Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 3 maja 2025 13:22
  • Data zakończenia: 3 maja 2025 13:31

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zdiagnostykowane wyniki wykonania polecenia systemu Linux odnoszą się do ```/dev/sda: Timing cached reads: 18100 MB in 2.00 seconds = 9056.95 MB/sec```

A. karty sieciowej
B. karty graficznej
C. dysku twardego
D. pamięci RAM
Analizując inne odpowiedzi, można zauważyć, że wiele osób może mylić rolę dysku twardego z innymi komponentami komputera. Na przykład, karta graficzna jest odpowiedzialna za renderowanie obrazu i nie ma związku z procesem odczytu danych z dysku twardego. Odpowiedzi dotyczące karty sieciowej czy pamięci RAM również są niepoprawne, ponieważ każdy z tych elementów ma odmienną funkcjonalność. Karta sieciowa zajmuje się komunikacją z siecią, a jej wydajność nie jest mierzona w taki sposób, jak odczyt danych z dysku. Z kolei pamięć RAM służy do przechowywania danych tymczasowych, a cache, o którym mowa w pytaniu, odnosi się do mechanizmów buforowania związanych z pamięcią podręczną dysku, a nie samej pamięci RAM. Zrozumienie różnic między tymi komponentami jest kluczowe dla efektywnego diagnozowania i optymalizacji systemów komputerowych. Osoby, które nie mają solidnych podstaw w architekturze komputerowej, mogąłatwo popełnić błędy myślowe, myląc różne funkcje poszczególnych podzespołów. Aby uniknąć takich nieporozumień, warto zagłębić się w dokumentację techniczną oraz standardy branżowe, które wyjaśniają, jak każdy z tych elementów wpływa na ogólną wydajność systemu. Zrozumienie, jak działają te komponenty, pozwala lepiej ocenić ich wpływ na codzienną pracę z komputerem oraz podejmować świadome decyzje dotyczące modernizacji czy naprawy sprzętu.

Pytanie 2

Jaką topologię fizyczną sieci ukazuje przedstawiony rysunek?

Ilustracja do pytania
A. Podwójnego pierścienia
B. Pełnej siatki
C. Gwiazdy
D. Magistrali
Topologia gwiazdy to jedna z najczęściej używanych struktur w sieciach komputerowych. W tej topologii wszystkie urządzenia są podłączone do centralnego punktu, którym zazwyczaj jest switch lub hub. Każde z urządzeń ma swój własny kabel, co oznacza, że jeśli jeden z kabli się uszkodzi, to reszta sieci dalej działa. To jest super ważne, bo łatwo można zlokalizować problem. W praktyce, topologia gwiazdy jest często wykorzystywana w sieciach lokalnych LAN, bo umożliwia łatwe dodawanie nowych urządzeń bez zakłócania działania już działających. Myślę, że dużą zaletą tej struktury jest to, że standardy takie jak Ethernet korzystają z gwiazdy, co zwiększa jej wydajność i niezawodność. Dodatkowo, cała komunikacja przez centralny punkt pozwala na lepsze monitorowanie dostępu i bezpieczeństwa. Tak więc, można powiedzieć, że to naprawdę elastyczne rozwiązanie.

Pytanie 3

Zgodnie z normą PN-EN 50174, okablowanie poziome w systemie okablowania strukturalnego to segment okablowania pomiędzy

A. serwerem a szkieletem sieci
B. gniazdkiem użytkownika a terminalem końcowym
C. punktem rozdzielczym a gniazdem użytkownika
D. punktami rozdzielczymi w głównych pionach budynku
Wybór innych odpowiedzi może wynikać z nieporozumienia dotyczącego definicji oraz struktury okablowania w systemach sieciowych. Na przykład, połączenie między serwerem a szkieletem sieci nie jest klasyfikowane jako okablowanie poziome, lecz raczej jako okablowanie pionowe, które obejmuje połączenia między różnymi poziomami infrastruktury budowlanej. Użytkownicy mogą mylnie sądzić, że cała infrastruktura okablowania odnosi się bezpośrednio do końcowych urządzeń, podczas gdy standard PN-EN 50174 wyraźnie definiuje różnice. Ponadto, niektóre odpowiedzi mogą wskazywać na połączenia w ramach jednego pionu, co również nie pasuje do definicji okablowania poziomego. W kontekście okablowania strukturalnego, istotne jest, aby mieć na uwadze normy bezpieczeństwa i wydajności, które zapewniają, że wszystkie elementy systemu są odpowiednio skalibrowane i spełniają wymagania techniczne. Niezrozumienie tych różnic może prowadzić do niewłaściwego projektowania sieci, a w konsekwencji do problemów z wydajnością i niezawodnością całego systemu, co w praktyce może skutkować wysokimi kosztami napraw oraz przestojami w pracy użytkowników.

Pytanie 4

Karta sieciowa w standardzie Fast Ethernet umożliwia przesył danych z maksymalną prędkością

A. 100 MB/s
B. 10 MB/s
C. 10 Mbps
D. 100 Mbps
Wybór niepoprawnej odpowiedzi może wynikać z nieporozumienia dotyczącego jednostek miary prędkości transferu danych. Odpowiedzi takie jak 10 Mbps czy 10 MB/s mylą dwie różne jednostki: Mbps (megabitów na sekundę) oraz MB/s (megabajtów na sekundę). Jeden megabajt to równowartość 8 megabitów, co oznacza, że wartości te nie są wymienne. Z tego powodu 10 MB/s przekłada się na 80 Mbps, co wciąż nie jest wystarczające w kontekście standardu Fast Ethernet. Ponadto, wartością 100 MB/s również nie jest odpowiadająca standardowi Fast Ethernet prędkość transferu, ponieważ jest to równowartość 800 Mbps, co jest znacznie powyżej maksymalnych możliwości Fast Ethernet. Często błąd ten powstaje na skutek braku znajomości różnic między jednostkami miary lub nieprecyzyjnych informacji dotyczących standardów sieciowych. Aby zrozumieć, dlaczego Fast Ethernet jest ograniczony do 100 Mbps, należy wziąć pod uwagę specyfikacje techniczne oraz różne technologie sieciowe. Standard ten bazuje na technologii kodowania sygnałów oraz architekturze sieci, co determinuje maksymalne wartości prędkości przesyłania danych. W związku z tym ważne jest, aby zwracać uwagę na jednostki oraz kontekst, w jakim są używane, aby uniknąć nieporozumień i błędnych wniosków.

Pytanie 5

Na ilustracji przedstawiono ustawienie karty sieciowej, której adres MAC wynosi

Ilustracja do pytania
A. FEC0:0:0:FFFF::2
B. 192.168.56.1
C. FE80::E890:BE2B:4C6C:5AA9
D. 0A-00-27-00-00-07
Adres MAC jest unikalnym identyfikatorem przypisanym do karty sieciowej przez producenta. Składa się z 48 bitów, co zazwyczaj przedstawiane jest jako 12-cyfrowy adres zapisany w formacie szesnastkowym, np. 0A-00-27-00-00-07. Ten adres jest kluczowy w komunikacji na poziomie warstwy łącza danych w modelu OSI, umożliwiając urządzeniom wzajemne rozpoznawanie się w sieci lokalnej. Standard IEEE dla adresów MAC określa, że pierwsze 24 bity to identyfikator producenta (OUI), a pozostałe 24 bity są unikalne dla danego urządzenia. Zastosowanie adresów MAC jest szerokie, od filtrowania w sieciach Wi-Fi po konfigurację reguł bezpieczeństwa w sieciach LAN. W praktyce, znajomość adresu MAC jest nieoceniona przy diagnozowaniu problemów sieciowych oraz przy konfiguracji sprzętu sieciowego, gdzie identyfikacja urządzeń fizycznych jest niezbędna. W porównaniu do adresów IP, które mogą się zmieniać (szczególnie w przypadku DHCP), adresy MAC pozostają stałe, zapewniając spójność identyfikacji w długim okresie użytkowania.

