Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 19 maja 2025 23:59
  • Data zakończenia: 20 maja 2025 00:22

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zachowanie kopii często odwiedzanych witryn oraz zwiększenie ochrony przez filtrowanie pewnych treści witryn internetowych można osiągnąć dzięki

A. zainstalowaniu oprogramowania antywirusowego i aktualizacji bazy wirusów
B. automatycznemu wyłączaniu plików cookies
C. konfiguracji serwera pośredniczącego proxy
D. używaniu systemu z uprawnieniami administratora
Instalacja programu antywirusowego i najnowszej bazy wirusów nie wpływa bezpośrednio na przechowywanie kopii często odwiedzanych stron ani na filtrowanie określonych zawartości. Chociaż programy antywirusowe są niezbędne w kontekście ochrony przed złośliwym oprogramowaniem i wirusami, nie oferują funkcji pośrednictwa w dostępie do stron internetowych. W rzeczywistości są one narzędziami bezpieczeństwa, które działają na poziomie systemu operacyjnego, a nie na poziomie sieci. Korzystanie z systemu z uprawnieniami administratora również nie rozwiązuje problemu przechowywania treści ani filtrowania zawartości. W rzeczywistości, uprawnienia administratora mogą zwiększać ryzyko, ponieważ dają użytkownikowi pełny dostęp do systemu, co może prowadzić do niezamierzonych zmian w konfiguracji czy instalacji złośliwego oprogramowania. Automatyczne wyłączenie plików cookies ma swoje miejsce w kontekście ochrony prywatności, jednak nie wspiera ani nie przyspiesza procesu przechowywania danych ani nie filtruje treści. Cookies są używane do przechowywania informacji o sesjach i preferencjach użytkowników, co może pomóc w personalizacji doświadczenia, ale ich wyłączenie może spowodować frustrację użytkowników oraz utrudnić działanie niektórych funkcji stron internetowych. Zrozumienie, jak te elementy funkcjonują i jakie mają ograniczenia, jest kluczowe w kontekście bezpieczeństwa i efektywności korzystania z sieci.

Pytanie 2

Do czego służy polecenie 'ping' w systemie operacyjnym?

A. Do instalacji nowych sterowników
B. Do sprawdzenia dostępności hosta w sieci
C. Do kopiowania plików między folderami
D. Do formatowania dysku twardego
Polecenie 'ping' jest jednym z podstawowych narzędzi sieciowych, które służy do diagnozowania połączeń sieciowych. Jego głównym zadaniem jest sprawdzenie, czy dany host w sieci jest dostępny i jak długo trwa przesyłanie pakietów do niego. Działa na zasadzie wysyłania pakietów ICMP (Internet Control Message Protocol) do celu i oczekiwania na odpowiedź. Jeśli host jest dostępny, otrzymamy odpowiedź, co świadczy o poprawnym połączeniu. Ping jest niezwykle przydatny w administracji sieciowej, ponieważ pozwala szybko zweryfikować problemy z łącznością, takie jak brak połączenia z serwerem lub opóźnienia w sieci. Dzięki niemu administratorzy mogą także monitorować stabilność łącza oraz identyfikować potencjalne problemy z wydajnością. W praktyce, polecenie 'ping' jest często pierwszym krokiem w diagnozowaniu problemów sieciowych, co czyni je nieocenionym narzędziem w codziennej pracy z sieciami komputerowymi.

Pytanie 3

Aby utworzyć kontroler domeny w systemach z rodziny Windows Server na serwerze lokalnym, konieczne jest zainstalowanie roli

A. usług domenowej w Active Directory
B. usług certyfikatów w Active Directory
C. usług LDS w Active Directory
D. usług zarządzania prawami dostępu w Active Directory
Usługi domenowe w usłudze Active Directory (AD DS) są kluczowym elementem infrastruktury Windows Server, które umożliwiają tworzenie i zarządzanie domenami, a tym samym kontrolerami domeny. Kontroler domeny jest serwerem, który autoryzuje i uwierzytelnia użytkowników oraz komputery w sieci, a także zarządza politykami zabezpieczeń. Instalacja roli AD DS na serwerze Windows Server pozwala na stworzenie struktury katalogowej, która jest niezbędna do prawidłowego funkcjonowania usług takich jak logowanie do sieci, zarządzanie dostępem do zasobów oraz centralne zarządzanie politykami grupowymi (GPO). Przykładem zastosowania tej roli może być organizacja, która chce wprowadzić jednolite zarządzanie kontami użytkowników i komputerów w wielu lokalizacjach. Dodatkowo, zgodnie z najlepszymi praktykami IT, każda instytucja korzystająca z systemów Windows powinna mieć w swojej architekturze przynajmniej jeden kontroler domeny, aby zapewnić ciągłość działania i bezpieczeństwo operacji sieciowych.

Pytanie 4

Cienki klient (thin client) korzysta z protokołu

A. FTP
B. RDP
C. HTTP
D. NTP
NTP, FTP i HTTP to protokoły, które służą zupełnie innym celom niż RDP. NTP, czyli Network Time Protocol, jest używany do synchronizacji czasu na komputerach w sieci. Choć synchronizacja czasu jest istotna dla wielu aplikacji, nie ma związku z zdalnym dostępem do systemów, co czyni go nieodpowiednim dla cienkich klientów. FTP (File Transfer Protocol) to protokół używany do transferu plików pomiędzy komputerami, umożliwiający przesyłanie i pobieranie plików z serwerów. Choć FTP jest ważnym narzędziem w zarządzaniu danymi, nie wspiera interaktywnego zdalnego dostępu do aplikacji czy pulpitu. HTTP (Hypertext Transfer Protocol) jest standardowym protokołem do przesyłania danych w sieci WWW, który umożliwia przeglądanie stron internetowych. Chociaż HTTP jest niezbędny dla funkcjonowania aplikacji internetowych, nie dostarcza możliwości pełnego zdalnego dostępu do desktopów czy aplikacji. Typowym błędem myślowym jest zakładanie, że każdy protokół związany z siecią można wykorzystać do zdalnego dostępu; w rzeczywistości, odpowiednie protokoły muszą być wybrane na podstawie ich funkcji i zastosowań.

Pytanie 5

Czytnik w napędzie optycznym, który jest zanieczyszczony, należy wyczyścić

A. izopropanolem
B. benzyną ekstrakcyjną
C. rozpuszczalnikiem ftalowym
D. spirytusem
Izopropanol jest doskonałym środkiem czyszczącym do usuwania zanieczyszczeń z czytników w napędach optycznych, ponieważ ma doskonałe właściwości rozpuszczające i szybko odparowuje, co minimalizuje ryzyko pozostawienia resztek na powierzchni optycznej. Dzięki temu zmniejsza się ryzyko uszkodzenia elementów optycznych, takich jak soczewki, które są wrażliwe na skrajne substancje chemiczne. Izopropanol jest również bezpieczniejszy w użyciu niż wiele innych rozpuszczalników, ponieważ nie jest toksyczny w takich stężeniach, które są stosowane do czyszczenia. Dobrą praktyką jest stosowanie izopropanolu o stężeniu co najmniej 70%, co zapewnia skuteczne usunięcie zanieczyszczeń, jak kurz czy odciski palców. Warto również pamiętać, aby nie stosować nadmiaru środka czyszczącego, co mogłoby prowadzić do zalania elementów elektronicznych. Użycie izopropanolu, jako zgodne z obowiązującymi standardami czyszczenia sprzętu elektronicznego, jest rekomendowane przez producentów sprzętu oraz specjalistów w tej dziedzinie, co czyni go najlepszym wyborem do czyszczenia czytników w napędach optycznych.

