Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 7 maja 2025 10:47
  • Data zakończenia: 7 maja 2025 11:06

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Każdorazowo automatycznie szyfrowany staje się plik, który został zaszyfrowany przez użytkownika za pomocą systemu NTFS 5.0, w momencie

A. gdy jest kopiowany przez sieć
B. kiedy jest wysyłany pocztą e-mail
C. gdy jest zapisywany na dysku
D. gdy inny użytkownik próbuje go odczytać
Podczas analizy błędnych odpowiedzi należy zauważyć, że odczytywanie pliku przez innego użytkownika nie powoduje automatycznego szyfrowania. W rzeczywistości, jeśli plik jest już zaszyfrowany, inny użytkownik nie ma możliwości jego odczytania bez odpowiednich uprawnień i kluczy. To prowadzi do mylnego wniosku, że proces szyfrowania zachodzi w momencie, gdy plik jest otwierany przez innego użytkownika, co jest nieprawdziwe i może wynikać z braku zrozumienia, jak działa EFS w NTFS. Kopiowanie pliku przez sieć również nie powoduje automatycznego szyfrowania. Plik zostaje skopiowany w stanie, w jakim aktualnie się znajduje, a szyfrowanie nie jest w tym przypadku stosowane, chyba że zainicjowane zostanie przez użytkownika w trakcie procesu kopiowania. Wysyłanie pliku pocztą e-mail również nie wprowadza automatycznego szyfrowania; plik wysyłany jest w formie, w jakiej został zapisany. Często pojawia się błędne zrozumienie, że szyfrowanie działa w czasie rzeczywistym na każdym etapie interakcji z plikiem, co jest niezgodne z rzeczywistością. Dlatego kluczowe jest, aby użytkownicy byli świadomi, że szyfrowanie automatycznie ma miejsce podczas zapisywania pliku, a nie przy innych interakcjach, co jest fundamentalnym aspektem ochrony danych w złożonych systemach operacyjnych.

Pytanie 2

Schemat blokowy ilustruje

Ilustracja do pytania
A. streamer
B. napęd dyskietek
C. napęd DVD-ROM
D. dysk twardy
Wybranie innych opcji pokazuje, że może nie do końca rozumiesz, jak działają urządzenia pamięci masowej. Napęd DVD-ROM to urządzenie, które odczytuje dane z płyt. A jego schemat jest zupełnie inny, bo nie ma tam wirujących talerzy jak w dyskach twardych. Napęd dyskietek, który kiedyś był na porządku dziennym, jest jeszcze prostszy i to zupełnie inna technologia, bo używa elastycznych dysków o małej pojemności. Te dyskietki są naprawdę już przestarzałe. Natomiast streamer zapisuje dane na taśmach i jest używany dla archiwizacji. Chociaż taśmy oferują dużą pojemność, to mechanizm ich pracy nie przypomina dysków twardych. Rozumienie tych różnic między urządzeniami jest naprawdę ważne, bo potrzebujesz tego w praktycznym zastosowaniu w IT. Może warto jeszcze raz przejrzeć, jak to wszystko działa?

Pytanie 3

Jakie polecenie jest używane do monitorowania statystyk protokołów TCP/IP oraz bieżących połączeń sieciowych w systemach operacyjnych z rodziny Windows?

A. tracert
B. ping
C. route
D. netstat
Polecenie 'netstat' jest kluczowym narzędziem w systemach operacyjnych Windows, służącym do monitorowania statystyk protokołów TCP/IP oraz aktualnych połączeń sieciowych. Umożliwia ono wyświetlenie listy aktywnych połączeń, portów nasłuchujących, a także statystyk dotyczących protokołów, takich jak TCP i UDP. Dzięki temu administratorzy sieci mogą zidentyfikować aktywne połączenia, sprawdzić, które aplikacje są powiązane z danymi połączeniami oraz zdiagnozować problemy związane z działaniem sieci. Na przykład, użycie komendy 'netstat -an' wyświetli wszystkie połączenia oraz porty w stanie nasłuchu, co może być niezwykle przydatne w przypadku podejrzenia nieautoryzowanego dostępu do systemu. W kontekście dobrych praktyk, regularne sprawdzanie statystyk sieciowych za pomocą 'netstat' może pomóc w wykrywaniu potencjalnych zagrożeń i utrzymaniu bezpieczeństwa sieci. Ponadto, narzędzie to jest zgodne z zaleceniami organizacji zajmujących się bezpieczeństwem, które podkreślają istotę monitorowania ruchu sieciowego jako kluczowego elementu zarządzania bezpieczeństwem IT.

Pytanie 4

Podczas testowania kabla sieciowego zakończonego wtykami RJ45 przy użyciu diodowego testera okablowania, diody LED zapalały się w odpowiedniej kolejności, z wyjątkiem diod oznaczonych numerami 2 i 3, które świeciły równocześnie na jednostce głównej testera, natomiast na jednostce zdalnej nie świeciły wcale. Jaka mogła być tego przyczyna?

A. Pary skrzyżowane
B. Nieciągłość kabla
C. Zwarcie
D. Pary odwrócone
Zwarcie w kablu sieciowym oznacza, że żyły przewodu są ze sobą połączone w sposób, który nie jest zamierzony, co prowadzi do nieprawidłowego przesyłania sygnału. W przypadku testera diodowego, dwie diody zapalające się równocześnie wskazują na zwarcie między parami przewodów. Oznaczenie diod 2 i 3 wskazuje, że w tych żyłach doszło do nieprawidłowego połączenia, co uniemożliwia ich prawidłowe działanie. W standardzie T568A i T568B, żyły 2 i 3 odpowiadają za przesył danych, a ich zwarcie skutkuje brakiem komunikacji z jednostką zdalną. Przykładem zastosowania tej wiedzy może być proces instalacji okablowania w biurach, gdzie przestrzeganie standardów RJ45 jest kluczowe dla zapewnienia sprawności sieci. W sytuacji, gdy tester wskazuje zwarcie, należy sprawdzić połączenia oraz zweryfikować, czy nie doszło do błędów w instalacji. Zrozumienie tej kwestii jest istotne dla każdej osoby zajmującej się tworzeniem i utrzymywaniem sieci komputerowych.

Pytanie 5

Kabel typu skrętka, w którym pojedyncza para żył jest pokryta folią, a całość kabla jest osłonięta ekranem z folii i siatki, oznacza się symbolem

A. U/UTP
B. SF/FTP
C. SF/UTP
D. U/FTP
Dobór niewłaściwych symboli kabli, takich jak U/UTP, SF/UTP, czy U/FTP, może prowadzić do nieporozumień i błędnych decyzji dotyczących wyboru odpowiedniego okablowania dla danego zastosowania. U/UTP oznacza kabel typu skrętka nieekranowaną, co sprawia, że jest bardziej podatny na zakłócenia elektromagnetyczne. Taki kabel może być odpowiedni w środowiskach o niskim natężeniu zakłóceń, jednak w miejscach z intensywnymi źródłami interferencji nie zapewnia wystarczającego poziomu ochrony sygnału. W przypadku SF/UTP, ekranowane są tylko pojedyncze pary żył, a nie cały kabel, co ogranicza ochronę przed zakłóceniami zewnętrznymi. Taki typ kabla może być wystarczający w niektórych scenariuszach, ale w warunkach o wysokim poziomie zakłóceń nie zagwarantuje stabilności sygnału. Z kolei U/FTP oznacza, że każda para żył jest ekranowana, jednak brak ekranowania całego kabla pozostawia otwartą możliwość dla zakłóceń z zewnątrz. Dlatego kluczowe jest zrozumienie różnic między tymi typami kabli oraz ich zastosowań zgodnie z aktualnymi standardami, co pozwoli na właściwe dobranie okablowania w zależności od specyficznych warunków instalacji.

