Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 29 maja 2025 08:31
  • Data zakończenia: 29 maja 2025 08:46

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podstawowym krokiem w procesie tworzenia pierwotnej mapy tradycyjną metodą jest umieszczenie na arkuszu ramki sekcyjnej oraz siatki kwadratów. Jakim narzędziem nie można przenieść siatki kwadratów na zdefiniowany arkusz?

A. Kwadratnicy z nakłuwaczem
B. Nanosnika biegunowego
C. Koordynatografu
D. Podziałki transwersalnej i kroczka
Koordynatograf, kwadratnica z nakłuwaczem oraz podziałka transwersalna i kroczek to narzędzia, które w różny sposób mogą być wykorzystane do nanoszenia siatki kwadratów na arkusz mapy. Koordynatograf to kluczowy instrument w kartografii, który pozwala na precyzyjne przenoszenie współrzędnych i naznaczanie punktów w siatce, co jest niezbędne przy tworzeniu dokładnych map. Jego konstrukcja umożliwia łatwe i szybkie ustawienie punktów w odpowiednich miejscach. Kwadratnica z nakłuwaczem to narzędzie, które umożliwia tworzenie siatki poprzez nakłuwanie otworów w odpowiednich odstępach, co jest przydatne, gdy chcemy uzyskać wysoce precyzyjne podziały. Z kolei podziałka transwersalna i kroczek służą do pomiarów i nanoszenia podziałów, co również wspiera proces tworzenia siatki. Warto zauważyć, że każdy z tych instrumentów ma swoje specyficzne zastosowanie i w odpowiednich warunkach może znacznie ułatwić pracę. Błędy w wyborze narzędzi do nanoszenia siatki mogą prowadzić do nieprecyzyjnych odwzorowań i w efekcie do poważnych pomyłek w późniejszych analizach geodezyjnych czy kartograficznych.

Pytanie 2

Długość odcinka zmierzonego na mapie w skali 1:500 to 11,1 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 22,2 m
B. 2,22 m
C. 5,55 m
D. 55,5 m
Często, gdy wybierasz złą odpowiedź, to wynika to z nie do końca jasnego zrozumienia, jak działa skala mapy. Na przykład można pomylić jednostki, myśląc, że 11,1 cm to 1,11 m, co znacznie zaniża długość. Niektórzy mylą się i dzielą, zamiast pomnożyć długość odcinka przez wartość skali. W skali 1:500 zawsze przeliczasz jednostki mapy na rzeczywiste w proporcji 1 cm = 500 cm. Jeśli wychodzą odpowiedzi 5,55 m czy 2,22 m, to znaczy, że ktoś źle podzielił długość przez wartość skali, co zdarza się często. Odpowiedź 22,2 m może wskazywać na błędne jednostki albo przeliczenie. W pomiarach warto konsekwentnie trzymać się jednostek i rozumieć, jak skala wpływa na obraz rzeczywistości. Dlatego ważne jest, żeby starać się stosować poprawne praktyki w obliczeniach, by uniknąć takich pomyłek.

Pytanie 3

Wyznacz przyrost Ayi_2 w osi Y, jeśli zmierzona odległość między punktami 1 i 2 d1-2 = 100,00 m, sinAz1-2 = 0,760400, cosAz1-2 = 0,649455.

A. 6,49 m
B. 64,94 m
C. 7,60 m
D. 76,04 m
Wybór niewłaściwych odpowiedzi może być skutkiem nieporozumień dotyczących podstawowych zasad trygonometrii oraz geodezji. Przy obliczaniu przyrostów współrzędnych Y, kluczowe jest zrozumienie, że przyrost Y można uzyskać jedynie poprzez zastosowanie funkcji sinus kąta azymutalnego. Wiele osób może błędnie pomyśleć, że przyrosty współrzędnych są proporcjonalne do wartości cosinusa, co prowadzi do błędnych rezultatów, takich jak 6,49 m lub 7,60 m. W rzeczywistości wartość cosinusa jest używana do obliczeń dotyczących przyrostów współrzędnych X, a nie Y. Typowym błędem jest także pomijanie kontekstu geometrycznego, co prowadzi do nielogicznych wyników, jak 64,94 m. Ponadto, niektórzy mogą nie uwzględniać, że sinus reprezentuje odwrotną stronę w trójkącie prostokątnym w odniesieniu do kąta, co skutkuje mylnymi interpretacjami długości przyrostów. W praktyce, zrozumienie tych podstawowych koncepcji jest kluczowe, aby uniknąć błędów w obliczeniach, które mogą mieć konsekwencje w rzeczywistych projektach inżynieryjnych i geodezyjnych, gdzie precyzyjne dane są niezbędne dla bezpieczeństwa i dokładności realizowanych działań.

Pytanie 4

Do trwałych metod stabilizacji punktów osnowy poziomej nie zaliczają się

A. trzpienie metalowe
B. paliki drewniane
C. słupy betonowe
D. rurki stalowe
Paliki drewniane nie są odpowiednie do trwałego sposobu stabilizacji punktów osnowy poziomej z kilku powodów. Przede wszystkim, drewno jako materiał jest podatne na degradację, zwłaszcza w warunkach atmosferycznych, co prowadzi do utraty stabilności i dokładności pomiarów geodezyjnych. Z czasem paliki mogą gnić, ulegać deformacji lub przesuwać się w wyniku zmian wilgotności i temperatury. W praktyce geodezyjnej preferuje się materiały o wysokiej trwałości i odporności na czynniki zewnętrzne, takie jak metale i beton, które zapewniają długoterminową stabilność punktów osnowy. Na przykład, trzpienie metalowe i rurki stalowe, wykorzystywane w stabilizacji punktów, są odporne na korozję i mechaniczne uszkodzenia, co czyni je bardziej niezawodnymi w długim okresie. Zgodnie z normami geodezyjnymi, zastosowanie stałych punktów o wysokiej trwałości jest niezbędne do zapewnienia dokładności pomiarów i ich powtarzalności w czasie, co jest kluczowe w projektowaniu i realizacji inwestycji budowlanych oraz infrastrukturalnych.

Pytanie 5

Jeśli długość boku kwadratu zmierzonego w terenie wynosi 10 m, to pole powierzchni tego kwadratu na mapie w skali 1:1000 wynosi

A. 100,0 cm2
B. 10,0 cm2
C. 0,1 cm2
D. 1,0 cm2
Pole powierzchni kwadratu oblicza się za pomocą wzoru P = a², gdzie a to długość boku. W przypadku kwadratu o boku 10 m, pole wynosi P = 10 m × 10 m = 100 m². Jednak, aby obliczyć pole na mapie w skali 1:1000, musimy najpierw przeliczyć długości na jednostki mapy. W skali 1:1000, 1 m w terenie odpowiada 1 cm na mapie. Dlatego bok kwadratu, który wynosi 10 m, w skali mapy będzie miał długość 10 cm. Następnie stosując wzór na pole, obliczamy pole kwadratu na mapie: P = 10 cm × 10 cm = 100 cm². To pole powierzchni przedstawia obszar w skali, jednak w kontekście podanych odpowiedzi poprawna odpowiedź to 1,0 cm², ponieważ skala 1:1000 oznacza, że pole na mapie (100 cm²) musimy przedstawić w formie mniejszych jednostek odpowiadających skali, co prowadzi do 1,0 cm² jako poprawnej odpowiedzi. Tego typu przeliczenia są standardową praktyką w kartografii oraz w geodezji, gdzie zrozumienie skali jest kluczowe dla dokładnych pomiarów i reprezentacji danych na mapach.

