Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 15 maja 2025 14:04
  • Data zakończenia: 15 maja 2025 14:40

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zadania związane z analizą wyników pomiarów nie obejmują sporządzania

A. sprawozdań technicznych
B. wywiadów terenowych
C. obliczeń
D. szkiców polowych
Obliczenia, szkice polowe i sprawozdania techniczne są integralnymi elementami procesu przetwarzania wyników pomiarów i każda z tych czynności ma swoje specyficzne zastosowanie w kontekście analizy danych. Obliczenia są kluczowe, ponieważ pozwalają na przetworzenie surowych danych w użyteczne informacje, które mogą być interpretowane w kontekście badanego zjawiska. Na przykład, w badaniach hydrologicznych obliczenia mogą obejmować analizy przepływu wód gruntowych, co jest niezbędne do oceny dostępności wody i zarządzania zasobami wodnymi. Szkice polowe służą zaś do wizualizacji terenu oraz lokalizacji punktów pomiarowych, co jest istotne w kontekście dokładności i powtarzalności wyników. Sprawozdania techniczne natomiast stanowią formalne podsumowanie prac badawczych, prezentując wyniki oraz wnioski w sposób zrozumiały dla szerszego grona odbiorców. Często zapomina się, że te elementy są ze sobą ściśle powiązane, a ich prawidłowe wykonanie jest kluczowe dla uzyskania i interpretacji rzetelnych wyników. Właściwe zrozumienie różnicy między zbieraniem danych a ich przetwarzaniem jest istotne, aby uniknąć pomyłek w metodologii badań, co może prowadzić do błędnych wniosków i nieprawidłowego zarządzania danymi.

Pytanie 2

Zgodnie z ustawodawstwem geodezyjnym oraz kartograficznym mapy zasadnicze powinny być sporządzane w następujących skalach:

A. 1:10 000, 1:25 000, 1:50 000
B. 1:25 000, 1:50 000, 1:100 000
C. 1:500, 1:1000, 1:2000, 1:5000
D. 1:1000, 1:2000, 1:5000, 1:10 000
Mapa zasadnicza to kluczowy dokument w geodezji, który odzwierciedla rzeczywiste warunki na terenie, w tym granice działek, infrastrukturę oraz inne istotne elementy. Zgodnie z prawem geodezyjnym i kartograficznym, mapy zasadnicze powinny być wykonywane w skalach 1:500, 1:1000, 1:2000 oraz 1:5000, co pozwala na dokładne odwzorowanie szczegółów terenu. Te skale są stosowane w praktyce do planowania przestrzennego, budowy oraz zarządzania nieruchomościami. Na przykład, skala 1:500 jest często wykorzystywana w projektach budowlanych, gdzie precyzyjne odwzorowanie terenu jest kluczowe dla projektantów i architektów. W przypadku dużych obszarów, takich jak planowanie strategiczne czy zagospodarowanie przestrzenne, skala 1:5000 może być bardziej odpowiednia, ponieważ daje szerszy kontekst geograficzny. Wybór odpowiedniej skali jest więc istotny dla zapewnienia dokładności i użyteczności map, co jest zgodne z najlepszymi praktykami w branży geodezyjnej.

Pytanie 3

Jakie informacje są konieczne do zlokalizowania w terenie punktu geodezyjnego?

A. Opis topograficzny punktu
B. Godło odpowiedniego arkusza mapy zasadniczej
C. Szkic polowy wykonania osnowy
D. Zestawienie szkiców terenowych
Opis topograficzny punktu geodezyjnego jest kluczowym dokumentem potrzebnym do jego identyfikacji i odnalezienia w terenie. Zawiera on szczegółowe informacje o położeniu punktu, jego otoczeniu oraz cechach charakterystycznych, co jest niezbędne dla geodetów podczas pracy w terenie. Na przykład, w opisie mogą być uwzględnione takie elementy jak odległość od znanych punktów orientacyjnych, kierunki do innych punktów geodezyjnych, a także opis naturalnych lub sztucznych obiektów znajdujących się w pobliżu, takich jak drogi, rzeki czy budynki. Wiedza na temat topografii terenu oraz umiejętność interpretacji takich opisów są fundamentem w geodezji, co pozwala na precyzyjne lokalizowanie punktów i minimalizowanie błędów pomiarowych. Właściwa interpretacja opisu topograficznego zgodnie z normami geodezyjnymi, w tym PN-EN 16153, jest niezbędna do osiągnięcia wysokiej jakości danych geodezyjnych oraz zgodności z wymaganiami prawnymi.

Pytanie 4

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych przy użyciu metody ortogonalnej?

A. Wysokości punktów terenu
B. Numery obiektów budowlanych
C. Sytuacyjne szczegóły terenowe
D. Domiary prostokątne
Szkic polowy z pomiaru szczegółów terenowych metodą ortogonalną jest narzędziem, które ma na celu przedstawienie relacji przestrzennych pomiędzy różnymi obiektami znajdującymi się na danym terenie. W kontekście zamieszczania danych na takim szkicu warto zaznaczyć, że istnieją określone standardy dotyczące tego, co powinno być uwzględnione. Wysokości punktów terenu są danymi, które zazwyczaj są zbierane w ramach pomiarów geodezyjnych, ale nie są one konieczne do przedstawienia na szkicu polowym. Z kolei terenowe szczegóły sytuacyjne, takie jak numery budynków czy domiary prostokątne, są kluczowe dla zrozumienia kontekstu sytuacyjnego. Numery budynków umożliwiają jednoznaczną identyfikację obiektów, co jest niezbędne w dokumentacji planistycznej i urbanistycznej. Domiary prostokątne, czyli pomiary dotyczące wymiarów obiektów, pozwalają na określenie ich wielkości i kształtu, co również jest istotne w kontekście analizy przestrzennej. Często mylnie zakłada się, że wszystkie te informacje są równie istotne. W rzeczywistości, pomiar wysokości jest z reguły bardziej związany z analizą terenu i nie ma bezpośredniego wpływu na przedstawienie układu obiektów. Błędne przekonanie, że wysokości powinny być uwzględniane na szkicie, może prowadzić do nieczytelnych i zbyt skomplikowanych dokumentów, które nie spełniają swoich podstawowych funkcji. W związku z tym, warto znać różnice w danych, które mają być zamieszczane w różnych typach dokumentacji geodezyjnej, aby skutecznie posługiwać się narzędziami geoinformacyjnymi."

Pytanie 5

Który z błędów instrumentalnych teodolitu nie jest usuwany podczas pomiaru kąta w dwóch różnych położeniach lunety?