Pytanie 6

RAMDAC konwerter przekształca sygnał

A. cyfrowy na analogowy
B. stały na zmienny
C. zmienny na stały
D. analogowy na cyfrowy
Wszystkie błędne odpowiedzi dotyczące konwertera RAMDAC opierają się na nieporozumieniach związanych z jego funkcją i zastosowaniem. Odpowiedź sugerująca, że RAMDAC przetwarza sygnał analogowy na cyfrowy, jest błędna, ponieważ konwertery działają w przeciwnym kierunku. Proces konwersji z analogowego na cyfrowy wykonuje się z wykorzystaniem analogowo-cyfrowych konwerterów (ADC), które są zaprojektowane do uchwytywania sygnałów analogowych i przekształcania ich na format cyfrowy, co jest niezbędne w sytuacjach, kiedy analogowe dane z czujników muszą być wprowadzone do systemów komputerowych. Przykładami tego są mikrofony, które przetwarzają fale dźwiękowe na sygnały cyfrowe. Odpowiedź wskazująca na konwersję sygnałów stałych na zmienne jest również myląca, ponieważ RAMDAC nie jest odpowiedzialny za tę transformację. Sygnały stałe i zmienne są pojęciami, które odnoszą się do natury sygnałów, a nie do rodzaju konwersji, jaką wykonuje RAMDAC. Konwertery są projektowane z myślą o specyficznych zastosowaniach, a RAMDAC jest ściśle związany z procesem wyświetlania. Sygnał zmienny na stały również nie jest odpowiednią odpowiedzią, ponieważ odnosi się do przetwarzania, które nie jest typowe dla konwerterów stosowanych w systemach graficznych. W rezultacie, zrozumienie, jak działa RAMDAC i jakie są jego rzeczywiste funkcje, jest kluczowe dla prawidłowej interpretacji technologii przetwarzania sygnałów w systemach komputerowych.

Pytanie 7

Jakie medium transmisyjne stosują myszki bluetooth do łączności z komputerem?

A. Promieniowanie w podczerwieni
B. Fale radiowe w paśmie 800/900 MHz
C. Promieniowanie w ultrafiolecie
D. Fale radiowe w paśmie 2,4 GHz
Myszki Bluetooth działają w paśmie 2,4 GHz, korzystając z fal radiowych do komunikacji z komputerem. To pasmo jest naprawdę popularne w technologii Bluetooth, która została stworzona, żeby umożliwić bezprzewodową wymianę danych na krótkich dystansach. Te fale są słabe, co jest fajne, bo zmniejsza zużycie energii w urządzeniach mobilnych. Bluetooth jest zgodny z IEEE 802.15.1 i pozwala na łatwe łączenie różnych sprzętów, jak myszki, klawiatury czy słuchawki. Dzięki temu użytkownicy mają więcej swobody, bo nie muszą się martwić kablami. Warto też wiedzieć, że są różne wersje technologii Bluetooth, które oferują różne prędkości i zasięgi, więc każdy może znaleźć coś dla siebie.

Pytanie 8

Na którym obrazku przedstawiono panel krosowniczy?

Ilustracja do pytania
A. rys. A
B. rys. C
C. rys. B
D. rys. D
Panel krosowniczy widoczny na rysunku B to kluczowy element infrastruktury sieciowej stosowany w centrach danych oraz serwerowniach. Jego główną funkcją jest organizowanie i zarządzanie połączeniami kablowymi. Umożliwia szybkie i łatwe przepinanie kabli bez konieczności zmiany fizycznych połączeń w urządzeniach aktywnych. Dzięki temu optymalizuje zarządzanie siecią i przyspiesza proces rozwiązywania problemów. Panele krosownicze są zgodne z wieloma standardami, takimi jak TIA/EIA-568, co zapewnia ich kompatybilność z różnymi systemami i urządzeniami sieciowymi. W praktyce ich zastosowanie pozwala na efektywne rozszerzanie sieci, redukcję zakłóceń oraz minimalizację błędów połączeń. Stosowanie paneli krosowniczych jest jedną z dobrych praktyk w projektowaniu infrastruktury IT, co wpływa na zwiększenie niezawodności i wydajności systemów. Panel ten ułatwia również przyszłą modernizację infrastruktury i jest nieodzowny w skalowalnych rozwiązaniach sieciowych.

Pytanie 9

W systemie Windows zastosowanie zaprezentowanego polecenia spowoduje chwilową modyfikację koloru

Ilustracja do pytania
A. tła okna wiersza poleceń, które zostało uruchomione z domyślnymi ustawieniami
B. czcionki wiersza poleceń, która była uruchomiona z ustawieniami domyślnymi
C. paska tytułowego okna Windows
D. tła oraz tekstu okna Windows
Rozważając użycie polecenia color w systemie Windows, konieczne jest zrozumienie jego specyfiki i zakresu działania. Częstym błędem jest zakładanie, że zmiana dotyczy całego systemu operacyjnego. W rzeczywistości polecenie to zmienia jedynie kolory czcionki i tła w oknie wiersza poleceń, które zostało uruchomione z domyślnymi ustawieniami. Nie wpływa na żadne inne elementy interfejsu użytkownika systemu Windows, takie jak pasek nazwy okna, ani na tło i czcionki okien systemowych. Takie rozumienie jest zgodne z dobrymi praktykami, które wymagają precyzyjnego zrozumienia zakresu działania narzędzi systemowych. Zakładając, że polecenie wpływa na systemowe elementy interfejsu, można doprowadzić do błędnych konfiguracji, szczególnie w kontekście automatyzacji i skryptowania. Administracja systemami Windows wymaga wiedzy o tym, jak lokalne zmiany w konsoli mogą być używane do konfiguracji środowiska pracy, bez wpływu na globalne ustawienia użytkownika czy systemu. Zrozumienie tych niuansów jest kluczowe dla efektywnego zarządzania systemem i dostosowywania go do potrzeb użytkownika oraz organizacji.

Pytanie 10

Urządzenie elektryczne lub elektroniczne, które zostało zużyte i posiada znak widoczny na ilustracji, powinno być

Ilustracja do pytania
A. Przekazane do punktu skupującego złom
B. Wyrzucone do kontenerów na odpady komunalne
C. Wyrzucone do pojemników z tym oznaczeniem
D. Przekazane do miejsca odbioru zużytej elektroniki
Znak przekreślonego kosza na śmieci umieszczony na urządzeniach elektrycznych i elektronicznych oznacza, że nie wolno ich wyrzucać do zwykłych pojemników na odpady komunalne. Jest to zgodne z dyrektywą WEEE (Waste Electrical and Electronic Equipment Directive) obowiązującą w krajach Unii Europejskiej. Celem dyrektywy jest minimalizacja negatywnego wpływu e-odpadów na środowisko oraz promowanie ich recyklingu i odzysku. Zużyte urządzenia mogą zawierać substancje szkodliwe dla środowiska, takie jak ołów, rtęć czy kadm, które mogą przedostać się do gleby i wody. Oddawanie ich do punktów odbioru zużytej elektroniki gwarantuje, że zostaną odpowiednio przetworzone i poddane recyklingowi. Dzięki temu możliwe jest odzyskanie cennych surowców, takich jak metale szlachetne, i ograniczenie zużycia surowców pierwotnych. Oddawanie sprzętu do odpowiednich punktów jest także zgodne z zasadami gospodarki o obiegu zamkniętym, która dąży do minimalizacji odpadów i optymalizacji użycia zasobów.