Pytanie 6

Komunikat, który pojawia się po uruchomieniu narzędzia do naprawy systemu Windows, może sugerować

Ilustracja do pytania
A. uszkodzenie sterowników
B. konieczność zrobienia kopii zapasowej systemu
C. uszkodzenie plików startowych systemu
D. wykrycie błędnej adresacji IP
Komunikat wskazujący na użycie narzędzia do naprawy systemu Windows, często oznacza problem z plikami startowymi systemu. Pliki te są niezbędne do uruchomienia systemu operacyjnego, a ich uszkodzenie może prowadzić do sytuacji, gdzie system nie jest w stanie się poprawnie uruchomić. Narzędzie Startup Repair jest zaprojektowane do automatycznego wykrywania i naprawiania takich problemów. Jest ono częścią środowiska odzyskiwania systemu Windows, które pomaga przywrócić funkcjonalność systemu bez konieczności instalacji od nowa, co jest zgodne z dobrymi praktykami w zakresie utrzymania systemów IT. Przyczyn uszkodzenia plików startowych może być wiele, w tym nagłe wyłączenia prądu, ataki złośliwego oprogramowania lub błędy w systemie plików. Regularne wykonywanie kopii zapasowych i korzystanie z narzędzi ochronnych może zminimalizować ryzyko takich problemów. Wiedza o tym jak działa i kiedy używać narzędzia Startup Repair jest kluczowa dla każdego specjalisty IT, umożliwiając szybkie przywracanie działania systemów komputerowych i minimalizowanie przestojów.

Pytanie 7

Aby sprawdzić, czy zainstalowana karta graficzna w komputerze jest przegrzewana, użytkownik ma możliwość użycia programu

A. CHKDSK
B. CPU-Z
C. HD Tune
D. Everest
Everest to zaawansowane narzędzie do monitorowania sprzętu, które dostarcza szczegółowych informacji o różnych komponentach komputera, w tym o karcie graficznej. Program ten pozwala na monitorowanie temperatury, napięcia, a także obciążenia karty graficznej w czasie rzeczywistym. Dzięki tym informacjom użytkownik może zidentyfikować potencjalne problemy z przegrzewaniem, co jest kluczowe dla stabilności i wydajności systemu. Na przykład, jeśli temperatura karty graficznej przekracza zalecane normy, użytkownik może podjąć działania, takie jak poprawa chłodzenia lub czyszczenie obudowy komputera. Warto również zaznaczyć, że Everest wspiera standardy branżowe, umożliwiając użytkownikom dostęp do danych zgodnych z różnymi modelami i producentami sprzętu. Użycie Everest w codziennym użytkowaniu komputerów może znacznie poprawić ich żywotność i wydajność poprzez bieżące monitorowanie stanu podzespołów.

Pytanie 8

Atak DDoS (z ang. Distributed Denial of Service) na serwer może spowodować

A. przeciążenie aplikacji obsługującej konkretne dane
B. przechwytywanie pakietów w sieci
C. zmianę pakietów wysyłanych przez sieć
D. zbieranie danych o atakowanej sieci
Atak DDoS (Distributed Denial of Service) polega na zalewaniu serwera ogromną ilością ruchu sieciowego, co prowadzi do jego przeciążenia. Ostatecznym celem takiego ataku jest zablokowanie dostępu do usług świadczonych przez serwer, co może skutkować utratą możliwości korzystania z aplikacji, a w konsekwencji znacznymi stratami finansowymi dla firmy. Przykładem może być sytuacja, w której atakujący wykorzystuje sieć zainfekowanych komputerów, zwanych botnetem, aby jednocześnie wysyłać zapytania do serwera. W efekcie, serwer nie jest w stanie obsłużyć prawidłowych użytkowników, co prowadzi do obniżenia jakości usług oraz negatywnego wpływu na reputację organizacji. Aby ograniczyć skutki takich ataków, organizacje stosują różnorodne techniki, takie jak zapory sieciowe, systemy detekcji intruzów oraz rozwiązania typu CDN (Content Delivery Network). Te standardy branżowe i dobre praktyki są kluczowe w ochronie przed atakami DDoS.

Pytanie 9

Ile sieci obejmują komputery z adresami IP i maskami sieci wskazanymi w tabeli?

A. 4
B. 3
C. 5
D. 2
Odpowiedź 3 jest poprawna, ponieważ w analizowanych adresach IP można zidentyfikować trzy różne sieci. Adresy IP 10.120.16.10 i 10.120.18.16, obie z maską 255.255.0.0, należą do tej samej sieci 10.120.0.0. Z kolei adresy 10.110.16.18, 10.110.16.14 z maską 255.255.255.0 są w sieci 10.110.16.0, co oznacza, że są ze sobą powiązane. Ostatni adres 10.130.16.12, również z maską 255.255.255.0, należy do oddzielnej sieci 10.130.16.0. Dlatego wszystkie te adresy IP mogą być uporządkowane w trzy unikalne sieci: 10.120.0.0, 10.110.16.0 oraz 10.130.16.0. Zrozumienie, jak maski podsieci wpływają na podział sieci, jest kluczowe w zarządzaniu i projektowaniu sieci komputerowych. Przykładem zastosowania tej wiedzy jest konfigurowanie routerów i przełączników, które muszą być w stanie prawidłowo rozdzielać ruch między różnymi podsieciami.

Pytanie 10

W architekturze ISO/OSI protokoły TCP oraz UDP funkcjonują w warstwie

A. transportowej
B. sieci
C. aplikacji
D. łącza danych
TCP (Transmission Control Protocol) i UDP (User Datagram Protocol) są protokołami komunikacyjnymi, które działają w warstwie transportowej modelu ISO/OSI. Warstwa ta jest odpowiedzialna za zapewnienie niezawodnego przesyłania danych między aplikacjami na różnych urządzeniach. TCP zapewnia komunikację opartą na połączeniach, co oznacza, że tworzy stabilne połączenie między nadawcą a odbiorcą, co jest szczególnie przydatne w aplikacjach, które wymagają wysokiej niezawodności, takich jak przesyłanie plików czy komunikacja w sieciach korporacyjnych. Z kolei UDP jest protokołem bezpołączeniowym, co umożliwia szybsze przesyłanie danych, ale bez gwarancji dostarczenia czy kolejności pakietów, co czyni go idealnym rozwiązaniem dla aplikacji strumieniowych, takich jak transmisje wideo czy gry online. Ważne jest również, aby zrozumieć, że protokoły te są kluczowe dla architektury internetowej i stanowią fundament dla wielu usług sieciowych, wspierając różnorodne aplikacje i protokoły działające w warstwie aplikacji.

Pytanie 11

Jakie polecenie w systemie Linux pozwala na wyświetlenie oraz edytowanie tablicy trasowania pakietów sieciowych?

A. route
B. nslookup
C. netstat
D. ifconfig
Polecenie 'route' jest kluczowym narzędziem w systemie Linux, które pozwala na wyświetlanie i modyfikowanie tablicy trasowania pakietów sieciowych. Ta tablica jest niezbędna dla systemu operacyjnego, aby wiedział, jak kierować ruch sieciowy do odpowiednich adresów IP. Używając 'route', administratorzy mogą dodawać, usuwać lub modyfikować trasy, co jest szczególnie przydatne w sytuacjach, gdy konfiguracja sieci jest dynamiczna lub wymaga optymalizacji. Na przykład, aby dodać nową trasę do sieci 192.168.1.0 przez bramę 192.168.0.1, używamy polecenia 'route add -net 192.168.1.0 netmask 255.255.255.0 gw 192.168.0.1'. Ta elastyczność i kontrola są zgodne z najlepszymi praktykami w zarządzaniu siecią, co czyni 'route' niezastąpionym narzędziem dla każdego specjalisty od sieci. Warto również pamiętać, że w nowszych dystrybucjach Linuxa polecenie 'ip route' staje się preferowanym sposobem zarządzania trasami, ponieważ dostarcza bardziej rozbudowanych opcji i lepsze wsparcie dla nowoczesnych funkcji sieciowych.

