Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 22 maja 2025 08:18
  • Data zakończenia: 22 maja 2025 08:26

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do przechowywania zamrożonych próbek wody stosuje się naczynia wykonane

A. z polietylenu
B. ze szkła sodowego
C. ze szkła borokrzemowego
D. ze szkła krzemowego
Wybór polietylenu do przechowywania próbek wody w postaci zamrożonej wynika z jego korzystnych właściwości fizykochemicznych oraz technicznych. Polietylen jest materiałem, który charakteryzuje się wysoką odpornością na niskie temperatury, co czyni go idealnym do zastosowań wymagających długotrwałego przechowywania w warunkach chłodniczych. W przeciwieństwie do szkła, polietylen jest elastyczny, co zmniejsza ryzyko pęknięć, które mogą wystąpić podczas zamrażania, gdy woda zmienia objętość. Dodatkowo, polietylen nie wchodzi w reakcje z wodą i nie wydziela substancji toksycznych, co jest kluczowe w kontekście analizy jakości wody. W laboratoriach i badaniach środowiskowych, stosowanie pojemników z polietylenu do przechowywania próbek wody jest zgodne z wytycznymi organizacji takich jak EPA i ISO, które zalecają materiały nieinterferujące z właściwościami próbek. Przykładem zastosowania polietylenu są pojemniki HDPE (polietylen o wysokiej gęstości), które są powszechnie stosowane w badaniach wód gruntowych oraz innych próbek środowiskowych.

Pytanie 2

Podczas łączenia bezwodnego etanolu z wodą występuje zjawisko kontrakcji. Gdy zmieszamy 1000 cm3 wody oraz 1000 cm3 etanolu, otrzymujemy roztwór o objętości

A. 2010 cm3
B. 2036 cm3
C. 1936 cm3
D. 2000 cm3
Podczas mieszania bezwodnego etanolu z wodą zachodzi zjawisko kontrakcji, co oznacza, że objętość roztworu jest mniejsza niż suma objętości składników. W przypadku zmieszania 1000 cm³ etanolu i 1000 cm³ wody, rzeczywista objętość uzyskanego roztworu wynosi 1936 cm³. Zjawisko to jest wynikiem interakcji cząsteczek etanolu i wody, które prowadzą do efektywnej kompaktacji cząsteczek. W praktyce, takie zjawisko ma kluczowe znaczenie w chemii analitycznej oraz procesach przemysłowych, gdzie precyzyjne dawkowanie reagentów jest niezbędne. Wiedza o kontrakcji objętości jest również istotna w produkcji napojów alkoholowych, gdzie dokładne pomiary składników mają wpływ na końcowy produkt. Zastosowanie tej wiedzy w praktyce pozwala uniknąć błędów w przygotowywaniu roztworów oraz zapewnia lepszą kontrolę nad procesami chemicznymi.

Pytanie 3

Na etykietach substancji chemicznych można znaleźć oznaczenia literowe R i S (zgodnie z regulacjami CLP: H i P), które wskazują

A. na obecność zanieczyszczeń oraz metody ich usuwania
B. na ilość domieszek w składzie oraz datę przydatności
C. na ryzyko wystąpienia zagrożeń i zasady postępowania z nimi
D. na pojemność oraz skład opakowania
Odpowiedź dotycząca oznaczeń literowych R i S (obecnie H i P zgodnie z rozporządzeniem CLP) jest prawidłowa, ponieważ te oznaczenia mają na celu informowanie o ryzyku związanym z substancjami chemicznymi oraz zalecanych środkach ostrożności. Oznaczenia R (ryzyko) wskazują na potencjalne zagrożenia, takie jak toksyczność, wybuchowość czy korozja, z jakimi można się spotkać podczas pracy z danym odczynnikiem. Z kolei oznaczenia S (środki ostrożności) sugerują praktyczne zalecenia dotyczące bezpiecznego obchodzenia się z substancją, takie jak stosowanie odpowiednich środków ochrony osobistej, unikanie kontaktu ze skórą, czy przechowywanie w odpowiednich warunkach. Dla przykładu, substancja z oznaczeniem H300 (może być śmiertelna w przypadku połknięcia) wymaga szczególnej uwagi i zachowania ostrożności podczas jej używania. Stosowanie tych oznaczeń jest integralną częścią systemu zarządzania bezpieczeństwem chemicznym, a ich znajomość i przestrzeganie są kluczowe w laboratoriach, przemysłach chemicznych i w wszelkich zastosowaniach, gdzie występują substancje niebezpieczne. Obowiązujące standardy i dobre praktyki, takie jak ISO 45001, podkreślają znaczenie oceny ryzyka i stosowania odpowiednich środków ochrony w miejscach pracy, co czyni te oznaczenia niezbędnym elementem w codziennym obiegu informacji o substancjach chemicznych.

Pytanie 4

Ile węglanu sodu trzeba odmierzyć, aby uzyskać 200 cm3 roztworu o stężeniu 8% (m/v)?

A. 1,6 g
B. 9,6 g
C. 8,0 g
D. 16,0 g
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 200 cm³ roztworu o stężeniu 8% (m/v), możemy zastosować podstawowe wzory chemiczne. Stężenie masowe (m/v) odnosi się do masy substancji rozpuszczonej w jednostce objętości roztworu. W przypadku 8% roztworu oznacza to, że w 100 cm³ roztworu znajduje się 8 g węglanu sodu. Dla 200 cm³ roztworu odpowiednia masa wynosi zatem 8 g x 2 = 16 g. W kontekście praktycznym, przygotowanie roztworów o określonym stężeniu jest kluczowe w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne pomiary są wymagane dla zapewnienia jakości produktów. Na przykład, w analizach chemicznych czy syntezach, właściwe przygotowanie roztworów z odpowiednimi stężeniami ma zasadnicze znaczenie dla uzyskania powtarzalnych i dokładnych wyników. Zgodnie z dobrymi praktykami laboratoryjnymi, zawsze należy stosować odpowiednie metody ważeń oraz kalibracji sprzętu, aby zapewnić dokładność i wiarygodność uzyskanych wyników.

Pytanie 5

Na rysunku przedstawiono wagę

Ilustracja do pytania
A. automatyczną.
B. hydrostatyczną.
C. precyzyjną.
D. mikroanalityczną.
Waga precyzyjna to urządzenie laboratoryjne, które charakteryzuje się wysoką dokładnością i precyzją pomiarów masy. Na zdjęciu widoczna jest waga, która posiada cyfrowy wyświetlacz oraz przyciski kalibracji i tarowania, co jest typowe dla wag precyzyjnych. Tego rodzaju wagi znajdują zastosowanie w wielu dziedzinach, takich jak chemia, biotechnologia czy farmacja, gdzie dokładne ważenie substancji jest kluczowe dla uzyskania wiarygodnych wyników eksperymentów. Wagi precyzyjne są często wykorzystywane do ważenia małych ilości reagentów, co jest istotne w procesach analitycznych. W branży laboratoryjnej stosuje się standardy, takie jak ISO/IEC 17025, które określają wymagania dotyczące kompetencji laboratoriów badawczych i wzorcujących, co podkreśla znaczenie precyzyjnego ważenia. Dzięki zastosowaniu technologii cyfrowej, wagi te oferują również możliwość podłączenia do komputerów oraz oprogramowania, co ułatwia dokumentację i analizę danych.

