciskową" jest poprawna, ponieważ przedstawiona złączka instalacyjna rzeczywiście jest złączką samozaciskową. Złączki tego typu charakteryzują się prostym mechanizmem, który umożliwia szybkie i wygodne połączenie przewodów bez konieczności używania narzędzi. Wystarczy włożyć przewód do otworu zaciskowego, a mechanizm samozaciskowy automatycznie zaciska przewód, co zapewnia stabilne połączenie. Tego rodzaju złączki są powszechnie stosowane w instalacjach elektrycznych, ponieważ przyspieszają proces montażu oraz eliminują ryzyko niewłaściwego użycia narzędzi, które mogą uszkodzić przewody. Złączki samozaciskowe znajdują zastosowanie w różnych obszarach, od instalacji domowych po przemysłowe systemy elektryczne. Warto zaznaczyć, że ich stosowanie jest zgodne z zasadami bezpieczeństwa, ponieważ zapewniają one solidne połączenia, które są niezbędne dla bezpiecznego funkcjonowania instalacji elektrycznych.

Pytanie 29

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω

A. Przerwa w uzwojeniu fazy V
B. Zwarcie międzyzwojowe w fazie V
C. Przerwa w uzwojeniu fazy W
D. Zwarcie międzyzwojowe w fazie W

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie międzyzwojowe w fazie V jest poprawną odpowiedzią, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego ujawnia asymetrię, która wskazuje na uszkodzenie. W prawidłowo działającym silniku rezystancje uzwojeń powinny być zbliżone do siebie. W przypadku, gdy rezystancje między zaciskami U-V i V-W wynoszą 15 Ω, a rezystancja W-U wynosi 20 Ω, wyraźnie widać, że różnice te mogą być efektem zwarcia międzyzwojowego. Zwarcia te prowadzą do zmiany charakterystyki prądowej uzwojenia, co skutkuje obniżeniem rezystancji w fazie, w której występuje uszkodzenie. W praktyce, takie uszkodzenia mogą być niebezpieczne, prowadząc do przegrzania silnika i jego uszkodzenia. W związku z tym, regularne pomiary rezystancji uzwojeń są istotne dla utrzymania sprawności sprzętu. Zgodnie z normami branżowymi, takie kontrole powinny być częścią rutynowego przeglądu konserwacyjnego, co pozwala na wczesne wykrycie problemów i ich eliminację.

Pytanie 30

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy B
B. Klasy A
C. Klasy D
D. Klasy C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na klasy C jako odpowiednie do instalacji ograniczników przepięć w rozdzielnicach mieszkaniowych jest prawidłowa z kilku powodów. Klasa C, według normy IEC 61643-11, jest zaprojektowana do ochrony instalacji elektrycznych przed przepięciami o średniej energii, co czyni je idealnym wyborem dla typowych warunków panujących w budynkach mieszkalnych. Ograniczniki klasy C charakteryzują się czasem reakcji na przepięcia, który jest wystarczająco krótki, by zminimalizować ryzyko uszkodzenia sprzętu AGD czy innych urządzeń elektronicznych, a jednocześnie są w stanie radzić sobie z energią przepięć generowanych przez różne źródła, takie jak wyładowania atmosferyczne czy nagłe zmiany w obciążeniu sieci. Dodatkowo, zaleca się, aby ograniczniki klasy C były instalowane równolegle z ogranicznikami klasy B w celu zapewnienia kompleksowej ochrony. Takie podejście nie tylko zwiększa bezpieczeństwo, ale także zgodność z dobrymi praktykami branżowymi i standardami ochrony przeciwprzepięciowej, co jest kluczowe w kontekście wzrastającej liczby urządzeń elektronicznych w gospodarstwach domowych.

Pytanie 31

Która z podanych metod realizacji instalacji elektrycznych jest przeznaczona do użycia w lokalach mieszkalnych?