Pytanie 6

Który symbol przedstawia przełącznik?

Ilustracja do pytania
A. Rys. D
B. Rys. A
C. Rys. B
D. Rys. C
Symbol przedstawiony na Rys. D oznacza przełącznik w kontekście sieci komputerowej. Przełącznik to urządzenie sieciowe, które działa na poziomie warstwy 2 modelu OSI. Jego głównym zadaniem jest łączenie segmentów sieci i kierowanie pakietów danych do odpowiednich urządzeń końcowych na podstawie adresów MAC. Dzięki temu przełączniki zwiększają efektywność i wydajność sieci, kierując ruch tylko do portów, do których jest to potrzebne, a nie do wszystkich jak ma to miejsce w przypadku koncentratorów. Jest to istotne w kontekście skalowalności i bezpieczeństwa, gdyż zmniejsza niepotrzebny ruch i kolizje. Przełączniki są często wykorzystywane w dużych organizacjach do budowy lokalnych sieci komputerowych (LAN). Zgodnie z najlepszymi praktykami branżowymi, przełączniki są kluczowymi elementami w architekturze sieciowej, które wspierają zarządzanie pasmem i zapewniają nieprzerwaną komunikację. Dodatkowo mogą wspierać funkcje takie jak VLAN, co umożliwia logiczne podzielenie sieci na mniejsze segmenty dla lepszego zarządzania.

Pytanie 7

Na ilustracji przedstawiony jest tylny panel jednostki komputerowej. Jakie jest nazewnictwo dla złącza oznaczonego strzałką?

Ilustracja do pytania
A. COM
B. USB
C. LPT
D. FireWire
Złącze oznaczone strzałką to port FireWire znany również jako IEEE 1394 lub i.LINK w zależności od producenta. FireWire został zaprojektowany do szybkiego przesyłania danych co czyni go idealnym do zastosowań takich jak edycja wideo gdzie duże pliki muszą być przesyłane między kamerą a komputerem. W porównaniu z innymi standardami jak na przykład USB 2.0 FireWire oferuje wyższą przepustowość która w wersji 800 może osiągnąć do 800 Mbps. Złącze to było popularne w profesjonalnych urządzeniach audio-wideo i często stosowane w komputerach Apple. FireWire pozwala na bezpośrednie połączenie urządzeń bez potrzeby używania komputera jako pośrednika czyli peer-to-peer co jest dużą zaletą w niektórych zastosowaniach. Standard FireWire wspiera również zasilanie urządzeń bezpośrednio przez kabel co eliminuje konieczność używania dodatkowych zasilaczy. W kontekście dobrych praktyk warto zauważyć że FireWire umożliwia hot swapping czyli podłączanie i odłączanie urządzeń bez konieczności wyłączania zasilania systemu. Chociaż jego popularność spadła z upływem lat z powodu rozwoju nowszych standardów jak USB 3.0 FireWire pozostaje ważnym elementem w historii rozwoju interfejsów komputerowych.

Pytanie 8

Jaką maksymalną ilość rzeczywistych danych można przesłać w ciągu 1 sekundy przez łącze synchroniczne o wydajności 512 kbps, bez użycia sprzętowej i programowej kompresji?

A. W przybliżeniu 55 kB
B. Więcej niż 500 kB
C. Ponad 64 kB
D. W przybliżeniu 5 kB
Wybór innych odpowiedzi, takich jak "Ponad 500 kB" czy "Ponad 64 kB", wynika z błędnego zrozumienia podstawowych zasad przesyłu danych w sieciach komputerowych. Przede wszystkim, warto zauważyć, że łącze o przepustowości 512 kbps odnosi się do ilości bitów, które mogą być przesyłane w ciągu jednej sekundy, a nie bezpośrednio do bajtów. 1 kilobit to 1/8 kilobajta, zatem konwersja na bajty jest kluczowa dla uzyskania właściwego wyniku. Stąd wynika, że prawidłowe przeliczenie daje 64 kB, ale to tylko teoretyczna wartość. W praktyce, protokoły sieciowe wprowadzają dodatkowe obciążenie, co oznacza, że rzeczywista ilość przesyłanych danych będzie niższa. Często występującym błędem jest niebranie pod uwagę overheadu związanego z nagłówkami pakietów czy różnymi protokołami komunikacyjnymi. Na przykład, w protokole TCP/IP, część pasma jest wykorzystywana na nagłówki, co wpływa na rzeczywistą przepustowość. W rezultacie, odpowiadając na pytanie, możemy stwierdzić, że przesyłanie danych na poziomie 500 kB czy 64 kB bez uwzględnienia strat przynosi błędne wnioski. Kluczowe jest zrozumienie, że praktyczne zastosowania w sieciach komputerowych wymagają uwzględnienia strat związanych z protokołami, co przyczynia się do bardziej realistycznych prognoz przesyłania danych.

Pytanie 9

Układy sekwencyjne stworzone z grupy przerzutników, najczęściej synchronicznych typu D, które mają na celu przechowywanie danych, to

A. rejestry
B. dekodery
C. bramki
D. kodery
Rejestry są układami sekwencyjnymi składającymi się z przerzutników, najczęściej typu D, które służą do przechowywania danych. Każdy przerzutnik w rejestrze przechowuje jeden bit informacji, a w przypadku rejestrów o wielu bitach możliwe jest równoczesne przechowywanie i przetwarzanie kilku bitów. Przykładem zastosowania rejestrów jest zapis i odczyt danych w mikroprocesorach, gdzie rejestry pełnią rolę pamięci tymczasowej dla operacji arytmetycznych oraz logicznych. Stosowanie rejestrów w projektowaniu systemów cyfrowych odpowiada za zwiększenie wydajności oraz efektywności procesów obliczeniowych. Zgodnie z dobrymi praktykami inżynieryjnymi, rejestry są również kluczowym elementem w architekturze pamięci, umożliwiając synchronizację z zegarem systemowym oraz zapewniając prawidłowe działanie układów w czasie rzeczywistym. Ponadto, rejestry są często wykorzystywane w różnych układach FPGA oraz ASIC, co podkreśla ich znaczenie w nowoczesnym projektowaniu systemów cyfrowych.

Pytanie 10

Bezpośrednio po usunięciu istotnych plików z dysku twardego, użytkownik powinien

A. ochronić dysk przed zapisywaniem nowych danych
B. wykonać defragmentację dysku
C. zainstalować narzędzie diagnostyczne
D. przeprowadzić test S. M. A. R. T. na tym dysku
Podejście zakładające przeprowadzenie testu S.M.A.R.T. po usunięciu plików jest nieoptymalne w kontekście odzyskiwania danych. Test S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology) ma na celu ocenę stanu technicznego dysku twardego i wykrycie potencjalnych problemów z jego wydajnością czy niezawodnością. Choć może być przydatny do monitorowania ogólnej kondycji dysku, nie wpływa na możliwość odzyskania skasowanych plików. Usunięcie plików nie jest objawem uszkodzenia dysku, a raczej błędu użytkownika. To samo dotyczy instalacji programów diagnostycznych; ich użycie nie pomoże w odzyskaniu danych, a jedynie dostarczy informacji o stanie dysku, co jest nieadekwatne w tej sytuacji. Defragmentacja dysku z kolei, mimo że może poprawić wydajność, jest całkowicie niezalecana po usunięciu plików. Proces ten reorganizuje dane, co w praktyce oznacza, że może nadpisać obszary pamięci, w których znajdowały się usunięte pliki. W rezultacie, działania te mogą doprowadzić do całkowitej utraty możliwości ich odzyskania. Kluczowym błędem jest przekonanie, że działania te pomogą w odzyskaniu danych, podczas gdy w rzeczywistości mogą one tylko pogorszyć sytuację. Dlatego najważniejsze jest zapobieganie zapisowi nowych danych na dysku i podejmowanie działań mających na celu ich odzyskanie zanim nastąpi jakiekolwiek nadpisanie. W przypadku utraty plików, zawsze zaleca się skorzystanie z profesjonalnych usług odzyskiwania danych, które stosują odpowiednie metody i narzędzia do odzyskiwania informacji bez ryzyka ich usunięcia.