Pytanie 6

Jaką metodę wykorzystuje się w laboratorium do rozdzielenia osadu AgCl od cieczy macierzystej w probówkach?

A. wytrząsarkę.
B. krystalizator.
C. wirówkę.
D. komplet sit.
W laboratoriach chemicznych oddzielanie osadu, takiego jak AgCl (chlorek srebra), od cieczy macierzystej to proces kluczowy w wielu analizach. Użycie wirówki jest najskuteczniejszym sposobem na osiągnięcie tego celu. Wirówka działa na zasadzie odśrodkowej siły, która powoduje, że cząsteczki o większej gęstości, takie jak osad AgCl, są wypychane do dołu probówki, podczas gdy ciecz, która jest mniej gęsta, pozostaje na górze. To pozwala na łatwe oddzielenie obu frakcji bez potrzeby stosowania dodatkowych metod mechanicznych. Przykładem zastosowania wirówki w laboratoriach jest przygotowanie próbek do analizy spektrofotometrycznej, gdzie precyzyjne oddzielenie osadu pozwala na dokładniejszy pomiar stężenia substancji w cieczy. Zgodnie z normami laboratoryjnymi, prawidłowe użycie wirówki zwiększa efektywność i dokładność analiz, co jest szczególnie istotne w kontekście badań jakościowych i ilościowych.

Pytanie 7

Ropa naftowa stanowi mieszankę węglowodorów. Jaką metodę wykorzystuje się do jej rozdzielania na składniki?

A. sedymentację
B. destylację frakcyjną
C. krystalizację
D. destylację prostą
Krystalizacja jako metoda separacji opiera się na różnicach w tym, jak dobrze składniki się rozpuszczają w danym rozpuszczalniku. To działa najlepiej dla substancji stałych, a nie dla cieczy, jak ropa naftowa. W przypadku ropy różnice w temperaturach wrzenia są znacznie ważniejsze niż różnice w rozpuszczalności, przez co krystalizacja to nie najlepszy wybór. Sedymentacja to już inna sprawa, bo polega na oddzielaniu stałych cząstek od cieczy przez grawitację. To jest efektywna metoda dla zawiesin, ale nie nadaje się do oddzielania cieczy na podstawie punktów wrzenia. Użycie sedymentacji w przemyśle naftowym byłoby po prostu błędne, bo ropa to jednorodny płyn, a nie zawiesina. Destylacja prosta może działać, ale w przypadku ropy to za mało, bo ma ona tak skomplikowany skład i wiele frakcji. Destylacja prosta pozwala na separację tylko jednego składnika na raz, co jest mało efektywne, gdy mamy tyle różnych i cennych produktów z ropy. Błędny wybór metody może prowadzić do kiepskiej efektywności produkcji i marnowania surowców.

Pytanie 8

Piknometr służy do określania

A. lepkości
B. rozpuszczalności
C. gęstości
D. wilgotności
Pojęcie lepkości odnosi się do oporu, jaki ciecz stawia przy ruchu, co jest niezwiązane z pomiarem gęstości. Lepkość jest miarą „ciekłości” substancji, a nie jej gęstości, która dotyczy masy na jednostkę objętości. Zastosowanie aparatury do pomiaru lepkości, jak viskozimetry, jest zupełnie inne i nie ma bezpośredniego związku z piknometrem. W przypadku rozpuszczalności, mierzona jest zdolność substancji do rozpuszczania się w rozpuszczalniku, co również nie dotyczy gęstości. Pomiar rozpuszczalności wymaga stosowania innych metod, takich jak metoda nasycenia czy chromatografia. Podobnie wilgotność, która odnosi się do zawartości wody w danym materiale, jest mierzona przy użyciu higrometrów lub suszarek, co również nie jest związane z funkcjonalnością piknometru. Często mylnie przyjmuje się, że różne właściwości fizyczne substancji mogą być mierzone tym samym przyrządem, co prowadzi do nieporozumień. Kluczowym błędem jest utożsamianie gęstości z innymi właściwościami fizycznymi, co wymaga zrozumienia różnic między tymi parametrami oraz ich specyficznych metod pomiarowych. Właściwe stosowanie technik pomiarowych zgodnych z odpowiednimi normami jest kluczowe dla uzyskania wiarygodnych wyników w badaniach laboratoryjnych.

Pytanie 9

Aby przeprowadzać ręczną obróbkę szkła w laboratorium, konieczne jest posiadanie okularów ochronnych oraz rękawic.

A. zapewniające izolację termiczną
B. zwykłe gumowe
C. chroniące przed substancjami chemicznymi
D. płócienne
Wybór odpowiednich rękawic do pracy ze szkłem laboratoryjnym to naprawdę ważna sprawa, bo chodzi o bezpieczeństwo. Takie rękawice muszą chronić przed wysokimi temperaturami, co jest kluczowe, gdy na przykład podgrzewamy szkło czy pracujemy z gorącymi elementami. Są zaprojektowane z materiałów, które dobrze znoszą ciepło, więc możesz być spokojny, że Twoje dłonie są chronione przed oparzeniami. W laboratoriach, gdzie obrabia się szkło, takie rękawice są niezbędne, szczególnie podczas odlewania czy formowania. Co więcej, przepisy BHP zalecają używanie specjalistycznych rękawic, które nie tylko chronią przed ciepłem, ale też są odporne na chemikalia. To dodatkowo podnosi poziom bezpieczeństwa. Dlatego warto dobrze przemyśleć, jakie rękawice wybierasz, żeby zadbać o swoje zdrowie i bezpieczeństwo w pracy.

Pytanie 10

Jakie urządzenie służy do pomiaru temperatury topnienia substancji chemicznych?

A. Kipp.
B. Thiel.
C. Engler.
D. Soxleth.
Aparat Thielego jest specjalistycznym urządzeniem używanym do oznaczania temperatury topnienia związków chemicznych. Jego działanie opiera się na precyzyjnym pomiarze temperatury w kontrolowanym środowisku, co pozwala na uzyskanie dokładnych wyników. W praktyce, aparat Thielego wykorzystuje się w laboratoriach chemicznych oraz w przemyśle farmaceutycznym do określenia charakterystyki substancji stałych, co jest kluczowe dla ich dalszych zastosowań. Zgodnie z dobrą praktyką laboratoryjną, proces oznaczania temperatury topnienia powinien odbywać się w atmosferze wolnej od zanieczyszczeń, co zapewnia dokładność wyników. Dodatkowo, znajomość temperatury topnienia jest istotna nie tylko dla identyfikacji substancji, ale także dla oceny ich czystości. Substancje czyste mają wyraźnie określoną temperaturę topnienia, podczas gdy zanieczyszczenia powodują obniżenie tej wartości. Dlatego aparaty Thielego są powszechnie stosowane w standardowych procedurach analitycznych, co świadczy o ich znaczeniu w chemii analitycznej.