Pytanie 6

Na szkicu osnowy pomiarowej nie są umieszczane

A. uśrednione długości linii pomiarowych
B. numery punktów osnowy
C. rzędne i odcięte w szczegółach sytuacyjnych
D. wyrównane wartości kątów poziomych
W szkicu pomiarowej osnowy sytuacyjnej umieszczanie wyrównanych wartości kątów poziomych, numerów punktów osnowy i średnich długości linii może się zdawać zgodne z zasadami geodezyjnymi, ale nie do końca. Wyrównane kąty są ważne, bo dzięki nim możemy lepiej zrozumieć, jak punkty są rozmieszczone, co potem ułatwia dalsze pomiary. Numery punktów to też istotna sprawa, bo pozwalają na identyfikację i późniejsze wykorzystywanie w różnych projektach. Uśrednione długości linii też dostarczają nam info o odległościach. Niemniej jednak, rzędne i odcięte do szczegółów sytuacyjnych są informacjami, które nie powinny się tam znaleźć, bo robią zamieszanie i mogą być zbędne w kontekście podstawowych pomiarów. Zbyt duża ilość detali może prowadzić do nieporozumień i utrudniać późniejsze analizy, więc ważne jest, żeby każdy dokument był jasny i funkcjonalny.

Pytanie 7

Jakie grupy lub grupy dokładnościowe obejmują detale terenowe, których pomiar można zrealizować za pomocą limy pomiarowej, opierając się z jednej strony na narożniku budynku, a z drugiej na latarni?

A. Do II i III grupy
B. Do I i II grupy
C. Tylko do I grupy
D. Tylko do II grupy
Wybór odpowiedzi, która ogranicza pomiary tylko do jednej z grup, na przykład stwierdzenie, że szczegóły terenowe należą tylko do I grupy, nie uwzględnia złożoności pomiarów geodezyjnych. Grupa I jest zarezerwowana dla pomiarów o wyjątkowo wysokiej precyzji, które są typowe dla skomplikowanych projektów wymagających dokładności na poziomie milimetra, co w kontekście terenowym i praktycznym nie zawsze jest konieczne. Z kolei skupienie się jedynie na II grupie pomija fakt, że w niektórych sytuacjach, szczegóły terenowe mogą również wypełniać kryteria III grupy, która obejmuje pomiary o niższej precyzji, co jest powszechnie akceptowane w praktyce geodezyjnej. Osoby odpowiadające w ten sposób mogą mylić się w kwestii hierarchii dokładności pomiarów oraz nie rozumieć, że w rzeczywistych warunkach pracy terenowej często stosuje się różne metody pomiarowe, które są dostosowane do specyfiki zadania. Ignorowanie różnych grup dokładnościowych prowadzi do uproszczeń, które mogą skutkować błędnymi wnioskami i nieefektywnym wykorzystaniem narzędzi pomiarowych, co jest sprzeczne z praktykami określonymi w normach geodezyjnych. Dobrą praktyką jest zrozumienie, że pomiary terenowe mogą być zróżnicowane, a ich klasyfikacja powinna uwzględniać nie tylko techniczne aspekty, ale również kontekst projektu i jego wymagania.

Pytanie 8

Dokumentacja dotycząca pracy geodezyjnej, którą należy wypełnić w ośrodku dokumentacji geodezyjnej i kartograficznej, powinna zawierać

A. datę zakończenia pracy
B. dane dotyczące wykonawcy
C. opis przedmiotu oraz lokalizacji i obszaru realizowanej pracy
D. informację o innych pracach prowadzonych w rejonie zgłaszanej pracy
W przypadku zgłoszenia pracy geodezyjnej, osoba wypełniająca dokumentację może mylnie sądzić, że inne elementy, takie jak termin zakończenia pracy, opis przedmiotu czy informacja o wykonawcy, są kluczowe dla ośrodka dokumentacji geodezyjnej i kartograficznej. Jednakże, w kontekście przeprowadzania takich prac, najważniejszym aspektem jest zrozumienie, jakie inne działania są prowadzone w tym samym czasie na danym obszarze. Termin zakończenia pracy, choć istotny z perspektywy zarządzania projektami, nie dostarcza istotnych informacji o wpływie na inne projekty, podczas gdy opis przedmiotu pracy może być zbyt ogólny i nie uwzględniać specyfiki lokalnych warunków. Informacja o wykonawcy również ma swoje miejsce w dokumentacji, jednakże sama w sobie nie odnosi się do kluczowych współzależności między różnymi pracami geodezyjnymi. Takie podejście do zgłoszenia może prowadzić do pomijania istotnych czynników, które mogą rzekomo kolidować z innymi projektami, co skutkuje problemami z koordynacją działań geodezyjnych. Dlatego zrozumienie znaczenia koordynacji prac w obszarze geodezyjnym oraz odpowiedniego dokumentowania tego aspektu jest kluczowym elementem skutecznego zarządzania projektami geodezyjnymi.

Pytanie 9

Jakie jest przybliżone znaczenie błędu względnego dla odcinka o długości 500,00 m, który został zmierzony z błędem średnim ±10 cm?

A. 1/500
B. 1/1000
C. 1/5000
D. 1/2000
Wybór niepoprawnych odpowiedzi może wynikać z nieprawidłowego zrozumienia definicji błędu względnego oraz sposobu jego obliczania. Przykładem są ułamki 1/1000 i 1/2000, które mogą wydawać się uzasadnione, jednak nie uwzględniają rzeczywistego stosunku błędu do wartości pomiaru. W przypadku błędu bezwzględnego 10 cm w odniesieniu do długości 500 m, błędy te sugerują, że niektórzy mogą mylić jednostki miary lub nieprawidłowo interpretować pojęcie błędu względnego jako małego udziału w dłuższym odcinku. Pamiętaj, że błąd względny informuje nas o tym, jak znaczący jest błąd pomiarowy w stosunku do całkowitych wymiarów obiektu. Kolejną typową pomyłką jest mylenie błędu względnego z wartością bezwzględną; błąd bezwzględny to po prostu wartość błędu, natomiast błąd względny to jego stosunek do całkowitych wymiarów. Odpowiedzi takie jak 1/500 mogą się wydawać realne, jednak nie uwzględniają rzeczywistego wpływu błędu na całkowitą długość. Przy analizowaniu wyników pomiarów warto stosować standardy metrologiczne, które pomogą w wyciąganiu poprawnych wniosków oraz w ocenie dokładności i precyzji narzędzi pomiarowych.

Pytanie 10

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych przy użyciu metody ortogonalnej?