Pytanie 11

W systemie Windows informacje o aktualnym użytkowniku komputera są przechowywane w gałęzi rejestru o skróconej nazwie:

A. HKLM
B. HKCR
C. HKCU
D. HKCC
Odpowiedzi HKCC, HKLM oraz HKCR odnoszą się do innych gałęzi rejestru systemu Windows, które są przeznaczone do różnych celów i nie zawierają ustawień dotyczących bieżącego użytkownika. HKCC, czyli HKEY_CURRENT_CONFIG, przechowuje informacje o bieżącej konfiguracji sprzętowej systemu, co ma zastosowanie w kontekście różnorodnych urządzeń i ich konfiguracji, ale nie dotyczy osobistych ustawień użytkownika. Z kolei HKLM, czyli HKEY_LOCAL_MACHINE, gromadzi dane dotyczące całego systemu operacyjnego oraz wszystkich użytkowników, co czyni tę gałąź odpowiednią do zarządzania globalnymi ustawieniami systemu, ale nie jest skierowana na indywidualne preferencje użytkowników. Natomiast HKCR, czyli HKEY_CLASSES_ROOT, jest używana do przechowywania informacji o zainstalowanych programach i ich powiązaniach z różnymi typami plików, co również nie dotyczy specyficznych ustawień użytkownika. Przykładowym błędem myślowym jest pomylenie pojęć związanych z osobistymi i systemowymi ustawieniami, co może prowadzić do niewłaściwych deklaracji na temat lokalizacji przechowywania danych w rejestrze. Zrozumienie, jakie informacje są przechowywane w poszczególnych gałęziach rejestru, jest kluczowe dla skutecznego zarządzania systemem oraz dla zapewnienia jego prawidłowego funkcjonowania.

Pytanie 12

Na ilustracji przedstawiono część procesu komunikacji z serwerem, która została przechwycona przez aplikację Wireshark. Jaki to serwer?

Ilustracja do pytania
A. DNS
B. DHCP
C. WWW
D. FTP
FTP jest protokołem sieciowym stosowanym do przesyłania plików pomiędzy klientem a serwerem. W odróżnieniu do DHCP FTP nie zajmuje się przydziałem adresów IP lecz umożliwia transfer danych w sieci. Charakteryzuje się operacjami takimi jak przesyłanie pobieranie i zarządzanie plikami na serwerze co czyni go nieodpowiednim do roli przypisywania adresów IP. Protokół DNS zajmuje się tłumaczeniem nazw domenowych na adresy IP co jest istotne dla wczytywania stron internetowych i usług sieciowych. Pomimo że DNS jest kluczową częścią działania internetu nie ma udziału w bezpośrednim przypisywaniu adresów IP urządzeniom w sieci co jest głównym zadaniem DHCP. Protokoły WWW takie jak HTTP czy HTTPS są używane do przesyłania stron internetowych i danych pomiędzy serwerem a przeglądarką użytkownika. WWW koncentruje się na dostarczaniu zawartości internetowej zamiast na zarządzaniu adresacją IP w sieci. Błędne przypisanie protokołów takich jak FTP DNS czy WWW do funkcji DHCP wynika z niezrozumienia ich podstawowych funkcji i różnic między nimi. Każdy z tych protokołów odgrywa unikalną rolę w sieci ale tylko DHCP jest odpowiedzialny za dynamiczne przydzielanie adresów IP co czyni go kluczowym składnikiem infrastruktury sieciowej. Zrozumienie różnic w zastosowaniach tych protokołów pomaga w zapewnieniu prawidłowej konfiguracji i optymalnego działania sieci komputerowej.

Pytanie 13

Komputer jest połączony z myszą bezprzewodową, a kursor w trakcie używania nie porusza się płynnie, tylko "skacze" po ekranie. Możliwą przyczyną awarii urządzenia może być

A. brak akumulatora
B. wyczerpywanie się akumulatora zasilającego
C. uszkodzenie przycisku lewego
D. uszkodzenie mikroprzełącznika
Wyczerpywanie się baterii zasilającej to najczęstsza przyczyna problemów z działaniem myszek bezprzewodowych, co potwierdzają liczne badania dotyczące ergonomii i funkcjonalności urządzeń peryferyjnych. Gdy bateria w myszce zaczyna się wyczerpywać, sygnał wysyłany do odbiornika staje się niestabilny, co objawia się "skakaniem" kursora na ekranie. W praktyce, regularne sprawdzanie stanu baterii oraz ich wymiana co kilka miesięcy, zwłaszcza w przypadku intensywnego użytkowania, są kluczowymi elementami w dbaniu o sprawność urządzenia. Aby zapobiec takim problemom, warto zaopatrzyć się w myszki z funkcją automatycznego uśpienia lub z wskaźnikiem stanu naładowania baterii. Ponadto, standardy Ergonomics of Human-Computer Interaction, które sugerują optymalne warunki pracy z urządzeniami peryferyjnymi, podkreślają znaczenie dobrego stanu sprzętu, w tym zasilania. Utrzymując baterie w dobrej kondycji, można znacząco poprawić komfort pracy oraz wydajność komputerową.

Pytanie 14

Jaką cechę posiada przełącznik sieciowy?

A. Z odebranych ramek odczytuje adresy MAC
B. Z przesyłanych pakietów odczytuje docelowe adresy IP
C. Wykorzystuje protokół EIGRP
D. Pracuje na porcjach danych zwanych segmentami
Odpowiedzi, które wskazują na użycie protokołu EIGRP oraz odczytywanie adresów IP, są błędne, ponieważ te funkcje nie są związane z działaniem przełączników sieciowych. Protokół EIGRP (Enhanced Interior Gateway Routing Protocol) jest protokołem routingu, który działa na trzeciej warstwie modelu OSI, związanej z routingiem i adresowaniem IP. Przełączniki nie zajmują się routingiem, a ich głównym zadaniem jest przekazywanie ramek na podstawie adresów MAC, co różni się od funkcji routerów, które operują na adresach IP. Ponadto, operowanie na porcjach danych zwanych segmentami również jest mylącym stwierdzeniem, ponieważ segmenty to termin używany w kontekście transportu danych, a nie w kontekście działania przełączników. Warto zauważyć, że przełączniki operują na ramach Ethernet, które są strukturami danych używanymi w sieciach lokalnych. Typowym błędem myślowym jest utożsamianie funkcji przełącznika z funkcjami routera, co prowadzi do nieporozumień w zakresie ich zastosowań. Wiedza o tym, jak działają różne warstwy modelu OSI, jest kluczowa dla zrozumienia różnych urządzeń sieciowych i ich funkcji.

Pytanie 15

Komputer dysponuje adresem IP 192.168.0.1, a jego maska podsieci wynosi 255.255.255.0. Który adres stanowi adres rozgłoszeniowy dla podsieci, do której ten komputer przynależy?

A. 192.168.0.31
B. 192.168.0.127
C. 192.168.0.63
D. 192.168.0.255
Adresy 192.168.0.31, 192.168.0.63 i 192.168.0.127 to przykłady błędnych odpowiedzi na temat adresu rozgłoszeniowego dla podsieci 192.168.0.0 z maską 255.255.255.0. Kluczowe jest to, że adres rozgłoszeniowy ma zawsze najwyższą wartość w danej podsieci. Z tą maską, dostępne adresy IP w podsieci 192.168.0.0 są od 192.168.0.1 do 192.168.0.254, więc 192.168.0.255 jest jedynym poprawnym adresem rozgłoszeniowym. Błędne odpowiedzi często wynikają z błędnego określenia zakresu adresów IP lub mylnego przekonania, że adresy rozgłoszeniowe mogą być mniejsze od najwyższego. Ważne jest też, że w każdej podsieci jeden adres jest zarezerwowany dla identyfikacji sieci (czyli 192.168.0.0), a inny do rozgłaszania. Dlatego, jak się projektuje sieci, trzeba na to uważać, bo ma to wpływ na działanie protokołów sieciowych oraz komunikację między urządzeniami.