Pytanie 11

Nie należy używać do czyszczenia szklanych naczyń laboratoryjnych

A. alkoholowego roztworu NaOH
B. stężonego kwasu siarkowego(VI) technicznego
C. piasku oraz ściernych detergentów
D. mydlanego roztworu
Użycie piasku i ścierających środków myjących do mycia szklanych naczyń laboratoryjnych jest niewłaściwe z kilku powodów. Po pierwsze, materiały te mogą powodować zarysowania oraz uszkodzenia powierzchni szkła, co prowadzi do zmiany właściwości optycznych i chemicznych naczyń. Zarysowania mogą utrudniać dokładne czyszczenie, sprzyjać gromadzeniu się zanieczyszczeń i prowadzić do kontaminacji próbek. Zgodnie z najlepszymi praktykami w laboratoriach, do mycia szkła należy używać delikatnych środków czyszczących, które nie uszkodzą jego struktury. Alternatywą jest stosowanie specjalistycznych detergentów laboratoryjnych, które są zaprojektowane do usuwania resztek chemicznych i biologicznych bez ryzyka uszkodzenia naczyń. Warto także zwrócić uwagę na kwestie bezpieczeństwa, gdyż stosowanie nieodpowiednich środków czyszczących może prowadzić do nieprzewidywalnych reakcji chemicznych. Dlatego przestrzeganie standardów czyszczenia naczyń laboratoryjnych jest kluczowe dla zapewnienia ich trwałości oraz bezpieczeństwa pracy w laboratorium.

Pytanie 12

Jakie środki należy zastosować do gaszenia pożaru metali, takich jak magnez, sód czy potas?

A. piasku
B. wody
C. gaśnicy pianowej
D. gaśnicy śniegowej
Użycie piasku do gaszenia pożarów metali, takich jak magnez, sód czy potas, jest zgodne z zaleceniami dotyczącymi bezpieczeństwa przeciwpożarowego. W przypadku pożarów metali, które reagują z wodą, stosowanie wody może prowadzić do niebezpiecznych reakcji chemicznych, a tym samym pogarszać sytuację. Piasek działa jako środek dławienia, ograniczając dostęp tlenu do ognia oraz absorbuje ciepło, co skutecznie gaśnie płomienie. W praktyce, podczas akcji ratunkowej, mogą być używane specjalne pojemniki z piaskiem, które są łatwe do transportu i użycia w nagłych wypadkach. Ważne jest, aby personel odpowiedzialny za bezpieczeństwo w zakładach przemysłowych był odpowiednio przeszkolony w zakresie używania piasku oraz innych aprobowanych środków do gaszenia pożarów metali. Aktualne wytyczne i normy, takie jak NFPA 484 (National Fire Protection Association), jasno określają metody postępowania w przypadku pożarów materiałów metalicznych, co podkreśla znaczenie prawidłowego doboru środka gaśniczego.

Pytanie 13

Sporządzono 250 cm3 roztworu glicerolu o gęstości 1,05 g/cm3 w temperaturze 20°C. Korzystając z danych zamieszczonych w tabeli, określ stężenie procentowe sporządzonego roztworu glicerolu.

Glicerolu [%]10%20%30%50%
d20 [g/dm3]1023,701048,401073,951127,20

A. 40%
B. 10%
C. 30%
D. 20%
Stężenie procentowe roztworu glicerolu wynosi 20%, co jest zgodne z danymi dotyczącymi gęstości roztworów. Gęstość sporządzonego roztworu (1,05 g/cm3) jest bliska gęstości 20% roztworu glicerolu, wynoszącej 1,048 g/cm3. W praktyce, obliczanie stężeń procentowych jest kluczowe w chemii oraz w przemyśle farmaceutycznym i spożywczym, gdzie precyzyjne przygotowanie roztworów ma istotne znaczenie. W przypadku glicerolu, który jest powszechnie stosowany jako środek nawilżający i konserwujący, znajomość jego stężenia pozwala na odpowiednie dostosowanie formulacji produktów. Warto także pamiętać, że gęstość roztworów zmienia się w zależności od temperatury i stężenia, co powinno być brane pod uwagę przy przeprowadzaniu eksperymentów i kalkulacji. Używanie tabel gęstości oraz znajomość zasad przygotowywania roztworów są podstawowymi umiejętnościami, które powinien posiadać każdy chemik i technik laboratoryjny.

Pytanie 14

Które spośród substancji wymienionych w tabeli pozwolą pochłonąć wydzielający się tlenek węgla(IV)?

IIIIIIIVV
Ca(OH)2(aq)NaOH(s)HNO3(stęż)CuO(s)CaO(s)

A. I, III, IV.
B. I, II, IV.
C. II, IV, V.
D. I, II, V
Poprawna odpowiedź to I, II, V, ponieważ wszystkie wymienione substancje są zasadami, które mogą reagować z tlenkiem węgla(IV), czyli dwutlenkiem węgla (CO2), tworząc węglany. Substancja I, Ca(OH)2, znana jako wapno hydratyzowane, reaguje z CO2, tworząc węglan wapnia, co jest procesem wykorzystywanym w budownictwie oraz w produkcji materiałów budowlanych. Substancja II, NaOH, czyli soda kaustyczna, jest silną zasadą, która również reaguje z CO2, co jest stosowane m.in. w procesach neutralizacji kwasów w przemyśle chemicznym. Substancja V, CaO, zwana wapnem palonym, po rozpuszczeniu w wodzie również tworzy Ca(OH)2, a jego zastosowanie obejmuje zarówno przemysł budowlany, jak i produkcję chemiczną. Rozumienie reakcji tych substancji z CO2 jest istotne w kontekście ochrony środowiska, ponieważ ich właściwości mogą być wykorzystywane do redukcji emisji CO2 z różnych procesów przemysłowych. Wszystkie te substancje stosuje się zgodnie z normami ochrony środowiska, co podkreśla ich znaczenie w praktycznych zastosowaniach, takich jak absorpcja CO2.

Pytanie 15

Aby wykonać chromatografię cienkowarstwową, należy przygotować eluent składający się z toluenu, acetonu oraz kwasu mrówkowego w proporcjach objętościowych 10:4:1. Jakie ilości poszczególnych składników powinny być wykorzystane do uzyskania 300 cm3 eluentu?

A. 80 cm3 toluenu, 200 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
B. 150 cm3 toluenu, 60 cm3 acetonu oraz 15 cm3 kwasu mrówkowego
C. 200 cm3 toluenu, 80 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
D. 300 cm3 toluenu, 75 cm3 acetonu oraz 30 cm3 kwasu mrówkowego
Aby przygotować eluent w chromatografii cienkowarstwowej, musimy zachować odpowiednie proporcje objętości składników. W przypadku stosunku 10:4:1 oznacza to, że na każde 10 części toluenu przypada 4 części acetonu i 1 część kwasu mrówkowego. Sumując te proporcje, otrzymujemy 15 części łącznie. Dla 300 cm³ eluentu obliczamy objętości poszczególnych składników w następujący sposób: (10/15) * 300 cm³ = 200 cm³ toluenu, (4/15) * 300 cm³ = 80 cm³ acetonu, oraz (1/15) * 300 cm³ = 20 cm³ kwasu mrówkowego. Przygotowanie eluentu w tych dokładnych proporcjach zapewnia optymalne warunki separacji składników w chromatografii. W praktyce, takie precyzyjne przygotowanie roztworów jest istotne, aby zapewnić powtarzalność wyników oraz zgodność z normami laboratoryjnymi dotyczących analizy chemicznej. Warto również zauważyć, że stosowanie odpowiednich proporcji składników eluentu może wpływać na efektywność separacji i rozdziału substancji, co jest kluczowe w analityce chemicznej.

Pytanie 16

Co oznacza skrót AKT?