A. Na drabinkach
B. W listwach przypodłogowych
C. W kanałach podłogowych
D. Przewodami szynowymi

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór prowadzenia instalacji elektrycznych w listwach przypodłogowych jest zgodny z normami i praktykami stosowanymi w pomieszczeniach mieszkalnych. Listwy przypodłogowe nie tylko maskują przewody, ale również umożliwiają estetyczne i funkcjonalne prowadzenie instalacji. Wykorzystanie listw przypodłogowych pozwala na łatwy dostęp do przewodów w przypadku ich konserwacji lub ewentualnych napraw. Warto wspomnieć, że instalacje prowadzone w listwach przypodłogowych są często stosowane w przypadku modernizacji istniejących budynków, gdzie nie ma możliwości prowadzenia przewodów w sposób tradycyjny. Listwy te są dostępne w różnych kolorach i wzorach, co pozwala na ich bezproblemowe wkomponowanie w wystrój wnętrza. Dodatkowo, zastosowanie listw przypodłogowych zwiększa bezpieczeństwo, ponieważ przewody są osłonięte przed uszkodzeniami mechanicznymi oraz dostępem dzieci. W kontekście norm, prowadzenie instalacji w listwach przypodłogowych powinno być zrealizowane zgodnie z obowiązującymi przepisami, takimi jak PN-IEC 60364, które regulują kwestie związane z bezpieczeństwem instalacji elektrycznych.

Pytanie 32

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. raz na rok
B. co najmniej raz na 5 lat
C. raz na pół roku
D. co najmniej raz na 10 lat

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Instalacja elektryczna oraz piorunochronna w budynkach mieszkalnych jest kluczowym elementem zapewniającym bezpieczeństwo użytkowników oraz ochronę mienia. Zgodnie z obowiązującymi przepisami prawa budowlanego, takie instalacje powinny być poddawane okresowym badaniom co najmniej raz na 5 lat. Taki harmonogram przeglądów ma na celu wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych zagrożeń, takich jak pożary czy porażenia prądowe. Regularne kontrole pozwalają na ocenę stanu technicznego instalacji, w tym ich zgodności z aktualnymi normami oraz skutecznością w ochronie przed skutkami wyładowań atmosferycznych. Przykładem praktycznego zastosowania tej wiedzy może być sytuacja, w której w wyniku regularnych przeglądów wykryto zużycie izolacji, co mogłoby prowadzić do niebezpiecznych warunków. W przypadku instalacji piorunochronnych, ich skuteczność w odprowadzaniu prądów piorunowych również wymaga regularnych ocen, aby zapewnić maksymalną ochronę budynku. Warto zaznaczyć, że zgodność z normami PN-IEC 62305 oraz PN-EN 61439 jest kluczowa dla bezpieczeństwa obiektów.

Pytanie 33

W jaki sposób powinno się przeprowadzać zalecane przez producenta regularne testy działania wyłącznika różnicowoprądowego?

A. Obserwując reakcję wyłączonego wyłącznika na zwarcie przewodów czynnych w obwodzie wyjściowym
B. Obserwując reakcję załączonego wyłącznika na odłączenie przewodu ochronnego w rozdzielnicy
C. Naciskając przycisk TEST na wyłączonym wyłączniku
D. Naciskając przycisk TEST na załączonym wyłączniku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby prawidłowo sprawdzić działanie wyłącznika różnicowoprądowego (RCD), należy nacisnąć przycisk TEST na załączonym wyłączniku. W momencie naciśnięcia przycisku TEST, wyłącznik symuluje wyciek prądu, co powinno spowodować jego natychmiastowe wyłączenie. Działanie to jest zgodne z zaleceniami zawartymi w normach europejskich EN 61008 oraz EN 61009, które podkreślają znaczenie regularnych testów wyłączników RCD w celu zapewnienia bezpieczeństwa elektrycznego. Przykładem zastosowania tej procedury może być okresowe testowanie w instalacjach domowych lub przemysłowych, co powinno odbywać się co najmniej raz na miesiąc. Regularne testowanie RCD jest kluczowe, ponieważ pozwala upewnić się, że wyłącznik będzie działał prawidłowo w przypadku rzeczywistego wycieku prądu, co może zminimalizować ryzyko porażenia prądem lub pożaru. Należy pamiętać, że po teście wyłącznik powinien być ponownie włączony, aby przywrócić normalne funkcjonowanie instalacji elektrycznej.