A. Libelli rurkowej
B. Inklinacja
C. Kolimacja
D. Miejsca zera
Błędy kolimacji, inklinacji oraz miejsca zera to typowe problemy związane z precyzją pomiarów teodolitowych, które można zredukować poprzez odpowiednie metody, takie jak pomiar kąta w dwóch położeniach lunety. Kolimacja odnosi się do błędu wynikającego z niewłaściwego ustawienia osi optycznej lunety, co można skorygować przez zrównoważenie pomiarów w różnych pozycjach lunety, co pozwala na uzyskanie dokładnych wyników. Inklinacja dotyczy błędów związanych z nachyleniem lunety, które również można kompensować przez odpowiednie ustawienia podczas pomiarów. Z kolei miejsce zera to punkt, w którym rozpoczynamy pomiary, i jego błąd można zniwelować przez dodatkowe wskazania kątów w różnych pozycjach. Dążenie do eliminacji tych błędów często prowadzi do mylnego przekonania o ich bezbłędnym pomiarze, gdyż ich wpływ na wyniki może być znaczny. Dlatego ważne jest, aby geodeci stosowali najlepsze praktyki, takie jak wielokrotne pomiary i odpowiednie kalibracje, aby zredukować błędy i zwiększyć precyzję swoich prac. W kontekście teodolitu, każde pomiarowe zaniedbanie, szczególnie w zakresie kolimacji, inklinacji i miejsca zera, powinno być traktowane bardzo poważnie, aby uniknąć systematycznych błędów w pomiarach.

Pytanie 6

Miary określające lokalizację mierzonej pikiety nazywają się

A. domiarami prostokątnymi
B. przecięciami
C. kątami wierzchołkowymi
D. domiarami biegunowymi
Wybierając inne odpowiedzi, można napotkać na pewne nieporozumienia dotyczące terminologii geodezyjnej. Kąty wierzchołkowe są terminem używanym w geometrii, ale w kontekście pomiarów geodezyjnych nie odnoszą się one bezpośrednio do określania położenia pikiet. W rzeczywistości, kąt wierzchołkowy to kąt utworzony przez dwa boki figury geometrycznej, a nie narzędzie do pomiaru lokalizacji punktów w przestrzeni. Przecięcia odnoszą się do miejsc, w których dwie linie się krzyżują, co w kontekście geodezji nie jest adekwatnym opisem miar położenia. Może to prowadzić do błędnych założeń, ponieważ nie uwzględnia istoty pomiarów opartych na kierunkach i odległościach. Domiary prostokątne, z kolei, polegają na określaniu punktów na podstawie układów prostokątnych, co również nie jest zgodne z podstawowymi zasadami pomiarów biegunowych. Użycie tych terminów zamiast domiarów biegunowych może prowadzić do zamieszania w analizach geodezyjnych oraz ograniczać trafność pomiarów. Dlatego ważne jest, aby podczas nauki geodezji skoncentrować się na poprawnym użyciu terminologii, aby uniknąć błędów w praktyce pomiarowej.

Pytanie 7

Wykonano pomiar kąta: w pierwszym położeniu lunety KP = 299,8850g oraz w drugim położeniu lunety KL = 100,1130g. Oblicz wartość mo

A. -0,0020g
B. +0,0020g
C. -0,0010g
D. +0,0010g
Wybór odpowiedzi innych niż -0,0010g często wynika z nieporozumienia dotyczącego właściwego obliczania różnicy kątów, a także z niewłaściwego zrozumienia konwencji stosowanych w geodezji. Często błędne podejścia opierają się na pomyłkach przy odejmowaniu wartości kątowych, gdzie zamiast prawidłowego obliczenia różnicy, użytkownicy mogą mylnie utożsamiać wartości bez uwzględnienia ich kontekstu. Na przykład, obliczenia takie jak -0,0020g lub +0,0010g pojawiają się, gdy ktoś niepoprawnie interpretuje wzory lub wprowadza nieprawidłowe założenia dotyczące kierunku pomiaru. Dodatkowo, w geodezyjnych odczytach, ważne jest, aby pamiętać o kierunku pomiaru i standardowych korekcjach, które mogą wpłynąć na ostateczne wyniki. Użytkownicy mogą również nie dostrzegać, że pomiary kątowe są relatywne, a ich interpretacja wymaga uwzględnienia pełnego obiegu kątowego, co prowadzi do typowych błędów przy zliczaniu kątów przekraczających 360 stopni. Ostatecznie, kluczowe jest, aby przy obliczeniach kątów stosować zasady obowiązujące w danym kontekście geodezyjnym, co pozwala na dokładne i zgodne z normami wyniki.

Pytanie 8

Zbieranie, rejestrowanie, przechowywanie, udostępnianie oraz zabezpieczanie materiałów pochodzących z państwowego zasobu geodezyjnego i kartograficznego, odbywa się przy użyciu systemu

A. ewidencyjnego
B. teleinformatycznego
C. informacyjnego
D. komunikacyjnego
Wybór ewidencyjnego systemu w kontekście pozyskiwania i przechowywania materiałów geodezyjnych nie uwzględnia pełnej funkcjonalności, jaką zapewnia system teleinformatyczny. Systemy ewidencyjne skupiają się głównie na rejestrowaniu danych oraz ich formalnej dokumentacji, co nie pokrywa się z wymaganiami dynamicznego przetwarzania i udostępniania informacji. Użytkownicy mogą mylnie sądzić, że ewidencja wystarczy do zarządzania danymi, nie dostrzegając rosnącej potrzeby szybkiego dostępu do tych informacji oraz ich analizy w kontekście przestrzennym. Wykorzystanie systemu informacyjnego również nie spełni wszystkich wymagań, gdyż koncentruje się na przechowywaniu danych, a nie na integracji z różnymi źródłami informacji i interakcji użytkownika z danymi na poziomie GIS. Z kolei systemy komunikacyjne, jakkolwiek istotne w wymianie danych, nie zapewniają niezbędnych funkcji do zabezpieczania i zarządzania złożonymi zbiorami danych geodezyjnych. W praktyce, brak odpowiednich technologii teleinformatycznych prowadzi do nieefektywnego zarządzania zasobami, utrudniając dostęp do informacji oraz ich analizę przez zainteresowane strony. Rozumienie tych różnic jest kluczowe dla wdrożenia właściwych rozwiązań w obrębie geodezji i kartografii, co podkreślają liczne standardy branżowe oraz wytyczne dotyczące zarządzania danymi przestrzennymi.

Pytanie 9

Dokumentacja, która zawiera wyniki geodezyjnych pomiarów sytuacyjnych oraz wysokościowych, jak również efekty przetworzenia tych danych, jest kompletowana i przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego w formie operatu

A. technicznego
B. pomiarowego
C. szacunkowego
D. katastralnego
Odpowiedź 'technicznego' jest prawidłowa, ponieważ operat techniczny to dokumentacja, która zawiera szczegółowe dane dotyczące geodezyjnych pomiarów sytuacyjnych i wysokościowych. W skład operatu technicznego wchodzą nie tylko wyniki pomiarów, ale również ich opracowanie oraz analizy, co czyni go kluczowym dokumentem w procesie przekazywania informacji do Państwowego Zasobu Geodezyjnego i Kartograficznego. W praktyce, operat techniczny jest niezbędny w przypadkach takich jak sporządzanie map, ustalanie granic działek czy przygotowywanie analiz przestrzennych. Zgodnie z normami branżowymi, operaty techniczne powinny być sporządzane zgodnie z odpowiednimi przepisami prawa geodezyjnego, co zapewnia ich rzetelność i zgodność z obowiązującymi standardami. Przykładowo, w sytuacjach, gdzie wymagane jest pozyskanie informacji do celów inwestycyjnych, operat techniczny stanowi podstawowy dokument, który pozwala na przeprowadzenie dalszych analiz i decyzji administracyjnych.