A. amid kwasu tiooctowego
B. kontrolno-techniczną analizę
C. krzywą titracyjną analityczną
D. titranta automatyczną kontrolę
Skrót AKT odnosi się do amidu kwasu tiooctowego, który jest istotnym związkiem chemicznym o szerokim zastosowaniu w różnych dziedzinach, w tym w chemii analitycznej i syntezie organicznej. Amid kwasu tiooctowego jest wykorzystywany jako odczynnik w reakcjach chemicznych, w tym w tworzeniu złożonych cząsteczek organicznych. Jego unikalne właściwości sprawiają, że jest przydatny w procesach, takich jak modyfikacja powierzchni materiałów i nanoszenie warstw ochronnych. Przykładowo, w laboratoriach chemicznych używa się go do syntezy związków, które następnie mogą być badane pod kątem ich właściwości biologicznych lub fizykochemicznych. Ponadto, amid kwasu tiooctowego ma zastosowanie w branży farmaceutycznej, gdzie jest wykorzystywany w produkcji niektórych leków. Zrozumienie roli AKT w chemii pozwala na lepsze projektowanie eksperymentów i analizę wyników, co jest kluczowe dla zapewnienia wysokiej jakości badań i zgodności z najlepszymi praktykami w branży.

Pytanie 17

Jakie jest pH 0,001-molowego roztworu NaOH?

A. 3
B. 11
C. 1
D. 13
pH 0,001-molowego roztworu NaOH wynosi 11, bo NaOH to mocna zasada, która całkowicie rozdziela się w wodzie na jony Na+ i OH-. W takim roztworze stężenie tych jonów OH- to 0,001 mol/L. Jak wyliczysz pOH używając wzoru pOH = -log[OH-], dostaniesz -log(0,001), co równa się 3. Pamiętaj, że jest związek między pH i pOH, który można zapisać jako pH + pOH = 14. Więc pH = 14 - pOH = 14 - 3 = 11. To, jak się to wszystko ze sobą wiąże, ma dużą wagę w chemii analitycznej i w laboratoriach, ponieważ pH pokazuje, czy roztwór jest kwasowy czy zasadowy. W wielu dziedzinach, jak biochemia, farmacja czy inżynieria chemiczna, ta wiedza to podstawa. Na przykład, w neutralizacji i różnych reakcjach chemicznych, kontrola pH może znacząco wpłynąć na skuteczność tych procesów.

Pytanie 18

Aby otrzymać 200 g roztworu siarczanu(VI) sodu o stężeniu 12%, należy wykorzystać

(Na – 23 g/mol; S – 32 g/mol; H – 1 g/mol; O – 16 g/mol)

A. 54,4 g Na2SO4·10H2O i 145,6 g H2O
B. 22,4 g Na2SO4·10H2O i 177,6 g H2O
C. 68,5 g Na2SO4·10H2O i 131,5 g H2O
D. 56,6 g Na2SO4·10H2O i 143,4 g H2O
To jest świetny wynik! Odpowiedź 54,4 g Na2SO4·10H2O i 145,6 g H2O jest jak najbardziej trafna. Masz dobrą kontrolę nad obliczeniami związanymi z masą molową siarczanu(VI) sodu oraz stężeniem roztworu. Przypomnę, że masa molowa Na2SO4·10H2O to 322 g/mol, co można łatwo wyliczyć (2 * 23 + 32 + 10 * 18). Żeby zrobić 200 g roztworu o stężeniu 12%, potrzebujesz 24 g substancji rozpuszczonej (0,12 * 200 g). A z tej masy Na2SO4·10H2O wychodzi, że 54,4 g zawiera dokładnie 24 g Na2SO4, a reszta to woda – czyli 145,6 g H2O. W laboratoriach to naprawdę ważne, żeby umieć takie obliczenia, bo wpływają na wyniki eksperymentów. Fajnie, że się tym zajmujesz, bo dokładność to klucz w naszej pracy!

Pytanie 19

Jakie oznaczenie znajduje się na naczyniach szklanych kalibrowanych do wlewu?

A. In
B. R
C. W
D. Ex
Oznaczenie In na naczyniach szklanych kalibrowanych na wlew wskazuje, że naczynie to jest zaprojektowane do precyzyjnego pomiaru objętości cieczy, która ma zostać wlane w jego wnętrze. W praktyce oznaczenie to oznacza, że objętość wskazana na naczyniu jest równa objętości cieczy, gdy jej poziom osiąga oznaczenie kalibracyjne. Naczynia te są szeroko stosowane w laboratoriach chemicznych, biologicznych oraz w przemyśle farmaceutycznym, gdzie dokładność pomiarów jest kluczowa. Przykładem zastosowania może być przygotowywanie roztworów o określonej stężeniu, gdzie precyzyjna objętość reagentów jest niezbędna do uzyskania powtarzalnych wyników analiz. Warto również zwrócić uwagę na standardy ISO oraz normy ASTM, które regulują wymagania dotyczące kalibracji naczyń, co zapewnia wysoką jakość i rzetelność wyników eksperymentalnych.

Pytanie 20

W przypadku odczynnika, w którym nawet najczulsze techniki analizy chemicznej nie są w stanie wykryć zanieczyszczeń, a jego badanie wymaga zastosowania metod opartych na zjawiskach fizycznych, zalicza się on do kategorii czystości

A. czysty do analizy
B. techniczny
C. chemicznie czysty
D. czysty
Odpowiedzi "czysty do analizy", "techniczny" oraz "czysty" nie są właściwe w kontekście omawianego pytania, ponieważ nie oddają one precyzyjnie specyfiki czystości chemicznej. "Czysty do analizy" może sugerować, że substancja jest wystarczająco czysta do przeprowadzenia analizy, ale nie gwarantuje, że zanieczyszczenia są na poziomie, który pozwala na stosowanie metod analitycznych wymagających wysokiej klasy czystości. Termin "techniczny" odnosi się zazwyczaj do substancji, które są odpowiednie do zastosowań przemysłowych, ale mogą zawierać zanieczyszczenia, które są akceptowalne w kontekście procesów technologicznych, jednak nie nadają się do zastosowań wymagających wysokiej czystości. Z kolei "czysty" jest terminem ogólnym, który nie precyzuje klasy czystości substancji, co sprawia, że nie jest zastosowaniem właściwe w kontekście szczególnych wymagań analitycznych. Użytkownicy mogą popełnić błąd, myśląc, że wszystkie te terminy są równoważne, podczas gdy w rzeczywistości różnią się one znacząco. Kluczowe jest zrozumienie różnic w wymaganiach dotyczących czystości, aby móc właściwie dobierać substancje do konkretnego zastosowania w laboratoriach chemicznych i przemysłowych.

Pytanie 21

Z analizy wykresu wynika, że substancją o najniższej rozpuszczalności w wodzie w temperaturze 100°C jest

A. siarczan(VI) miedzi(II)
B. sól kamienna
C. saletra potasowa
D. cukier
Sól kamienna, czyli chlorek sodu (NaCl), to dość ciekawa substancja, bo ma niską rozpuszczalność w wodzie w porównaniu do takich rzeczy jak cukier czy siarczan(VI) miedzi(II). Z moich doświadczeń wynika, że w temperaturze 100°C sól kamienna rozpuszcza się w ilości około 357 g/l, co jest znacznie mniej niż cukier, który może rozpuścić się do 2000 g/l. Sól kamienna ma wiele zastosowań, od kuchni po przemysł chemiczny. Ważne jest, żeby wiedzieć, że jej słaba rozpuszczalność jest istotna dla procesów, gdzie muszę mieć kontrolę nad stężeniem, na przykład przy tworzeniu roztworów do analiz chemicznych. Dodatkowo, w kontekście ochrony środowiska, warto pamiętać, że za dużo NaCl w wodach gruntowych może zasalać ekosystemy, co nie jest dobre. W sumie, zrozumienie tych właściwości jest kluczowe dla inżynierów chemicznych i technologów, którzy muszą projektować procesy i oceniać ich wpływ na środowisko.