Pytanie 16

Ilustracja przedstawia rodzaj pamięci

Ilustracja do pytania
A. SDRAM DIMM
B. Compact Flash
C. SIMM
D. DDR DIMM
SDRAM DIMM czyli Synchronous Dynamic Random Access Memory jest rodzajem pamięci dynamicznej RAM, która synchronizuje się z magistralą systemową komputera co pozwala na większą wydajność przez zmniejszenie opóźnień. SDRAM DIMM jest szeroko stosowany w komputerach PC i serwerach. Jej architektura pozwala na równoczesne przetwarzanie wielu poleceń poprzez dzielenie pamięci na różne banki co zwiększa efektywność transmisji danych. Przykładowo SDRAM umożliwia lepsze zarządzanie danymi w systemach wymagających dużej przepustowości jak aplikacje multimedialne gry komputerowe czy systemy baz danych. Pamięć ta wspiera technologię burst mode co oznacza że może przetwarzać serie danych bez dodatkowego oczekiwania na kolejne sygnały zegarowe co jest kluczowe w zastosowaniach wymagających szybkiej transmisji danych. Standardy takie jak PC100 czy PC133 określają prędkości magistrali wyrażone w megahercach co dodatkowo ułatwia integrację z różnymi systemami komputerowymi. Wybór SDRAM DIMM jest zgodny z dobrymi praktykami branżowymi szczególnie w kontekście starszych systemów które nadal są w użyciu w wielu profesjonalnych środowiskach. Znajomość specyfikacji i kompatybilności SDRAM jest kluczowa przy modernizacji starszych jednostek komputerowych.

Pytanie 17

Zdiagnostykowane wyniki wykonania polecenia systemu Linux odnoszą się do ```/dev/sda: Timing cached reads: 18100 MB in 2.00 seconds = 9056.95 MB/sec```

A. karty sieciowej
B. pamięci RAM
C. dysku twardego
D. karty graficznej
Wynik działania polecenia systemu Linux, który przedstawia wartość "Timing cached reads: 18100 MB in 2.00 seconds = 9056.95 MB/sec" dotyczy wydajności odczytu z dysku twardego, który z kolei jest kluczowym komponentem systemu komputerowego. W kontekście diagnostyki, informacja ta wskazuje na prędkość, z jaką system operacyjny może odczytywać dane zapisane na dysku, co jest istotne w kontekście wydajności całego systemu. Przykładem praktycznego zastosowania tego typu pomiaru może być ocena, czy dany dysk twardy spełnia wymagania aplikacji, które wymagają szybkiego dostępu do danych, takich jak bazy danych czy serwery plików. Standardy branżowe, takie jak SATA czy NVMe, definiują różne typy interfejsów, które wpływają na wydajność przesyłu danych. Dobre praktyki wymagają regularnego monitorowania tych parametrów, aby zapewnić optymalną wydajność systemu oraz przewidywać ewentualne problemy z dyskiem, co może zapobiec utracie danych oraz przestojom operacyjnym.

Pytanie 18

Który z poniższych systemów operacyjnych nie jest wspierany przez system plików ext4?

A. Gentoo
B. Fedora
C. Windows
D. Mandriva
Wybór jednej z dystrybucji Linuxa, jak Fedora, Gentoo czy Mandriva, jako systemu operacyjnego, który nie obsługuje systemu plików ext4, to nieporozumienie. Te systemy operacyjne działają z ext4 i często używają go jako domyślnego systemu plików. Na przykład Fedora jest znana z wprowadzania nowości, w tym systemów plików, a ext4 jest jednym z nich. Gentoo z kolei pozwala użytkownikom dostosować swój system, a ext4 często wybiera się ze względu na wydajność i dodatkowe funkcje, jak journaling, co pomaga w zachowaniu integralności danych. Mandriva, mimo że może nie jest tak popularna, też obsługuje ext4, co czyni ją dobrą opcją dla tych, co szukają nowoczesnych rozwiązań w zarządzaniu danymi. Z mojego punktu widzenia, źle zrozumieć, które systemy operacyjne wspierają dany system plików, może prowadzić do problemów z dostępem do danych. Dobrze jest kierować się nie tylko funkcjami systemu plików, ale też jego kompatybilnością z danym systemem operacyjnym, bo to klucz do stabilności i niezawodności pracy.

Pytanie 19

Na diagramie okablowania strukturalnego przy jednym z komponentów znajduje się oznaczenie MDF. Z którym punktem dystrybucji jest powiązany ten komponent?

A. Kampusowym
B. Pośrednim
C. Budynkowym
D. Głównym
Wybór budynkowego punktu dystrybucyjnego jako odpowiedzi może wydawać się logiczny, jednak w rzeczywistości budynkowy punkt dystrybucyjny (IDF, czyli Intermediate Distribution Frame) jest podpunktem w hierarchii okablowania strukturalnego, który obsługuje konkretne piętra czy sekcje budynku. IDF jest wykorzystywany do połączenia MDF z użytkownikami końcowymi, co oznacza, że nie pełni roli głównego węzła, a raczej pomocniczego. W kontekście odpowiedzi związanej z punktem kampusowym, ten typ dystrybucji odnosi się do połączenia między różnymi budynkami w obrębie jednego kampusu, co również nie jest zgodne z definicją MDF. Odpowiedź dotycząca punktu pośredniego również nie jest adekwatna, ponieważ punkt pośredni (także znany jako IDF) służy do dalszego rozdzielania sygnałów ze MDF do poszczególnych użytkowników, a nie jako główny węzeł. Typowe błędy myślowe w tym kontekście polegają na myleniu roli poszczególnych punktów dystrybucyjnych oraz niewłaściwym przypisaniu ich funkcji w schemacie okablowania, co prowadzi do zrozumienia, że każdy z takich punktów ma swoje ściśle określone zadanie w infrastrukturze sieciowej. Właściwe zrozumienie hierarchii i funkcji MDF jest kluczowe dla budowy wydajnych i efektywnych sieci komunikacyjnych.

Pytanie 20

Protokołem umożliwiającym dostęp do sieci pakietowej o prędkości nieprzekraczającej 2 Mbit/s jest protokół

A. VDSL
B. X.25
C. Frame Relay
D. ATM
Protokół ATM (Asynchronous Transfer Mode) jest zaprojektowany do przesyłania danych z dużą prędkością, znacznie przekraczającą 2 Mbit/s. ATM jest technologią, która wykorzystuje komórki o stałej długości, co pozwala na obsługę różnych typów danych, takich jak głos, wideo czy transmisje danych. W przeciwieństwie do X.25, ATM jest bardziej skomplikowanym protokołem i jest używany w aplikacjach wymagających wysokiej przepustowości oraz niskich opóźnień. VDSL (Very-high-bit-rate Digital Subscriber Line) to technologia DSL, która umożliwia transmisję danych z prędkościami dochodzącymi do 52 Mbit/s, również znacznie przekraczającymi 2 Mbit/s. VDSL jest często stosowany w dostępie do internetu szerokopasmowego i pozwala na jednoczesne przesyłanie danych, głosu i wideo. Frame Relay to kolejny protokół komunikacyjny, który również obsługuje wyższe prędkości i jest używany w sieciach WAN. Przy wyborze właściwego protokołu należy kierować się wymaganiami aplikacji oraz środowiskiem, w którym będą one funkcjonować. Często popełnianym błędem jest mylenie protokołów w zależności od ich zastosowania w danym kontekście; jednakże należy pamiętać, że każdy protokół ma swoje specyfikacje oraz ograniczenia, które mogą wpływać na jego wykorzystanie w praktyce.

Pytanie 21

Usługa, która odpowiada za przekształcanie nazw domenowych na adresy IP, to

A. DHCP
B. SNMP
C. SMTP
D. DNS
Odpowiedź DNS (Domain Name System) jest poprawna, ponieważ ta usługa odpowiada za translację nazw domenowych na adresy IP, co jest kluczowe dla komunikacji w internecie. Kiedy użytkownik wprowadza adres strony, na przykład www.przyklad.pl, system DNS konwertuje tę nazwę na odpowiedni adres IP, np. 192.0.2.1. Dzięki temu, urządzenia sieciowe mogą się komunikować ze sobą, ponieważ operują na adresach IP. DNS działa na zasadzie hierarchicznej struktury, gdzie serwery DNS mogą odwoływać się do innych serwerów, aby znaleźć dokładny adres IP. To sprawia, że system jest niezwykle skalowalny i wydajny. Przykładem zastosowania DNS jest sytuacja, gdy chcemy odwiedzić stronę, która została przeniesiona na inny serwer; zmiany w DNS mogą być wprowadzone szybko, co minimalizuje czas przestoju. Dodatkowo, DNS obsługuje mechanizmy takie jak caching, co przyspiesza proces rozwiązywania nazw. W kontekście najlepszych praktyk, zarządzanie strefami DNS i ich zabezpieczenie, na przykład przez DNSSEC, jest niezbędne, aby zapobiegać atakom typu spoofing.