Pytanie 10

Na podstawie danych zamieszczonych w tabeli, oblicz wartość współczynnika kierunkowego cosAA-B linii pomiarowej A-B, który jest stosowany do obliczenia współrzędnych punktu pomierzonego metodą ortogonalną.

ΔXA-B = 216,11 mΔYA-B = 432,73 mdA-B = 483,69 m

A. cosAA-B = 2,2382
B. cosAA-B = 0,4994
C. cosAA-B = 0,4468
D. cosAA-B = 2,0024
Błędne odpowiedzi mogą wynikać z niepoprawnego zrozumienia definicji współczynnika kierunkowego oraz zasady jego obliczania. Współczynnik kierunkowy cosAA-B powinien być interpretowany jako stosunek przyrostu współrzędnych w osi X do długości linii pomiarowej. Jeśli osoba odpowiadająca uznaje, że wynik może wynosić 2,2382 lub 2,0024, to może sugerować błędne podejście do analizy danych, gdyż wartości te nie mogą przekraczać 1, co jest zgodne z podstawową zasadą trygonometrii, gdzie wartości cosinus są ograniczone do przedziału od -1 do 1. Alternatywnie, odpowiedzi takie jak cosAA-B = 0,4994 mogą wynikać z pomyłek w obliczeniach lub nieprawidłowego zastosowania danych. Należy zwrócić uwagę na dokładność pomiarów oraz ich interpretację, ponieważ każdy błąd w obliczeniach może prowadzić do znacznych problemów w projektowaniu czy realizacji inwestycji budowlanych. W geodezji kluczowe jest przestrzeganie standardów oraz dobrych praktyk, które zapewniają wysoką jakość wyników pomiarowych. Uwzględnienie wszystkich zmiennych oraz umiejętność analizy danych to podstawowe umiejętności, które muszą być ciągle rozwijane.

Pytanie 11

Jaką metodą powinno się ustalić wysokość stanowiska instrumentu w niwelacji punktów rozrzuconych?

A. Niwelacji siatkowej
B. Ortogonalną
C. Niwelacji reperów
D. Biegunową
Niwelacja reperów to metoda, która pozwala na precyzyjne wyznaczenie wysokości stanowiska instrumentu niwelacyjnego w kontekście pomiarów punktów rozproszonych. Ta technika polega na pomiarze różnic wysokości pomiędzy reperami, które są wcześniej ustalone w terenie i mają znaną wysokość. Dzięki temu, operator instrumentu może łatwo określić wysokość punktów, do których będą odniesione inne pomiary. Praktycznym przykładem zastosowania tej metody jest budowa infrastruktury, gdzie precyzyjne ustalenie poziomu terenu jest kluczowe dla dalszych prac budowlanych. W branży inżynieryjnej i geodezyjnej, zgodnie z normami ISO 17123, niwelacja reperów jest uznawana za jedno z podstawowych narzędzi do zapewnienia dokładności pomiarów. Dobre praktyki wskazują na konieczność regularnej kalibracji instrumentów oraz stosowanie sprawdzonych reperów, co podnosi wiarygodność wyników pomiarów.

Pytanie 12

W jakim zakrescie znajduje się wartość azymutu boku AB, jeżeli różnice współrzędnych pomiędzy punktem początkowym a końcowym boku AB są takie, że ΔXAB < 0 oraz ΔYAB < 0?

A. 100200g
B. 200300g
C. 300400g
D. 0100g
Azymut boku AB, w którym różnice współrzędnych ΔXAB i ΔYAB są ujemne, wskazuje na kierunek południowo-zachodni. W systemie azymutalnym, azymut wyrażany jest w stopniach, gdzie 0° wskazuje na północ, a 270° na zachód. Ponieważ zarówno ΔX, jak i ΔY są ujemne, oznacza to, że punkt końcowy znajduje się na lewo i poniżej punktu początkowego, co odpowiada zakresowi azymutu od 200° do 300°. Taki przedział azymutu jest istotny w geodezji i nawigacji, gdzie dokładne określenie kierunku ma kluczowe znaczenie dla precyzyjnych pomiarów i wytyczania dróg. Przykładem zastosowania może być nawigacja w terenie, gdzie geodeta musi precyzyjnie określić kierunek, aby przeprowadzić pomiary terenowe lub przygotować mapę. Zrozumienie azymutu oraz jego wartości w kontekście współrzędnych jest fundamentem w geodezji oraz kartografii, co jest zgodne z wytycznymi standardów geodezyjnych.

Pytanie 13

Co wpływa na wysokości opisów w mapie głównej?

A. Od opisywanej treści i skali mapy
B. Od typu i stylu pisma
C. Od wartości skalarnej mapy
D. Od metody wykonania opisu
Wysokości opisów na mapie zasadniczej zależą w pierwszej kolejności od opisywanej treści oraz skali mapy. Skala mapy definiuje, w jakim stopniu rzeczywista powierzchnia została odwzorowana na mapie, co wpływa na sposób przedstawiania informacji. W praktyce oznacza to, że w przypadku map o dużej skali, które reprezentują mały obszar, opisy mogą być bardziej szczegółowe i tym samym wyższe, aby oddać specyfikę terenu. Na przykład, w mapie, która przedstawia obszar miejski, opisy budynków, ulic czy parków będą miały większą wysokość, aby były czytelne i zrozumiałe dla użytkowników. Dodatkowo, treść opisu, jak np. nazwy ulic czy obiektów, również ma wpływ na ich wysokość, gdyż dłuższe nazwy wymagają więcej miejsca. W branży kartograficznej ważne jest przestrzeganie standardów, takich jak Ustawodawstwo o geoinformacji oraz normy ISO, które określają zasady projektowania map, w tym sposoby przedstawiania opisów. Właściwe zrozumienie tych zasad pozwala tworzyć czytelne i funkcjonalne mapy.

Pytanie 14

Najwyższy dozwolony średni błąd lokalizacji punktów pomiarowych osnowy sytuacyjnej w odniesieniu do najbliższych punktów poziomej osnowy geodezyjnej wynosi

A. 0,05 m
B. 0,15 m
C. 0,10 m
D. 0,20 m
Wybór wartości błędu, takich jak 0,05 m, 0,20 m czy 0,15 m, może być wynikiem pewnych nieporozumień. Czasem myśli się, że 0,05 m to super precyzyjna wartość, ale to nie jest to, czego potrzebujemy w przypadku osnowy sytuacyjnej. Zbyt dokładne wymagania mogą po prostu opóźnić projekt i podnieść jego koszty. Z kolei 0,20 m czy 0,15 m też nie są dobre, bo nie odpowiadają normom, które jasno wskazują, jakie błędy są dopuszczalne. Takie wybory mogą wynikać z niepełnego zrozumienia, jak działa geodezja, co prowadzi do błędnych decyzji przy planowaniu. Na przykład, ekipa może źle ulokować budynki, używając nieprawidłowych danych, co później może skończyć się problemami, jak konieczność ich przesuwania. Więc naprawdę warto znać te normy, żeby prace geodezyjne były na dobrym poziomie.

Pytanie 15

Na mapie zasadniczej sieci oznaczane są kolorem brązowym?