Pytanie 12

Adres IP 192.168.2.0/24 podzielono na cztery różne podsieci. Jaką maskę mają te nowe podsieci?

A. 255.255.255.240
B. 255.255.255.128
C. 255.255.255.192
D. 255.255.255.224
Odpowiedź 255.255.255.192 jest poprawna, ponieważ maska ta umożliwia podział sieci 192.168.2.0/24 na cztery podsieci. W kontekście klasycznej notacji CIDR, maska /26 (255.255.255.192) pozwala na utworzenie 4 podsieci, z których każda może pomieścić 62 hosty (2^(32-26) - 2 = 62). Podczas podziału klasycznej sieci /24, dodajemy 2 bity do maski, co pozwala na uzyskanie 4 podsieci, gdyż 2^2 = 4. Takie praktyczne podejście jest szczególnie istotne w dużych organizacjach, gdzie efektywne zarządzanie adresacją IP jest kluczowe do zapewnienia bezpieczeństwa i wydajności. W praktyce, podsieci mogą być wykorzystywane do segmentowania sieci, co umożliwia np. oddzielenie ruchu pracowników od gości, co zwiększa bezpieczeństwo. Dobre praktyki w zakresie adresacji IP zalecają także dokumentowanie przydzielonych podsieci oraz ich przeznaczenia, co ułatwia przyszłe zmiany i zarządzanie siecią.

Pytanie 13

Jaki pasywny komponent sieciowy powinno się wykorzystać do podłączenia przewodów z wszystkich gniazd abonenckich do panelu krosowniczego umieszczonego w szafie rack?

A. Przepust szczotkowy
B. Organizer kabli
C. Adapter LAN
D. Kabel połączeniowy
Wybór niewłaściwego elementu do podłączenia okablowania może prowadzić do licznych problemów w sieci. Adapter LAN nie jest odpowiednim rozwiązaniem w kontekście organizacji kabli, ponieważ jego zadaniem jest konwersja sygnału z jednego formatu na inny, a nie zarządzanie fizycznym układem kabli. Użycie adaptera do organizacji kabli może prowadzić do złożoności w instalacji oraz zwiększenia ryzyka błędów kablowych. Z kolei kabel połączeniowy, choć niezbędny w sieci, jest elementem aktywnym, który łączy urządzenia, a nie narzędziem do organizacji. Stosując kable połączeniowe bez odpowiedniego zarządzania, można doprowadzić do plątaniny, co znacząco utrudni konserwację i dostęp do poszczególnych linii. Przepust szczotkowy, mimo że może być użyteczny do przeprowadzenia kabli przez otwory, nie zastępuje funkcji organizera kabli, który jest stworzony z myślą o uproszczeniu struktury kablowej. W praktyce, niewłaściwe podejście do organizacji kabli w szafach rackowych może prowadzić do zwiększonego ryzyka przestojów w pracy sieci, a także komplikacji w identyfikowaniu i usuwaniu awarii. Dlatego tak istotne jest stosowanie odpowiednich narzędzi, takich jak organizery kabli, aby zapewnić prawidłowe funkcjonowanie infrastruktury sieciowej.

Pytanie 14

Podczas testowania kabla sieciowego zakończonego wtykami RJ45 przy użyciu diodowego testera okablowania, diody LED zapalały się w odpowiedniej kolejności, z wyjątkiem diod oznaczonych numerami 2 i 3, które świeciły równocześnie na jednostce głównej testera, natomiast na jednostce zdalnej nie świeciły wcale. Jaka mogła być tego przyczyna?

A. Zwarcie
B. Nieciągłość kabla
C. Pary odwrócone
D. Pary skrzyżowane
Wybór innych opcji jako przyczyny problemu z połączeniem w kablu sieciowym nie uwzględnia kluczowych aspektów związanych z zasadami działania kabli oraz standardami okablowania. Pary skrzyżowane są sytuacją, w której żyły przewodów są zamienione miejscami, co może prowadzić do problemów z komunikacją. Jednak w przypadku testera diodowego nie zaobserwujemy, aby diody zapalały się równocześnie dla innych par, co wskazuje, że to nie jest przyczyna problemu. Nieciągłość kabla oznaczałaby, że jedna z żył nie jest połączona, co byłoby widoczne w teście jako brak sygnału, co również nie miało miejsca, gdyż diody zapalały się dla innych par. Pary odwrócone to sytuacja, w której żyły są nieprawidłowo podłączone, ale również nie prowadziłoby to do równoczesnego zapalania się diod na jednostce głównej testera. W przeciwnym razie test wykazałby niesprawność w przesyłaniu sygnału do jednostki zdalnej. Zachowanie diod na testerze jasno wskazuje, że przyczyną problemu jest zwarcie, co prowadzi do mylnych konkluzji w przypadku błędnego wyboru. W praktyce, zrozumienie tych różnic oraz umiejętność diagnozowania problemów jest kluczowe dla efektywnej pracy z sieciami komputerowymi, a także dla zapewnienia ich prawidłowego funkcjonowania zgodnie z powszechnie przyjętymi standardami branżowymi.

Pytanie 15

Do konwersji kodu źródłowego na program wykonywalny używany jest

A. debuger
B. emulator
C. kompilator
D. interpreter
Wybór interpreterów, emulatorów czy debugerów jako narzędzi do zamiany kodu źródłowego na program wykonywalny jest mylny i oparty na nieporozumieniu dotyczącym ich funkcji. Interpreter to narzędzie, które wykonuje kod źródłowy linia po linii, co oznacza, że nie generuje samodzielnych plików wykonywalnych. Umożliwia to szybką kontrolę i testowanie kodu, jednak nie zapewnia wydajności, jaką oferuje kompilacja. Emulator z kolei jest symulatorem innego systemu, który uruchamia programy tak, jakby były na oryginalnym sprzęcie. To narzędzie jest używane głównie w kontekście testowania i uruchamiania aplikacji na różnych platformach, ale również nie przekształca kodu źródłowego w pliki wykonywalne. Debuger to narzędzie do analizy i naprawy kodu, które pomaga programistom identyfikować i naprawiać błędy w kodzie źródłowym. Choć jest niezwykle ważnym elementem procesu programowania, jego funkcja nie obejmuje kompilacji kodu, a jedynie wspiera programistów w poprawie istniejącego kodu. Wybór tych narzędzi zamiast kompilatora może prowadzić do nieefektywności w procesie programowania oraz utrudniać tworzenie wydajnych aplikacji. Ważne jest, aby programiści rozumieli różnice między tymi narzędziami i wybierali odpowiednie rozwiązania w zależności od swoich potrzeb i celów związanych z rozwojem oprogramowania.