Pytanie 11

Który rodzaj pracy Access Pointa jest używany, aby umożliwić urządzeniom bezprzewodowym dostęp do przewodowej sieci LAN?

A. Tryb klienta
B. Repeater
C. Punkt dostępowy
D. Most bezprzewodowy
Wybór innych opcji, takich jak most bezprzewodowy, tryb klienta czy repeater, wskazuje na nieporozumienie dotyczące funkcji i zastosowania punktów dostępu. Most bezprzewodowy, choć może łączyć dwie sieci bezprzewodowe, nie zapewnia urządzeniom bezprzewodowym dostępu do przewodowej sieci LAN. Jego głównym celem jest połączenie dwóch segmentów sieci, a nie udostępnienie zasobów użytkownikom końcowym. Tryb klienta natomiast przekształca punkt dostępowy w urządzenie, które łączy się z innym punktem dostępowym lub routerem, co czyni go nieodpowiednim do funkcji, które pełni punkt dostępowy. Z kolei repeater zwiększa zasięg istniejącej sieci, ale nie pozwala na jednoczesne połączenie wielu urządzeń, co ogranicza jego zastosowanie w kontekście dostępu do sieci LAN. Myląc te różne tryby, można wpaść w pułapkę myślenia, że każdy z nich pełni tę samą funkcję, co prowadzi do nieefektywnego projektowania sieci i obniżenia jej wydajności. Przy projektowaniu sieci bezprzewodowej kluczowe jest zrozumienie ról poszczególnych urządzeń i wybranie odpowiedniego rozwiązania dostosowanego do specyficznych potrzeb sieciowych.

Pytanie 12

Jakie polecenie uruchamia edytor polityk grup w systemach z rodziny Windows Server?

A. services.msc
B. gpedit.msc
C. regedit.exe
D. dcpromo.exe
Polecenie gpedit.msc uruchamia Edytor Zasad Grup, który jest kluczowym narzędziem w systemie Windows Server, umożliwiającym administratorom konfigurację i zarządzanie zasadami grup. Edytor ten pozwala na modyfikację ustawień polityki na poziomie lokalnym lub w ramach domeny, co jest niezbędne do zapewnienia odpowiedniej kontroli nad środowiskiem systemowym. Przykładowo, administrator może wykorzystać gpedit.msc do wprowadzenia restrykcji dotyczących korzystania z konkretnych aplikacji lub do skonfigurowania ustawień zabezpieczeń, takich jak polityki haseł czy ustawienia zapory. Zgodnie z najlepszymi praktykami w zarządzaniu IT, korzystanie z Zasad Grup jest zalecane w celu centralizacji i uproszczenia zarządzania komputerami w sieci. Dzięki temu można zapewnić jednolite standardy bezpieczeństwa oraz ułatwić administrację systemami operacyjnymi. Warto również zaznaczyć, że narzędzie to współdziała z Active Directory, co umożliwia aplikację polityk na wielu komputerach w sieci, co znacznie zwiększa efektywność zarządzania. Poznanie i umiejętność korzystania z gpedit.msc są podstawowymi umiejętnościami, które każdy administrator systemów Windows powinien posiadać.

Pytanie 13

Na schemacie ilustrującym konstrukcję drukarki, w której toner jest nierównomiernie dostarczany do bębna, należy wskazać wałek magnetyczny oznaczony numerem

Ilustracja do pytania
A. 1
B. 3
C. 4
D. 2
Niewłaściwe zidentyfikowanie elementów odpowiedzialnych za podawanie tonera do bębna światłoczułego może prowadzić do błędnych diagnoz i niepotrzebnych napraw. Wałek magnetyczny jest specjalistycznym komponentem którego funkcją jest kontrolowanie przepływu cząsteczek tonera w kierunku bębna. Inne elementy takie jak bęben światłoczuły czy wałek czyszczący pełnią różne role w drukarce laserowej. Bęben światłoczuły jest odpowiedzialny za przenoszenie obrazu na papier a wszelkie zanieczyszczenia na jego powierzchni mogą powodować błędy drukarskie które nie są związane z podawaniem tonera. Wałek czyszczący z kolei usuwa resztki tonera i zanieczyszczenia co zapobiega ich przedostawaniu się na wydruki. Brak zrozumienia tych funkcji prowadzi do mylnych wniosków dotyczących źródła problemów z drukiem. Często spotykanym błędem jest założenie że problemy jakościowe wynikają z uszkodzenia bębna podczas gdy prawdziwą przyczyną może być nierównomierne podawanie tonera przez zużyty lub zanieczyszczony wałek magnetyczny. Dlatego też kluczowe jest dokładne diagnozowanie problemów w oparciu o zrozumienie specyfiki działania różnych komponentów drukarki oraz ich regularna konserwacja i wymiana co jest częścią dobrych praktyk utrzymania urządzeń drukujących.

Pytanie 14

Podaj polecenie w systemie Linux, które umożliwia określenie aktualnego katalogu użytkownika.

A. mkdir
B. pwd
C. path
D. cls
Odpowiedzi takie jak 'cls', 'path' czy 'mkdir' są mylące i nie spełniają funkcji identyfikacji bieżącego katalogu roboczego. 'cls' to polecenie używane w systemie Windows, które służy do czyszczenia ekranu terminala, a nie do sprawdzania lokalizacji. Użytkownicy często mylą je z podobnymi poleceniami, co prowadzi do nieporozumień w kontekście systemów Unixowych, w których 'clear' pełni rolę czyszczenia ekranu. Z kolei 'path' w systemach Unixowych nie jest poleceniem, a zmienną środowiskową, która określa zestaw katalogów, w których system operacyjny przeszukuje pliki wykonywalne. Użytkownicy mogą nie zdawać sobie sprawy, że zmiana zmiennej 'PATH' nie wpływa na lokalizację w terminalu, a jedynie definiuje, które foldery są przeszukiwane przy uruchamianiu programów. Natomiast 'mkdir' to polecenie do tworzenia nowych katalogów, co jest całkowicie inną czynnością, niezwiązaną z określaniem bieżącej lokalizacji. Często użytkownicy nowi w systemach Unixowych nie rozumieją różnicy między tymi poleceniami, co prowadzi do frustracji i pomyłek w codziennej pracy z systemem. Kluczowe jest zrozumienie, które polecenia służą do jakich celów, co nie tylko zwiększa efektywność pracy, ale również minimalizuje ryzyko błędów.

Pytanie 15

Jaką kwotę będzie trzeba zapłacić za wymianę karty graficznej w komputerze, jeżeli jej koszt wynosi 250zł, czas wymiany to 80 minut, a każda rozpoczęta roboczogodzina to 50zł?