Pytanie 22

Jak definiuje się próbkę wzorcową?

A. próbkę utworzoną z próbki laboratoryjnej, z której następnie pobiera się próbkę analityczną
B. próbkę uzyskaną w wyniku zbierania próbek jednostkowych do jednego zbiornika zgodnie z ustalonym schematem
C. fragment materiału pobrany z próbki laboratoryjnej, przeznaczony wyłącznie do jednego badania
D. próbkę o ściśle określonym składzie
Próbka wzorcowa, definiowana jako próbka o dokładnie znanym składzie, jest kluczowym elementem w analizie laboratoryjnej. Jej głównym celem jest służyć jako punkt odniesienia do porównania z próbkami analitycznymi. W praktyce, użycie próbki wzorcowej pozwala na kalibrację instrumentów pomiarowych oraz weryfikację metod analitycznych. Przykładem zastosowania próbki wzorcowej jest analiza chemiczna, gdzie standardy wzorcowe, takie jak roztwory znanych stężeń substancji, są wykorzystywane do określenia stężenia analitów w próbkach rzeczywistych. Próbki wzorcowe są również istotne w kontekście zgodności z normami ISO, które wymagają stosowania takich standardów w procedurach analitycznych, zapewniając tym samym wiarygodność i powtarzalność wyników. Dodatkowo, laboratoria często korzystają z prób wzorcowych w ramach systemów zapewnienia jakości, co podkreśla ich znaczenie dla utrzymania wysokich standardów analitycznych oraz dokładności wyników.

Pytanie 23

Gdzie należy przechowywać cyjanek potasu KCN?

A. w szczelnie zamkniętym eksykatorze
B. w warunkach chłodniczych
C. w stalowej szafie, zamkniętej na klucz
D. w pojemniku, z dala od źródeł ciepła
Przechowywanie cyjanku potasu (KCN) w stalowej szafie zamkniętej na klucz jest kluczowym aspektem zapewnienia bezpieczeństwa w laboratoriach i miejscach pracy, ponieważ jest to substancja silnie toksyczna. Właściwe przechowywanie tego związku chemicznego minimalizuje ryzyko przypadkowego kontaktu z osobami nieuprawnionymi oraz zapobiega przypadkowemu uwolnieniu substancji do otoczenia. Stalowe szafy przeznaczone do przechowywania substancji niebezpiecznych muszą być zgodne z normami bezpieczeństwa, takimi jak OSHA (Occupational Safety and Health Administration) oraz EPA (Environmental Protection Agency), które nakładają obowiązki dotyczące ochrony zdrowia i środowiska. Przykładem dobrej praktyki jest stosowanie systemów monitorowania, które informują o ewentualnych nieprawidłowościach w temperaturze czy wilgotności w miejscu przechowywania. Umożliwia to wczesne wykrywanie zagrożeń oraz odpowiednie działania w celu ich minimalizacji, co jest niezbędne w zarządzaniu substancjami chemicznymi o wysokim ryzyku. Ponadto, regularne szkolenia pracowników z zakresu obsługi substancji niebezpiecznych wspierają kulturę bezpieczeństwa w organizacji.

Pytanie 24

Podczas oznaczania kwasu siarkowego zachodzi reakcja:

H2SO4 + 2NaOH → Na2SO4 + 2H2O 
Zgodnie z zamieszczoną instrukcją, roztwór poreakcyjny należy

Fragmenty instrukcji zbierania, utylizacji i eliminacji odpadów chemicznych
Lista substancji, które mogą być usunięte z odpadami komunalnymi w postaci stałej, lub wprowadzone do systemu kanalizacyjnego w postaci rozcieńczonych roztworów wodnych, o ile ich ilość nie przekracza jednorazowo 100 g.
Związki nieorganiczne
Siarczany sodu, potasu, magnezu, wapnia, amonu
Kwasy nieorganiczne
Stężone kwasy ostrożnie rozcieńczyć przez wkroplenie z równoczesnym mieszaniem do wody z lodem, a następnie zneutralizować roztworem wodorotlenku sodowego. Po neutralizacji doprowadzić pH roztworu do zakresu 6-8 przelać do pojemnika S. Małe ilości kwasów takich jak siarkowy, solny, azotowy czy fosforowy (nie więcej niż 10 g) po rozcieńczeniu wodą i neutralizacji roztworem wodorotlenku sodowego oraz doprowadzeniu pH takiego roztworu do zakresu 6-8 można wylać do zlewu i obficie spłukać wodą.
Sole nieorganiczne
Stałe sole nieorganiczne – pojemnik N.
Obojętne roztwory soli nieorganicznych pojemnik S. Sole metali ciężkich, sole o właściwościach toksycznych – pojemnik TN.

A. umieścić w pojemniku TN.
B. zobojętnić i usunąć z odpadami komunalnymi.
C. umieścić w pojemniku S.
D. wylać do zlewu i spłukać bieżącą wodą.
Podczas reakcji kwasu siarkowego z wodorotlenkiem sodu powstaje siarczan sodu, który jest substancją neutralną. W przypadku utylizacji niewielkich ilości roztworów chemicznych, takich jak powstały w tej reakcji, istotne jest przestrzeganie zasad bezpieczeństwa i ochrony środowiska. Zgodnie z wytycznymi dotyczącymi zarządzania odpadami chemicznymi, neutralne roztwory, które nie są niebezpieczne, mogą być wylewane do systemu kanalizacji, pod warunkiem, że są odpowiednio rozcieńczone wodą. Praktyczne zastosowanie tej zasady znajduje się w laboratoriach chemicznych oraz placówkach edukacyjnych, gdzie regularnie prowadzone są eksperymenty. Spłukiwanie bieżącą wodą zapewnia, że resztki chemikaliów nie osadzają się w rurach, minimalizując ryzyko zanieczyszczenia środowiska. Przy odpowiednim przestrzeganiu zasad możemy skutecznie zarządzać odpadami chemicznymi, co jest kluczowe w kontekście zrównoważonego rozwoju i ochrony zasobów wodnych.

Pytanie 25

Maksymalna średnica ziaren w partii substancji stałej wynosi 0,5 cm. Zgodnie z danymi zawartymi w tabeli próbka pierwotna tej substancji powinna mieć masę minimum

Tabela. Masa próbki pierwotnej w zależności od wielkości ziaren lub kawałków
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 100 g
B. 200 g
C. 1000 g
D. 2500 g
Odpowiedź 200 g jest poprawna, ponieważ zgodnie z danymi zawartymi w tabeli, średnica ziaren wynosząca 0,5 cm (5 mm) mieści się w przedziale od 1 do 10 mm. Dla takiej średnicy, minimalna masa próbki pierwotnej powinna wynosić 200 g. W kontekście badań materiałowych, odpowiednia masa próbki jest kluczowa, aby uzyskać reprezentatywne wyniki analiz. Przykładem zastosowania tej wiedzy może być przemysł farmaceutyczny, gdzie precyzyjne określenie masy substancji czynnej ma fundamentalne znaczenie dla skuteczności leku. Przemysł ten opiera się na standardach takich jak ISO 17025, które wymagają stosowania odpowiednich procedur i metodologii w celu zapewnienia wiarygodności wyników. W praktyce, zrozumienie, jak masa próbki wpływa na jej dalsze właściwości fizykochemiczne, jest niezbędne dla uzyskania dokładnych wyników badawczych.