Pytanie 16

Protokół, który konwertuje nazwy domen na adresy IP, to

A. ICMP (Internet Control Message Protocol)
B. DHCP (Dynamic Host Configuration Protocol)
C. DNS (Domain Name System)
D. ARP (Address Resolution Protocol)
ARP, ICMP i DHCP to ważne protokoły w infrastrukturze sieciowej, jednak nie wykonują one funkcji tłumaczenia nazw domenowych na adresy IP. Protokół ARP (Address Resolution Protocol) jest odpowiedzialny za mapowanie adresów IP na adresy MAC w sieciach lokalnych. Użytkownicy mogą mylić ARP z DNS, ponieważ oba protokoły są używane w procesie komunikacji sieciowej, lecz pełnią różne role. ICMP (Internet Control Message Protocol) służy do przesyłania komunikatów kontrolnych i diagnostycznych, takich jak ping, ale nie zajmuje się tłumaczeniem nazw. DHCP (Dynamic Host Configuration Protocol) natomiast jest odpowiedzialny za automatyczne przydzielanie adresów IP urządzeniom w sieci, co również nie ma związku z funkcją rozwiązywania nazw. Typowym błędem jest mylenie funkcji poszczególnych protokołów, co może prowadzić do nieporozumień w zarządzaniu siecią. Ważne jest zrozumienie, że każdy protokół ma swoją specyfikę i zastosowanie, a ich niewłaściwe użycie może prowadzić do problemów z wydajnością i bezpieczeństwem sieci. W kontekście zarządzania infrastrukturą sieciową, kluczowe jest nie tylko zrozumienie podstawowych funkcji protokołów, ale także umiejętność ich prawidłowej konfiguracji i wykorzystywania zgodnie z najlepszymi praktykami branżowymi.

Pytanie 17

Oblicz całkowity koszt zainstalowania okablowania strukturalnego z 5 punktów abonenckich do panelu krosowego, łącznie z wykonaniem przewodów do stacji roboczych. W tym celu wykorzystano 50m kabla UTP. Punkt abonencki składa się z 2 gniazd typu RJ45.

A. 255,00 zł
B. 152,00 zł
C. 345,00 zł
D. 350,00 zł
Odpowiedź 255,00 zł jest rzeczywiście poprawna. Z czego to wynika? Przede wszystkim musisz wiedzieć, że każdy punkt abonencki to dwa gniazda typu RJ45, więc przy pięciu punktach mamy 10 gniazd. Koszt jednego gniazda podtynkowego 45x45 to 17 zł, więc 10 gniazd kosztuje razem 170 zł. Potem potrzebujemy też 50 metrów skrętki UTP, a 305 metrów kosztuje 305 zł. Jak to obliczyć? Proporcjonalnie: (50 m / 305 m) * 305 zł zrobi nam 50 zł. Na koniec mamy wtyki RJ45 – do 10 gniazd potrzebujemy 10 wtyków, co daje 60 zł (10 wtyków x 6 zł). Jak to wszystko zsumujemy, to mamy 170 zł za gniazda + 50 zł za kabel + 60 zł za wtyki, co daje 280 zł. Ale w pytaniu nie policzyliśmy wtyków, dlatego poprawnie wychodzi 255 zł (170 zł + 50 zł + 35 zł za wtyki, przyjmując ich koszt z zestawienia). Takie wyliczenia są zgodne z tym, co się robi w branży, gdzie dokładność kosztorysu jest megawah ważna.

Pytanie 18

Jak nazywa się magistrala, która w komputerze łączy procesor z kontrolerem pamięci i składa się z szyny adresowej, szyny danych oraz linii sterujących?

A. ISA – Industry Standard Architecture
B. PCI – Peripheral Component Interconnect
C. FSB – Front Side Bus
D. AGP – Accelerated Graphics Port
W przypadku PCI, chodzi o magistralę, która umożliwia podłączanie różnych komponentów do płyty głównej, takich jak karty dźwiękowe czy sieciowe. PCI nie jest bezpośrednio odpowiedzialne za komunikację między procesorem a pamięcią, lecz służy do rozszerzenia funkcjonalności systemu. Innym przykładem jest AGP, który został zaprojektowany specjalnie do obsługi kart graficznych, a jego działanie koncentruje się na zapewnieniu wysokiej przepustowości dla danych graficznych, co nie ma zastosowania w kontekście komunikacji procesora z kontrolerem pamięci. Natomiast ISA to starszy standard, który również dotyczy podłączania urządzeń peryferyjnych, ale w praktyce jest obecnie rzadko stosowany ze względu na swoje ograniczenia w porównaniu do nowszych technologii. Często mylenie tych magistrali z FSB wynika z ich podobieństw w kontekście komunikacji w systemie komputerowym, lecz każda z nich ma swoje specyficzne zastosowania i funkcje. Dlatego ważne jest zrozumienie różnicy między nimi, aby nie mylić ich ról w architekturze komputera. Kluczowe jest, aby przy rozwiązywaniu problemów lub projektowaniu systemów mieć świadomość, jakie magistrale pełnią konkretne funkcje i jak współdziałają z innymi komponentami.

Pytanie 19

Wynikiem mnożenia dwóch liczb binarnych 11100110 oraz 00011110 jest liczba

A. 6900 (h)
B. 64400 (o)
C. 6900 (10)
D. 0110 1001 0000 0000 (2)
Prawidłowym wynikiem mnożenia dwóch liczb binarnych 11100110 (które odpowiadają 198 w systemie dziesiętnym) i 00011110 (które odpowiadają 30 w systemie dziesiętnym) jest 6900 (w systemie dziesiętnym). Aby to zrozumieć, warto przypomnieć sobie podstawowe zasady mnożenia liczb binarnych. W systemie binarnym każda cyfra reprezentuje potęgę liczby 2, a podczas mnożenia należy zastosować podobne zasady jak w mnożeniu w systemie dziesiętnym, ale z ograniczeniem do dwóch cyfr: 0 i 1. Po wykonaniu mnożenia i zsumowaniu wyników dla poszczególnych bitów, otrzymujemy ostateczny wynik. Przykłady zastosowania tej wiedzy są powszechne w programowaniu i inżynierii komputerowej, gdzie operacje na liczbach binarnych są fundamentem przetwarzania danych. Umiejętność przeprowadzania takich operacji pozwala na lepsze zrozumienie działania procesorów oraz algorytmów matematycznych, co jest niezbędne w pracy z systemami niskiego poziomu oraz w algorytmach kryptograficznych.

Pytanie 20

Wykonanie komendy NET USER GRACZ * /ADD w wierszu poleceń systemu Windows spowoduje

A. wyświetlenie monitora o podanie hasła
B. zaprezentowanie komunikatu o błędnej składni polecenia
C. utworzenie konta GRACZ bez hasła i nadanie mu uprawnień administratora komputera
D. utworzenie konta GRACZ z hasłem *
Wybór opcji dodania konta GRACZ z hasłem '*' może wydawać się logiczny, jednak w rzeczywistości jest niepoprawny. Podczas wykonywania polecenia 'NET USER GRACZ * /ADD' system Windows nie interpretuje znaku '*' jako rzeczywistego hasła, ale używa go jako wskazówki do wywołania monitu o hasło. Implementacja tego polecenia nie umożliwia bezpośredniego wprowadzenia hasła, co jest kluczowym krokiem w procesie tworzenia konta. Kolejna mylna koncepcja dotyczy przekonania, że polecenie to może dodać konto bez hasła. Takie podejście jest niezgodne z zasadami zabezpieczeń systemu, które wymagają, aby każde konto użytkownika miało przypisane hasło, aby zminimalizować ryzyko nieautoryzowanego dostępu. Również przypisanie kontu uprawnień administratora poprzez to polecenie jest niemożliwe bez dodatkowych parametrów i nie jest automatycznie realizowane podczas jego wykonania. Istotne jest zrozumienie, że proces tworzenia użytkowników w systemach operacyjnych, w tym Windows, powinien być przeprowadzany zgodnie z ustalonymi standardami, aby zapewnić bezpieczeństwo oraz odpowiednie zarządzanie dostępem do zasobów. Brak zrozumienia tych mechanizmów często prowadzi do osłabienia zabezpieczeń i zwiększenia podatności systemów na ataki.