A. Numery obiektów budowlanych
B. Domiary prostokątne
C. Sytuacyjne szczegóły terenowe
D. Wysokości punktów terenu
Szkic polowy z pomiaru szczegółów terenowych metodą ortogonalną jest narzędziem, które ma na celu przedstawienie relacji przestrzennych pomiędzy różnymi obiektami znajdującymi się na danym terenie. W kontekście zamieszczania danych na takim szkicu warto zaznaczyć, że istnieją określone standardy dotyczące tego, co powinno być uwzględnione. Wysokości punktów terenu są danymi, które zazwyczaj są zbierane w ramach pomiarów geodezyjnych, ale nie są one konieczne do przedstawienia na szkicu polowym. Z kolei terenowe szczegóły sytuacyjne, takie jak numery budynków czy domiary prostokątne, są kluczowe dla zrozumienia kontekstu sytuacyjnego. Numery budynków umożliwiają jednoznaczną identyfikację obiektów, co jest niezbędne w dokumentacji planistycznej i urbanistycznej. Domiary prostokątne, czyli pomiary dotyczące wymiarów obiektów, pozwalają na określenie ich wielkości i kształtu, co również jest istotne w kontekście analizy przestrzennej. Często mylnie zakłada się, że wszystkie te informacje są równie istotne. W rzeczywistości, pomiar wysokości jest z reguły bardziej związany z analizą terenu i nie ma bezpośredniego wpływu na przedstawienie układu obiektów. Błędne przekonanie, że wysokości powinny być uwzględniane na szkicie, może prowadzić do nieczytelnych i zbyt skomplikowanych dokumentów, które nie spełniają swoich podstawowych funkcji. W związku z tym, warto znać różnice w danych, które mają być zamieszczane w różnych typach dokumentacji geodezyjnej, aby skutecznie posługiwać się narzędziami geoinformacyjnymi."

Pytanie 11

Jakie grupy błędów, mających wpływ na wyniki pomiarów, są wyróżniane w geodezji?

A. Błędy osobowe, błędy systematyczne, błędy losowe
B. Błędy grube, błędy systematyczne, błędy przypadkowe
C. Błędy grube, omyłki, błędy stałe
D. Błędy stałe, omyłki, błędy systematyczne
W geodezji mamy trzy główne grupy błędów, które mogą wpłynąć na to, co zmierzymy. Po pierwsze, są błędy grube, które mocno psują wyniki. Często wynikają z tego, że coś źle odczytaliśmy albo popełniliśmy błąd przy obsłudze sprzętu. Na przykład, zawsze trzeba uważać, żeby dobrze wpisać wartości do systemu, bo jeden zły krok i wszystko się sypie. Potem są błędy systematyczne. To takie błędy, które sobie powtarzają przez to, że narzędzie pomiarowe może być źle kalibrowane. Jak coś jest źle ustawione, to za każdym razem będziemy dostawać ten sam zły wynik. A na końcu mamy błędy przypadkowe. To te, które się zdarzają bez żadnego ostrzeżenia, jak zmiany pogody czy losowe wahania w wynikach. W geodezji ważne jest, żeby te błędy identyfikować i minimalizować, bo w projektach budowlanych czy geodezyjnych precyzyjne pomiary to klucz do sukcesu.

Pytanie 12

W teodolicie oś rotacji instrumentu jest oznaczona

A. ll
B. vv
C. cc
D. hh
Odpowiedź 'vv' jest prawidłowa, ponieważ oznaczenie to odnosi się do osi obrotu teodolitu. Teodolit jest precyzyjnym instrumentem stosowanym w geodezji do pomiarów kątów poziomych i pionowych. Oś obrotu instrumentu jest kluczowym elementem, który pozwala na dokonywanie dokładnych pomiarów. Jest to oś, wokół której instrument obraca się, co umożliwia precyzyjne celowanie na obiekty. W praktyce, podczas ustawiania teodolitu, operator musi zapewnić, że oś obrotu jest idealnie wyrównana z punktem pomiarowym. Wykorzystanie oznaczenia 'vv' jest standardem w branży, co ułatwia komunikację między specjalistami. Warto również zauważyć, że dobrym zwyczajem jest regularne kalibrowanie teodolitu, aby zapewnić jego dokładność i wiarygodność w pomiarach. Wiedza na temat funkcji i oznaczeń elementów teodolitu jest kluczowa dla skutecznego prowadzenia prac geodezyjnych oraz inżynieryjnych, co potwierdzają międzynarodowe normy ISO dotyczące pomiarów geodezyjnych.

Pytanie 13

Na podstawie przedstawionego raportu z wyrównania współrzędnych punktów osnowy realizacyjnej określ, ile wynosi błąd średni położenia punktu 1005.

Lp.Nr PX [m]Y [m]Mx [m]My [m]Mp [m]KL
11000843729.5930255814.63260.00790.01820.0198
21004843905.8055255769.88160.01440.01830.0233
31003843923.6493255717.15190.01660.01850.0248
41002843906.0657255712.58920.01790.01860.0258
51005843936.8654255729.41120.01580.01850.0243
61221843726.5500255606.63000.00000.00000.0000
7767845301.9800255940.35000.00000.00000.0000s
81336845312.2400255012.03000.00000.00000.0000s
91228844953.2000257194.25000.00000.00000.0000s

A. 23,4 mm
B. 24,3 mm
C. 18,5 mm
D. 15,8 mm
Błędne odpowiedzi wskazują na powszechne nieporozumienia dotyczące analizy danych pomiarowych oraz interpretacji raportów z wyrównania współrzędnych. Na przykład, podanie wartości 18,5 mm sugeruje, że pomiar został niedoszacowany, co może wynikać z pomyłki w odczycie lub z nieprawidłowego zrozumienia metodyki obliczeń. W przypadku odpowiedzi 23,4 mm oraz 15,8 mm, można zauważyć, że mogą one być wynikiem błędów w obliczeniach statystycznych, które często są stosowane do oceny precyzji pomiarów. Dobrze jest pamiętać, że błąd średni położenia to nie tylko suma błędów indywidualnych, ale również uwzględnia rozkład błędów w kontekście całego zbioru pomiarowego. Powszechnym błędem myślowym jest skupienie się na pojedynczych wartościach bez szerszej analizy raportu, co prowadzi do niesłusznych wniosków. Odpowiednia interpretacja raportów z wyrównania wymaga znajomości metod statystycznych oraz umiejętności analizy danych, co jest kluczowe w geodezji, aby zapewnić zgodność z przyjętymi standardami jakości oraz dokładności pomiarów.

Pytanie 14

W jakim zakresie znajduje się azymut boku AB, jeżeli różnice współrzędnych między punktem początkowym a końcowym boku AB są następujące: ΔXAB < 0, ΔYAB > 0?

A. 0÷100g
B. 200÷300g
C. 100÷200g
D. 300÷400g
Zrozumienie azymutów i ich zakresów jest kluczowe w geodezji i inżynierii lądowej. Odpowiedzi sugerujące przedziały 200÷300g, 0÷100g, czy 300÷400g są błędne z powodu niewłaściwej interpretacji różnic współrzędnych. Przedział 0÷100g sugeruje kierunki północno-wschodnie, gdzie zarówno ΔX, jak i ΔY byłyby dodatnie, co jest sprzeczne z danymi, ponieważ ΔX jest ujemne. Natomiast przedział 200÷300g obejmuje azymuty w kierunku południowym, które nie pasują do sytuacji, gdy ΔY jest dodatnie, a ΔX ujemne. Przedział 300÷400g, który odpowiada kierunkowi południowo-zachodniemu, również nie jest właściwy w obliczeniach, ponieważ ten azymut oznacza, że zarówno współrzędne X, jak i Y byłyby skierowane w kierunku południowym. Zrozumienie, jak różnice współrzędnych wpływają na określenie azymutu, jest kluczowe dla uniknięcia takich błędów w przyszłości. W praktycznych zastosowaniach geodezyjnych, precyzyjne obliczenia tych wartości są niezbędne do określenia właściwych kierunków w pracy terenowej oraz w inżynierii, a także w systemach informacji geograficznej, gdzie dokładność obliczeń wpływa na efektywność wykonania projektów.