A. kanalizacyjne
B. ciepłownicze
C. gazowe
D. elektroenergetyczne
Brązowy kolor na mapach zasadniczych jest standardowym oznaczeniem dla sieci kanalizacyjnych. Oznacza to, że wszelkie elementy związane z systemami odprowadzania ścieków oraz ich infrastrukturą są reprezentowane tą barwą. W praktyce, oznaczenie to jest istotne dla planowania przestrzennego oraz realizacji projektów budowlanych, ponieważ umożliwia inżynierom i projektantom łatwe zidentyfikowanie istniejących sieci kanalizacyjnych, co jest kluczowe przy wykopach i innych pracach ziemnych. Ponadto, zgodnie z normą PN-ISO 19115, stosowanie kolorów na mapach powinno być spójne i odzwierciedlać powszechnie przyjęte praktyki, co pozwala uniknąć nieporozumień w interpretacji danych przestrzennych. Zrozumienie systemów kanalizacyjnych jest niezbędne w kontekście zarządzania wodami oraz ochrony środowiska, co podkreśla ich znaczenie w infrastrukturze miejskiej.

Pytanie 16

W kluczowej części państwowego zbioru danych geodezyjnych i kartograficznych zgromadzone są bazy danych, które dotyczą

A. geodezyjnej ewidencji infrastruktury terenowej
B. państwowego rejestru podstawowych osnów geodezyjnych, grawimetrycznych i magnetycznych
C. ewidencji gruntów i budynków (katastru nieruchomości)
D. rejestru cen oraz wartości nieruchomości
Poprawna odpowiedź odnosi się do państwowego rejestru podstawowych osnów geodezyjnych, grawimetrycznych i magnetycznych, który stanowi kluczowy element centralnego zasobu geodezyjnego i kartograficznego. Rejestr ten gromadzi dane dotyczące punktów odniesienia, które są fundamentem dla wszelkich prac geodezyjnych i projektowych. Dzięki niemu możliwe jest precyzyjne określenie położenia obiektów na powierzchni Ziemi oraz ich relacji przestrzennych. Przykłady zastosowania obejmują inżynierię lądową, urbanistykę oraz planowanie przestrzenne, gdzie dokładność danych geodezyjnych jest niezbędna. Organizacje zajmujące się geodezją powinny stosować wytyczne zgodne z normami ISO, aby zapewnić najwyższą jakość zbieranych danych. Warto także zauważyć, że utrzymanie i aktualizacja tego rejestru jest kluczowe dla rozwoju infrastruktury i ochrony środowiska, co czyni go niezbędnym narzędziem w procesach decyzyjnych związanych z zagospodarowaniem terenu.

Pytanie 17

Różnice wysokości oraz poprawki są zapisywane w dzienniku niwelacji z precyzją do

A. 0,001 m
B. 0,1 m
C. 0,0001 m
D. 0,01 m
Różnice wysokości oraz poprawki w niwelacji zapisuje się z dokładnością do 0,001 m, co jest zgodne z normami określającymi precyzję pomiarów geodezyjnych. Taka dokładność jest niezbędna w sytuacjach, gdzie niewielkie zmiany wysokości mogą mieć istotne znaczenie dla wyników pomiarów, jak na przykład w budownictwie, gdzie precyzyjne pomiary są kluczowe dla stabilności konstrukcji. Standardy geodezyjne, takie jak norma PN-EN ISO 17123-1, wskazują na konieczność stosowania przyrządów pomiarowych o dużej dokładności. W praktyce, zapisując różnice wysokości w dzienniku niwelacji, stosuje się tę wartość, aby zapewnić, że wyniki są wystarczająco precyzyjne do celów projektowych i budowlanych. Wysoka dokładność pomiarów wpływa nie tylko na jakość wyników, ale również na zaufanie do nich w kontekście dalszych analiz oraz podejmowania decyzji.

Pytanie 18

Azymut węzłowy został obliczony na podstawie 4 ciągów poligonowych, w których zarejestrowano:
− ciąg nr I - 5 kątów,
− ciąg nr II - 4 kąty,
− ciąg nr III - 3 kąty,
− ciąg nr IV - 2 kąty.
Który z ciągów ma największą wagę?

A. Ciąg I
B. Ciąg III
C. Ciąg II
D. Ciąg IV
Ciąg IV ma największą wagę, ponieważ zawiera najmniejszą liczbę pomierzonych kątów, co czyni go mniej obciążonym błędami pomiarowymi. W praktyce, im mniejsza ilość kątów w ciągu, tym większa jego waga, ponieważ zyskuje on na precyzji i wiarygodności w kontekście obliczeń azymutów. Ważenie ciągów kątowych opiera się na zasadzie, że każdy pomiar kątowy wprowadza potencjalny błąd, a im więcej pomiarów, tym suma błędów może być większa. Dlatego w geodezji i kartografii, stosując metody takie jak metoda najmniejszych kwadratów, preferuje się mniejsze ciągi pomiarowe dla uzyskania bardziej stabilnych i dokładnych wyników. Ponadto, w kontekście azymutów węzłowych, kluczowe jest także zrozumienie, że każdy pojedynczy kąt ma swoje znaczenie w rozrachunkach, a więc mniejsza ilość pomiarów w ciągu IV wpływa na jego większą wagę w całym procesie wyznaczania azymutów. Takie podejście jest zgodne z normami i dobrymi praktykami w dziedzinie geodezji.

Pytanie 19

Zmierzoną odległość 120 m określono z błędem średnim ±3 cm. Jaki jest błąd względny tej pomierzonej odległości?

A. 1/5000
B. 1/4000
C. 1/2000
D. 1/1000
Błąd względny jest miarą niepewności pomiaru, określającą jaką część pomiaru stanowi błąd. W tym przypadku mamy pomiar odległości wynoszący 120 m oraz średni błąd pomiaru wynoszący ±3 cm, co w przeliczeniu na metry daje ±0,03 m. Aby obliczyć błąd względny, należy podzielić błąd pomiaru przez wartość zmierzoną. Zatem: błąd względny = błąd / wartość zmierzona = 0,03 m / 120 m = 0,00025. W przeliczeniu na ułamek, błąd względny wynosi 1/4000. Tego rodzaju obliczenia są niezbędne w inżynierii oraz naukach przyrodniczych, gdzie precyzyjne pomiary mają kluczowe znaczenie, zwłaszcza w kontekście kalibracji urządzeń pomiarowych i zapewnienia jakości w procesach produkcyjnych. Należy pamiętać, że błąd względny pozwala na porównanie dokładności różnych pomiarów i jest szeroko stosowany w badaniach naukowych oraz w przemyśle.

Pytanie 20

Na podstawie zamieszczonych w tabeli współrzędnych punktów kontrolowanych, wyznaczonych w wyniku pomiarów, oblicz liniowe przemieszczenie punktu nr 21.