Pytanie 21

W dokumentacji technicznej głośnika komputerowego oznaczenie "10 W" dotyczy jego

A. częstotliwości
B. mocy
C. zakresu pracy
D. napięcia
W kontekście głośników komputerowych, zrozumienie oznaczeń technicznych jest kluczowe dla wybierania odpowiednich komponentów audio. Zapis "10 W" odnosi się do mocy, jednak niektóre osoby mogą mylnie interpretować go w kontekście napięcia, zakresu pracy lub częstotliwości. Napięcie głośnika, zazwyczaj wyrażane w woltach (V), nie jest bezpośrednio związane z jego wydajnością dźwiękową, lecz z wymogami zasilania. Głośniki są projektowane do pracy w określonym zakresie napięcia, ale to moc decyduje, jak dużo energii głośnik może przetworzyć na dźwięk. Zakres pracy odnosi się do częstotliwości, w jakich głośnik jest w stanie efektywnie działać, a nie do mocy, co może prowadzić do nieporozumień. Częstotliwość, mierzona w hertzach (Hz), wskazuje na to, jakie dźwięki głośnik może reprodukować, jednak nie mówi nic o jego wydajności w zakresie mocy. Typowym błędem jest mylenie tych oznaczeń i przyjmowanie, że większe napięcie automatycznie oznacza większą moc, co nie jest prawdą. Użytkownicy powinni być świadomi tych różnic, aby uniknąć niewłaściwego doboru sprzętu audio, co może prowadzić do niezadowolenia z jakości dźwięku oraz uszkodzenia głośników. Zrozumienie podstawowych parametrów głośników jest kluczowe dla optymalizacji systemów audio oraz zapewnienia ich długotrwałej i efektywnej pracy.

Pytanie 22

Aby przywrócić dane, które zostały usunięte za pomocą kombinacji klawiszy Shift + Delete, co należy zrobić?

A. skorzystać z oprogramowania do odzyskiwania danych
B. odzyskać je z systemowego kosza
C. użyć kombinacji klawiszy Shift+Insert
D. odzyskać je z folderu plików tymczasowych
Odzyskiwanie danych usuniętych za pomocą kombinacji klawiszy Shift + Delete jest procesem, który wymaga zastosowania specjalistycznego oprogramowania do odzyskiwania danych. Gdy plik jest usuwany w ten sposób, nie trafia on do kosza systemowego, co sprawia, że standardowe metody przywracania nie są dostępne. Oprogramowanie do odzyskiwania danych działa na poziomie systemu plików, skanując dysk w poszukiwaniu fragmentów danych, które mogły pozostać po usunięciu. Przykłady popularnych programów to Recuva, EaseUS Data Recovery Wizard czy Stellar Data Recovery. Warto zaznaczyć, że skuteczność odzyskiwania danych może zależeć od wielu czynników, takich jak czas, jaki upłynął od usunięcia pliku, oraz intensywność użycia dysku po usunięciu. Jeżeli dane zostały nadpisane, ich odzyskanie może być niemożliwe. Dlatego ważne jest, aby regularnie tworzyć kopie zapasowe ważnych plików oraz korzystać z programów do monitorowania i zabezpieczania danych, co jest zgodne z najlepszymi praktykami zarządzania danymi.

Pytanie 23

Jaką minimalną liczbę bitów potrzebujemy w systemie binarnym, aby zapisać liczbę heksadecymalną 110 (h)?

A. 16 bitów
B. 9 bitów
C. 3 bity
D. 4 bity
Aby zrozumieć, dlaczego do zapisania liczby heksadecymalnej 110 (h) potrzebne są 9 bity w systemie binarnym, należy najpierw przekształcić tę liczbę do postaci binarnej. Liczba heksadecymalna 110 (h) odpowiada wartości dziesiętnej 256. W systemie binarnym, liczby są zapisywane jako ciągi zer i jedynek, a każda cyfra binarna (bit) reprezentuje potęgę liczby 2. Aby obliczyć, ile bitów jest potrzebnych do zapisania liczby 256, musimy znaleźć najmniejszą potęgę liczby 2, która jest większa lub równa 256. Potęgi liczby 2 są: 1 (2^0), 2 (2^1), 4 (2^2), 8 (2^3), 16 (2^4), 32 (2^5), 64 (2^6), 128 (2^7), 256 (2^8). Widzimy, że 256 to 2^8, co oznacza, że potrzebujemy 9 bitów, aby uzyskać zakres od 0 do 255. Zatem mamy 9 możliwych kombinacji bitów do przedstawienia wszystkich wartości od 0 do 512. W praktyce, w kontekście komunikacji i przechowywania danych, znajomość konwersji między systemami liczbowymi jest kluczowa dla inżynierów oraz programistów i ma zastosowanie w wielu dziedzinach, takich jak projektowanie układów scalonych, programowanie oraz w analizie danych.

Pytanie 24

Jakiego typu kopię zapasową należy wykonać, aby zarchiwizować wszystkie informacje, niezależnie od daty ich ostatniej archiwizacji?

A. Różnicową
B. Porównującą
C. Przyrostową
D. Pełną
Pełna kopia bezpieczeństwa to najskuteczniejsza metoda archiwizacji danych, ponieważ umożliwia zarchiwizowanie wszystkich plików i folderów w danym momencie. Bez względu na to, kiedy ostatnio wykonano archiwizację, pełna kopia bezpieczeństwa zapewnia, że wszystkie dane są aktualne i dostępne. W praktyce, podczas tworzenia pełnej kopii, wszystkie pliki są kopiowane do zewnętrznego nośnika lub chmury, co minimalizuje ryzyko utraty danych. Standardy branżowe, takie jak ISO 27001, podkreślają znaczenie regularnych pełnych kopii zapasowych w zarządzaniu bezpieczeństwem informacji. Przykładem zastosowania pełnej kopii bezpieczeństwa może być sytuacja, w której organizacja planuje migrację danych do nowego systemu lub infrastruktury, a pełna kopia zapewnia zabezpieczenie przed utratą danych podczas tego procesu. Ponadto, pełne kopie zapasowe są idealne w sytuacjach awaryjnych, gdy konieczne jest przywrócenie wszystkich danych do stanu sprzed awarii lub incydentu. W związku z tym, wdrażanie polityki regularnych pełnych kopii zapasowych powinno być kluczowym elementem strategii zarządzania danymi w każdej organizacji.

Pytanie 25

Cechą charakterystyczną transmisji za pomocą interfejsu równoległego synchronicznego jest to, że

A. dane są przesyłane w tym samym czasie całą szerokością magistrali, a początek oraz zakończenie transmisji oznaczają bity startu i stopu
B. dane są przesyłane bit po bicie w określonych odstępach czasu, które są wyznaczane przez sygnał zegarowy CLK
C. w określonych odstępach czasu wyznaczanych przez sygnał zegarowy CLK dane przesyłane są jednocześnie kilkoma przewodami
D. początek i koniec przesyłanych danych odbywa się bit po bicie i jest oznaczony bitem startu oraz stopu
Pierwsza odpowiedź sugeruje, że dane są przesyłane jednocześnie całą szerokością magistrali, ale nie uwzględnia przy tym kluczowego aspektu synchronizacji, która jest istotna w przypadku interfejsów równoległych synchronicznych. Nie wystarczy, aby dane były przesyłane równocześnie; ich przesył musi być również zsynchronizowany z sygnałem zegarowym, co jest istotnym elementem w zapewnieniu integralności przesyłanych informacji. Z kolei druga odpowiedź koncentruje się na przesyłaniu bit po bicie z użyciem bitów startu i stopu, co jest bardziej charakterystyczne dla transmisji szeregowej, a nie równoległej. W interfejsach równoległych przesyłanie danych następuje równocześnie, eliminując potrzebę oznaczania początku i końca transmisji pojedynczymi bitami. Trzecia odpowiedź odnosi się do transmisji bit po bicie, co jest sprzeczne z zasadą działania interfejsu równoległego, gdzie wiele bitów jest przesyłanych jednocześnie w ramach jednego cyklu zegarowego. Ostatecznie, błędne wnioski mogą wynikać z niepełnego zrozumienia różnic między transmisją równoległą a szeregową, co prowadzi do mylnych interpretacji na temat sposobu przesyłania danych w różnych typach interfejsów.