Pytanie 15

Oznaczenie punktu na profilu poprzecznym trasy L 14,5 wskazuje, że jego odległość od osi trasy po lewej stronie wynosi

A. 0,145 m
B. 1,450 m
C. 145,000 m
D. 14,500 m
Odpowiedź 14,500 m jest właściwa, ponieważ w kontekście profilu poprzecznego trasy, oznaczenie L 14,5 wskazuje na odległość od osi trasy w metrach. System oznaczeń stosowany w inżynierii lądowej i transportowej, w tym w projektowaniu dróg i kolei, przyjmuje, że wartości po 'L' są podawane w metrach, a ich liczba jest interpretowana jako odległość od linii centralnej. Przykładowo, jeżeli mamy trasę kolejową, oznaczenie L 14,5 może odnosić się do konkretnego punktu, który znajduje się 14,5 metra na lewo od osi centralnej torów. Tego rodzaju dane są kluczowe przy planowaniu infrastruktury, gdyż pozwalana na precyzyjne rozmieszczenie elementów takich jak perony, przejazdy, czy urządzenia sygnalizacyjne. Zrozumienie tego systemu oznaczeń jest niezbędne dla inżynierów, architektów i osób zajmujących się projektowaniem infrastruktury transportowej, aby zapewnić efektywne i bezpieczne użytkowanie dróg i tras kolejowych.

Pytanie 16

Wskazanie lokalizacji pikiet w terenie oznacza zdefiniowanie miejsca, w którym podczas dokonywania pomiaru

A. powinno być ustawione lustro lub łata
B. powinien być pomiarowy
C. powinien znajdować się obserwator
D. powinno znajdować się stanowisko instrumentu
Poprawna odpowiedź wskazuje, że określenie położenia pikiet w terenie oznacza wskazanie miejsca, gdzie powinno być ustawione lustro lub łata. W kontekście pomiarów geodezyjnych, lustro lub łata jest kluczowym elementem, który umożliwia precyzyjne odczytywanie pomiarów wysokościowych i poziomych. Zastosowanie lustra w połączeniu z instrumentem pomiarowym, takim jak teodolit czy niwelator, pozwala na dokładne określenie wysokości punktu oraz jego położenia w przestrzeni. W praktyce, lustro powinno być ustawione w dokładnej linii widzenia z instrumentem, co umożliwia uzyskanie precyzyjnych wyników. Standardy branżowe, takie jak Normy Geodezyjne, podkreślają wagę poprawnego ustawienia lustra dla uzyskania wiarygodnych danych pomiarowych. Przykładowo, w przypadku niwelacji, poprawne ustawienie łaty w punkcie pomiarowym jest kluczowe dla uzyskania dokładnego różnicowania wysokości, co ma ogromne znaczenie w budownictwie oraz inżynierii lądowej, gdzie precyzyjne dane o wysokości są niezbędne.

Pytanie 17

Jakie urządzenie umożliwia przeprowadzenie odczytu szacunkowego z dokładnością do 0,1 najmniejszej działki limbusa?

A. Mikroskop skalowy
B. Mikroskop wskaźnikowy
C. Mikrometr
D. Noniusz
Noniusz jest urządzeniem pomiarowym, które pozwala na dokonywanie precyzyjnych odczytów, ale nie osiąga takiej dokładności jak mikroskop wskaźnikowy. Najczęściej stosowany jest w połączeniu z suwmiarkami lub innymi narzędziami, co umożliwia pomiar długości z dokładnością do 0,1 mm, a nie 0,1 najmniejszej działki limbusa, co jest wymagane w tym przypadku. Mikrometr, z kolei, to narzędzie skonstruowane do precyzyjnych pomiarów grubości i średnic, jednak jego dokładność, choć wysoka, nie jest wystarczająca do zadania związanego z szacunkowym odczytem najmniejszej działki limbusa. Mikroskop skalowy, choć również użyteczny w precyzyjnych pomiarach, to w praktyce nie ma takiej samej funkcjonalności jak mikroskop wskaźnikowy i często nie jest wykorzystywany do oceny szacunkowej. Typowym błędem myślowym przy wyborze narzędzia pomiarowego jest skupianie się na ogólnej precyzji zamiast na specyficznych parametrach wymaganych w danym zastosowaniu. Użytkownicy często nie zdają sobie sprawy, że różne urządzenia mają swoje specyficzne obszary zastosowania, co prowadzi do wyboru narzędzi, które są nieodpowiednie do wymaganej dokładności pomiarów.

Pytanie 18

Co wpływa na wysokości opisów w mapie głównej?

A. Od wartości skalarnej mapy
B. Od typu i stylu pisma
C. Od opisywanej treści i skali mapy
D. Od metody wykonania opisu
Wysokości opisów na mapie zasadniczej zależą w pierwszej kolejności od opisywanej treści oraz skali mapy. Skala mapy definiuje, w jakim stopniu rzeczywista powierzchnia została odwzorowana na mapie, co wpływa na sposób przedstawiania informacji. W praktyce oznacza to, że w przypadku map o dużej skali, które reprezentują mały obszar, opisy mogą być bardziej szczegółowe i tym samym wyższe, aby oddać specyfikę terenu. Na przykład, w mapie, która przedstawia obszar miejski, opisy budynków, ulic czy parków będą miały większą wysokość, aby były czytelne i zrozumiałe dla użytkowników. Dodatkowo, treść opisu, jak np. nazwy ulic czy obiektów, również ma wpływ na ich wysokość, gdyż dłuższe nazwy wymagają więcej miejsca. W branży kartograficznej ważne jest przestrzeganie standardów, takich jak Ustawodawstwo o geoinformacji oraz normy ISO, które określają zasady projektowania map, w tym sposoby przedstawiania opisów. Właściwe zrozumienie tych zasad pozwala tworzyć czytelne i funkcjonalne mapy.

Pytanie 19

Jeżeli rzeczywista długość odcinka wynosi 86,00 m, a jego długość na mapie to 43,00 mm, to w jakiej skali została stworzona mapa, na której ten odcinek został zobrazowany?

A. 1:1000
B. 1:2000
C. 1:250
D. 1:500
Odpowiedź 1:2000 jest prawidłowa, ponieważ skala mapy jest wyrażona jako stosunek długości w terenie do długości na mapie. W tym przypadku długość odcinka w terenie wynosi 86,00 m, co przelicza się na 86000 mm, zaś na mapie długość tego odcinka wynosi 43,00 mm. Aby obliczyć skalę, należy podzielić długość w terenie przez długość na mapie: 86000 mm / 43 mm = 2000. Oznacza to, że 1 mm na mapie odpowiada 2000 mm (czyli 2 m) w terenie. Przykładowo, w praktyce skala 1:2000 jest często stosowana w planowaniu urbanistycznym oraz w szczegółowych mapach geodezyjnych, co pozwala na precyzyjne odwzorowanie obiektów i ich lokalizacji. Dobrą praktyką jest również uwzględnianie w dokumentacji mapowej aspektów takich jak dokładność pomiarów oraz zastosowanie odpowiednich symboli i oznaczeń, co zapewnia lepsze zrozumienie prezentowanych informacji.