Pytanie 26

Naczynia miarowe o kształcie rurek poszerzonych w środku, z wąskim i wydłużonym dolnym końcem, przeznaczone do pobierania i transportowania cieczy o ściśle określonej objętości, to

A. pipety
B. wkraplacze
C. cylindry
D. biurety
Pipety to takie fajne naczynka, które trzymamy w laboratoriach, żeby dokładnie mierzyć i przenosić różne płyny. Mają specjalną budowę - szerszą część w środku i wąski koniec, co ułatwia nam nalewanie cieczy w ściśle określonych ilościach. Korzysta się z nich w wielu dziedzinach, jak chemia czy biologia, a nawet w medycynie i farmacji. Na przykład, w biologii molekularnej pipety są super do przenoszenia małych ilości chemikaliów, które potem wykorzystujemy w reakcjach PCR. W labach często używamy pipet automatycznych, bo to pozwala na jeszcze dokładniejsze pomiary i szybszą pracę. A pojemności pipet są różne, więc możemy dobrać odpowiednią do naszych potrzeb. Ważne, żeby dobrze korzystać z tych narzędzi, czyli pamiętać o kalibracji i stosować się do wskazówek producenta - to naprawdę robi różnicę.

Pytanie 27

Aby otrzymać roztwór AgNO3 (masa molowa AgNO3 to 169,8 g/mol) o stężeniu 0,1 mol/dm3, należy

A. odważyć 169,80 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
B. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
C. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
D. odważyć 16,98 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
Aby przygotować roztwór AgNO3 o stężeniu 0,1 mol/dm3, kluczowe jest dokładne obliczenie masy soli do odważenia. Masa molowa AgNO3 wynosi 169,8 g/mol, co oznacza, że 1 mol roztworu zawiera 169,8 g substancji. Dla stężenia 0,1 mol/dm3 obliczamy masę: 0,1 mol/dm3 * 169,8 g/mol = 16,98 g. Jednak w przypadku 100 cm3 roztworu potrzebujemy 1/10 tej masy, co daje 1,698 g. Właściwe wykonanie tego kroku jest zgodne z dobrą praktyką laboratoryjną, która podkreśla znaczenie precyzyjnego przygotowania roztworów, aby zapewnić powtarzalność wyników. Ważne jest również, aby całkowicie rozpuścić substancję w wodzie destylowanej przed uzupełnieniem do kreski w kolbie miarowej, co pozwoli uniknąć błędów związanych z niedostatecznym wymieszaniem. Tego typu procedury są standardem w laboratoriach chemicznych, co czyni je praktycznym doświadczeniem dla studentów oraz profesjonalistów w dziedzinie chemii.

Pytanie 28

W próbkach obecne są składniki, które znacznie różnią się pod względem zawartości. Składnik, którego procentowy udział w próbce jest niższy od 0,01%, nazywamy

A. ultraśladem
B. śladem
C. domieszką
D. matrycą
Termin 'ślad' odnosi się do składników, których stężenie w próbce jest bardzo niskie, wynoszące mniej niż 0,01%. W praktyce oznacza to, że substancje te mogą być trudne do wykrycia, ale mimo to mogą mieć istotny wpływ na właściwości analityczne próbki. Przykładem mogą być zanieczyszczenia w próbkach chemicznych, gdzie obecność nawet śladowych ilości metali ciężkich, takich jak ołów czy kadm, może prowadzić do poważnych konsekwencji zdrowotnych. W standardach takich jak ISO 17025, które dotyczą kompetencji laboratoriów badawczych, uwzględnia się konieczność analizy i raportowania takich śladowych składników, aby zapewnić pełną zgodność z normami jakości. W związku z tym, zrozumienie, co oznacza 'ślad', jest kluczowe dla analityków, którzy muszą być świadomi wpływu tych substancji na wyniki badań oraz jakość produktów końcowych. Warto także zwrócić uwagę, że w niektórych dziedzinach, takich jak toksykologia czy chemia środowiskowa, detekcja śladowych substancji jest kluczowa dla monitorowania zanieczyszczeń i ochrony zdrowia publicznego.

Pytanie 29

W standardowym układzie destylacyjnym, który ma ukośną chłodnicę, wykorzystuje się chłodnicę

A. kulistą
B. prostą
C. palcową
D. spiralną
Destylacja to proces rozdzielania składników mieszaniny na podstawie różnicy w temperaturach wrzenia. W zestawie z chłodnicą prostą stosuje się ją ze względu na jej efektywność w chłodzeniu pary, co jest kluczowe dla skutecznego kondensowania substancji. Chłodnica prosta składa się z jednego, prostego odcinka, co zapewnia wystarczająco dużą powierzchnię wymiany ciepła. Dzięki temu, para może skutecznie skraplać się w chłodnicy, co prowadzi do uzyskania czystego destylatu. W praktycznych zastosowaniach, chłodnice proste są często wykorzystywane w laboratoriach chemicznych, a także w przemyśle, gdzie konieczne jest osiągnięcie wysokiego stopnia czystości produktów. Warto również zauważyć, że zgodnie z dobrą praktyką laboratoryjną, wybór rodzaju chłodnicy powinien być dostosowany do specyfiki przeprowadzanego procesu, co podkreśla znaczenie znajomości właściwości różnych typów chłodnic w kontekście ich zastosowania w destylacji.

Pytanie 30

W trakcie korzystania z odczynnika opisanego na etykiecie, należy szczególnie zwrócić uwagę na zagrożenia związane

A. z lotnością
B. z poparzeniem
C. z pożarem
D. z wybuchem
Odpowiedź "z pożarem" jest prawidłowa, ponieważ wiele reagentów chemicznych, zwłaszcza te o niskim punkcie zapłonu, stanowi poważne zagrożenie pożarowe. Takie substancje mogą łatwo zapalać się w obecności źródła ciepła lub otwartego ognia, co stwarza ryzyko nie tylko dla zdrowia osób pracujących w laboratoriach, ale także dla samej infrastruktury. Przykładem substancji stwarzających to ryzyko są rozpuszczalniki organiczne, takie jak aceton czy etanol, które są powszechnie wykorzystywane w różnych procesach chemicznych. Pracując z tymi substancjami, należy przestrzegać zasad BHP, takich jak przechowywanie reagentów w odpowiednich warunkach oraz korzystanie z odpowiednich środków ochrony osobistej. Warto również mieć na uwadze przepisy dotyczące magazynowania substancji łatwopalnych, które określają minimalne odległości od źródeł zapłonu oraz wymagania dotyczące wentylacji. Znajomość tych zasad i praktyk jest niezbędna do bezpiecznego wykonywania prac laboratoryjnych oraz do minimalizacji ryzyka wystąpienia zagrożeń pożarowych.