Pytanie 26

Jaką topologię fizyczną sieci ukazuje przedstawiony rysunek?

Ilustracja do pytania
A. Podwójnego pierścienia
B. Pełnej siatki
C. Magistrali
D. Gwiazdy
Topologia gwiazdy to jedna z najczęściej używanych struktur w sieciach komputerowych. W tej topologii wszystkie urządzenia są podłączone do centralnego punktu, którym zazwyczaj jest switch lub hub. Każde z urządzeń ma swój własny kabel, co oznacza, że jeśli jeden z kabli się uszkodzi, to reszta sieci dalej działa. To jest super ważne, bo łatwo można zlokalizować problem. W praktyce, topologia gwiazdy jest często wykorzystywana w sieciach lokalnych LAN, bo umożliwia łatwe dodawanie nowych urządzeń bez zakłócania działania już działających. Myślę, że dużą zaletą tej struktury jest to, że standardy takie jak Ethernet korzystają z gwiazdy, co zwiększa jej wydajność i niezawodność. Dodatkowo, cała komunikacja przez centralny punkt pozwala na lepsze monitorowanie dostępu i bezpieczeństwa. Tak więc, można powiedzieć, że to naprawdę elastyczne rozwiązanie.

Pytanie 27

Która usługa pozwala na zdalne zainstalowanie systemu operacyjnego?

A. WDS
B. IIS
C. IRC
D. DNS
Zrozumienie tematów związanych z instalacją systemów operacyjnych jest kluczowe dla efektywnego zarządzania infrastrukturą IT. Odpowiedzi, które wskazują na inne usługi, jak IRC, DNS i IIS, mogą wynikać z mylnych przekonań co do ich funkcji. IRC, czyli Internet Relay Chat, to protokół komunikacyjny, który służy do prowadzenia rozmów w czasie rzeczywistym, a nie do instalacji systemów operacyjnych. Jego zastosowanie w kontekście instalacji systemów operacyjnych jest błędne, ponieważ nie zapewnia on żadnych mechanizmów do zarządzania obrazami systemów. DNS, czyli Domain Name System, odpowiada za tłumaczenie nazw domen na adresy IP, co czyni go kluczowym dla funkcjonowania sieci, ale nie ma on związku z procesem instalacji systemów operacyjnych. Użytkownicy mogą mylić DNS z WDS, ponieważ obie usługi są istotne w kontekście sieci, jednak ich zastosowania są całkowicie różne. IIS, czyli Internet Information Services, to serwer aplikacji stworzony przez Microsoft, który obsługuje aplikacje webowe, a nie procesy instalacji systemów operacyjnych. Choć IIS może być użyty do hostowania stron internetowych i aplikacji, nie ma funkcji, które pozwalałyby na zdalne instalowanie systemów operacyjnych. Stosowanie tych narzędzi w niewłaściwy sposób może prowadzić do nieefektywności w zarządzaniu infrastrukturą IT i opóźnień w implementacji nowych systemów. Właściwe zrozumienie funkcji i zastosowań różnych usług sieciowych jest kluczowe dla ich prawidłowego wykorzystania w praktyce.

Pytanie 28

Dobrze zaprojektowana sieć komputerowa powinna zapewniać możliwość rozbudowy, czyli charakteryzować się

A. skalowalnością
B. redundancją
C. nadmiarowością
D. wydajnością
Skalowalność to kluczowa cecha każdej nowoczesnej sieci komputerowej, która pozwala na jej rozbudowę w miarę potrzeb bez konieczności przeprowadzania kosztownych zmian w infrastrukturze. Oznacza to, że użytkownicy mogą dodawać nowe urządzenia, węzły lub usługi bez negatywnego wpływu na wydajność całego systemu. Przykładem zastosowania skalowalności jest architektura oparta na chmurze, która umożliwia elastyczne zwiększanie zasobów obliczeniowych w odpowiedzi na zmieniające się zapotrzebowanie. W praktyce, gdy firma rośnie, może łatwo dostosować swój system do nowych wymagań, dodając serwery lub korzystając z rozwiązań chmurowych, które automatycznie dostosowują się do obciążenia. Dobre praktyki w projektowaniu sieci, takie jak stosowanie protokołów routingu, jak OSPF czy BGP, czy zaprojektowanie sieci według architektury hierarchicznej, wspierają skalowalność. Dzięki tym podejściom, sieci mogą rosnąć w sposób zorganizowany, eliminując problemy związane z wydajnością oraz zarządzaniem ruchem.

Pytanie 29

W dokumentacji technicznej procesora producent zamieścił wyniki analizy zrealizowanej przy użyciu programu CPU-Z. Z tych informacji wynika, że procesor dysponuje

Ilustracja do pytania
A. 4 rdzenie
B. 2 rdzenie
C. 5 rdzeni
D. 6 rdzeni
Procesor Intel Core i5 650, wskazany w wynikach testu CPU-Z, posiada 2 rdzenie. Jest to typowy przykład procesora dwurdzeniowego, który często znajduje zastosowanie w komputerach osobistych oraz niektórych serwerach. Dwurdzeniowe procesory są optymalne do wielu codziennych zadań, takich jak przeglądanie Internetu, praca biurowa czy odtwarzanie multimediów. Dzięki technologii Hyper-Threading każdy rdzeń może obsługiwać dwa wątki jednocześnie, co zwiększa efektywność przetwarzania zadań wielowątkowych. W praktyce oznacza to, że choć fizycznie mamy dwa rdzenie, system operacyjny widzi cztery jednostki wykonawcze, co jest szczególnie korzystne podczas uruchamiania aplikacji zoptymalizowanych pod kątem wielu wątków. Standardowe praktyki w branży sugerują, że wybór procesora powinien być dostosowany do specyficznych potrzeb użytkownika, a procesory dwurdzeniowe z technologią wielowątkową mogą być doskonałym wyborem dla użytkowników domowych i biurowych, którzy cenią sobie balans pomiędzy wydajnością a kosztem.

Pytanie 30

Na diagramie mikroprocesora zidentyfikowany strzałką blok odpowiada za

Ilustracja do pytania
A. przetwarzanie wskaźnika do następnej instrukcji programu
B. wykonywanie operacji arytmetycznych oraz logicznych na liczbach
C. przechowywanie następujących adresów pamięci z komendami
D. przechowywanie aktualnie realizowanej instrukcji
Blok ALU, czyli jednostka arytmetyczno-logiczna, jest kluczowym elementem mikroprocesora odpowiedzialnym za wykonywanie operacji arytmetycznych i logicznych na liczbach. ALU realizuje podstawowe działania matematyczne, takie jak dodawanie, odejmowanie, mnożenie i dzielenie, oraz operacje logiczne, m.in. AND OR XOR i NOT. Jest niezbędnym komponentem w większości zadań przetwarzania danych wykonywanych przez procesor. W rzeczywistych zastosowaniach ALU jest używana w każdej operacji związanej z obliczeniami, na przykład podczas wykonywania skomplikowanych algorytmów, zarządzania pamięcią czy przetwarzania grafiki. Współczesne mikroprocesory mogą mieć kilka niezależnych ALU, co pozwala na równoległe przetwarzanie instrukcji i znacznie zwiększa wydajność. Dobre praktyki projektowe zalecają optymalizację ścieżki danych do ALU, aby minimalizować opóźnienia, co jest kluczowe w systemach o wysokiej wydajności, takich jak serwery czy superkomputery. Wydajność ALU ma bezpośredni wpływ na ogólną wydajność procesora, dlatego w zaawansowanych systemach stosuje się różne techniki, takie jak potokowanie, by zwiększyć przepustowość operacyjną jednostki.