Pytanie 20

Na mapie zasadniczej sieci oznaczane są kolorem brązowym?

A. kanalizacyjne
B. gazowe
C. ciepłownicze
D. elektroenergetyczne
Brązowy kolor na mapach zasadniczych jest standardowym oznaczeniem dla sieci kanalizacyjnych. Oznacza to, że wszelkie elementy związane z systemami odprowadzania ścieków oraz ich infrastrukturą są reprezentowane tą barwą. W praktyce, oznaczenie to jest istotne dla planowania przestrzennego oraz realizacji projektów budowlanych, ponieważ umożliwia inżynierom i projektantom łatwe zidentyfikowanie istniejących sieci kanalizacyjnych, co jest kluczowe przy wykopach i innych pracach ziemnych. Ponadto, zgodnie z normą PN-ISO 19115, stosowanie kolorów na mapach powinno być spójne i odzwierciedlać powszechnie przyjęte praktyki, co pozwala uniknąć nieporozumień w interpretacji danych przestrzennych. Zrozumienie systemów kanalizacyjnych jest niezbędne w kontekście zarządzania wodami oraz ochrony środowiska, co podkreśla ich znaczenie w infrastrukturze miejskiej.

Pytanie 21

Dlaczego w geodezji ważna jest kalibracja przyrządów pomiarowych?

A. Aby ułatwić transport sprzętu na miejsce pomiaru.
B. Aby zredukować zużycie materiałów pomiarowych.
C. Aby przyspieszyć proces wykonywania pomiarów.
D. Aby zapewnić dokładność i wiarygodność pomiarów.
Kalibracja przyrządów pomiarowych jest kluczowa w geodezji, ponieważ zapewnia dokładność i wiarygodność wyników pomiarów. W geodezji precyzja pomiarów jest fundamentalna, gdyż nawet najmniejsze błędy mogą prowadzić do znaczących nieścisłości w odwzorowaniu terenu czy projektowaniu infrastruktury. Regularna kalibracja gwarantuje, że instrumenty pomiarowe działają zgodnie z ich specyfikacjami i są w stanie generować wyniki zgodne z wymaganiami projektowymi oraz normami branżowymi. Bez kalibracji, sprzęt mógłby generować błędne odczyty z powodu zużycia, zmian w warunkach środowiskowych czy niewłaściwej obsługi. Praktyczne zastosowanie kalibracji widoczne jest na przykład w budownictwie, gdzie precyzyjne pomiary są niezbędne do prawidłowego wykonania konstrukcji. Ponadto, kalibracja jest zgodna z dobrymi praktykami branżowymi i standardami ISO, które wymagają, by wszystkie urządzenia pomiarowe były regularnie kontrolowane i kalibrowane. Dzięki temu geodeci mogą być pewni, że ich praca jest dokładna i zgodna z oczekiwaniami klientów oraz przepisami prawa.

Pytanie 22

Jakie jest zastosowanie pionownika optycznego w geodezyjnej obsłudze budowlanej?

A. Do przenoszenia poziomu na dno wykopu
B. Do tyczenia wskaźników konstrukcyjnych na wyższych kondygnacjach
C. Do pomiaru boków tyczonego obiektu
D. Do tyczenia punktów głównych projektowanego obiektu
Kiedy mówimy o pionowniku optycznym, to jego podstawowa funkcja to przenoszenie punktów w pionie. Jeśli ktoś mówi, że używa go do przenoszenia wysokości na dno wykopu czy tyczenia punktów głównych obiektu, to trochę nie do końca rozumie jego zwykłe zastosowanie. Wykop to miejsce, gdzie lepiej sprawdzą się inne narzędzia, jak poziomica albo niwelator. Tyczenie punktów głównych wymaga bardziej złożonych pomiarów, a pionownik nie jest do tego stworzony. Przykład użycia pionownika do takich celów pokazuje, że można się pomylić, nie znając dobrze narzędzi geodezyjnych. Ważne jest, żeby wiedzieć, że każde narzędzie ma swoje miejsce i umiejętność ich używania jest kluczowa, bo złe użycie może prowadzić do błędów w pomiarach oraz w całej budowie.

Pytanie 23

Danymi źródłowymi numerycznymi wykorzystywanymi do generowania mapy numerycznej nie są

A. bezpośrednie pomiary geodezyjne
B. zdjęcia fotogrametryczne
C. zdigitalizowane mapy
D. wywiady branżowe
Inne odpowiedzi, które podałeś, dotyczą metod zbierania danych, które są bardzo ważne przy tworzeniu map numerycznych. Zdjęcia fotogrametryczne używają technologii obrazowania, żeby zebrać informacje o terenie i tworzyć szczegółowe modele. Często się je stosuje w geodezji, bo można szybko zyskać dużo danych. Digitalizowanie map jest równie istotne, bo zmienia stare mapy papierowe na cyfrowe i umożliwia ich lepszą analizę. Pomiary geodezyjne dają najbardziej dokładne dane lokalizacyjne, które są kluczowe do tworzenia dokładnej mapy. Używa się do tego sprzęt geodezyjny, jak teodolity czy tachimetry. Często ludzie myślą, że wywiady branżowe mogą zastąpić te metody, ale to nie jest prawda. Wywiady są bardziej pomocne w zbieraniu danych jakościowych, a nie liczbowych. Ważne jest, żeby rozumieć różnicę między rodzajami danych, żeby dobrze korzystać z różnych źródeł informacji w geodezji i kartografii.

Pytanie 24

Jaki jest błąd względny dla odcinka o długości 150,00 m, który został zmierzony z błędem średnim ±5 cm?

A. 1:3000
B. 1:30
C. 1:300
D. 1:30000
Błąd względny jest kluczowym pojęciem w metrologii, które pozwala ocenić wiarygodność pomiarów. Obliczenie błędu względnego polega na podzieleniu błędu pomiarowego przez wartość zmierzoną, następnie mnożoną przez 100%, aby uzyskać wynik w procentach. W tym przypadku długość odcinka wynosi 150,00 m, a błąd średni wynosi ±5 cm, co jest równoważne ±0,05 m. Obliczamy błąd względny: (0,05 m / 150,00 m) * 100% = 0,0333% (co odpowiada 1:3000). W praktyce, wiedza o błędzie względnym jest niezwykle ważna w inżynierii i naukach przyrodniczych, gdzie precyzja pomiarów ma kluczowe znaczenie. Przykładem zastosowania tego typu obliczeń może być budownictwo, gdzie dokładne pomiary długości i kątów są niezbędne do zapewnienia stabilności konstrukcji. Ustalanie błędów względnych pomaga również w porównywaniu jakości różnych instrumentów pomiarowych oraz ich przydatności w różnych warunkach. Standardy ISO oraz normy krajowe definiują także wymagania dotyczące dopuszczalnych błędów pomiarowych w różnych dziedzinach, co czyni tę wiedzę niezbędną dla profesjonalistów.

Pytanie 25

Jakie wartości przyjmują kąty zenitalne (z)?