A. 250zł
B. 350zł
C. 400zł
D. 300zł
Koszt wymiany karty graficznej w komputerze składa się z dwóch głównych elementów: ceny samej karty oraz kosztu robocizny. W tym przypadku karta graficzna kosztuje 250zł. Czas wymiany wynosi 80 minut, co przelicza się na 1 godzinę i 20 minut. W przypadku kosztów robocizny, każda rozpoczęta roboczogodzina kosztuje 50zł, co oznacza, że za 80 minut pracy należy zapłacić za pełną godzinę, czyli 50zł. Zatem całkowity koszt wymiany karty graficznej wynosi 250zł (cena karty) + 50zł (koszt robocizny) = 300zł. Jednak, ponieważ za każdą rozpoczętą roboczogodzinę płacimy pełną stawkę, należy doliczyć dodatkowe 50zł, co daje 350zł. Praktycznym zastosowaniem tej wiedzy jest umiejętność dokładnego oszacowania kosztów związanych z serwisowaniem sprzętu komputerowego, co jest kluczowe dla osób prowadzących działalność gospodarczą oraz dla użytkowników indywidualnych planujących modernizację swojego sprzętu. Wiedza ta jest również dobrze przyjęta w standardach branżowych, gdzie precyzyjne szacowanie kosztów serwisowych jest nieodzowną praktyką.

Pytanie 16

Włączenie systemu Windows w trybie diagnostycznym umożliwia

A. generowanie pliku dziennika LogWin.txt podczas uruchamiania systemu
B. zapobieganie automatycznemu ponownemu uruchomieniu systemu w razie wystąpienia błędu
C. usuwanie błędów w funkcjonowaniu systemu
D. uruchomienie systemu z ostatnią poprawną konfiguracją
Uruchomienie systemu Windows w trybie debugowania nie służy do uruchamiania systemu z ostatnią poprawną konfiguracją, co jest mylnym przekonaniem związanym z działaniem opcji 'Ostatnia znana dobra konfiguracja'. Ta funkcjonalność jest odrębną metodą przywracania systemu do stanu, w którym działał poprawnie, a nie narzędziem do analizy błędów. Również nie jest prawdą, że tryb debugowania automatycznie tworzy plik dziennika LogWin.txt podczas startu systemu. Takie pliki mogą być generowane w kontekście specyficznych aplikacji lub narzędzi diagnostycznych, ale nie stanowią one standardowego działania trybu debugowania. Ponadto, zapobieganie ponownemu automatycznemu uruchamianiu systemu w przypadku błędu to aspekt związany z mechanizmem odzyskiwania po awarii, a nie bezpośrednio z debugowaniem. Stosowanie trybu debugowania wymaga zrozumienia różnicy pomiędzy diagnostyką a standardowymi procedurami uruchamiania systemu. Często mylone są cele tych trybów, co prowadzi do nieprawidłowych wniosków oraz niewłaściwego stosowania narzędzi diagnostycznych w procesie rozwiązywania problemów. Zrozumienie tych różnic jest kluczowe dla efektywnego zarządzania systemami operacyjnymi.

Pytanie 17

Na przedstawionym schemacie urządzeniem, które łączy komputery, jest

Ilustracja do pytania
A. przełącznik
B. most
C. ruter
D. regenerator
Ruter to urządzenie sieciowe, które łączy różne sieci komputerowe i kieruje ruchem danych między nimi. W przeciwieństwie do przełączników, które działają na poziomie drugiej warstwy modelu OSI i zajmują się przesyłaniem danych w obrębie tej samej sieci lokalnej, rutery funkcjonują w trzeciej warstwie, co pozwala im na międzysegmentową komunikację. Ruter analizuje nagłówki pakietów i decyduje o najlepszej ścieżce przesłania danych do ich docelowego adresu. Jego użycie jest kluczowe w sieciach rozległych (WAN), gdzie konieczna jest efektywna obsługa ruchu pomiędzy różnymi domenami sieciowymi. Rutery wykorzystują protokoły routingu, takie jak OSPF czy BGP, umożliwiając dynamiczną adaptację tras w odpowiedzi na zmiany w topologii sieci. Dzięki temu zapewniają redundancję i optymalizację trasy danych, co jest niezbędne w środowiskach o dużym natężeniu ruchu. W praktyce ruter pozwala również na nadawanie priorytetów i zarządzanie przepustowością, co jest istotne dla utrzymania jakości usług w sieciach obsługujących różnorodne aplikacje i protokoły.

Pytanie 18

W którym typie macierzy, wszystkie fizyczne dyski są postrzegane jako jeden dysk logiczny?

A. RAID 2
B. RAID 1
C. RAID 0
D. RAID 5
RAID 0 to konfiguracja macierzy, w której wszystkie dyski fizyczne są łączone w jeden logiczny wolumen, co przynosi korzyści w postaci zwiększonej wydajności i pojemności. W tej konfiguracji dane są dzielone na segmenty (striping) i rozkładane równomiernie na wszystkich dyskach. To oznacza, że dostęp do danych jest szybszy, ponieważ operacje odczytu i zapisu mogą odbywać się jednocześnie na wielu dyskach. RAID 0 nie zapewnia jednak redundancji – utrata jednego dysku skutkuje całkowitą utratą danych. Ta macierz jest idealna dla zastosowań wymagających dużych prędkości, takich jak edycja wideo, gry komputerowe czy bazy danych o dużej wydajności, w których czas dostępu jest kluczowy. W praktyce, RAID 0 jest często stosowany w systemach, gdzie priorytetem jest szybkość, a nie bezpieczeństwo danych.

Pytanie 19

Topologia fizyczna, w której wszystkie urządzenia końcowe są bezpośrednio połączone z jednym punktem centralnym, takim jak koncentrator lub switch, to topologia

A. Magistrala
B. Pierścień
C. Siatka
D. Gwiazda
Topologia gwiazdy jest jedną z najpopularniejszych architektur sieciowych, w której wszystkie urządzenia końcowe, takie jak komputery, drukarki czy serwery, są bezpośrednio podłączone do centralnego punktu, którym jest koncentrator, przełącznik lub router. Taki układ umożliwia łatwe dodawanie i usuwanie urządzeń z sieci bez zakłócania jej działania, co jest istotne w środowiskach, gdzie zmiany są nieuniknione. W przypadku awarii jednego z urządzeń końcowych, problemy nie rozprzestrzeniają się na inne urządzenia, co zwiększa niezawodność całej sieci. Standardy takie jak Ethernet (IEEE 802.3) często wykorzystują topologię gwiazdy, co potwierdza jej szerokie zastosowanie i akceptację w branży. W praktyce, w biurach i w domowych sieciach lokalnych, topologia gwiazdy pozwala na efektywne zarządzanie ruchem sieciowym i centralizację zarządzania, co jest korzystne w kontekście zabezpieczeń. Efektywność monitorowania i diagnostyki w topologii gwiazdy stanowi kolejny atut, umożliwiający szybkie wykrywanie i rozwiązywanie problemów.