Pytanie 31

Rysunek ilustruje sposób działania drukarki

Ilustracja do pytania
A. atramentowej
B. laserowej
C. igłowej
D. sublimacyjnej
Drukarka atramentowa działa na zasadzie wykorzystania cieczy, która zostaje naniesiona na papier za pomocą dysz drukujących. Obraz przedstawia proces, gdzie element grzejny podgrzewa tusz w komorze prowadząc do powstania pęcherzyka gazu. Ten pęcherzyk wypycha kroplę atramentu przez dyszę na papier. Technologia ta pozwala na uzyskanie wysokiej jakości wydruków dzięki precyzyjnemu dozowaniu atramentu. Drukarki atramentowe są często stosowane w domach i biurach ze względu na ich zdolność do drukowania zarówno dokumentów tekstowych, jak i kolorowych obrazów z dużą dokładnością. Warto pamiętać, że różne tusze mają różne właściwości, co wpływa na odporność wydruku na blaknięcie czy wodę, a producenci drukarek zalecają stosowanie oryginalnych kartridży dla optymalnej jakości. Drukowanie atramentowe jest również cenione za niskie koszty eksploatacyjne w porównaniu do technologii laserowej, co czyni je popularnym wyborem w wielu zastosowaniach, od codziennego użytku po profesjonalne drukowanie zdjęć.

Pytanie 32

Jaką rolę należy przypisać serwerowi z rodziny Windows Server, aby mógł świadczyć usługi rutingu?

A. Usługi zasad i dostępu sieciowego
B. Serwer sieci Web (IIS)
C. Usługi domenowe w Active Directory
D. Usługi zarządzania dostępem w Active Directory
Wybór usługi zarządzania dostępu w usłudze Active Directory jako odpowiedzi na pytanie o ruting jest błędny, ponieważ ta rola skupia się głównie na kontrolowaniu dostępu do zasobów w sieci, a nie na zarządzaniu ruchem sieciowym. Usługi te mają na celu autoryzację i uwierzytelnianie użytkowników oraz urządzeń w sieci, co jest ważne, ale nie wystarcza do realizacji zadań rutingowych. Z drugiej strony, usługi domenowe w usłudze Active Directory są fundamentalne dla organizacji i zarządzania użytkownikami, ale nie zajmują się bezpośrednio przesyłaniem pakietów danych pomiędzy różnymi segmentami sieci, co jest kluczowe w kontekście rutingu. Serwer sieci Web (IIS) ma zupełnie inną funkcję, koncentrując się na hostowaniu aplikacji internetowych, a nie na zarządzaniu ruchem sieciowym. Takie nieprawidłowe podejście może wynikać z mylnej interpretacji roli poszczególnych serwisów w infrastrukturze IT. W praktyce, aby poprawnie skonfigurować serwer do pełnienia roli routera, należy skupić się na odpowiednich usługach, które rzeczywiście obsługują ruting, a odpowiedzi nie związane z tym tematem prowadzą do błędnych wniosków, co może skutkować brakiem efektywności w zarządzaniu siecią.

Pytanie 33

W systemie Linux, co oznacza znak "~" w ścieżce dostępu do plików?

A. Katalog root
B. Katalog domowy użytkownika
C. Katalog główny
D. Katalog tymczasowy
Znak "~" w systemie Linux jest powszechnie używany jako skrót do katalogu domowego bieżącego użytkownika. Jego zastosowanie jest nie tylko wygodne, ale również zgodne z dobrymi praktykami administracji systemem, gdyż pozwala na szybki dostęp do plików i konfiguracji specyficznych dla danego użytkownika. Na przykład, jeśli użytkownik wpisze w terminalu komendę "cd ~", zostanie przeniesiony bezpośrednio do swojego katalogu domowego, co eliminuje konieczność wpisywania pełnej ścieżki, na przykład "/home/nazwa_użytkownika". Ułatwienie to jest szczególnie przydatne w przypadku użytkowników posiadających długie nazwy katalogów domowych lub w sytuacjach, gdy pracują na wielu kontach jednocześnie. Praktyczne zastosowanie tego skrótu można zauważyć podczas pracy z plikami konfiguracyjnymi, które często znajdują się w katalogu domowym, jak np. ".bashrc" czy ".profile". Rozumienie tego mechanizmu to podstawa efektywnej nawigacji w systemie Linux i zarządzania plikami użytkownika. Można też używać tego znaku w skryptach, co sprawia, że są one dynamicznie dostosowywane do środowiska pracy różnych użytkowników, co jest zgodne z zasadami przenośności i elastyczności w administracji systemami operacyjnymi.

Pytanie 34

Jaki protokół stosują komputery, aby informować router o zamiarze dołączenia do lub opuszczenia konkretnej grupy multicastowej?

A. UDP
B. TCP/IP
C. IGMP
D. DHCP
IGMP (Internet Group Management Protocol) jest protokołem, który umożliwia komputerom informowanie routerów o chęci dołączenia do lub opuszczenia określonej grupy rozgłoszeniowej. Protokół ten odgrywa kluczową rolę w zarządzaniu grupami multicastowymi, co jest istotne dla aplikacji wymagających efektywnego przesyłania danych do wielu odbiorców jednocześnie, takich jak transmisje wideo na żywo czy telekonferencje. Dzięki IGMP, router może optymalnie zarządzać ruchem multicastowym, przesyłając dane tylko do tych odbiorców, którzy wyrazili zainteresowanie danym strumieniem. Zastosowanie IGMP jest szczególnie widoczne w sieciach lokalnych oraz w środowiskach, w których wykorzystuje się usługi multicastowe, co pozwala na oszczędność pasma oraz zasobów sieciowych. W praktyce, IGMP pozwala na dynamiczne zarządzanie członkostwem w grupach, co jest niezbędne w zmieniających się warunkach sieciowych. Jest to zgodne z dobrą praktyką w projektowaniu sieci, gdzie wydajność i efektywność są kluczowymi czynnikami.

Pytanie 35

Liczba 45H w systemie ósemkowym wyraża się jako

A. 110
B. 105
C. 102
D. 108
Aby zrozumieć, dlaczego inne odpowiedzi są błędne, należy przyjrzeć się procesowi konwersji liczby z systemu szesnastkowego do ósemkowego. Nieprawidłowe odpowiedzi mogą wynikać z błędnego przeliczenia lub mylenia poszczególnych systemów liczbowych. Na przykład, odpowiedź 102 mogłaby być wynikiem błędnego dodania wartości liczbowych z systemu ósemkowego lub błędnego przeliczenia liczby szesnastkowej. Z kolei odpowiedź 108 może być wynikiem niepoprawnego podziału lub zrozumienia, jak działa system ósemkowy. W systemie szesnastkowym, każda cyfra ma swoją wartość, a niepoprawne podejście do jej obliczenia prowadzi do mylnych wyników. Typowym błędem jest próba konwersji bez znajomości wartości podstawowych, co może prowadzić do nieprawidłowego przedstawienia liczby. Kluczowym elementem jest zrozumienie, że proces konwersji między systemami nie jest tylko prostym dodawaniem czy mnożeniem, ale wymaga systematycznego podejścia do rozkładu wartości liczbowych zgodnie z podstawą systemu. Warto zatem przyjąć standardowe techniki konwersji, takie jak najpierw przeliczenie na system dziesiętny, a następnie na system docelowy, co ułatwia uniknięcie typowych pułapek, które mogą prowadzić do błędnych odpowiedzi.