A. 0° – 100°
B. 0° – 400°
C. 0° – 200°
D. 0° – 300°
Analizując dostępne odpowiedzi, można zauważyć, że każda z nich wprowadza pewne nieporozumienia dotyczące wartości, jakie mogą przyjmować kąty zenitalne. Wartości powyżej 200° są niepoprawne, ponieważ kąt zenitalny definiuje się jako kąt między pionową linią (w kierunku zenitu) a linią łączącą obserwatora z danym obiektem. Tak więc, przyjmuje on wartości od 0° do 180°, gdzie 0° oznacza obiekt w zenicie, a 90° to horyzont. W związku z tym, wartości takie jak 300° czy 400° są matematycznie nieuzasadnione i mogą prowadzić do błędnych wniosków w obliczeniach astronomicznych. Często mylone są pojęcia związane z kątami w kontekście sferycznej geometrii, co skutkuje błędnym przypisaniem zakresu wartości. Również w praktyce, błąd w interpretacji kąta zenitalnego może prowadzić do poważnych nieścisłości, na przykład w nawigacji czy w obliczeniach związanych z pozycjonowaniem GPS. Standardy branżowe, takie jak normy IAU czy amerykańskie normy geodezyjne, jednoznacznie definiują zakresy kątów zenitalnych oraz ich znaczenie w kontekście różnych dziedzin nauki i technologii. Ważne jest, aby mieć na uwadze te definicje i standardy, aby uniknąć typowych błędów w obliczeniach i interpretacjach, co może mieć kluczowe znaczenie w praktycznych zastosowaniach.

Pytanie 26

Jakie znaczenie ma oznaczenie mz1 1 na mapie zasadniczej?

A. Budynek mieszkalny.
B. Jednorodzinny dom.
C. Wieżowiec.
D. Dom w zabudowie szeregowej
Zrozumienie zapisów na mapie zasadniczej jest kluczowe dla poprawnego odczytywania i interpretacji danych dotyczących przestrzeni miejskiej. Odpowiedzi sugerujące, że zapis 'mz1 1' odnosi się do kamienicy, domu jednorodzinnego lub domu w zabudowie szeregowej, bazują na nieprawidłowej interpretacji klasyfikacji obiektów budowlanych. Kamienice, które są zazwyczaj niskimi lub średniowysokimi budynkami mieszkalnymi, mają zupełnie inną charakterystykę, często związaną z zabudową miejską sprzed XX wieku, co nie pasuje do klasyfikacji wieżowców. Domy jednorodzinne i domy w zabudowie szeregowej są z kolei typowymi przykładami zabudowy niskiej, co również wyklucza je z tej klasyfikacji. Ważne jest, aby uniknąć stereotypowego myślenia, które może prowadzić do błędnych założeń o charakterystyce i przeznaczeniu obiektów budowlanych. Kluczowym błędem w rozumieniu tego zapisu jest zlekceważenie różnic w wysokości i przeznaczeniu budynków, które są podstawowymi kryteriami klasyfikacji. W kontekście planowania przestrzennego, nieprawidłowe przypisanie typów budynków może prowadzić do nieefektywnego zagospodarowania terenu, co w konsekwencji wpływa na jakość życia mieszkańców oraz funkcjonalność obszarów miejskich. Zrozumienie, że 'mz1 1' odnosi się do wieżowca, a nie do innych typów zabudowy, jest kluczowe dla właściwej analizy planów urbanistycznych i projektów architektonicznych.

Pytanie 27

W terenie odległość 100 m na mapie zasadniczej w skali 1:500 odpowiada długości odcinka wynoszącej

A. 20 cm
B. 20 mm
C. 50 cm
D. 50 mm
Odpowiedzi takie jak '50 cm', '50 mm' czy '20 mm' są nietrafione, bo widać, że tu jest błąd w zrozumieniu przeliczeń skali. Na przykład, '50 cm' mówi, że 100 metrów w skali 1:500 ma długość 50 cm, co jest pomyłką, bo to by oznaczało 250 metrów. To typowy błąd, że źle zastosowano proporcje skali, co prowadzi do nieporozumień dotyczących rzeczywistej długości. Z kolei '50 mm' pasowałoby tylko przy skali 1:2000, co pokazuje, jak ważne jest, żeby umieć przeliczać mm i cm w kontekście skali. Odpowiedzi '20 mm' i '20 cm' to też nie to, bo 20 mm to tylko 2 metry, co nie ma zastosowania przy 100 metrach. Przy pracy z mapami trzeba ściśle przestrzegać zasad przeliczania i znać skuteczne metody konwersji jednostek, żeby uniknąć zamieszania w projektach geodezyjnych czy budowlanych. Na co dzień, to pomaga mieć dokładne odwzorowanie i dobrze zaplanować teren, zwłaszcza w kontekście przepisów prawnych i norm, które są kluczowe w geodezji i kartografii.

Pytanie 28

Jaką osnowę powinno się założyć do geodezyjnej obsługi dużego zakładu przemysłowego, którego realizacja przebiegać będzie w etapach?

A. Realizacyjną dwurzędową
B. Realizacyjną wydłużoną
C. Realizacyjną jednorzędową
D. Realizacyjną typu A
Wybór osnowy typu A, tej wydłużonej i jednorzędowej, często robi się z powodu specyficznych wymagań projektowych, ale w przypadku dużych zakładów, może to przynieść sporo problemów. Osnowa realizacyjna typu A, chociaż sprawdza się w mniejszych inwestycjach, nie jest wystarczająco elastyczna, gdy prace prowadzi się w wielu lokalizacjach równocześnie. Skupianie się na pojedynczych punktach kontrolnych ogranicza możliwości koordynacji działań, co może powodować straty czasowe. Z kolei osnowa wydłużona, mimo że powoduje większy zasięg pomiarów, nie oferuje takiej dokładności, jakiej potrzebujemy w złożonych projektach. W dużych inwestycjach, jak budowa zakładów, ważne jest, aby osnowa dostosowała się do zmieniających się warunków budowlanych, a pomiary były jak najdokładniejsze. Osnowa jednorzędowa, choć łatwa w użyciu, nie spełnia wymagań dotyczących dokładności ani możliwości jednoczesnego prowadzenia różnych prac. Mylenie się, że wybór prostszej osnowy ułatwi sprawę, może prowadzić do sporych komplikacji i wydłużenia czasu realizacji projektu.

Pytanie 29

Jaką odległość mają punkty hektometrowe na osi trasy?

A. 100 m
B. 200 m
C. 50 m
D. 150 m
Punkty hektometrowe to standardowe punkty pomiarowe na trasie, które są oddalone od siebie o 100 m. Jest to istotne w kontekście nawigacji, planowania tras oraz w zarządzaniu ruchem drogowym. Umożliwia to precyzyjne określenie lokalizacji pojazdu lub obiektu na danej trasie. W praktyce, punkty te są wykorzystywane w różnych systemach transportowych, w tym w kolejnictwie, gdzie oznaczają konkretne odległości między stacjami. Przy ustalaniu rozkładów jazdy oraz w przypadku monitorowania postępu transportu, dokładne określenie odległości jest kluczowe. Standardy takie jak normy ISO w zakresie transportu i logistyki oraz dobre praktyki związane z oznaczaniem tras uwzględniają właśnie odległości określane w hektometrach, co ułatwia komunikację i zarządzanie procesami logistycznymi.

Pytanie 30

Która z wielkości jest obciążona błędem indeksu w trakcie pomiaru?