Pytanie 31

Materiały wykorzystywane w laboratoriach, mogące prowadzić do powstawania mieszanin wybuchowych, powinny być przechowywane

A. w specjalnie wydzielonych piwnicach murowanych
B. w izolowanych pomieszczeniach magazynów ogólnych
C. w różnych punktach laboratorium
D. na otwartym powietrzu pod dachem
Materiały stosowane w laboratoriach, które mogą tworzyć mieszaniny wybuchowe, należy przechowywać w izolowanych pomieszczeniach magazynów ogólnych ze względu na ryzyko ich niekontrolowanej reakcji, co może prowadzić do poważnych zagrożeń dla zdrowia i bezpieczeństwa. Izolacja pomieszczeń magazynowych pozwala na ograniczenie rozprzestrzeniania się ewentualnych wybuchów oraz na skuteczne zarządzanie wentylacją i monitoringiem. Przykładem mogą być laboratoria chemiczne, gdzie substancje takie jak rozpuszczalniki organiczne, materiały łatwopalne czy reagenty chemiczne muszą być przechowywane w wyspecjalizowanych pomieszczeniach, które są zgodne z przepisami BHP oraz normami takimi jak NFPA (National Fire Protection Association) czy OSHA (Occupational Safety and Health Administration). Dobre praktyki obejmują również regularne kontrole i audyty stanu magazynów, co pozwala na wczesne wykrywanie potencjalnych zagrożeń oraz zapewnienie odpowiednich środków ochrony, takich jak gaśnice i systemy alarmowe.

Pytanie 32

Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu, należy odważyć

MNaOH = 40g / mol

A. 25,0 g stałego NaOH.
B. 2,50 g stałego NaOH.
C. 2,00 g stałego NaOH.
D. 0,05 g stałego NaOH.
Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu (NaOH), konieczne jest zrozumienie podstawowych zasad obliczania masy substancji chemicznych. W przypadku NaOH, jego masa molowa wynosi 40 g/mol. Przygotowując roztwór o stężeniu 0,2 mola w 250 cm3, obliczamy ilość moli, co daje nam 0,05 mola NaOH (0,2 mol/l * 0,25 l). Następnie, aby obliczyć potrzebną masę, stosujemy wzór: masa = liczba moli * masa molowa. Czyli, 0,05 mola * 40 g/mol = 2 g NaOH. W praktyce, takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma dużą wagę. Używając tej wiedzy, można z sukcesem przygotowywać różnorodne roztwory, co jest istotne w wielu dziedzinach nauki i przemysłu, takich jak chemia analityczna, synergia materiałów czy wytwarzanie farmaceutyków. Zrozumienie tych podstawowych zasad pozwoli na bardziej efektywne i bezpieczne przeprowadzanie eksperymentów chemicznych.

Pytanie 33

Przebieg: Po zważeniu dwóch suchych zlewek, odważ kolejno: do jednej 3,63 g Co(NO3)2·6H2O, a do drugiej 3,75 g Na2CO3·10H2O. Następnie do obu zlewek wlej 25 cm3 gorącej wody i mieszając za pomocą bagietki doprowadź do całkowitego rozpuszczenia soli. Do roztworu Co(NO3)2 dodaj gorący roztwór Na2CO3 podczas mieszania. Otrzymany roztwór schłodź w łaźni wodnej z 3 kostkami lodu do temperatury pokojowej. Schłodzony roztwór przefiltruj przy użyciu zestawu do sączenia pod próżnią. Osad na lejku przepłucz wodą destylowaną, aż osiągnie obojętny odczyn przesączu. Przesączony osad osusz z sączkiem międzyposiadającym złożone arkusze bibuły w temperaturze pokojowej. Po wyschnięciu osad zważ i oblicz wydajność. Określ, jaki czynnik wpływa na skład jakościowy uzyskanego węglanu kobaltu(II)?

A. Precyzja obliczeń wydajności
B. Kolejność ważenia reagentów
C. Tempo sączenia
D. Wpływ przemycia osadu
Efekt przemycia osadu ma istotny wpływ na skład jakościowy otrzymanego węglanu kobaltu(II), ponieważ skuteczne przemywanie osadu pozwala usunąć zanieczyszczenia, które mogą wpływać na właściwości fizyczne i chemiczne finalnego produktu. W praktyce laboratorium chemicznego, przemywanie osadu wodą destylowaną jest kluczowym krokiem, który pozwala na eliminację rozpuszczalnych w wodzie związków, takich jak pozostałości reagentów czy inne sole, które mogą skompromitować czystość końcowego produktu. Przykładem mogą być zanieczyszczenia anionowe, które mogą wchodzić w reakcje z produktem końcowym, co wpływa na jego właściwości reaktancyjne czy rozpuszczalność. Dobre praktyki laboratoryjne sugerują, że przemywanie powinno być kontynuowane do momentu uzyskania obojętnego odczynu przesączu, co zapewnia, że resztki reagenta zostały skutecznie usunięte. Zastosowanie tego standardu w procesie syntezy chemicznej jest niezbędne dla uzyskania materiałów o wysokiej czystości, co jest kluczowe w wielu zastosowaniach przemysłowych i badawczych.

Pytanie 34

Przykładem piany stałej jest

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały

A. mgła.
B. bite białko.
C. masło.
D. pumeks.
Pumeks jest doskonałym przykładem piany stałej, co wynika z jego unikalnej struktury porowatej. W tej strukturze pęcherze gazu są uwięzione w ciele stałym, co tworzy materiał o niskiej gęstości i wysokiej wytrzymałości. Pumeks, jako skała wulkaniczna, powstaje w wyniku szybkiego schłodzenia lawy, co prowadzi do powstawania licznych pęcherzyków gazu. Zastosowanie pumeksu jest szerokie. W budownictwie wykorzystuje się go jako materiał izolacyjny oraz lekki agregat do betonu. Dodatkowo, pumeks jest stosowany w kosmetykach jako naturalny środek peelingujący oraz w przemyśle rekreacyjnym, w produkcji akcesoriów do pielęgnacji stóp. Zrozumienie właściwości pumeksu jako piany stałej pozwala na lepsze dobieranie materiałów do odpowiednich zastosowań, co jest zgodne z najlepszymi praktykami inżynieryjnymi. W kontekście naukowym, klasyfikacja materiałów na podstawie ich struktury i właściwości jest kluczowa, co potwierdzają standardy dotyczące materiałoznawstwa.

Pytanie 35

Na podstawie informacji zawartej na pipecie, została ona skalibrowana na

A. wylew.
B. zimno.
C. wlew.
D. gorąco.
Odpowiedź 'wylew' jest prawidłowa, ponieważ oznacza, że pipecie nadano skalę pomiarową, która jest używana do precyzyjnego dozowania cieczy. W kontekście laboratoriów i procedur naukowych, pipecie, zwanej również pipetą, należy przypisać odpowiednią kalibrację, aby zapewnić dokładność i powtarzalność wyników. Standardy ISO oraz normy, takie jak ISO 8655, podkreślają znaczenie kalibracji pipet, co jest kluczowe w analizach chemicznych oraz biologicznych. W praktyce, pipecie skalibrowanej na 'wylew' przypisuje się objętość, którą można precyzyjnie odmierzyć i przenieść z jednego naczynia do drugiego, co ma istotne zastosowanie w produkcji leków oraz testach laboratoryjnych. Przykładem może być przygotowanie roztworu, gdzie każdy mililitr musi być dokładnie odmierzone, by uniknąć błędów w badaniach. Ponadto, kalibracja na 'wylew' pozwala na minimalizację strat cieczy, co jest niezbędne w przypadku drobnych reagentów o wysokich kosztach.