Pytanie 20

Na ilustracji pokazano interfejs w komputerze dedykowany do podłączenia

Ilustracja do pytania
A. plotera tnącego
B. drukarki laserowej
C. skanera lustrzanego
D. monitora LCD
Przedstawiony na rysunku interfejs to złącze DVI (Digital Visual Interface) powszechnie używane do podłączania monitorów LCD do komputera. Jest to cyfrowy standard przesyłania sygnału wideo, co zapewnia wysoką jakość obrazu bez strat wynikających z konwersji sygnału, w przeciwieństwie do starszych analogowych interfejsów takich jak VGA. DVI występuje w różnych wariantach takich jak DVI-D, DVI-I czy DVI-A w zależności od rodzaju przesyłanego sygnału, jednak najczęściej stosowane jest DVI-D do przesyłu czysto cyfrowego obrazu. Stosowanie DVI jest zgodne z wieloma standardami branżowymi, a jego popularność wynika z szerokiego wsparcia dla wysokiej rozdzielczości oraz łatwości obsługi. Współczesne monitory często wykorzystują bardziej zaawansowane złącza takie jak HDMI czy DisplayPort, jednak DVI nadal znajduje zastosowanie szczególnie w środowiskach biurowych i starszych konfiguracjach sprzętowych. Podłączenie monitora za pomocą DVI może być również korzystne w kontekście profesjonalnych zastosowań graficznych, gdzie istotna jest precyzja wyświetlanego obrazu i synchronizacja sygnału cyfrowego.

Pytanie 21

W układzie SI jednostką, która mierzy napięcie, jest

A. amper
B. herc
C. wolt
D. wat
Wolt (symbol: V) jest jednostką miary napięcia elektrycznego w układzie SI. Napięcie, często nazywane różnicą potencjałów, jest miarą energii elektrycznej potrzebnej do przesunięcia ładunku elektrycznego między dwoma punktami. W praktyce, wolt jest kluczowy w wielu zastosowaniach, takich jak obwody elektryczne, systemy zasilania i elektronika. Na przykład, standardowe baterie AA mają napięcie rzędu 1,5 V, co oznacza, że mogą zasilać urządzenia wymagające napięcia w tym zakresie. Zrozumienie pojęcia napięcia jest fundamentalne w inżynierii elektrycznej, a także w codziennych zastosowaniach, takich jak ładowanie urządzeń mobilnych czy zasilanie sprzętu elektronicznego. Przy projektowaniu układów elektronicznych inżynierowie muszą brać pod uwagę napięcia, aby zapewnić, że elementy układu będą działać w bezpiecznych i efektywnych warunkach, zgodnych z normami europejskimi i międzynarodowymi, takimi jak IEC.

Pytanie 22

Nawiązywanie szyfrowanych połączeń pomiędzy hostami w sieci publicznej Internet, wykorzystywane w kontekście VPN (Virtual Private Network), to

A. trasowanie
B. mostkowanie
C. tunelowanie
D. mapowanie
Tunelowanie to kluczowa technika stosowana w tworzeniu zaszyfrowanych połączeń w architekturze VPN (Virtual Private Network). Proces ten polega na tworzeniu bezpiecznego 'tunelu' przez publiczną sieć, co pozwala na przesyłanie danych w sposób zaszyfrowany i prywatny. W praktyce, tunelowanie angażuje różne protokoły, takie jak IPsec, L2TP czy SSTP, które zapewniają ochronę danych przed podsłuchiwaniem oraz integralność przesyłanych informacji. Na przykład, w organizacjach, które umożliwiają pracownikom zdalny dostęp do wewnętrznych zasobów, tunelowanie odgrywa kluczową rolę w zapewnieniu bezpieczeństwa tych połączeń. Dzięki tunelowaniu, każdy pakiet danych podróżujący przez Internet jest chroniony, co stosuje się w dobrych praktykach bezpieczeństwa sieci. Dodatkowo, standardy takie jak IETF RFC 4301 definiują zasady dotyczące bezpieczeństwa tuneli, co czyni tę technikę nie tylko efektywną, ale również zgodną z uznawanymi normami branżowymi.

Pytanie 23

Jak nazywa się jednostka danych PDU w warstwie sieciowej modelu ISO/OSI?

A. bit
B. ramka
C. pakiet
D. segment
Chociaż segment, bit i ramka są terminami używanymi w kontekście przesyłania danych, to nie odnoszą się one do warstwy sieciowej modelu ISO/OSI, co czyni je niepoprawnymi odpowiedziami. Segment odnosi się do warstwy transportowej modelu, gdzie dane są dzielone na mniejsze kawałki, aby zapewnić ich niezawodną transmisję. Protokół TCP (Transmission Control Protocol) operuje na poziomie segmentów, dodając nagłówki zarządzające kontrolą błędów i porządkiem przesyłania. Bit to najmniejsza jednostka informacji w systemie komputerowym, ale nie jest specyficzny dla żadnej warstwy modelu ISO/OSI i nie może być traktowany jako jednostka PDU. Ramka natomiast jest jednostką danych w warstwie łącza danych, gdzie dane są opakowane w ramki zawierające adresy MAC oraz inne informacje potrzebne do przesyłu w sieci lokalnej. Niezrozumienie, które jednostki danych są przypisane do odpowiednich warstw modelu OSI, może prowadzić do błędnego pojmowania struktury komunikacji sieciowej. Ważne jest, aby zrozumieć, że każda z warstw modelu OSI pełni określoną funkcję, i błędne przypisanie terminów do niewłaściwych warstw może skutkować nieefektywnym projektowaniem sieci oraz problemami w diagnostyce i zarządzaniu komunikacją. Dlatego kluczowe jest przyswojenie sobie tych podstawowych koncepcji, aby lepiej zrozumieć, jak działa cały system komunikacji w sieciach komputerowych.

Pytanie 24

Które z poniższych poleceń w systemie Linux służy do zmiany uprawnień pliku?

A. pwd
B. ls
C. chown
D. chmod
Polecenie chmod jest używane w systemach operacyjnych Unix i Linux do zmiany uprawnień plików i katalogów. Uprawnienia te określają, kto i w jaki sposób może czytać, zapisywać lub wykonywać dany plik. Polecenie to jest niezwykle przydatne w kontekście zarządzania bezpieczeństwem i dostępem do zasobów na serwerach i komputerach osobistych. Przykładowo, aby nadać pełne uprawnienia właścicielowi pliku, ale ograniczyć je dla innych użytkowników, można użyć polecenia chmod 700 nazwa_pliku. Ten sposób nadawania uprawnień jest bardzo elastyczny i pozwala na dokładne skonfigurowanie dostępu zgodnie z potrzebami użytkownika lub politykami firmy. Warto także wspomnieć, że chmod wspiera zarówno notację symboliczną (np. chmod u+x) jak i ósemkową (np. chmod 755), co ułatwia jego stosowanie w różnych scenariuszach. Dzięki temu narzędziu administratorzy systemów mogą skutecznie zarządzać dostępem do plików, co jest kluczowe dla utrzymania bezpieczeństwa danych.

Pytanie 25

Jaki system operacyjny funkcjonuje w trybie tekstowym i umożliwia uruchomienie środowiska graficznego KDE?

A. Linux
B. DOS
C. Windows 95
D. Windows XP
Systemy Windows, jak Windows 95 czy XP, to zamknięte systemy operacyjne, które głównie działają w trybie graficznym i nie mają takiego trybu tekstowego jak Linux. Oczywiście, oba systemy mogą uruchamiać różne aplikacje, ale ich architektura i to, jak są zbudowane, są zupełnie inne niż w przypadku Linuxa. Windows 95, wydany w 1995, był jednym z pierwszych, który wprowadził graficzny interfejs użytkownika, ale nie dawał takiej swobody w obsłudze różnych środowisk graficznych, jak Linux. Windows XP to już bardziej rozwinięta wersja, ale i tak nie obsługuje trybu tekstowego tak, jakbyśmy chcieli. Trzeba też wspomnieć o DOSie, który działa w trybie tekstowym, ale nie ma opcji graficznych jak KDE. Czasami można się pomylić, myląc funkcje graficznego interfejsu z elastycznością systemu. Ważne jest, żeby zrozumieć, że Linux łączy możliwość pracy w trybie tekstowym z elastycznością w doborze środowiska graficznego, dzięki czemu jest naprawdę unikalnym narzędziem dla użytkowników oraz programistów.