A. Kierunek poziomy
B. Kierunek pionowy
C. Odczyt na łacie
D. Odległość skośna
Odległość skośna, kierunek poziomy i odczyt na łacie to rzeczy, które mogą się mylić z błędem indeksu, ale tak naprawdę mają swoje zasady i błędy, które są inne. Odległość skośna, na przykład, jest mierzona w terenie i tam pojawiają się inne błędy, jak refrakcja atmosferyczna czy nieprecyzyjny odczyt. Kierunek poziomy, który jest prostopadły do pionowego, można mierzyć dokładniej, szczególnie z nowoczesnymi instrumentami, które pomagają ograniczyć błędy. Odczyt na łacie też nie jest bezpośrednio związany z błędem indeksu, ale można się pomylić przy odczycie lub gdy teren jest nierówny. Często mylimy te pojęcia z błędem indeksu, bo nie rozumiemy, jak wykonywane są różne pomiary i jakie błędy mogą się zdarzyć. Dlatego ważne jest, żeby korzystać z odpowiednich standardów pomiarowych i technik, żeby zminimalizować błędy i uzyskać wiarygodne wyniki.

Pytanie 31

Który z obiektów należy do I grupy dokładnościowej detali terenowych?

A. Plac sportowy
B. Rura wodociągowa
C. Słup telekomunikacyjny
D. Skarpa bez umocnień
Przewód wodociągowy nie łapie się do I grupy dokładnościowej, bo jego miejsce może się zmieniać i często jest schowany pod ziemią, co utrudnia jego lokalizację. W porównaniu do słupów telekomunikacyjnych, które są stałe, przewody potrzebują dodatkowych informacji, żeby je znaleźć. Zresztą skarpy, jako coś naturalnego, też nie pasują do tej grupy, bo ich położenie zmienia się przez erozję czy działania ludzi. Boisko sportowe, choć jest widoczne, ma zbyt dużą powierzchnię i różne kształty, przez co nie spełnia wymogów precyzyjnej lokalizacji. Widać, że to mylne podejście do oceny obiektów w geodezji. Wiele osób myśli, że widoczne rzeczy są bardziej precyzyjne, co prowadzi do złych wniosków i problemów przy planowaniu w inżynierii oraz urbanistyce. Ważne jest, żeby rozumieć różnice w dokładności obiektów, bo to jest kluczowe dla dobrego zarządzania danymi przestrzennymi.

Pytanie 32

W przypadku wykonania pomiaru niwelacyjnego, jeżeli wartość odczytu z łaty niwelacyjnej kreską górną wynosi g = 2000 mm, a kreską dolną d = 1500 mm, to odczyt z łaty kreską środkową powinien być równy

A. s = 1250 mm
B. s = 2000 mm
C. s = 1750 mm
D. s = 1500 mm
W przypadku niepoprawnych odpowiedzi, takich jak 1250 mm, 1500 mm czy 2000 mm, pojawiają się różne błędy koncepcyjne związane z interpretacją odczytów z łaty niwelacyjnej. Odczyt 1250 mm mógłby wynikać z błędnej kalkulacji lub mylnego założenia, że odczyt kreską środkową jest po prostu wartością skrajną, co jest niezgodne z zasadami niwelacji. Odczyt 1500 mm odpowiada jedynie wartości odczytu dolnego, co nie ma sensu w kontekście pomiaru, ponieważ kreska środkowa powinna znajdować się pomiędzy kreską górną a dolną. Z kolei 2000 mm to wartość odczytu kreską górną, która nie ma zastosowania w obliczeniach średniej. Warto zauważyć, że w przypadku pomiarów niwelacyjnych kluczową zasadą jest prawidłowe zrozumienie relacji pomiędzy poszczególnymi odczytami. Błędy te mogą wynikać z braku wiedzy na temat metod niwelacji oraz z niepoprawnego podejścia do obliczeń. Dlatego ważne jest, aby podczas przeprowadzania pomiarów niwelacyjnych stosować się do ustalonych procedur oraz wykorzystywać właściwe metody obliczeniowe, co pozwala na uniknięcie nieporozumień i zwiększa dokładność wyników. W praktyce, zrozumienie tej zasady jest kluczowe w geodezji, architekturze i inżynierii, gdzie precyzja pomiarów ma zasadnicze znaczenie.

Pytanie 33

Która z map przedstawia rozmieszczenie infrastruktury terenu?

A. Sozologiczna
B. Ewidencyjna
C. Zasadnicza
D. Topograficzna
Wybór pozostałych opcji, takich jak mapa sozologiczna, ewidencyjna czy topograficzna, wskazuje na pewne nieporozumienia dotyczące funkcji tych map. Mapa sozologiczna koncentruje się na ochronie środowiska i zasobów naturalnych, ilustrując zagrożone obszary, co nie ma bezpośredniego związku z usytuowaniem sieci uzbrojenia terenu. Z kolei mapa ewidencyjna skupia się na rejestrze gruntów i budynków, dostarczając danych o właścicielach i statusie prawnym nieruchomości, co również nie obejmuje aspektów infrastrukturalnych. Mapa topograficzna natomiast przedstawia rzeźbę terenu oraz różne obiekty geograficzne, ale nie jest specjalnie ukierunkowana na infrastrukturę techniczną. Te błędne wybory mogą wynikać z mylnego zrozumienia specyfiki każdego rodzaju mapy. W praktyce, brak znajomości zasadniczej mapy może prowadzić do problemów w planowaniu przestrzennym, takich jak konflikty w infrastrukturze, co podkreśla znaczenie właściwego doboru mapy w procesie projektowania i zarządzania przestrzenią.

Pytanie 34

W jakiej skali w systemie PL-2000 wykonany jest dokument mapy zasadniczej o godle 7.125.30.10.3.4?

A. 1:5000
B. 1:500
C. 1:2000
D. 1:1000
Odpowiedzi 1:1000, 1:5000 oraz 1:2000 są nieprawidłowe, ponieważ każda z tych skal ma swoje specyficzne zastosowania, które nie są zgodne z wymaganiami arkusza mapy zasadniczej o godle 7.125.30.10.3.4. Skala 1:1000, w której 1 cm na mapie odpowiada 10 m w terenie, jest stosowana głównie w planach zagospodarowania przestrzennego i dla obszarów miejskich, gdzie szczegółowość jest mniejsza niż w przypadku skali 1:500. Skala 1:5000, gdzie 1 cm odpowiada 50 m, jest używana do map ogólnogeograficznych, co również nie odpowiada potrzebom mapy zasadniczej, która wymaga większej precyzji. Z kolei skala 1:2000 również nie spełnia wymagań dotyczących dokładności odwzorowania szczegółów terenowych, co jest kluczowe w kontekście ewidencji gruntów i budynków. Wybór niewłaściwej skali może prowadzić do błędnych interpretacji danych przestrzennych oraz utrudniać procesy planistyczne i budowlane. Warto zrozumieć, że skala mapy bezpośrednio wpływa na charakterystykę przedstawianych danych i ich użyteczność w analizach przestrzennych, dlatego kluczowe jest stosowanie się do standardów i wymogów odpowiednich dla danego typu mapy.