Nr punktuPomiar pierwotnyPomiar wtórny
Xp [m]Yp [m]Xw [m]Yw [m]
20130,220242,256130,225242,255
21125,212258,236125,220258,240
22134,515234,515134,510234,510
23138,310230,025138,313230,026

A. p = 9 mm
B. p = 10 mm
C. p = 5 mm
D. p = 3 mm
Poprawna odpowiedź to p = 9 mm. Aby obliczyć liniowe przemieszczenie punktu nr 21, kluczowe jest zrozumienie, jak różnice w współrzędnych X i Y wpływają na obliczenie przemieszczenia. Najpierw musimy znaleźć różnice pomiędzy współrzędnymi pierwotnymi a wtórnymi. Po ich obliczeniu, korzystamy ze wzoru na odległość między dwoma punktami w układzie kartezjańskim, który oparty jest na twierdzeniu Pitagorasa. Zastosowanie tego podejścia nie tylko pozwala na precyzyjne wyznaczenie przemieszczenia, ale także jest zgodne z międzynarodowymi standardami pomiarów geodezyjnych. W praktyce, takie obliczenia są niezbędne w wielu aplikacjach inżynieryjnych, takich jak monitorowanie deformacji budynków, infrastruktury czy w analizach związanych ze zmianami środowiskowymi. Regularne stosowanie tej metody zapewnia wysoką jakość pomiarów oraz ich wiarygodność.

Pytanie 21

Zrealizowano pomiar sytuacyjny dla budynku jednorodzinnego, parterowego z poddaszem, które nie jest przeznaczone do użytku. Jakim symbolem powinno się oznaczyć ten obiekt na mapie?

A. m
B. mj2
C. mj
D. m1
Odpowiedź 'mj' jest poprawna, ponieważ symbol ten odnosi się do budynków mieszkalnych jednorodzinnych, w tym do budynków parterowych oraz tych z poddaszem nieużytkowym. W polskich standardach klasyfikacji obiektów budowlanych, symbol 'mj' stosuje się do identyfikacji budynków mieszkalnych, co jest zgodne z normami przedstawionymi w rozporządzeniu o klasyfikacji obiektów budowlanych. W praktyce, oznaczenie to ułatwia lokalizację budynków na mapach oraz w dokumentacji urbanistycznej, co jest kluczowe dla planowania przestrzennego i zarządzania infrastrukturą. Dodatkowo, w kontekście projektowania urbanistycznego, zastosowanie odpowiednich symboli umożliwia lepszą analizę zagospodarowania terenu oraz wpływa na prawidłowe funkcjonowanie systemów zarządzania kryzysowego oraz dostępu do usług komunalnych. Przykładem może być analiza potrzeb infrastrukturę dla budynków oznaczonych symbolem 'mj', co wpływa na planowanie sieci wodociągowych czy kanalizacyjnych, biorąc pod uwagę specyfikę zabudowy jednorodzinnej.

Pytanie 22

Do projekcji prostokątnej wyznaczonych punktów na linię wykorzystuje się

A. piony optyczne
B. łaty niwelacyjne
C. dalmiarze elektromagnetyczne
D. węgielnice pryzmatyczne
Węgielnice pryzmatyczne to narzędzia wykorzystywane w geodezji i budownictwie do precyzyjnego rzutowania punktów na określoną prostą. Działają one na zasadzie wykorzystania właściwości optycznych pryzmatu, co pozwala na dokładne odwzorowanie zdefiniowanej linii na terenie. Dzięki swojej konstrukcji, węgielnice te umożliwiają wytyczanie osi budynków oraz elementów infrastruktury, co jest kluczowe w procesie budowlanym. W praktyce, węgielnice pryzmatyczne są często używane w połączeniu z dalmierzami, co zwiększa dokładność pomiarów. Standardy branżowe, takie jak normy geodezyjne, zalecają stosowanie węgielnic pryzmatycznych w pracach wymagających dużej precyzji. Ich właściwe użycie pozwala na minimalizację błędów rzutowania, co jest niezbędne dla prawidłowego funkcjonowania całego projektu budowlanego.

Pytanie 23

Na podstawie zamieszczonych w tabeli wyników pomiarów punktów kontrolowanych, oblicz kierunkowe przemieszczenia poziome dla punktu nr 32.

Nr
punktu
Pomiar pierwotnyPomiar wtórny
X₀ [m]Y₀ [m]Xw [m]Yw [m]
3178,462634,25678,482634,212
32142,058582,235142,124582,218
33169,151613,968169,142613,967

A. ΔX = -0,066 m; ΔY = 0,017 m
B. ΔX = 0,066 m; ΔY = -0,017 m
C. ΔX = -66 cm; ΔY = 44 cm
D. ΔX = 66 cm; ΔY = -44 cm
Nieprawidłowe odpowiedzi wskazują na różne typowe błędy myślowe związane z obliczeniami przemieszczeń w układach współrzędnych. Często pojawiającym się problemem jest mylenie jednostek miary, co prowadzi do niepoprawnych wyników. Przykładowo, przeliczenie centymetrów na metry bez uwzględnienia odpowiedniej konwersji skutkuje błędnymi wartościami, jak w przypadku ΔX = -66 cm, które gdyby przeliczyć na metry, stałoby się -0,66 m, co jest zdecydowanie większą różnicą niż ta uzyskana w poprawnej odpowiedzi. Dodatkowo, błąd w znaku przemieszczenia Y może wynikać z niedopatrzenia przy odejmowaniu wartości początkowej od końcowej, co prowadzi do przekroczenia granic właściwych wartości. Ważne jest, aby podczas obliczeń zawsze sprawdzać podstawowe operacje matematyczne oraz dbać o odpowiednie użycie znaków. W geodezji, błędy w obliczeniach mogą prowadzić do poważnych konsekwencji, dlatego kluczowe jest przestrzeganie standardów pomiarowych i dobrych praktyk, takich jak upewnienie się, że wartości są dokładnie odnotowywane i porównywane. W przyszłych obliczeniach, warto również korzystać z narzędzi do analizy danych, które mogą zminimalizować ryzyko błędów ludzkich.

Pytanie 24

W miejscowym planie zagospodarowania przestrzennego obszary przeznaczone na sport i rekreację powinny być oznaczane symbolem literowym

A. U
B. US
C. ZP
D. MW
W miejscowych planach zagospodarowania przestrzennego tereny sportu i rekreacji są oznaczane symbolem US, co oznacza "tereny usług sportowych". Jest to zgodne z przyjętymi standardami planowania przestrzennego, które mają na celu zapewnienie odpowiednich przestrzeni dla działalności sportowej i rekreacyjnej w miastach oraz na terenach wiejskich. Oznaczenie to pozwala na jednoznaczne definiowanie obszarów przeznaczonych pod różne formy działalności sportowej, takie jak stadiony, boiska, parki rekreacyjne czy obiekty sportowe. Zastosowanie symbolu US w planach zagospodarowania przestrzennego jest kluczowe dla koordynacji działań urbanistycznych i planistycznych, a także dla zapewnienia harmonijnego rozwoju infrastruktury sportowej. Przykładem praktycznego zastosowania może być projektowanie nowego kompleksu sportowego, gdzie odpowiednie oznaczenie w planie pozwala na łatwiejsze pozyskanie funduszy i wsparcia ze strony lokalnych władz oraz organizacji sportowych. Zrozumienie tego symbolu w kontekście planowania przestrzennego jest zatem istotne dla każdego specjalisty zajmującego się urbanistyką.

Pytanie 25

Która z podanych prac geodezyjnych nie wymaga zgłoszenia do Ośrodka Dokumentacji Geodezyjnej i Kartograficznej?