Pytanie 26

Jakie urządzenie diagnostyczne zostało zaprezentowane na ilustracji oraz opisane w specyfikacji zawartej w tabeli?

Ilustracja do pytania
A. Multimetr cyfrowy
B. Reflektometr optyczny
C. Diodowy tester okablowania
D. Analizator sieci bezprzewodowych
Analizator sieci bezprzewodowych to zaawansowane urządzenie diagnostyczne używane do zarządzania i monitorowania sieci WLAN. Urządzenie to pozwala na przeprowadzanie testów zgodności ze standardami 802.11 a/b/g/n, co jest niezbędne dla zapewnienia efektywnego i bezpiecznego działania sieci bezprzewodowych. Analizatory tego typu umożliwiają diagnozowanie problemów z połączeniami, ocenę bezpieczeństwa sieciowego, a także optymalizację wydajności. Praktyczne zastosowanie obejmuje zarządzanie sieciami w dużych przedsiębiorstwach, centrach danych, a także w środowiskach produkcyjnych, gdzie stabilność i bezpieczeństwo połączeń są kluczowe. Urządzenia te często zawierają funkcje raportowania, co ułatwia analizę i podejmowanie decyzji dotyczących rozwiązywania problemów. Wiedza na temat użycia analizatorów jest istotna dla specjalistów IT, ponieważ pozwala na skuteczne zarządzanie zasobami sieciowymi oraz minimalizację ryzyka związanego z nieautoryzowanym dostępem czy zakłóceniami. Właściwe stosowanie analizatorów jest zgodne z najlepszymi praktykami w branży technologii informacyjnej i jest niezbędne dla utrzymania wysokiej jakości usług sieciowych.

Pytanie 27

W systemie Windows XP, aby zmienić typ systemu plików z FAT32 na NTFS, należy użyć programu

A. subst.exe
B. attrib.exe
C. convert.exe
D. replace.exe
Odpowiedź 'convert.exe' jest prawidłowa, ponieważ jest to narzędzie wbudowane w system Windows, które umożliwia konwersję systemu plików z FAT32 na NTFS bez utraty danych. Program 'convert.exe' działa w wierszu poleceń i jest stosunkowo prosty w użyciu, co czyni go odpowiednim rozwiązaniem dla administratorów systemu oraz użytkowników domowych. Aby użyć tego narzędzia, wystarczy otworzyć wiersz poleceń z uprawnieniami administratora i wpisać polecenie 'convert D: /FS:NTFS', gdzie 'D:' to litera napędu, który chcemy skonwertować. Przed wykonaniem konwersji zaleca się wykonanie kopii zapasowej danych, aby zminimalizować ryzyko ich utraty. Konwersja z FAT32 do NTFS przynosi wiele korzyści, takich jak zwiększona wydajność, obsługa większych plików oraz lepsze zarządzanie uprawnieniami i bezpieczeństwem. Warto zaznaczyć, że NTFS jest bardziej stabilnym i elastycznym systemem plików, co czyni go bardziej odpowiednim do zastosowań w środowiskach, gdzie wymagana jest większa niezawodność i możliwość przydzielania różnych poziomów dostępu do plików.

Pytanie 28

Jaką topologię fizyczną sieci komputerowej przedstawia rysunek?

Ilustracja do pytania
A. Magistrali
B. Siatki
C. Podwójnego pierścienia
D. Gwiazdy rozszerzonej
Topologia podwójnego pierścienia jest zaawansowaną formą sieci pierścieniowej w której dwa pierścienie pozwalają na redundancję i większą niezawodność przesyłania danych. W tej topologii każde urządzenie jest połączone z dwoma sąsiadującymi, co zapewnia alternatywną ścieżkę w przypadku awarii jednego z połączeń. Stosowana jest w środowiskach krytycznych gdzie nieprzerwana komunikacja ma kluczowe znaczenie na przykład w systemach komunikacyjnych miast lub dużych przedsiębiorstwach. Jest to zgodne ze standardami takimi jak SONET i FDDI które zapewniają wysoką przepustowość i bezpieczeństwo danych. W praktyce topologia ta minimalizuje ryzyko przestojów i utraty danych dzięki czemu jest idealnym rozwiązaniem dla infrastruktury IT gdzie niezawodność jest priorytetem. Dzięki podwójnej ścieżce możliwe jest szybkie przełączenie w razie awarii co czyni ją efektywną opcją dla rozległych sieci korporacyjnych i przemysłowych.

Pytanie 29

Badanie danych przedstawionych przez program umożliwia dojście do wniosku, że

Ilustracja do pytania
A. partycja rozszerzona ma pojemność 24,79 GiB
B. partycja wymiany ma rozmiar 2 GiB
C. zainstalowano trzy dyski twarde oznaczone jako sda1, sda2 oraz sda3
D. jeden dysk twardy podzielono na 6 partycji podstawowych
No więc, ta partycja wymiany, znana też jako swap, to naprawdę ważny element, jeśli mówimy o zarządzaniu pamięcią w systemach operacyjnych, zwłaszcza w Linuxie. Jej głównym zadaniem jest wspomaganie pamięci RAM, kiedy brakuje zasobów. Swap działa jak dodatkowa pamięć, przechowując dane, które nie mieszczą się w pamięci fizycznej. W tym przypadku mamy partycję /dev/sda6 o rozmiarze 2.00 GiB, która jest typowa dla linux-swap. To oznacza, że została ustawiona, żeby działać jako partycja wymiany. 2 GiB to standardowy rozmiar, szczególnie jeśli RAM jest ograniczony, a użytkownik chce mieć pewność, że aplikacje, które potrzebują więcej pamięci, działają stabilnie. Dobór rozmiaru swapu zależy od tego, ile pamięci RAM się ma i co się na tym komputerze robi. W maszynach z dużą ilością RAM swap może nie być tak bardzo potrzebny, ale w tych, gdzie pamięci jest mało, jest nieoceniony, bo zapobiega problemom z pamięcią. W branży mówi się, że dobrze jest dostosować rozmiar swapu do tego, jak używasz systemu, niezależnie czy to serwer, czy komputer osobisty.

Pytanie 30

Jakie są różnice pomiędzy poleceniem ps a poleceniem top w systemie Linux?

A. Polecenie ps umożliwia wyświetlenie uprawnień, z jakimi działa proces, co nie jest możliwe w przypadku top
B. Polecenie top pokazuje aktualnie funkcjonujące procesy w systemie, regularnie aktualizując informacje, podczas gdy ps tego nie robi
C. Polecenie ps nie przedstawia stopnia wykorzystania CPU, natomiast polecenie top oferuje tę funkcjonalność
D. Polecenie top pozwala na pokazanie PID procesu, a ps nie ma takiej opcji
Polecenie top jest narzędziem w systemie Linux, które umożliwia monitorowanie aktualnie działających procesów w czasie rzeczywistym, co oznacza, że informacje są regularnie odświeżane na ekranie. Dzięki temu użytkownicy mogą na bieżąco obserwować, jak różne procesy wykorzystują zasoby systemowe, takie jak CPU i pamięć. Zastosowanie polecenia top jest szczególnie przydatne podczas diagnozowania problemów ze wydajnością lub gdy zachodzi potrzeba identyfikacji procesów zajmujących zbyt dużo zasobów. W przeciwieństwie do tego, polecenie ps (process status) wyświetla statyczny stan procesów w momencie wywołania, co oznacza, że nie dostarcza informacji w czasie rzeczywistym. Użytkownicy mogą korzystać z ps do uzyskania szczegółowych informacji o procesach, ale muszą ponownie wywołać polecenie, aby uzyskać aktualne dane. W praktyce, administratorski sposób monitorowania aplikacji polega na używaniu top do ciągłego śledzenia, natomiast ps jest używane do analizowania konkretnych stanów procesów w chwili wykonania komendy.