Pytanie 22

Jakie zagrożenia eliminują programy antyspyware?

A. programy szpiegujące
B. ataki typu DoS oraz DDoS (Denial of Service)
C. programy działające jako robaki
D. oprogramowanie antywirusowe
Wybór odpowiedzi, która wskazuje na inne zagrożenia, takie jak ataki typu DoS i DDoS, programy typu robak czy programy antywirusowe, pokazuje nieporozumienie w zakresie funkcji programów antyspyware oraz ich różnic w porównaniu do innych narzędzi zabezpieczających. Ataki typu DoS (Denial of Service) oraz DDoS (Distributed Denial of Service) są technikami, które mają na celu zakłócenie dostępności usług sieciowych, co jest zupełnie innym rodzajem zagrożenia niż to, co zajmuje się antyspyware. Programy robakowe to złośliwe oprogramowanie, które rozprzestrzenia się samodzielnie w sieci, co również nie jest odpowiednim obszarem działania programów antyspyware, które koncentrują się na szkodliwych aplikacjach zbierających dane. Co więcej, wybór programów antywirusowych jako odpowiedzi również jest mylący. Oprogramowanie antywirusowe i antyspyware różnią się głównie w zakresie detekcji i usuwania zagrożeń; programy antywirusowe skupiają się na wirusach, trojanach oraz innych rodzajach malware, podczas gdy programy antyspyware są specjalizowane w zwalczaniu oprogramowania szpiegującego. Właściwe zrozumienie tych różnic jest kluczowe dla skutecznej ochrony systemów komputerowych i zapewnienia bezpieczeństwa danych. Użytkownicy powinni być świadomi, że stosowanie jedynie jednego rodzaju programu zabezpieczającego nie jest wystarczające, a najlepszą praktyką jest korzystanie z kombinacji różnych narzędzi zabezpieczających, aby zminimalizować ryzyko wystąpienia różnych form złośliwego oprogramowania.

Pytanie 23

Aby zapobiegać i eliminować szkodliwe oprogramowanie, takie jak exploity, robaki oraz trojany, konieczne jest zainstalowanie oprogramowania

A. antyspam.
B. adblok.
C. antyspyware.
D. antymalware.
Odpowiedzi 'antyspyware', 'antyspam' i 'adblok' nie są w tym przypadku odpowiednie. Antyspyware zajmuje się głównie złośliwym oprogramowaniem, które śledzi użytkowników i zbiera ich dane, ale nie radzi sobie z innymi typami zagrożeń. Dlatego to nie wystarczy, żeby mieć pełną ochronę. Antyspam z kolei, działa na zasadzie filtrowania niechcianych wiadomości e-mail, które mogą mieć złośliwe linki, jednak to nie zabezpiecza nas przed samym złośliwym oprogramowaniem. Myślę, że dużo osób myli te pojęcia, przez co sądzą, że antyspam może zapewnić pełną ochronę, co oczywiście nie jest prawdą. Adblok zabezpiecza przed reklamami w internecie, ale też nie ma nic wspólnego z złośliwym oprogramowaniem. Wiele złośliwych programów nie ma nic wspólnego z reklamami, więc ich obecność nie powinno być mylona z brakiem zagrożeń. Właściwe podejście do ochrony danych to użycie narzędzi takich jak antymalware, które są stworzone do walki z różnymi zagrożeniami w sieci.

Pytanie 24

Jednym z czynników, dla których zapis na dysku SSD jest szybszy niż na dysku HDD, jest

A. niska wartość parametru MTBF dla dysku SSD
B. brak elementów ruchomych w konstrukcji dysku SSD
C. wykorzystanie pamięci typu PROM w dysku SSD
D. nieograniczona liczba cykli zapisu i odczytu dla dysku SSD
Dysk SSD (Solid State Drive) charakteryzuje się brakiem ruchomych elementów, co znacząco przyspiesza proces zapisu i odczytu danych w porównaniu do tradycyjnych dysków HDD (Hard Disk Drive). Dyski HDD opierają się na mechanicznych częściach, takich jak talerze i głowice, które muszą się obracać i przesuwać, aby zlokalizować odpowiednie dane. To mechaniczne działanie wprowadza opóźnienia, ponieważ czas potrzebny na przemieszczenie głowicy oraz obrót talerzy ogranicza szybkość operacji. W przeciwieństwie do tego, dyski SSD wykorzystują pamięci flash, które pozwalają na natychmiastowy dostęp do przechowywanych informacji. Praktyczne zastosowanie SSD obejmuje zarówno urządzenia osobiste, jak i systemy serwerowe, gdzie szybkość dostępu do danych ma kluczowe znaczenie dla wydajności aplikacji. W branży IT, przyjęcie dysków SSD w infrastrukturze serwerowej stało się standardem, ponieważ znacznie poprawiają one czas odpowiedzi baz danych oraz przyspieszają procesy wirtualizacji. Zgodnie z najlepszymi praktykami, zastosowanie SSD w systemach operacyjnych oraz w aplikacjach o intensywnym dostępie do danych jest zalecane, co prowadzi do zauważalnych korzyści w zakresie wydajności.

Pytanie 25

Użytkownik systemu Windows napotyka komunikaty o zbyt małej ilości pamięci wirtualnej. W jaki sposób można rozwiązać ten problem?

A. zwiększenie rozmiaru pliku virtualfile.sys
B. dołożenie dodatkowego dysku
C. dołożenie dodatkowej pamięci cache procesora
D. zwiększenie pamięci RAM
Zamontowanie dodatkowej pamięci cache procesora nie rozwiązuje problemu z pamięcią wirtualną, ponieważ pamięć cache działa na zupełnie innym poziomie. Cache procesora jest pamięcią o wysokiej prędkości, która służy do tymczasowego przechowywania danych, które są często używane przez procesor, co przyspiesza ich przetwarzanie. Jednakże, zwiększenie pamięci cache nie wpływa na ogólną wydajność systemu w kontekście pamięci wirtualnej, gdyż ta ostatnia jest wykorzystywana głównie do zarządzania przestrzenią pamięci RAM i przechowywaniem danych, które nie mieszczą się w pamięci głównej. Zwiększenie rozmiaru pliku virtualfile.sys może chwilowo pomóc w rozwiązaniu problemów z pamięcią wirtualną, ale nie eliminuje podstawowej przyczyny problemu, jaką jest niewystarczająca ilość pamięci RAM. Montowanie dodatkowego dysku twardego także nie jest skutecznym rozwiązaniem w kontekście pamięci wirtualnej, ponieważ głównie służy do przechowywania danych, a nie poprawy wydajności pamięci operacyjnej. Typowym błędem jest myślenie, że zwiększenie pamięci podręcznej lub przestrzeni dyskowej bezpośrednio poprawi wydajność systemu. W rzeczywistości kluczowym aspektem jest zapewnienie odpowiedniej ilości pamięci RAM, co jest zgodne z zaleceniami dotyczącymi optymalizacji systemów operacyjnych. Stąd, aby skutecznie radzić sobie z problemami z pamięcią wirtualną, należy skupić się na zwiększeniu pamięci RAM, co jest najbardziej efektywnym podejściem w kontekście poprawy wydajności systemu.