Pytanie 34

Zgodnie z PN-IEC 60364-4-41:2000, maksymalny dozwolony czas wyłączenia w systemach typu TN przy napięciu zasilania 230 V wynosi

A. 0,2 s
B. 0,1 s
C. 0,8 s
D. 0,4 s

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalny dopuszczalny czas wyłączenia w układach sieci typu TN przy napięciu zasilania 230 V wynosi 0,4 s, zgodnie z normą PN-IEC 60364-4-41:2000. Czas ten jest kluczowy w kontekście bezpieczeństwa użytkowników i ochrony instalacji elektrycznych. W układzie TN zastosowanie przewodów ochronnych oraz odpowiedniego zabezpieczenia (np. wyłączników nadprądowych i różnicowoprądowych) ma na celu zminimalizowanie ryzyka porażenia prądem. Przykładowo, w przypadku uszkodzenia izolacji, szybkie wyłączenie zasilania ogranicza czas, w którym występuje niebezpieczne napięcie na obudowach urządzeń elektrycznych. Z tego względu, normy te zalecają właśnie ten czas wyłączenia, który pozwala pełni zabezpieczyć użytkownika przed skutkami awarii. W praktyce, odpowiednie dobranie elementów zabezpieczających oraz ich regularne testowanie jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, co czyni tę wiedzę niezbędną dla każdego specjalisty w tej dziedzinie.

Pytanie 35

Jakie czynności nie są częścią przeglądów instalacji elektrycznej?

A. pomiarów napięcia oraz rezystancji izolacji
B. oględzin
C. przyjęcia do eksploatacji
D. przeprowadzania konserwacji i napraw

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przyjęcie do eksploatacji instalacji elektrycznej to proces, który następuje po zakończeniu wszystkich działań związanych z jej budową oraz po przeprowadzeniu wymaganych testów i pomiarów. Proces ten nie jest częścią regularnych przeglądów instalacji elektrycznej, które koncentrują się głównie na ocenie stanu technicznego, wykonaniu pomiarów, takich jak napięcia oraz rezystancje izolacji, a także na przeprowadzaniu oględzin wizualnych oraz ocenie bezpieczeństwa użytkowania instalacji. Przyjęcie do eksploatacji obejmuje natomiast sprawdzenie, czy instalacja została wykonana zgodnie z projektem oraz obowiązującymi normami, takimi jak PN-IEC 60364. W praktyce oznacza to, że przed oddaniem instalacji do użytku, wszystkie jej elementy muszą być starannie skontrolowane, a wyniki pomiarów muszą spełniać określone normy, co przekłada się na bezpieczeństwo użytkowników oraz standardy jakości. Warto zauważyć, że odpowiednie dokumenty potwierdzające przyjęcie do eksploatacji są niezbędne dla przyszłych przeglądów oraz konserwacji.

Pytanie 36

Jaki jest minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w budynkach jako wewnętrzne linie zasilające (WLZ)?

A. 16 mm2
B. 6 mm2
C. 4 mm2
D. 10 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w wewnętrznych liniach zasilających (WLZ) wynosi 10 mm2. Ta wartość jest określona przez normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które wskazują na konieczność zabezpieczenia przewodów przed przegrzewaniem oraz zapewnienia odpowiedniej nośności prądowej. Przekrój 10 mm2 jest stosowany, aby zminimalizować straty mocy i zapewnić bezpieczeństwo eksploatacji. Przykładowo, w budynkach jednorodzinnych, gdzie przewody te muszą obsługiwać różnorodne urządzenia elektryczne, zastosowanie przewodów o odpowiednio dużym przekroju pozwala na uniknięcie przeciążeń i potencjalnych zagrożeń pożarowych. W praktyce, stosowanie przewodów o zbyt małym przekroju może prowadzić do ich przegrzewania, co z kolei zwiększa ryzyko awarii systemu zasilania oraz uszkodzenia urządzeń elektrycznych.

Pytanie 37

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Z PVC lub gumowe
B. Metalowe lub gumowe
C. Tylko metalowe
D. Tylko z PVC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.

Pytanie 38

Która z poniższych czynności ocenia efektywność ochrony uzupełniającej przed porażeniem prądem elektrycznym?