Pytanie 35

Lokalizacja charakterystycznych punktów w terenie w procesie niwelacji punktów rozprzestrzenionych ustalana jest za pomocą metody

A. biegunowej
B. przedłużeń
C. ortogonalnej
D. tachimetrycznej
Odpowiedź "biegunową" jest prawidłowa, ponieważ metoda biegunowa w niwelacji polega na określaniu położenia punktów na podstawie kątów i odległości od punktu odniesienia. W tym procesie wykorzystuje się teodolity lub tachimetry, które umożliwiają pomiar zarówno kątów poziomych, jak i pionowych. Metoda ta jest szczególnie efektywna w sytuacjach, gdy punkty do niwelacji są rozproszone w terenie, a ich jednoczesne mierzenie z jednego miejsca byłoby utrudnione. Przykład zastosowania to budowa infrastruktury, gdzie konieczne jest precyzyjne ustalenie poziomów różnych punktów, takich jak krawędzie dróg czy fundamenty budynków. Stosując metodę biegunową, inżynierowie mogą uzyskać dokładne dane, które są niezbędne do dalszych prac projektowych. W praktyce ważne jest, aby stosować odpowiednie instrumenty oraz przestrzegać standardów pomiarowych, co zapewnia wiarygodność i dokładność uzyskanych wyników.

Pytanie 36

Zbiór danych o skrócie BDOT500, który służy do tworzenia mapy zasadniczej, oznacza bazę danych

A. geodezyjnej ewidencji sieci uzbrojenia terenu
B. obiektów topograficznych
C. szczegółowych osnów geodezyjnych
D. ewidencji gruntów i budynków
BDOT500, czyli Baza Danych Obiektów Topograficznych 500, jest kluczowym zbiorem danych, który gromadzi informacje o obiektach topograficznych na terenie Polski. Zawiera ona m.in. dane dotyczące rzek, jezior, gór, budynków i innych istotnych elementów krajobrazu. Użycie BDOT500 jest niezbędne w wielu dziedzinach, takich jak planowanie przestrzenne, ochrona środowiska, a także w geodezji i kartografii. Przykładowo, podczas tworzenia map topograficznych, BDOT500 dostarcza rzetelnych i aktualnych informacji, co jest zgodne z normami określonymi w Polskiej Normie PN-EN ISO 19115, dotyczącej metadanych geograficznych. Dzięki temu użytkownicy mogą podejmować decyzje na podstawie wiarygodnych danych. Przy pracy z systemami GIS, wiedza o strukturze i zawartości BDOT500 umożliwia efektywne włączanie tych danych do różnych analiz przestrzennych, co przyczynia się do lepszego zarządzania zasobami oraz ochrony środowiska.

Pytanie 37

Oś stanowiąca południki w odwzorowaniu Gaussa-Krugera w systemie współrzędnych PL-1992 to południk

A. 17o
B. 15o
C. 21o
D. 19o
Wybór innych południków, jak 15o, 17o czy 21o, jest niestety błędny. Każdy z tych południków przydzielony jest do innej strefy w układzie Gaussa-Krugera, co mocno wpływa na to, jak dokładnie odwzorowujemy dane geograficzne w danym miejscu. Jeśli nie zrozumiesz podziału na strefy, łatwo o błędne obliczenia i interpretacje w geodezji. W systemie PL-1992 każda strefa ma przypisany swój południk centralny. Jak wybierasz zły południk, to masz zniekształcenia w odwzorowaniach przestrzennych. Poza tym, brak znajomości standardów geodezyjnych i technik analizy przestrzennej to dość powszechny błąd, który może prowadzić do poważnych problemów w planowaniu i realizacji projektów budowlanych. Źle wybrany południk to niepoprawne ustawienie systemu współrzędnych, co potem wpływa na lokalizację obiektów, ich wzajemne relacje i dokładność pomiarów. Zrozumienie, dlaczego wybór odpowiedniego południka w geodezji i planowaniu jest tak kluczowe, pomoże zapewnić rzetelność i precyzję wszelkich działań dotyczących przestrzeni.

Pytanie 38

Długość odcinka na mapie w skali 1:2 000 wynosi 3 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 60 m
B. 0,6 m
C. 600 m
D. 6 m
Kiedy wybierasz odpowiedzi, które są błędne, jak 6 m, 0,6 m czy 600 m, możesz zauważyć, że tu zachodzą różne błędy. W przypadku 6 m, może to być pomyłka z jednostkami lub po prostu brak zrozumienia koncepcji skali. Skracanie długości od 60 m do 6 m nie ma sensu w rzeczywistości, a 0,6 m sugeruje, że coś się bardzo zmniejszyło, a to jest w sprzeczności z tym, co mamy na mapie. Natomiast 600 m to też zła odpowiedź, bo może świadczyć o myleniu jednostek lub źle wykonanych obliczeniach. Żeby unikać takich pomyłek, ważne jest, żeby zrozumieć, jak skala działa i umieć przeliczać jednostki miary. To przydaje się w wielu dziedzinach, od geodezji po inżynierię. Pamiętaj, żeby starannie podchodzić do obliczeń, bo dokładność się liczy.

Pytanie 39

Podczas określania miejsca punktów szczegółowej osnowy poziomej przy użyciu metody poligonizacji, długości boków w ciągach poligonowych powinny wynosić od 150 do maksymalnie

A. 300 m
B. 400 m
C. 600 m
D. 500 m
Długość 500 m to świetny wybór. W geodezji zaleca się, żeby boki w ciągach poligonowych miały długość od 150 m do maksymalnie 500 m. Dzięki temu pomiary są dokładniejsze, bo ograniczamy błędy, jakie mogą się pojawić w trakcie pracy. Kiedy mamy dłuższe odcinki, na przykład powyżej 500 m, to ryzyko błędów rośnie, co jest szczególnie niekorzystne, gdy mówimy o precyzyjnych pomiarach. Zdarza się, że geodeta pracuje w trudnych warunkach, jak w miastach czy w czasie złej pogody, i wtedy dłuższe odcinki mogą wprowadzać dodatkowe problemy. W kontekście poligonizacji, ważne jest też, żeby punkty były równomiernie rozłożone, co pomaga w lepszym określeniu ich położenia i zmniejsza szanse na błędy. Dlatego dobrze jest trzymać się tych zalecanych długości, żeby nasze wyniki były jak najwyższej jakości.

Pytanie 40

Na podstawie informacji zawartych w dzienniku oblicz wysokość osi celowej na stanowisku drugim (w kolumnie 8).

A. 303,387 m
B. 303,971 m
C. 303,946 m
D. 303,919 m
Wybór innych wartości, takich jak 303,946 m, 303,387 m lub 303,971 m, może wynikać z nieprawidłowego zrozumienia procesu pomiarowego oraz zasadności użycia konkretnej wysokości osi celowej. Często mylone są pojęcia związane z wysokością nad poziomem morza oraz wysokością właściwą, co prowadzi do nieprecyzyjnych oszacowań. Istotne jest, aby zrozumieć, że każda wysokość osi celowej musi być obliczana na podstawie dokładnych danych z dziennika pomiarów, który zawiera informacje o wszystkich istotnych parametrach, takich jak różnice poziomów oraz współrzędne punktów. Problemy mogą również wynikać z błędów w odczycie lub interpretacji danych. Na przykład, pomijanie istotnych szczegółów z dziennika pomiarów, takich jak aktualizacje czy korekty, może prowadzić do wyboru niewłaściwej wartości. Należy także zwrócić uwagę na techniczne aspekty, takie jak kalibracja sprzętu pomiarowego, która jest kluczowa do uzyskania wiarygodnych wyników. W praktyce, pomiar wysokości osi celowej powinien być przeprowadzany wielokrotnie, aby zminimalizować ryzyko błędów, a uzyskane wyniki powinny być weryfikowane w kontekście istniejących danych geodezyjnych oraz standardów branżowych.