Pytanie 26

Urządzenie komputerowe, które powinno być koniecznie podłączone do zasilania za pomocą UPS, to

A. dysk zewnętrzny
B. serwer sieciowy
C. drukarka atramentowa
D. ploter
Ploter, drukarka atramentowa oraz dysk zewnętrzny to urządzenia, które z reguły nie wymagają takiej samej niezawodności i dostępności jak serwer sieciowy. Plotery, używane głównie w grafice i projektowaniu, zazwyczaj nie są krytyczne dla codziennej operacyjności firmy i ich przerwy w pracy mogą być tolerowane. Użytkownicy mogą w takich przypadkach po prostu poczekać na wznowienie pracy urządzenia lub ewentualnie skorzystać z alternatywnych metod wydruku. Podobnie, drukarki atramentowe, które często służą do niewielkich zadań biurowych, nie mają tak wysokich wymagań w zakresie zasilania nieprzerwanego. To samo dotyczy dysków zewnętrznych, które są używane głównie jako nośniki danych. Choć zasilanie jest ważne, wykorzystanie UPS nie jest tak krytyczne, ponieważ dane mogą być tymczasowo przechowywane na lokalnym urządzeniu, a ich ewentualna utrata nie ma na ogół tak poważnych konsekwencji jak w przypadku serwera. Często błędne jest myślenie, że wszystkie urządzenia komputerowe wymagają takiego samego poziomu ochrony przed przerwami w zasilaniu, co może prowadzić do niepotrzebnych wydatków na infrastrukturę, która nie jest niezbędna w danym środowisku pracy. Należy pamiętać, aby podejść do kwestii zasilania i ochrony danych w sposób zrównoważony, biorąc pod uwagę specyfikę i krytyczność używanych urządzeń.

Pytanie 27

Podczas przetwarzania pakietów danych w sieci, wartość pola TTL (ang. Time To Live) jest modyfikowana za każdym razem, gdy pakiet przechodzi przez ruter. Jaką wartość tego pola należy ustawić, aby ruter skasował pakiet?

A. 255
B. 0
C. 127
D. 64
Wartości takie jak 127, 255 oraz 64 są często mylnie uznawane za odpowiedzi na pytanie dotyczące skasowania pakietu przez ruter. W rzeczywistości, każda z tych wartości ma swoją funkcjonalność, jednak żadna z nich nie jest równoznaczna z usunięciem pakietu przez ruter. Wartość 127 to typowy przykład, który może być użyty w lokalnych testach, natomiast 255 jest maksymalną wartością TTL, która pozwala pakietowi na przejście przez wiele ruterów, co nie oznacza, że pakiet zostanie skasowany. Z kolei 64 jest powszechnie używaną wartością początkową dla wielu systemów operacyjnych, co oznacza, że pakiet może przejść przez 64 urządzenia w sieci, zanim dojdzie do wygaśnięcia TTL. Pojęcia te mogą być mylące, szczególnie w kontekście dynamicznych i złożonych sieci, gdzie pakiety są przesyłane przez wiele ruterów. Kluczowe jest zrozumienie, że to właśnie wartość 0 powoduje natychmiastowe skasowanie pakietu, co jest zgodne z protokołami i standardami sieciowymi. Prawidłowe rozumienie TTL oraz jego wpływu na kierowanie pakietów jest niezbędne do skutecznego zarządzania ruchem w sieciach komputerowych, co jest kluczowe dla zapewnienia wydajności i stabilności sieci.

Pytanie 28

Na ilustracji przedstawiono sieć lokalną zbudowaną na kablach kat. 6. Stacja robocza "C" nie ma możliwości komunikacji z siecią. Jaki problem w warstwie fizycznej może powodować brak połączenia?

Ilustracja do pytania
A. Niewłaściwy kabel
B. Błędny adres IP
C. Zła długość kabla
D. Nieodpowiedni typ przełącznika
Zła długość kabla w sieci lokalnej może powodować problemy z komunikacją, ponieważ kabel kategorii 6 ma określone standardy długości, które nie powinny być przekraczane. Według TIA/EIA-568-B, maksymalna długość kabla krosowego dla kategorii 6 wynosi 100 metrów. Przekroczenie tej długości może prowadzić do tłumienia sygnału i zwiększenia przesłuchu, co negatywnie wpływa na jakość transmisji danych. Praktyczne rozwiązania tego problemu obejmują zastosowanie repeaterów lub przełączników, które mogą wzmocnić sygnał i umożliwić jego transmisję na większe odległości. Warto również pamiętać o zachowaniu odpowiednich parametrów przy kładzeniu kabli, takich jak unikanie ostrych zakrętów czy zbyt dużego zagięcia kabla, co również może wpływać na jego skuteczność. Zrozumienie tych zasad jest kluczowe dla zapewnienia efektywności oraz niezawodności sieci lokalnych, szczególnie w większych instalacjach biurowych, gdzie odległości mogą być znaczne. Dbałość o te aspekty pozwala na utrzymanie stabilnej i szybkiej komunikacji w sieciach komputerowych.

Pytanie 29

W jakiej topologii sieci fizycznej każdy komputer jest połączony z dokładnie dwoma sąsiadującymi komputerami, bez użycia dodatkowych urządzeń aktywnych?

A. Pierścienia
B. Magistrali
C. Siatki
D. Gwiazdy
Wybór topologii gwiazdy jest powszechnie mylony z pierścieniem, jednak różni się ona fundamentalnie od omawianej struktury. W topologii gwiazdy wszystkie komputery są połączone z centralnym urządzeniem, takim jak switch czy hub. W tym modelu, awaria jednego z węzłów nie wpływa na działanie pozostałych, a wszystkie urządzenia komunikują się poprzez centralny punkt, co zwiększa niezawodność i łatwość zarządzania. Podobnie rzecz ma się z topologią magistrali, gdzie wszystkie urządzenia są połączone z jedną linią komunikacyjną. Tutaj jednak, awaria kabla skutkuje przerwaniem komunikacji w całej sieci, co czyni ją mniej odporną na usterki. Z kolei w topologii siatki, każdy węzeł jest połączony z wieloma innymi, co zwiększa redundancję i dostępność, ale jednocześnie podnosi koszty instalacji i złożoność zarządzania siecią. Kluczowym błędem jest zatem mylenie topologii z uwagi na sposób połączenia komputerów. W rzeczywistości, każda z tych topologii ma swoje specyficzne zastosowania i ograniczenia, a ich wybór powinien być oparty na analizie potrzeb, niezawodności i kosztów, a nie na przeświadczeniu o ich tożsamości z pierścieniem.

Pytanie 30

Jakie są korzyści płynące z użycia systemu plików NTFS?

A. przechowywanie tylko jednej kopii tabeli plików
B. zapisywanie plików z nazwami dłuższymi niż 255 znaków
C. możliwość sformatowania nośnika o niewielkiej pojemności (1,44MiB)
D. możliwość szyfrowania folderów i plików
Wybór odpowiedzi dotyczącej możliwości sformatowania nośnika o małej pojemności, zapisywania plików o nazwie dłuższej niż 255 znaków czy przechowywania tylko jednej kopii tabeli plików, wskazuje na mylne zrozumienie funkcji systemu plików NTFS. System ten, w przeciwieństwie do FAT32, rzeczywiście obsługuje długie nazwy plików, ale ograniczenie do 255 znaków nie jest wynikiem braku funkcji, lecz stanowi standardową praktykę w wielu systemach plików. Ponadto, NTFS nie przechowuje tylko jednej kopii tabeli plików, lecz stosuje bardziej zaawansowane mechanizmy, takie jak replikacja danych i journaling, co znacząco podnosi odporność na awarie oraz integralność przechowywanych informacji. Odpowiedź dotycząca sformatowania nośnika o pojemności 1,44 MiB (typowa dla dyskietek) jest również nieadekwatna, ponieważ NTFS jest zoptymalizowany do pracy z większymi nośnikami i nie jest przeznaczony do tak małych pojemności. W kontekście codziennych zastosowań, pominięcie funkcji szyfrowania, dostępnej w NTFS, prowadzi do niedoceniania roli, jaką bezpieczeństwo danych odgrywa w nowoczesnych systemach informatycznych. Użytkownicy, którzy nie dostrzegają wartości szyfrowania, mogą narażać się na poważne konsekwencje związane z utratą danych lub ich nieautoryzowanym dostępem.