A. Pomiar impedancji pętli zwarciowej
B. Badanie wyłącznika różnicowoprądowego
C. Badanie stanu izolacji podłóg
D. Pomiar rezystancji izolacji przewodów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Badanie wyłącznika różnicowoprądowego (RCD) jest kluczowym krokiem w ocenie skuteczności ochrony przed porażeniem prądem elektrycznym. Wyłączniki różnicowoprądowe są zaprojektowane w celu wykrywania różnicy prądów między przewodem fazowym a neutralnym. W momencie, gdy prąd upływowy, wskazujący na potencjalne porażenie prądem, przekroczy ustalony próg, wyłącznik natychmiast odłącza zasilanie, co minimalizuje ryzyko urazu. Badanie RCD polega na sprawdzeniu, czy wyłącznik działa prawidłowo i odłącza obwód w określonym czasie i przy zadanym prądzie upływowym, co jest zgodne z normami takimi jak PN-EN 61008. Praktycznym przykładem jest rutynowe testowanie RCD w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie. Regularne kontrole RCD powinny być częścią planu konserwacji instalacji elektrycznych, aby zapewnić stałą ochronę przed zagrożeniami związanymi z prądem elektrycznym.

Pytanie 39

Jakie środki stosuje się w instalacjach elektrycznych w celu zabezpieczenia przed dotykiem pośrednim (dodatkowa ochrona)?

A. separację elektryczną
B. ogrodzenia oraz obudowy
C. umiejscowienie poza zasięgiem dłoni
D. urządzenia różnicowoprądowe ochronne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Separacja elektryczna jest kluczowym środkiem ochrony przed dotykiem pośrednim, co oznacza, że ​​wszystkie elementy instalacji elektrycznej, które mogą mieć kontakt z użytkownikami, są oddzielone od przewodów pod napięciem. W praktyce oznacza to stosowanie transformatorów separacyjnych w obwodach niskonapięciowych oraz odpowiedniego projektowania instalacji, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Przykładem mogą być instalacje w obiektach medycznych, gdzie separacja elektryczna jest stosowana, aby zapewnić bezpieczeństwo pacjentów i personelu. Zgodnie z normą PN-EN 61140, separacja elektryczna jest jednym z podstawowych wymogów bezpieczeństwa, pozwalającym na zredukowanie ryzyka porażenia prądem w miejscach narażonych na dostęp osób. Warto również zaznaczyć, że separacja elektryczna może obejmować zastosowanie izolacji, dystansów oraz odpowiednich osłon, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 40

Który z wymienionych elementów nie ma wpływu na konieczną częstotliwość przeprowadzania przeglądów okresowych instalacji elektrycznej?

A. Typ instalacji
B. Warunki atmosferyczne, którym podlega instalacja
C. Funkcja budynku
D. Liczba odbiorników zasilanych z instalacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Liczba odbiorników zasilanych z instalacji elektrycznej nie ma bezpośredniego wpływu na wymagania dotyczące częstotliwości sprawdzeń okresowych instalacji. Częstotliwość tych sprawdzeń jest przede wszystkim zależna od warunków zewnętrznych, w jakich funkcjonuje instalacja, przeznaczenia budynku oraz rodzaju instalacji. Na przykład, instalacje znajdujące się w warunkach trudnych, takich jak wysokie wilgotności czy narażenie na agresywne substancje chemiczne, wymagają częstszych przeglądów niż te w standardowych warunkach. Praktyka pokazuje, że zarówno w budynkach mieszkalnych, jak i przemysłowych, kluczowe jest, aby dostosować harmonogram kontrolowania stanu technicznego do specyfiki obiektów. Zgodnie z normami IEC 60364 oraz PN-EN 50110-1, kategorie ryzyka i warunki pracy powinny być brane pod uwagę przy ustalaniu częstotliwości przeglądów. Na przykład, w obiektach użyteczności publicznej i przemysłowych, gdzie występuje wyższe ryzyko uszkodzenia sprzętu elektrycznego, sprawdzenia powinny być przeprowadzane regularnie, nawet niezależnie od liczby odbiorników.