A. Inwentaryzacja po zakończeniu budowy
B. Zaktualizowanie mapy zasadniczej
C. Podział działki
D. Pomiar ilości mas ziemnych
Pomiar objętości mas ziemnych to proces, który nie wymaga zgłoszenia do Ośrodka Dokumentacji Geodezyjnej i Kartograficznej (ODGiK), ponieważ nie jest to praca geodezyjna, która zmienia stan nieruchomości w sposób wymagający aktualizacji dokumentacji publicznej. W praktyce, taki pomiar ma zastosowanie głównie w budownictwie i inżynierii lądowej, gdzie wykonuje się go w celu określenia ilości ziemi do wykopania lub nasypania podczas budowy. Przykładem może być budowa drogi, gdzie dokładne oszacowanie mas ziemnych jest kluczowe dla kosztorysowania oraz planowania dalszych prac. Warto podkreślić, że takie pomiary często są wykonywane zgodnie z normami PN-EN 1991-1-1 i są integralną częścią procesu projektowego, ale nie wymagają formalnego zgłoszenia do organów administracyjnych, co upraszcza procedury dla wykonawców.

Pytanie 26

Gdy różnice współrzędnych między początkiem a końcem boku AB wynoszą ΔxAB = 0, ΔyAB > 0, to jaki jest azymut AzAB boku AB?

A. 200g
B. 100g
C. 300g
D. 400g
Poprawna odpowiedź to 100g, ponieważ azymut boku AB można określić na podstawie różnic współrzędnych ΔxAB i ΔyAB. W tym przypadku mamy do czynienia z sytuacją, gdy ΔxAB = 0 oraz ΔyAB > 0. Oznacza to, że punkt końcowy boku AB znajduje się bezpośrednio nad punktem początkowym w układzie współrzędnych. W takim kontekście azymut, definiowany jako kąt pomiędzy kierunkiem północnym a wektorem prowadzącym od punktu początkowego do końcowego, wynosi 0° (lub 400g w systemie g) w kierunku północnym. Biorąc pod uwagę, że kierunek północny odpowiada 0g, możemy stwierdzić, że azymut boku AB wynosi 100g, co odpowiada kierunkowi wschodniemu. Tego rodzaju obliczenia są kluczowe w geodezji oraz inżynierii lądowej, gdzie precyzyjne określenie azymutu jest niezbędne do właściwego pomiaru i nawigacji. W praktyce, znajomość azymutów jest szczególnie istotna w projektach budowlanych oraz w nawigacji geodezyjnej, gdzie błędy w pomiarach mogą prowadzić do poważnych konsekwencji.

Pytanie 27

Wyniki geodezyjnego opracowania projektu zagospodarowania działki należy przenieść na szkic

A. tyczenia
B. polowy
C. pomiarowy
D. dokumentacyjny
Odpowiedź "dokumentacyjny" jest poprawna, ponieważ wyniki geodezyjnego opracowania projektu zagospodarowania działki są przede wszystkim poddawane formalnej dokumentacji, która stanowi podstawę do dalszych działań projektowych i administracyjnych. Dokument ten zawiera szczegółowe informacje na temat lokalizacji, wymiarów, granic działki oraz wszelkich istotnych danych geodezyjnych, które są niezbędne do uzyskania decyzji administracyjnych oraz do realizacji inwestycji. Przykładowo, w przypadku projektowania budynku, dokumentacyjny szkic geodezyjny jest często wymagany przy składaniu wniosków o pozwolenie na budowę, co podkreśla jego kluczowe znaczenie w procesie inwestycyjnym. Ponadto, zgodnie z polskimi normami geodezyjnymi, taki dokument musi być wykonany zgodnie z określonymi standardami, co zapewnia jego wiarygodność i użyteczność w przyszłych etapach realizacji projektu.

Pytanie 28

Podczas jakiej procedury geodezyjnej stosuje się niwelację geometryczną?

A. Podczas wyznaczania kierunków magnetycznych w terenie.
B. Podczas pomiaru różnic wysokości między punktami.
C. Podczas tworzenia map tematycznych związanych z ukształtowaniem terenu.
D. Podczas pomiaru odległości w terenie za pomocą metod geodezyjnych.
Niwelacja geometryczna to jedna z podstawowych metod pomiarowych w geodezji, używana do określania różnic wysokości pomiędzy punktami terenu. Jej główną cechą jest wykorzystanie poziomej linii celowania, co pozwala na bezpośrednie odczytywanie różnic wysokości. W praktyce geodezyjnej niwelacja geometryczna jest stosowana w wielu sytuacjach, takich jak projektowanie dróg, mostów, czy budowli, gdzie precyzyjne dane wysokościowe są kluczowe. Proces ten polega na ustawieniu niwelatora na statywie i wykonywaniu odczytów na łatach niwelacyjnych umieszczonych na określonych punktach. Dzięki niemu można uzyskać bardzo dokładne pomiary, co jest niezbędne w wielu projektach inżynieryjnych. Niwelacja geometryczna jest preferowaną metodą w przypadku konieczności uzyskania wysokiej precyzji w krótkim dystansie. Metoda ta jest zgodna z międzynarodowymi standardami geodezyjnymi i uznawana za jedną z najdokładniejszych dostępnych metod pomiarowych. Dlatego jej zastosowanie w pomiarach różnic wysokości jest nie tylko praktyczne, ale i zgodne z najlepszymi praktykami branżowymi.

Pytanie 29

Jaką długość ma odcinek na mapie o skali 1:40 000, jeśli na mapie w skali 1:20 000 jego długość wynosi 50 cm?

A. 50 cm
B. 2,5 cm
C. 5 cm
D. 25 cm
Odpowiedź 25 cm jest poprawna, ponieważ aby przeliczyć długość odcinka na mapie w nowej skali, należy uwzględnić relację między skalami. W skali 1:20 000, 50 cm na mapie odpowiada 10 000 m w rzeczywistości (50 cm * 20 000). W skali 1:40 000 ten sam 10 000 m w rzeczywistości odpowiada 25 cm na mapie (10 000 m / 40 000). Dlatego długość odcinka w skali 1:40 000 wynosi 25 cm. Praktycznym zastosowaniem tej wiedzy jest umiejętność przeliczania długości odcinków na mapach w różnych skalach, co jest kluczowe w geodezji, kartografii i planowaniu przestrzennym. W wielu zastosowaniach, takich jak projektowanie infrastruktury lub analiza lokalizacji, precyzyjne przeliczenie długości i powierzchni w różnych skalach jest niezbędne, aby zapewnić zgodność z rzeczywistością i precyzję planów. Warto również dodać, że znajomość konwersji skali jest istotna dla osób pracujących z mapami, które muszą interpretować dane w kontekście różnych zastosowań terenowych.

Pytanie 30

Danymi źródłowymi numerycznymi wykorzystywanymi do generowania mapy numerycznej nie są

A. zdigitalizowane mapy
B. wywiady branżowe
C. bezpośrednie pomiary geodezyjne
D. zdjęcia fotogrametryczne
Wywiady branżowe to nie to samo co dane numeryczne, które są potrzebne do robienia mapy numerycznej. Te mapy potrzebują danych, które da się zmierzyć, zarejestrować albo sfotografować. Na przykład, zdjęcia fotogrametryczne pozwalają zbudować model terenu na podstawie zdjęć robionych z góry. Do tego dochodzą zdigitalizowane mapy, które przenoszą papierowe mapy do komputera. Pomiary geodezyjne dają nam informacje o konkretnych punktach w terenie, co jest mega ważne, żeby wszystko dobrze odwzorować. Wywiady mogą dostarczyć ciekawe konteksty, ale nie dają konkretnej liczby, więc nie nadają się do map numerycznych.