Pytanie 31

W systemie Linux polecenie chmod 321 start spowoduje przyznanie poniższych uprawnień plikowi start:

A. zapis, odczyt i wykonanie dla użytkownika root, odczyt i wykonanie dla użytkownika standardowego, odczyt dla innych
B. wykonanie i zapis dla właściciela pliku, zapis dla grupy, wykonanie dla innych
C. pełna kontrola dla użytkownika root, zapis i odczyt dla użytkownika standardowego, odczyt dla innych
D. odczyt, zapis i wykonanie dla właściciela pliku, zapis i wykonanie dla grupy oraz odczyt dla innych
W analizowaniu błędnych odpowiedzi można dostrzec kilka istotnych nieporozumień związanych z funkcjonowaniem systemu uprawnień w systemie Linux. W przypadku niepoprawnych odpowiedzi często pojawia się mylne założenie, że uprawnienia są przyznawane w sposób uniwersalny, a nie według konkretnej struktury, jaką definiują wartości ósemkowe. Na przykład, błędne twierdzenie, że właściciel pliku ma pełną kontrolę, ignoruje fakt, że w prezentowanym przypadku uprawnienia dla właściciela to tylko zapis i wykonanie. Ponadto, niektóre odpowiedzi sugerują, że grupa ma uprawnienia do wykonywania, co jest sprzeczne z nadanymi uprawnieniami, gdzie grupa może jedynie modyfikować plik, ale nie mieć możliwości jego uruchamiania. Typowym błędem jest również mylenie uprawnień dla pozostałych użytkowników. Wartości przypisane do pozostałych użytkowników są ograniczone do wykonywania, podczas gdy w niepoprawnych odpowiedziach występują sugestie dotyczące pełnych uprawnień, co w praktyce może prowadzić do nieautoryzowanego dostępu. Zrozumienie, jak działa system chmod, jest kluczowe w kontekście bezpieczeństwa i zarządzania uprawnieniami, dlatego ważne jest, aby nie tylko znać wartości, ale także umieć je poprawnie interpretować i stosować w praktyce.

Pytanie 32

Plik ma wielkość 2 KiB. Co to oznacza?

A. 16384 bity
B. 2048 bitów
C. 16000 bitów
D. 2000 bitów
Wydaje mi się, że wybór błędnych odpowiedzi może wynikać z pomyłek w zrozumieniu jednostek miary. Na przykład, odpowiedzi jak 2000 bitów, 2048 bitów czy 16000 bitów wskazują na błędne przeliczenia. 2000 bitów to tylko 250 bajtów (jak się to podzieli przez 8), więc to znacznie mniej niż 2 KiB. Z kolei 2048 bitów to też nie to, co trzeba, bo nie uwzględnia pełnej konwersji do bajtów. 16000 bitów powstaje z błędnego pomnożenia, co może prowadzić do nieporozumień w kwestii pamięci i transferu danych. Ważne jest, żeby przed podjęciem decyzji dobrze zrozumieć zasady konwersji między bajtami a bitami, bo to na pewno ułatwi sprawę w informatyce.

Pytanie 33

Aby poprawić niezawodność oraz efektywność przesyłania danych na serwerze, należy

A. ustawić automatyczne wykonywanie kopii zapasowej
B. zainstalować macierz dyskową RAID1
C. trzymać dane na innym dysku niż systemowy
D. stworzyć punkt przywracania systemu
Zainstalowanie macierzy dyskowej RAID1 jest jedną z najskuteczniejszych metod zwiększania niezawodności i wydajności transmisji danych na serwerze. RAID1, znany również jako mirroring, polega na tworzeniu kopii zapasowej danych na dwóch fizycznych dyskach. W przypadku awarii jednego z dysków, system automatycznie przełącza się na drugi, co minimalizuje ryzyko utraty danych i przestojów. W praktyce, implementacja RAID1 jest stosunkowo prosta i często zalecana dla serwerów, które wymagają wysokiej dostępności danych, na przykład w środowiskach produkcyjnych czy w zastosowaniach biznesowych. Dodatkowo, macierze RAID przyczyniają się do poprawy wydajności odczytu, ponieważ dane mogą być jednocześnie odczytywane z dwóch dysków. Standardy branżowe, takie jak te opracowane przez Storage Networking Industry Association (SNIA), podkreślają znaczenie stosowania technologii RAID w kontekście ochrony danych. Warto również zaznaczyć, że RAID1 jest tylko jednym z wielu poziomów RAID, a jego zastosowanie zależy od specyficznych wymagań systemu i budżetu. W przypadku większych potrzeb można rozważyć inne konfiguracje RAID, takie jak RAID5 czy RAID10, które oferują jeszcze lepszą wydajność i redundancję.

Pytanie 34

Podaj poprawną sekwencję czynności, które należy wykonać, aby przygotować nowy laptop do użycia.

A. Montaż baterii, podłączenie zewnętrznego zasilania sieciowego, włączenie laptopa, instalacja systemu operacyjnego, wyłączenie laptopa po instalacji systemu operacyjnego
B. Podłączenie zewnętrznego zasilania sieciowego, włączenie laptopa, instalacja systemu operacyjnego, montaż baterii, wyłączenie laptopa po instalacji systemu operacyjnego
C. Podłączenie zewnętrznego zasilania sieciowego, włączenie laptopa, montaż baterii, instalacja systemu operacyjnego, wyłączenie laptopa po instalacji systemu operacyjnego
D. Włączenie laptopa, montaż baterii, instalacja systemu operacyjnego, podłączenie zewnętrznego zasilania sieciowego, wyłączenie laptopa po instalacji systemu operacyjnego
Twoja odpowiedź jest na pewno dobra, bo założenie baterii oraz podłączenie laptopa do prądu to naprawdę ważne kroki, żeby wszystko działało jak trzeba. Najpierw wkładasz baterię, a potem dopiero podłączasz zasilacz. Dlaczego? Bo inaczej laptop może działać tylko na prąd, co może sprawić różne kłopoty z zasilaniem. Jak już masz zamontowaną baterię, to podłączenie do sieci da Ci pewność, że laptop ma wystarczającą moc, żeby się uruchomić i zainstalować system operacyjny. Potem, jak włączasz laptopa, zaczynasz proces konfiguracji, co jest kluczowe, żeby sprzęt działał. Na końcu, wyłączając laptopa, zamykasz wszystko w dobry sposób. Z mojego doświadczenia najlepiej trzymać się tej kolejności kroków, żeby uniknąć problemów z działaniem laptopa w przyszłości.

Pytanie 35

Wskaż technologię stosowaną do dostarczania Internetu, która jest połączona z usługą telewizji kablowej, w której światłowód oraz kabel koncentryczny pełnią rolę medium transmisyjnego.

A. PLC
B. HFC
C. xDSL
D. GPRS
Odpowiedzi takie jak PLC, xDSL czy GPRS nie są odpowiednie w kontekście pytania o technologię HFC. PLC, czyli Power Line Communication, wykorzystuje istniejące linie energetyczne do przesyłania danych, co ogranicza jego zastosowanie do krótkich odległości i często wiąże się z problemami z zakłóceniami sygnału. Technologia ta nie jest w stanie efektywnie dostarczać zarówno internetu, jak i telewizji kablowej w porównaniu do HFC. Z kolei xDSL (Digital Subscriber Line) to rodzina technologii, które wykorzystują linie telefoniczne do przesyłania danych. Chociaż xDSL jest popularne w kontekście dostępu do internetu, jego zdolności do transmisji sygnału telewizyjnego są ograniczone, a jakość sygnału może znacząco spadać w zależności od odległości od centrali. GPRS, czyli General Packet Radio Service, to technologia stosowana w sieciach komórkowych, która również nie jest odpowiednia w kontekście dostarczania telewizji kablowej. GPRS oferuje niski poziom przepustowości, co czyni je mniej efektywnym do przesyłania strumieniowego treści wideo. Stąd błędne koncepcje związane z wyborem odpowiedzi wynikają z niepełnego zrozumienia różnic pomiędzy tymi technologiami a HFC, a także ich zastosowań w praktyce.

Pytanie 36

Komputery K1, K2, K3, K4 są podłączone do interfejsów przełącznika, które są przypisane do VLAN-ów wymienionych w tabeli. Które z tych komputerów mają możliwość komunikacji ze sobą?