Pytanie 31

Aby podłączyć drukarkę z interfejsem równoległym do komputera, który ma jedynie porty USB, należy użyć adaptera

A. USB na RS-232
B. USB na COM
C. USB na LPT
D. USB na PS/2
Adapter USB na LPT jest właściwym rozwiązaniem w przypadku podłączania urządzenia z portem równoległym (LPT) do komputera wyposażonego jedynie w porty USB. Ethernet w standardzie LPT (Line Printer Terminal) to złącze stosowane do komunikacji z drukarkami i innymi urządzeniami peryferyjnymi, które wymagają większej przepustowości niż tradycyjne złącza szeregowe. Adaptery USB na LPT konwertują sygnały USB na sygnały równoległe, co umożliwia integrację starszych urządzeń z nowoczesnymi komputerami. W praktyce, po podłączeniu adaptera, system operacyjny zazwyczaj automatycznie wykrywa drukarkę i instaluje odpowiednie sterowniki, co czyni proces prostym i intuicyjnym. Warto również zauważyć, że zgodność z normami USB i LPT zapewnia stabilność połączenia oraz minimalizuje ryzyko utraty danych, co jest istotne w kontekście wydajności zadań drukarskich. W związku z tym, jeśli korzystasz z drukarki starszego typu z portem LPT, wybór adaptera USB na LPT jest najlepszym rozwiązaniem, aby zapewnić prawidłowe działanie urządzenia przy zachowaniu wszystkich standardów branżowych.

Pytanie 32

Przy użyciu urządzenia przedstawionego na ilustracji można sprawdzić działanie

Ilustracja do pytania
A. zasilacza
B. płyty głównej
C. dysku twardego
D. procesora
Dysk twardy nie jest urządzeniem które można przetestować za pomocą testera zasilacza. Dyski twarde wymagają specjalistycznych narzędzi diagnostycznych które analizują wydajność i integralność danych przechowywanych na nośnikach magnetycznych. Problemy związane z dyskami twardymi są zazwyczaj związane z uszkodzeniami mechanicznymi lub błędami logicznymi danych co nie ma związku z zasilaniem. Płyta główna również nie jest testowana bezpośrednio za pomocą testera zasilacza. Chociaż zasilanie ma wpływ na jej funkcjonowanie do testowania płyt głównych stosuje się inne narzędzia diagnostyczne które analizują sygnały POST BIOS-u oraz komunikację z innymi komponentami. Procesor podobnie jak płyta główna nie jest bezpośrednio testowany przez urządzenie do zasilaczy. Testowanie procesorów wymaga benchmarków i testów obciążeniowych które mierzą wydajność i stabilność działania pod obciążeniem. Jest to proces bardziej zaawansowany i wymaga odpowiedniego oprogramowania które jest w stanie zasymulować różnorodne scenariusze działania procesora. W kontekście testera zasilacza kluczowym elementem analizy jest sam zasilacz ponieważ jego poprawne działanie jest fundamentem dla prawidłowego działania wszystkich innych komponentów w systemie komputerowym. Wybór błędnych odpowiedzi wynika z niezrozumienia specyfiki działania testera zasilacza który jest wyspecjalizowanym narzędziem do analizy napięć zasilających a nie diagnostyki poszczególnych komponentów komputera które wymagają zupełnie innych metod testowania i narzędzi diagnostycznych. Zrozumienie tej różnicy jest kluczowe dla skutecznego rozwiązywania problemów w środowisku IT oraz dla prawidłowego wyboru narzędzi diagnostycznych w zależności od rodzaju problemu który występuje w systemie komputerowym. Poprawne użycie odpowiednich narzędzi diagnostycznych pozwala na szybkie i efektywne lokalizowanie problemów co jest istotne w profesjonalnym serwisie IT.

Pytanie 33

Użytkownik o nazwie Gość należy do grupy o nazwie Goście. Grupa Goście jest częścią grupy Wszyscy. Jakie ma uprawnienia użytkownik Gość w folderze test1?

Ilustracja do pytania
A. Użytkownik Gość posiada tylko uprawnienia zapisu do folderu test1
B. Użytkownik Gość nie ma uprawnień do folderu test1
C. Użytkownik Gość ma pełne uprawnienia do folderu test1
D. Użytkownik Gość ma uprawnienia tylko do odczytu folderu test1
W systemach operacyjnych, takich jak Windows, uprawnienia do folderów i plików są zarządzane poprzez przypisywanie ich użytkownikom i grupom. Użytkownik Gość, jako członek grupy Goście, dziedziczy uprawnienia przypisane tej grupie. Na załączonym obrazku widać, że grupa Goście ma odmówione wszelkie uprawnienia do folderu test1. W praktyce oznacza to, że żadna operacja, taka jak odczyt, zapis czy zmiana, nie jest dozwolona dla użytkowników tej grupy. Zasada dziedziczenia uprawnień oznacza, że jeśli grupa, do której należy użytkownik, ma odmówione uprawnienia, to pojedynczy użytkownik także ich nie posiada, chyba że ma nadane uprawnienia indywidualne, co tutaj nie ma miejsca. To podejście do zarządzania uprawnieniami jest zgodne z najlepszymi praktykami, które zalecają minimalizację dostępu do niezbędnego minimum, co zwiększa bezpieczeństwo systemu. Dzięki temu administracja dostępem do zasobów jest bardziej przewidywalna i łatwiejsza w zarządzaniu, a użytkownicy nie mają niepotrzebnych lub nieintencjonalnych uprawnień.

Pytanie 34

Zasada dostępu do medium CSMA/CA jest wykorzystywana w sieci o specyfikacji

A. IEEE802.1
B. IEEE802.11
C. IEEE802.3
D. IEEE802.8
Metoda dostępu do medium CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) jest kluczowym elementem standardu IEEE 802.11, który jest powszechnie stosowany w sieciach bezprzewodowych, takich jak Wi-Fi. CSMA/CA pozwala urządzeniom na monitorowanie medium transmisyjnego przed rozpoczęciem wysyłania danych, co zmniejsza ryzyko kolizji z innymi transmisjami. W praktyce, gdy urządzenie chce nadawać dane, najpierw nasłuchuje, czy medium jest wolne. Jeśli zauważy, że medium jest zajęte, czeka przez losowy czas przed kolejną próbą. Dzięki temu, nawet w zatłoczonych sieciach, CSMA/CA znacząco poprawia efektywność transmisji. Przykładowo, w sieciach domowych, gdzie wiele urządzeń może próbować jednocześnie łączyć się z routerem, CSMA/CA minimalizuje problemy związane z kolizjami. Warto dodać, że standardy IEEE 802.11 obejmują różne wersje, takie jak 802.11n i 802.11ac, które rozwijają możliwości bezprzewodowe, ale zasady dostępu do medium pozostają spójne z CSMA/CA.