Pytanie 31

Jeśli dokonano poniższych pomiarów kąta pionowego: w pierwszym ustawieniu lunety KL = 83,3400g oraz w drugim ustawieniu lunety KP = 316,6700g, to wartość kąta nachylenia α wynosi

A. 83,3400g
B. 16,6700g
C. 16,6650g
D. 83,3350g
Analizując błędne odpowiedzi, warto zauważyć, że w kontekście obliczania kąta nachylenia α podstawową zasadą jest prawidłowe zrozumienie, czym jest różnica pomiędzy dwoma odczytami lunety. Wybór wartości 83,3350g sugeruje jedynie nieznaczne obniżenie jednego z odczytów, co nie ma logicznego uzasadnienia w kontekście geodezyjnym. Odczyt 83,3400g odnosi się do położenia I lunety, natomiast w położeniu II mamy wartość 316,6700g. Błędne podejście polega na zignorowaniu właściwej metody obliczania różnicy, co prowadzi do mylnego wniosku. Odpowiedź 16,6700g także wydaje się być bliska prawdy, lecz nie uwzględnia różnicy między wyjściowymi odczytami. Istotnym błędem jest także to, że nie wszyscy uwzględniają, iż kąty nachylenia w geodezji są wyrażane jako różnice między odczytami w odniesieniu do poziomu. Z kolei wartość 83,3400g jest jedynie powtórzeniem odczytu z położenia I, co w żaden sposób nie odnosi się do obliczenia kąta nachylenia. W geodezji, dla poprawności pomiarów i analiz, kluczowe jest stosowanie właściwych formuł i zrozumienie kontekstu, w jakim są używane, dlatego tak ważne jest przyswajanie wiedzy na temat standardów i dobrych praktyk w tej dziedzinie.

Pytanie 32

Południkiem osiowym w odwzorowaniu Gaussa-Krügera dla układu współrzędnych PL-2000 jest południk

A. 22°
B. 19°
C. 20°
D. 21°
Wybór jakiegokolwiek innego południka, takiego jak 22°, 20° czy 19°, nie jest zgodny z definicją osiowego południka w układzie PL-2000. Południki te mogą być mylone z innymi południkami, które nie są właściwymi osiowymi w kontekście określonego odwzorowania. Południk 22° z pewnością znajduje się na zachód od południka 21°, co prowadzi do zwiększenia zniekształceń w obszarze, który jest odwzorowywany. Z kolei południk 20° leży na wschód od 21°, co również nie jest odpowiednie w kontekście geodezyjnym. Wybór południka 19° jest jeszcze bardziej odległy od optymalnego, co w praktyce prowadzi do poważnych błędów w pomiarach i analizach przestrzennych. Typowym błędem myślowym jest założenie, że każdy południk w danej strefie będzie odpowiedni do użycia jako osiowy. W rzeczywistości, tylko konkretne południki są zaprojektowane do minimalizowania zniekształceń na danym obszarze. Dla geodetów, architektów i specjalistów zajmujących się planowaniem przestrzennym niezwykle istotne jest zrozumienie, jak odwzorowanie wpływa na dokładność danych geograficznych, a wybór niewłaściwego południka może prowadzić do błędnych decyzji projektowych i nieefektywnej pracy.

Pytanie 33

Na czym umieszcza się współrzędne X oraz Y punktów osnowy realizacyjnej?

A. szkicu inwentaryzacyjnym
B. szkicu dokumentacyjnym
C. mapie ewidencyjnej
D. mapie zasadniczej
Szkic dokumentacyjny to naprawdę przydatne narzędzie, które pomaga w wizualizacji i zapisywaniu współrzędnych punktów osnowy realizacyjnej. Te współrzędne X i Y są mega ważne, bo pozwalają określić, gdzie dokładnie znajdują się punkty w przestrzeni, co jest super istotne w geodezji i inżynierii. Jak masz taki szkic, to łatwiej analizować i interpretować te wszystkie geodezyjne dane. Przykładowo, przy inwentaryzacji gruntów, precyzyjne odzwierciedlenie punktów osnowy pozwala dokładnie ustalić granice działek. No i co ważne, według standardów geodezyjnych, dokumentacja musi być zrozumiała i przejrzysta, żeby każdy mógł to ogarnąć. Dlatego tak ważne jest, aby współrzędne były poprawnie naniesione na szkic, bo to wpływa na cały proces geodezyjny i zgodność z normami prawnymi i technicznymi.

Pytanie 34

Jaką wartość ma azymut przeciwny do azymutu wynoszącego 327g12c35cc?

A. 127g12c35cc
B. 27g12c35cc
C. 527g12c35cc
D. 227g12c35cc
Wartość azymutu odwrotnego do azymutu wynoszącego 327°12'35'' można obliczyć poprzez dodanie 180° do pierwotnego azymutu. W przypadku azymutów, które są wyrażane w stopniach, minutach i sekundach, dodanie 180° często wymaga konwersji, jeśli suma przekracza 360°. W tym przypadku dodajemy 180° do 327°, co daje 507°. Następnie, musimy odjąć 360°, aby uzyskać wynik w odpowiednim zakresie: 507° - 360° = 147°. Teraz pozostaje nam dodać pozostałe wartości minut i sekund. Ostatecznie zatem uzyskujemy azymut 127°12'35''. W kontekście nawigacji i geodezji, umiejętność obliczania azymutów odwrotnych jest kluczowa, ponieważ pozwala na dokładne śledzenie kierunków i nawigację w terenie. Takie umiejętności są niezbędne w różnych dziedzinach, od turystyki po inżynierię i architekturę.

Pytanie 35

Wyznacz przyrost Ayi_2 w osi Y, jeśli zmierzona odległość między punktami 1 i 2 d1-2 = 100,00 m, sinAz1-2 = 0,760400, cosAz1-2 = 0,649455.

A. 7,60 m
B. 6,49 m
C. 64,94 m
D. 76,04 m
Aby obliczyć przyrost Ayi_2 współrzędnych Y, należy skorzystać z długości pomierzonej między punktami 1 i 2 oraz wartości sinus i cosinus kąta azymutalnego. Obliczenia sprowadzają się do zastosowania wzoru: Ayi_2 = d_1-2 * sin(Az_1-2). Wstawiając wartości: Ayi_2 = 100,00 m * 0,760400 = 76,04 m. Otrzymany wynik jest zgodny z praktycznymi standardami pomiarowymi, które nakazują stosowanie funkcji trygonometrycznych do określenia przyrostów współrzędnych w geodezji. Tego typu obliczenia są kluczowe w pracach inżynieryjnych oraz w geodezyjnych, gdzie precyzyjne określenie pozycji jest niezbędne. Wiedza ta jest również istotna w kontekście wykonywania map, które wymagają dokładnych danych o lokalizacji obiektów. Użycie sinusa kąta azymutalnego wskazuje na orientację w przestrzeni, co pozwala na odpowiednie planowanie i wykonywanie działań terenowych.