Nazwa komputeraAdres IPNazwa interfejsuVLAN
K110.10.10.1/24F1VLAN 10
K210.10.10.2/24F2VLAN 11
K310.10.10.3/24F3VLAN 10
K410.10.11.4/24F4VLAN 11

A. K1 i K2
B. K1 z K3
C. K1 i K4
D. K2 i K4
Komputery K1 i K3 mogą się ze sobą komunikować, ponieważ są przypisane do tego samego VLAN-u, czyli VLAN 10. W sieciach komputerowych VLAN (Virtual Local Area Network) to logiczna sieć, która pozwala na oddzielenie ruchu sieciowego w ramach wspólnej infrastruktury fizycznej. Przypisanie urządzeń do tego samego VLAN-u umożliwia im komunikację tak, jakby znajdowały się w tej samej sieci fizycznej, mimo że mogą być podłączone do różnych portów przełącznika. Jest to podstawowa praktyka w zarządzaniu sieciami, szczególnie w dużych infrastrukturach, gdzie organizacja sieci w różne VLAN-y poprawia wydajność i bezpieczeństwo. Komputery w różnych VLAN-ach domyślnie nie mogą się komunikować, chyba że zostaną skonfigurowane odpowiednie reguły routingu lub zastosowane mechanizmy takie jak routery między VLAN-ami. Praktyczne zastosowanie VLAN-ów obejmuje segmentację sieci dla różnych działów w firmie lub rozgraniczenie ruchu danych i głosu w sieciach VoIP. Zrozumienie działania VLAN-ów jest kluczowe dla zarządzania nowoczesnymi sieciami, ponieważ pozwala na efektywne zarządzanie zasobami oraz minimalizowanie ryzyka związanego z bezpieczeństwem danych.

Pytanie 37

Jakim standardem posługuje się komunikacja między skanerem a aplikacją graficzną?

A. USB
B. SCAN
C. TWAIN
D. OPC
Wybór odpowiedzi USB może prowadzić do nieporozumienia, ponieważ jest to interfejs komunikacyjny, a nie standard komunikacji specyficzny dla skanowania. USB (Universal Serial Bus) służy do podłączania urządzeń zewnętrznych, takich jak skanery do komputerów, jednak nie definiuje, jak te urządzenia wymieniają dane z programem graficznym. Podobnie opcja OPC (OLE for Process Control) dotyczy standardu komunikacyjnego w automatyce przemysłowej, a nie skanowania obrazów. Użycie OPC w kontekście komunikacji między skanerem a oprogramowaniem graficznym jest mylące, ponieważ nie ma związku z wymianą danych obrazowych. Odpowiedź SCAN nie jest uznawana za standard komunikacyjny w żadnym sensie. Może sugerować proces skanowania, lecz brakuje jej kontekstu i definicji. Takie wybory mogą wynikać z mylnego założenia, że każdy interfejs lub termin związany ze skanowaniem jest standardem komunikacyjnym. Prawidłowe zrozumienie standardów komunikacyjnych, takich jak TWAIN, jest kluczowe dla efektywnego korzystania z technologii skanowania, a znajomość różnicy pomiędzy interfejsami a standardami może znacząco wpłynąć na efektywność działań związanych z przetwarzaniem obrazów.

Pytanie 38

Liczba 45(H) przedstawiona w systemie ósemkowym jest równa

A. 102
B. 110
C. 105
D. 108
Zrozumienie konwersji liczb pomiędzy systemami liczbowymi jest kluczowym aspektem w informatyce i matematyce. Odpowiedzi 110 i 108 są nieprawidłowe, ponieważ wynikają z błędnego zrozumienia zasad konwersji liczbowej. Odpowiedź 110 odpowiada liczbie 72 w systemie dziesiętnym. Aby to obliczyć, można przeliczyć 110 na system dziesiętny. Wartości w systemie ósemkowym są mnożone przez odpowiednie potęgi ósemki, co w przypadku tej liczby daje 1*8^2 + 1*8^1 + 0*8^0 = 64 + 8 + 0 = 72. Z kolei dla odpowiedzi 108, przeliczając na system dziesiętny otrzymujemy 1*8^2 + 0*8^1 + 8*8^0 = 64 + 0 + 8 = 72. To pokazuje, że użytkownicy mylili reszty przy dzieleniu przez 8 lub nieprawidłowo dobierali potęgi. Z kolei odpowiedź 102 w systemie ósemkowym to 66 w systemie dziesiętnym, co również jest błędne dla liczby 45. Odpowiedź ta jest wynikiem niepoprawnego zrozumienia, gdzie mnożenie wartości przez niewłaściwe potęgi lub pomijanie reszt prowadzi do błędnych konwersji. Warto zwrócić uwagę na fakt, że zrozumienie systemów liczbowych jest fundamentem dla wielu zastosowań w informatyce, w tym w programowaniu niskopoziomowym, gdzie często pracuje się z różnymi reprezentacjami danych oraz w algorytmach przetwarzania informacji.

Pytanie 39

Która z opcji konfiguracji ustawień konta użytkownika o ograniczonych uprawnieniach w systemie Windows jest dostępna dzięki narzędziu secpol?

A. Odebranie możliwości zapisu na płytach CD
B. Blokadę wybranych elementów w panelu sterowania
C. Zezwolenie na zmianę czasu systemowego
D. Czyszczenie historii ostatnio otwieranych dokumentów
Pozostałe odpowiedzi, mimo że dotyczą różnych aspektów zarządzania systemem, nie są związane z funkcjonalnością, którą oferuje przystawka secpol w kontekście ustawień użytkowników z ograniczonymi uprawnieniami. Odebranie możliwości zapisu na płytach CD, pomimo że może być istotne w kontekście zabezpieczeń, jest bardziej związane z zarządzaniem urządzeniami i zasadami grupowymi, a nie bezpośrednio z politykami bezpieczeństwa użytkowników. Blokowanie określonych elementów w panelu sterowania również nie jest funkcją dostępna w secpol. Również czyszczenie historii niedawno otwieranych dokumentów nie jest bezpośrednio powiązane z ustawieniami polityki bezpieczeństwa, lecz odnosi się do zarządzania prywatnością i historii użytkowania. Warto zauważyć, że nieprawidłowe interpretacje związane z funkcjonalnością secpol mogą prowadzić do błędnych decyzji w zakresie zarządzania uprawnieniami użytkowników i zabezpieczeń systemów. Dlatego kluczowe jest zrozumienie, jakie konkretne funkcjonalności oferuje każdy z narzędzi w systemie Windows oraz ich odpowiednie zastosowanie w praktyce. Dobre praktyki w zarządzaniu bezpieczeństwem informatycznym wymagają starannego dobierania polityk, które pozwolą na maksymalizację bezpieczeństwa przy jednoczesnym minimalizowaniu wpływu na użytkowników.

Pytanie 40

Jaki jest adres IP urządzenia, które pozwala innym komputerom w lokalnej sieci łączyć się z Internetem?

A. WINS
B. bramy (routera)
C. DNS
D. proxy
Adres IP bramy, czyli routera, to coś, co naprawdę ma znaczenie w sieci lokalnej. Dzięki niemu możemy łączyć się z różnymi urządzeniami na zewnątrz, w tym z Internetem. Router działa jak taki pośrednik, który przekazuje dane między naszą lokalną siecią a zewnętrznymi adresami IP. Na przykład, gdy komputer w naszej sieci chce otworzyć stronę internetową, to wysyła pakiety do routera, który dalej przesyła je do odpowiedniego serwera w Internecie, a potem odsyła odpowiedź. Fajnie jest, gdy brama jest ustawiona w taki sposób, by łatwo zarządzać ruchem danych i jednocześnie dbać o bezpieczeństwo, na przykład przez różne zapory sieciowe. W branży często wykorzystuje się standardowe protokoły, takie jak TCP/IP, co sprawia, że komunikacja jest spójna i działa jak należy.