Pytanie 35

Aby uniknąć różnic w kolorystyce pomiędzy zeskanowanymi zdjęciami na wyświetlaczu komputera a ich oryginałami, konieczne jest przeprowadzenie

A. interpolację skanera
B. kadrowanie skanera
C. modelowanie skanera
D. kalibrację skanera
Kadrowanie skanera, mimo że wydaje się istotne, nie ma wpływu na odwzorowanie kolorów skanowanych obrazów. Kadrowanie odnosi się do procesu, w którym wybierana jest konkretna część obrazu, przeznaczona do zeskanowania, co ma na celu poprawę kompozycji lub usunięcie zbędnych elementów. W praktyce, kadrowanie nie wpływa na jakość kolorów, które są odwzorowywane przez skaner, a jedynie na obszar obrazu. Z drugiej strony, modelowanie skanera odnosi się do tworzenia algorytmów i matematycznych modeli, które mogą być używane do analizy danych, jednak nie jest to proces bezpośrednio związany z kalibracją kolorów. Podobnie interpolacja skanera zajmuje się technikami wypełniania danych między punktami pomiarowymi, co również nie dotyczy bezpośrednio problemu różnic kolorystycznych. Powszechnym błędem myślowym w tym kontekście jest pomylenie terminów związanych z przetwarzaniem obrazu z tymi, które dotyczą kalibracji i zarządzania kolorami. W rzeczywistości, aby uniknąć różnic kolorów, kluczowym krokiem jest wykonanie kalibracji, a nie próby modyfikacji obrazu poprzez kadrowanie czy inne techniki przetwarzania, które nie wpływają na dokładność odwzorowania kolorów.

Pytanie 36

Jaką topologię fizyczną stosuje się w sieciach z topologią logiczną Token Ring?

A. Gwiazdy
B. Siatki
C. Pierścienia
D. Magistrali
Topologia fizyczna pierścienia jest kluczowym elementem dla funkcjonowania sieci Token Ring. W tej topologii, urządzenia są połączone w sposób, który tworzy zamknięty pierścień, co oznacza, że dane przesyłane są w jednokierunkowym ruchu, które krąży wokół całej sieci. Każde urządzenie odbiera dane od swojego sąsiada i przekazuje je dalej, co minimalizuje kolizje w transmisji. Standardy takie jak IEEE 802.5 definiują zasady działania sieci Token Ring, w tym sposób zarządzania dostępem do medium transmisyjnego. Przykładem praktycznego zastosowania tej topologii są sieci lokalne w biurach, gdzie stabilność i przewidywalność działania sieci są kluczowe. Token Ring, mimo że mniej popularny w porównaniu do technologii Ethernet, oferuje korzyści w specyficznych zastosowaniach, takich jak systemy, gdzie synchronizacja i kontrola dostępu są priorytetowe.

Pytanie 37

Pierwszym krokiem koniecznym do ochrony rutera przed nieautoryzowanym dostępem do jego panelu konfiguracyjnego jest

A. włączenie szyfrowania z zastosowaniem klucza WEP
B. zmiana nazwy loginu oraz hasła domyślnego konta administratora
C. aktywacja filtrowania adresów MAC
D. zmiana standardowej nazwy sieci (SSID) na unikalną
Najważniejsze, co musisz zrobić, to zmienić domyślne hasło i login do swojego rutera. Większość urządzeń przychodzi z ustawieniami, które są znane wszystkim, więc hakerzy mogą łatwo się włamać. Dlatego dobrze jest wymyślić mocne hasło, które ma mieszankę liter, cyfr i znaków specjalnych. Moim zdaniem, warto też od czasu do czasu to hasło zmieniać, a najlepiej mieć różne hasła do różnych urządzeń. Menedżer haseł może być naprawdę pomocny w tworzeniu i przechowywaniu tych trudnych haseł. Poza tym, jeśli nie potrzebujesz zdalnego zarządzania, to lepiej to wyłączyć. Sprawdzanie logów dostępu również jest dobrym pomysłem, bo możesz wtedy zauważyć, czy ktoś próbuje się włamać. Te wszystkie kroki to podstawa bezpieczeństwa w sieci i naprawdę pomagają w ochronie przed atakami.

Pytanie 38

Aby zasilić najbardziej wydajne karty graficzne, konieczne jest dodatkowe 6-pinowe gniazdo zasilacza PCI-E, które dostarcza napięcia

A. +3,3 V oraz +5 V
B. +5 V na 3 liniach
C. +3,3 V, +5 V, +12 V
D. +12 V na 3 liniach
Odpowiedź +12 V na 3 liniach jest prawidłowa, ponieważ standardowe 6-pinowe złącze PCI-E, używane do zasilania kart graficznych, dostarcza trzy linie z napięciem +12 V. W przypadku nowoczesnych kart graficznych, które mają wysokie wymagania energetyczne, zasilanie z tego złącza jest kluczowe dla zapewnienia stabilnej pracy. Przykładem zastosowania tego złącza może być zasilanie kart graficznych w komputerach do gier, stacjach roboczych oraz serwerach, gdzie wydajność graficzna jest kluczowa. Dobre praktyki sugerują, aby użytkownicy upewnili się, że ich zasilacze są certyfikowane i potrafią dostarczyć niezbędną moc oraz, co ważne, zapewniają odpowiednią wentylację oraz zarządzanie ciepłem, aby uniknąć przegrzania komponentów. Zgodność z normami ATX w kwestii zasilania oraz odpowiednie przewody o właściwej średnicy zwiększają bezpieczeństwo i stabilność działania systemu.

Pytanie 39

Tusz żelowy wykorzystywany jest w drukarkach

A. termotransferowych
B. igłowych
C. fiskalnych
D. sublimacyjnych
Tusz żelowy jest powszechnie stosowany w drukarkach sublimacyjnych, gdyż ta technika druku wymaga specjalnych tuszy, które w procesie sublimacji przekształcają się z fazy stałej w gazową, bez przechodzenia przez fazę ciekłą. Tusze sublimacyjne charakteryzują się wysoką jakością oraz żywymi kolorami, co czyni je idealnymi do wydruków na materiałach takich jak tekstylia czy twarde powierzchnie. Przykładem zastosowania tuszu żelowego w drukarkach sublimacyjnych jest produkcja odzieży, gdzie szczegółowe i intensywne kolory są niezbędne do uzyskania satysfakcjonujących efektów wizualnych. Warto również zwrócić uwagę, że zastosowanie tuszy sublimacyjnych w produkcji gadżetów reklamowych czy materiałów promocyjnych jest zgodne z aktualnymi standardami branżowymi, co podkreśla ich znaczenie w nowoczesnym druku cyfrowym. Dzięki właściwościom termicznym i chemicznym tuszy sublimacyjnych osiąga się wysoką odporność na blaknięcie oraz trwałość nadruków, co jest istotne w kontekście długotrwałego użytkowania produktów.

Pytanie 40

Jak można zwolnić miejsce na dysku, nie tracąc przy tym danych?

A. defragmentację dysku
B. sprawdzanie dysku
C. backup dysku
D. oczyszczanie dysku
Oczyszczanie dysku to proces, który pozwala na zwolnienie miejsca na dysku twardym poprzez usunięcie zbędnych plików, takich jak pliki tymczasowe, cache przeglądarek, pliki logów, a także pliki w koszu. Jest to kluczowy krok w utrzymaniu sprawności systemu operacyjnego oraz optymalizacji jego działania. Oczyszczanie dysku można wykonać za pomocą wbudowanego narzędzia w systemie Windows, które umożliwia skanowanie systemu i wybór elementów do usunięcia. Dobrą praktyką jest regularne przeprowadzanie tego procesu, co nie tylko zwalnia miejsce na dysku, ale także poprawia wydajność systemu. W kontekście standardów branżowych, regularne oczyszczanie dysku zaleca się w ramach utrzymania infrastruktury IT, co wpływa na długowieczność sprzętu. Warto również pamiętać, że przed przystąpieniem do oczyszczania, użytkownicy powinni wykonać kopię zapasową ważnych danych, co jest elementem ogólnych zasad zarządzania danymi.