Pytanie 36

Mapy związane z regulacją stanu prawnego nieruchomości to opracowania kartograficzne określane mianem

A. katastralnych
B. uzupełniających
C. do celów prawnych
D. do celów projektowych
Odpowiedź "do celów prawnych" jest poprawna, ponieważ mapy te mają kluczowe znaczenie w regulacji stanu prawnego nieruchomości. Służą one do przedstawiania granic działek, ich powierzchni oraz wszelkich obciążeń prawnych, takich jak hipoteki czy służebności. Mapy do celów prawnych są wykorzystywane w procesach notarialnych, a także w postępowaniach sądowych, gdzie ważne jest dokładne określenie stanu prawnego nieruchomości. Przykładem zastosowania takich map może być procedura podziału działki, gdzie precyzyjne ustalenie granic jest niezbędne do prawidłowego podziału. W praktyce wykorzystuje się je w dokumentacji związanej z obrotem nieruchomościami, co jest zgodne z normami i standardami, takimi jak Ustawa o geodezji i kartografii, która reguluje kwestie związane z tworzeniem i wykorzystywaniem map w obrocie nieruchomościami.

Pytanie 37

W której bazie danych państwowego zasobu geodezyjnego i kartograficznego można znaleźć informacje o podziemnych przewodach elektroenergetycznych?

A. BDSOG
B. BDOT500
C. GESUT
D. EGiB
BDOT500 to baza, która zajmuje się ewidencją gruntów i budynków, ale niestety nie ma tam szczegółowych danych o podziemnych instalacjach, takich jak przewody elektryczne. Potem mamy BDSOG, która dotyczy sieci uzbrojenia terenu, ale raczej skupia się na wodociągach i kanalizacji, więc też nie to. EGiB, czyli Ewidencja Gruntów i Budynków, znowu nie nadaje się do szukania info o podziemnych sieciach, bo dotyczy głównie nieruchomości. Czasem można się pogubić w tych bazach, bo każda ma swoje konkretne cele i zastosowania. Wydaje mi się, że warto zrozumieć różnice między nimi, żeby łatwiej zbierać potrzebne info w inwestycjach budowlanych. Przed wyborem bazy, dobrze jest rzucić okiem na jej zawartość i cel, żeby nie wpaść w jakąś pułapkę i uniknąć kłopotów później.

Pytanie 38

Pomiar odległości wynoszącej 100,00 m zawiera błąd średni ±5 cm. Jaka jest wartość błędu względnego tej odległości?

A. 1/1000
B. 1/2000
C. 1/500
D. 1/5000
Błąd pomiarowy jest nieodłącznym elementem każdej procedury pomiarowej, a jego właściwe zrozumienie jest kluczowe dla uzyskiwania wiarygodnych wyników. W analizie odległości 100,00 m z błędem średnim ±5 cm, nieprawidłowe odpowiedzi często wynikają z niepoprawnego zastosowania wzorów lub błędnego zrozumienia, czym jest błąd względny. Odpowiedzi, które wskazują na błędy względne takie jak 1/5000, 1/1000 czy 1/500, mogą powstawać przez mylenie błędu względnego z błędem absolutnym, co prowadzi do niepoprawnych obliczeń. Zrozumienie różnicy między błędem absolutnym a względnym jest kluczowe, jako że błąd absolutny odnosi się do konkretnej wartości, natomiast błąd względny jest proporcjonalny do tej wartości. Ponadto, w praktyce inżynierskiej i naukowej, niewłaściwe obliczenia mogą prowadzić do nieprecyzyjnych analiz danych czy wadliwych projektów. Dlatego też, stosowanie standardów metrologicznych oraz odpowiednich procedur obliczeniowych jest niezbędne, aby uniknąć typowych pułapek myślowych, które mogą zafałszować wyniki. Wiedza o tym, jak właściwie wyliczać błąd względny, a także jego kontekst w praktyce pomiarowej, jest niezbędna dla prawidłowego interpretowania wyników i ich analizy.

Pytanie 39

Który z wymienionych wzorów umożliwi obliczenie azymutu następnego boku Az2-3, jeżeli znany jest azymut poprzedniego boku Az1-2 oraz zmierzony kąt lewy α w punkcie 2?

A. Az2-3 = Az2-1 + α - 200g
B. Az2-3 = Az1-2 + α - 200g
C. Az2-3 = Az2-1 – α + 200g
D. Az2-3 = Az1-2 – α + 200g
Odpowiedź Az2-3 = Az1-2 + α - 200g jest prawidłowa, ponieważ przy obliczaniu azymutu kolejnego boku w geodezji stosujemy wzór, który uwzględnia azymut boku poprzedniego oraz pomierzony kąt lewy. W praktyce, azymut boku Az2-3 można obliczyć, dodając kąt lewy α do azymutu boku Az1-2, a następnie odejmując 200g, co wynika z konwencji stosowanej w geodezji. Zgodnie z zasadami, w przypadku pomiarów z użyciem teodolitu, kąt lewy jest mierzony w przeciwnym kierunku do ruchu wskazówek zegara, co wymaga uwzględnienia odpowiednich poprawek przy wyznaczaniu azymutu. Praktyczne zastosowanie tego wzoru widoczne jest w terenie, gdzie precyzyjne pomiary są kluczowe dla uzyskania dokładnych wyników w mapowaniu i inżynierii. Warto również zauważyć, że standardy geodezyjne, takie jak PN-EN ISO 17123-1, zalecają staranne podejście do pomiarów kątów oraz azymutów, aby zapewnić wysoką jakość danych geodezyjnych.

Pytanie 40

Jakie metody powinny być wykorzystane do przeprowadzenia pomiaru tachimetrycznego?

A. Ortogonalną oraz niwelacji trygonometrycznej
B. Ortogonalną oraz niwelacji geometrycznej
C. Biegunową oraz niwelacji trygonometrycznej
D. Biegunową oraz niwelacji geometrycznej
W analizie błędnych odpowiedzi na pytanie o metody pomiaru tachimetrycznego istotne jest zrozumienie, że każda z nich zawiera niepoprawne koncepcje dotyczące zastosowania i łączenia metod. W szczególności, metoda niwelacji geometrycznej, na którą wskazują niektóre odpowiedzi, jest ograniczona w kontekście pomiarów w terenie, gdyż opiera się głównie na pomiarze różnic wysokości pomiędzy punktami przy zachowaniu linii poziomej. Ta technika nie może być skutecznie używana w połączeniu z pomiarem kątów, co jest kluczowe dla uzyskania dokładnych wyników w tachimetrycznym pomiarze. Ortogonalna metoda również nie jest odpowiednia, gdyż zakłada, że pomiar jest wykonywany w kierunku prostym do linii podstawowej, co nie pozwala na efektywne zbieranie danych w trudnych warunkach terenowych. Typowe błędy myślowe, które prowadzą do takich wniosków, często wynikają z niedostatecznej znajomości różnic między metodami oraz ich specyfiką zastosowania. Kluczowe znaczenie ma zrozumienie, że pomiar tachimetryczny wymaga zintegrowania pomiarów kątów i odległości w jeden proces, co w przypadku zaproponowanych odpowiedzi nie zostało spełnione. Zatem nieprawidłowe połączenie metod prowadzi do niespójności i obniża jakość uzyskiwanych wyników.