Pytanie 36

Ile gramów 80% kwasu mrówkowego trzeba zważyć, aby uzyskać 200 g 20% roztworu tego kwasu?

A. 20g
B. 200g
C. 80g
D. 50g
Aby obliczyć, ile gramów 80% kwasu mrówkowego należy użyć do przygotowania 200 g 20% roztworu, stosujemy zasadę zachowania masy oraz obliczenia dotyczące stężenia. Zacznijmy od ustalenia, ile czystego kwasu mrówkowego potrzebujemy w roztworze końcowym. 20% roztwór o masie 200 g zawiera 40 g czystego kwasu mrówkowego (20% z 200 g = 0,2 * 200 g). Teraz musimy ustalić, ile gramów 80% roztworu potrzeba, aby uzyskać te 40 g czystego kwasu. W 80% roztworze znajduje się 0,8 g czystego kwasu w 1 g roztworu. Dlatego, aby uzyskać 40 g czystego kwasu, musimy odważyć 50 g 80% roztworu (40 g / 0,8 = 50 g). To podejście jest zgodne z praktycznymi zasadami przygotowywania roztworów chemicznych, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla uzyskania pożądanych stężeń. Takie umiejętności są niezbędne w chemii analitycznej oraz w laboratoriach, gdzie dokładność ma znaczenie dla wyników eksperymentów i analiz.

Pytanie 37

Podstawowy zestaw do filtracji, oprócz statywu i sączka, obejmuje

A. lejka, 2 kolb stożkowych, bagietki
B. lejka, zlewki, 2 bagietek
C. lejka, 2 zlewki, bagietki
D. lejka, kolby stożkowej, zlewki
Odpowiedź 'z lejka, 2 zlewek, bagietki' jest prawidłowa, ponieważ podstawowy zestaw do sączenia rzeczywiście obejmuje te elementy. Lejek jest niezbędny do precyzyjnego kierowania cieczy do naczynia, co zapobiega rozlaniu i zapewnia czystość eksperymentu. Zlewki są kluczowe, gdyż jedna jest używana do przechwytywania cieczy podczas sączenia, a druga do gromadzenia płynów, które mogą być użyte w dalszym etapie analizy. Bagietki, znane również jako pipety, są używane do precyzyjnego przenoszenia niewielkich objętości substancji, co jest niezwykle ważne w laboratoriach chemicznych i biologicznych. Poprawne wykorzystanie tego zestawu zapewnia zgodność z dobrymi praktykami laboratoryjnymi, a także ułatwia zrozumienie procesów chemicznych i biologicznych. Przykładem może być ich zastosowanie w filtracji, gdzie odpady są usuwane, a czysta ciecz zbierana do zlewki, co jest kluczowe w wielu procedurach analitycznych.

Pytanie 38

Losowo należy pobierać próbki z opakowań

A. z kilku punktów w obrębie opakowania
B. z dolnej części opakowania
C. z krawędzi opakowania
D. z górnej części opakowania
Odpowiedź "z kilku miejsc przekroju opakowania" jest poprawna, ponieważ losowe pobieranie próbek z różnych miejsc w opakowaniu zapewnia reprezentatywność próbki. Jest to kluczowe w wielu dziedzinach, takich jak analiza jakościowa, zapewnienie bezpieczeństwa produktów oraz kontrola procesów technologicznych. W praktyce oznacza to, że próbki należy pobierać z różnych warstw i lokalizacji w obrębie opakowania, aby zminimalizować ryzyko błędnych wniosków wynikających z niejednorodności składu. W odniesieniu do standardów takich jak ISO 2859-1, który określa metody pobierania próbek dla kontroli jakości, ważne jest, aby każda próbka była reprezentatywna dla całej partii. Takie podejście zwiększa wiarygodność wyników analiz laboratoryjnych i umożliwia dostarczenie rzetelnych informacji na temat jakości produktu. Przykładowo, w przemyśle spożywczym, pobieranie próbek z różnych miejsc opakowania pozwala na identyfikację ewentualnych zanieczyszczeń lub niezgodności jakościowych, co jest fundamentem dla zapewnienia bezpieczeństwa konsumentów.

Pytanie 39

Urządzeniem pomiarowym nie jest

A. konduktometr
B. pehametr
C. eksykator
D. termometr
Eksykator jest urządzeniem, które nie służy do pomiarów, lecz do przechowywania substancji w warunkach obniżonego ciśnienia atmosferycznego lub w atmosferze kontrolowanej. Używany jest w laboratoriach chemicznych do zabezpieczania materiałów wrażliwych na wilgoć, powietrze lub inne czynniki atmosferyczne. Na przykład, eksykator może być stosowany do przechowywania substancji higroskopijnych, takich jak sól kuchenną, aby zapobiec ich nawilżeniu i degradacji. W praktyce, eksykatory często zawierają substancje osuszające, które pomagają utrzymać odpowiednie warunki w ich wnętrzu. W odróżnieniu od konduktometru, pH-metra i termometru, które są zaprojektowane do wykonywania precyzyjnych pomiarów fizykochemicznych, eksykator pełni jedynie funkcję przechowalniczą, co czyni go przyrządem niepomiarowym według standardów metrologicznych.

Pytanie 40

Aby uzyskać Cr2O3, dichromian(VI) amonu został poddany rozkładowi. Po rozpoczęciu, egzotermiczna reakcja rozkładu przebiega samorzutnie.
(NH4)2Cr2O7 → Cr2O3 + 4 H2O + N2 Jak oceniasz zakończenie tej reakcji?

A. W otrzymanym zielonym proszku Cr2O3 nie powinny być widoczne pomarańczowe kryształy substratu
B. Ocena nie jest potrzebna, ponieważ wytworzone produkty są w stanie gazowym w temperaturze reakcji
C. Woda, po dodaniu szczypty uzyskanego preparatu, nie zabarwi się na pomarańczowo niewykorzystanym dichromianem (VI)
D. Ocena nie jest potrzebna, ponieważ tego typu reakcja zawsze zachodzi do końca
Odpowiedź wskazująca, że woda po wrzuceniu szczypty otrzymanego preparatu nie będzie się barwić na pomarańczowo nieprzereagowanym dichromianem (VI) jest prawidłowa, ponieważ świadczy o tym, że reakcja rozkładu dichromianu (VI) amonu zakończyła się pomyślnie. Po zakończonej reakcji, w której powstaje Cr2O3, nie powinny pozostać żadne resztki surowców ani pośrednich produktów, co potwierdza brak doboru barwy wody. Praktycznie, takie podejście można zastosować w laboratoriach analitycznych, gdzie kontrola końca reakcji jest kluczowa dla uzyskania czystych produktów. Przy badaniach jakościowych, wykorzystanie takiego testu barwnego jest standardową procedurą, aby zweryfikować obecność niepożądanych substancji. Tego typu reakcje są typowe w chemii nieorganicznej i pomogą w zrozumieniu zachowań związków chromu, a także ich zastosowań w różnych dziedzinach, takich jak przemysł chemiczny czy materiałowy.