Pytanie 36

Po włączeniu komputera wyświetlił się komunikat: Non-system disk or disk error. Replace and strike any key when ready. Co może być tego przyczyną?

A. skasowany BIOS komputera
B. dyskietka włożona do napędu
C. uszkodzony kontroler DMA
D. brak pliku NTLDR
Patrząc na inne odpowiedzi, można zauważyć, że uszkodzony kontroler DMA tak naprawdę nie ma związku z komunikatami, które dostajesz z brakiem systemu. Kontroler DMA to coś, co połącza pamięć z urządzeniami, ale nie zajmuje się uruchamianiem systemu. Owszem, może sprawiać inne kłopoty, ale nie te konkretne komunikaty. Z kolei brak pliku NTLDR, mimo że może dawać podobne błędy, ma więcej wspólnego z twardym dyskiem, na którym jest system. NTLDR to ważny plik, ale jeśli komunikat dotyczy dyskietki, to sprawa jest inna. A co do skasowanego BIOS-u, to też nie jest przyczyną tego błędu. Skasowany BIOS mógłby całkowicie uniemożliwić uruchomienie komputera, ale nie spowodowałby błędu z „Non-system disk”. Zrozumienie tego typu rzeczy jest naprawdę ważne w diagnozowaniu problemów z uruchamianiem komputerów. Każda z innych odpowiedzi może być związana z innymi kwestiami, ale nie dotyczy tej sytuacji opisanej w pytaniu.

Pytanie 37

Urządzeniem wykorzystywanym do formowania kształtów oraz grawerowania m.in. w materiałach drewnianych, szklanych i metalowych jest ploter

A. bębnowy
B. laserowy
C. solwentowy
D. tnący
Odpowiedzi związane z ploterami solwentowymi, tnącymi i bębnowymi są nieprawidłowe, ponieważ dotyczą zupełnie innych technologii i zastosowań. Plotery solwentowe są wykorzystywane głównie w druku wielkoformatowym, gdzie stosuje się atramenty na bazie rozpuszczalników, aby uzyskać wysokiej jakości wydruki na różnych podłożach, takich jak banery czy folie. Ich głównym celem jest reprodukcja obrazu, a nie precyzyjne wycinanie czy grawerowanie kształtów. Natomiast plotery tnące specjalizują się w wycinaniu z materiałów, takich jak folia samoprzylepna czy papier, jednak nie wykorzystują technologii laserowej, co ogranicza ich możliwości w zakresie grawerowania. Z kolei plotery bębnowe, które najczęściej są stosowane w zastosowaniach takich jak skanowanie i kopiowanie, nie są projektowane do wycinania czy grawerowania, przez co są nieodpowiednie do zadań wymagających dużej precyzji i detaliczności, jakie oferują plotery laserowe. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to mylenie funkcji urządzeń oraz niewłaściwe przypisanie ich zastosowań w kontekście wycinania i grawerowania, co może prowadzić do nieefektywnego wykorzystania technologii oraz błędnych decyzji w procesie produkcji.

Pytanie 38

Na schemacie przedstawiono sieć o strukturze

Ilustracja do pytania
A. magistrali
B. drzew
C. gwiazd
D. siatek
Topologia magistrali to struktura sieciowa, w której wszystkie urządzenia są podłączone do jednego wspólnego medium transmisyjnego, najczęściej kabla, nazywanego magistralą. W tego typu sieci każde urządzenie może komunikować się bezpośrednio z innym poprzez to wspólne medium, co upraszcza proces instalacji i zmniejsza koszty materiałowe. Główna zaleta topologii magistrali to jej prostota i efektywność w małych sieciach, gdzie dane są przesyłane w jednym kierunku i nie ma potrzeby skomplikowanego zarządzania ruchem. Współczesne przykłady zastosowania to starsze sieci Ethernet, gdzie przesyłanie danych odbywa się w postaci ramek. Standardy takie jak IEEE 802.3 opisują specyfikacje dla sieci tego typu. Magistrala jest korzystna tam, gdzie wymagane są ekonomiczne rozwiązania w prostych konfiguracjach. Jednakże w miarę wzrostu liczby urządzeń mogą pojawić się problemy z przepustowością oraz kolizjami danych, dlatego w dużych sieciach często wybiera się inne topologie. Dodatkową korzyścią jest łatwość diagnozowania problemów przy użyciu narzędzi takich jak analizatory sygnałów, co przyspiesza proces rozwiązywania problemów technicznych.

Pytanie 39

Aby możliwe było zorganizowanie pracy w wydzielonych logicznie mniejszych podsieciach w sieci komputerowej, należy ustawić w przełączniku

A. WAN
B. VLAN
C. WLAN
D. VPN
VLAN, czyli Virtual Local Area Network, jest technologią, która umożliwia podział jednej fizycznej sieci lokalnej na wiele logicznych podsieci. Dzięki VLAN możliwe jest segregowanie ruchu sieciowego w zależności od określonych kryteriów, takich jak dział, zespół czy funkcja w organizacji. W praktyce, przełączniki sieciowe są konfigurowane w taki sposób, aby porty przełącznika mogły być przypisane do określonych VLAN-ów, co pozwala na izolację ruchu między różnymi grupami użytkowników. Na przykład, w dużej firmie można stworzyć osobne VLAN-y dla działu finansowego, sprzedażowego i IT, co zwiększa bezpieczeństwo oraz ogranicza wykorzystywanie pasma. Ponadto, VLAN-y ułatwiają zarządzanie siecią oraz zwiększają jej efektywność, ponieważ umożliwiają lepsze wykorzystanie zasobów sieciowych. Standardy takie jak IEEE 802.1Q definiują, jak realizować VLAN-y w sieciach Ethernet, co czyni je uznawanym podejściem w projektowaniu nowoczesnych infrastruktury sieciowych.

Pytanie 40

Wskaż nieprawidłowy sposób podziału dysków MBR na partycje?

A. 1 partycja podstawowa oraz 1 rozszerzona
B. 3 partycje podstawowe oraz 1 rozszerzona
C. 2 partycje podstawowe oraz 1 rozszerzona
D. 1 partycja podstawowa oraz 2 rozszerzone
Podział dysków MBR na partycje jest tematem złożonym, a wiele osób ma tendencję do nieprawidłowego rozumienia zasadniczych zasad tego systemu. Odpowiedź sugerująca utworzenie 1 partycji podstawowej i 1 rozszerzonej nie ma sensu, ponieważ w takim przypadku nie ma możliwości utworzenia dodatkowych partycji logicznych, które są kluczowe w rozwiązywaniu problemów z ograniczeniami podziału. Ponadto, koncepcja posiadania dwóch partycji rozszerzonych jest błędna, ponieważ standard MBR zezwala tylko na jedną partycję rozszerzoną, która sama w sobie może zawierać do 128 partycji logicznych. Użytkownicy często mylą terminologię i nie rozumieją, że partycje rozszerzone służą do przechowywania większej liczby partycji logicznych, co jest niezbędne w przypadku, gdy potrzebne są dodatkowe systemy operacyjne lub aplikacje. Podobnie, stwierdzenie o trzech partycjach podstawowych i jednej rozszerzonej jest mylone, ponieważ przy takim podziale istnieje jeszcze możliwość utworzenia jedynie jednej rozszerzonej, co ogranicza elastyczność. Zrozumienie tych podziałów jest kluczowe, aby uniknąć problemów z zarządzaniem danymi i systemami operacyjnymi, co często prowadzi do frustracji i błędów w konfiguracji. Edukacja na temat standardów MBR pomaga w zrozumieniu ograniczeń oraz optymalizacji struktury dysków, co jest niezbędne w każdym środowisku informatycznym.