Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 17 maja 2025 23:18
  • Data zakończenia: 17 maja 2025 23:36

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na fotografii ukazana jest pamięć o 168 stykach

Ilustracja do pytania
A. SIPP
B. SDRAM
C. RIMM
D. SIMM
SDRAM czyli Synchronous Dynamic Random Access Memory to typ pamięci RAM, który jest zsynchronizowany z zegarem systemowym co pozwala na bardziej efektywną i szybszą komunikację z procesorem. Pamięć SDRAM jest powszechnie stosowana w komputerach osobistych od końca lat 90-tych ze względu na swoje zalety w zakresie wydajności. Typowo SDRAM jest podzielona na wiersze i kolumny co umożliwia jednoczesny dostęp do wielu miejsc w pamięci co znacznie przyspiesza procesy odczytu i zapisu danych. 168-stykowe moduły SDRAM są zazwyczaj używane w standardowych komputerach typu PC. Moduły te oferują przepustowość wystarczającą do obsługi większości aplikacji biurowych i multimedialnych z tamtych lat. Zgodność ze standardami SDRAM jest również kluczowa ponieważ zapewnia współdziałanie z różnymi platformami sprzętowymi. Warto również zauważyć że pamięci SDRAM były kluczowym elementem w przejściu na szybsze technologie takie jak DDR pamięci RAM co z kolei wpłynęło na ogólną poprawę wydajności komputerów.

Pytanie 2

Jakie urządzenie sieciowe powinno zastąpić koncentrator, aby podzielić sieć LAN na cztery odrębne domeny kolizji?

A. Regeneratorem
B. Wszystkie
C. Switch'em
D. Routerem
Wybierając most, regenerator czy przełącznik, można napotkać fundamentalne nieporozumienia dotyczące funkcji tych urządzeń w kontekście segmentacji sieci. Mosty działają na poziomie warstwy drugiej modelu OSI i służą do łączenia dwóch lub więcej segmentów LAN, co pozwala na ich współpracę, ale nie rozdziela domen kolizji. Przełączniki, choć bardziej zaawansowane od mostów, działają na tym samym poziomie i również nie oddzielają domen kolizji, lecz jedynie minimalizują ich występowanie poprzez stworzenie dedykowanych kanałów komunikacji dla poszczególnych urządzeń w obrębie tej samej sieci. Regeneratory z kolei są używane do wzmocnienia sygnału w sieciach, co nie ma nic wspólnego z zarządzaniem domenami kolizji. Użytkownicy często mylą funkcje tych urządzeń, zakładając, że mogą one efektywnie podzielić sieć na mniejsze jednostki. Prawidłowe zrozumienie różnic między tymi technologiami jest kluczowe dla prawidłowego projektowania i zarządzania sieciami komputerowymi. Rutery, w przeciwieństwie do tych urządzeń, operują na wyższym poziomie i są w stanie nie tylko podzielić sieć na różne domeny kolizji, ale także zarządzać ruchem między różnymi sieciami, co czyni je niezbędnym narzędziem w architekturze nowoczesnych sieci.

Pytanie 3

Aby zapewnić komputerowi otrzymanie konkretnego adresu IP od serwera DHCP, należy na serwerze ustalić

A. dzierżawę adresu IP.
B. pulę adresów IP.
C. zarezerwowanie adresu IP urządzenia.
D. wykluczenie adresu IP urządzenia.
Wykluczenie adresu IP komputera oznacza, że adres ten nie będzie przydzielany przez serwer DHCP innym urządzeniom, co nie gwarantuje jednak, że dany komputer otrzyma go w przyszłości. Z kolei dzierżawa adresu IP to proces, w którym komputer otrzymuje adres IP na określony czas, co oznacza, że po upływie tego czasu adres może być przydzielony innemu urządzeniu. To podejście jest typowe dla dynamicznych przydziałów adresów IP, gdzie nie ma gwarancji, że dany komputer zawsze będzie miał ten sam adres. Pula adresów IP odnosi się do zakresu adresów, które serwer DHCP może przydzielać urządzeniom w sieci, ale nie zapewnia to, że konkretne urządzenie uzyska konkretny adres IP. Dlatego podejścia te mogą prowadzić do sytuacji, w której urządzenie zmienia adres IP, co jest problematyczne w przypadku serwisów wymagających stałej dostępności pod ustalonym adresem. Ostatecznie, wybór metody zastrzegania adresu IP jest zgodny z najlepszymi praktykami zarządzania sieciami, które zalecają przypisywanie statycznych adresów IP dla krytycznych urządzeń, aby zminimalizować problemy z dostępnością oraz poprawić zarządzanie siecią.

Pytanie 4

Jakie narzędzie wykorzystuje się do połączenia pigtaila z włóknami światłowodowymi?

A. przedłużacz kategorii 5e z zestawem pasywnych kabli obsługujących prędkość 100 Mb/s
B. narzędzie do zaciskania wtyków RJ45, posiadające odpowiednie gniazdo dla kabla
C. stacja lutownicza, która stosuje mikroprocesor do kontrolowania temperatury
D. spawarka światłowodowa, łącząca włókna przy użyciu łuku elektrycznego
Wybór narzędzi do łączenia pigtaili z włóknami światłowodowymi wymaga zrozumienia ich specyfiki i technologii, które są odpowiednie dla danego zastosowania. Przedłużacz kategorii 5e z zestawem pasywnych kabli o prędkości połączenia 100 Mb/s jest narzędziem stosowanym w sieciach Ethernet, które służy do przesyłania sygnałów elektrycznych, a nie optycznych. Dlatego nie nadaje się do łączenia włókien światłowodowych. Narzędzie zaciskowe do wtyków RJ45 również nie ma zastosowania w kontekście światłowodów, ponieważ RJ45 to złącze stosowane dla kabli miedzianych, a nie optycznych. Stacja lutownicza, mimo że jest użyteczna w elektronice, nie jest właściwym narzędziem do łączenia włókien optycznych, ponieważ lutowanie nie jest procesem, który zapewnia odpowiednią jakość połączenia w systemach światłowodowych. W rzeczywistości, lutowanie mogłoby prowadzić do uszkodzenia włókien i znacznych strat sygnału. Zrozumienie, jakie narzędzia są odpowiednie dla konkretnej technologii, jest kluczowe dla efektywności i niezawodności systemów komunikacyjnych. Dlatego w przypadku łączenia włókien światłowodowych należy zawsze stosować odpowiednie narzędzia, jak spawarki światłowodowe, które gwarantują wysoką jakość połączeń.

Pytanie 5

Switch sieciowy w standardzie Fast Ethernet pozwala na przesył danych z maksymalną prędkością

A. 10 Mbps
B. 100 MB/s
C. 10 MB/s
D. 100 Mbps
No to tak, odpowiedź '100 Mbps' jest jak najbardziej na miejscu. Fast Ethernet, czyli ten standard sieciowy, pozwala na przesył danych z prędkością do 100 megabitów na sekundę. Wprowadzono go jako następcę 10Base-T i jest częścią tej całej rodziny Ethernet 802.3. W praktyce, to rozwiązanie jest mega popularne w sieciach lokalnych, bo naprawdę poprawia wydajność w porównaniu do starszych standardów. Przykładowo, w biurach, gdzie podłącza się różne urządzenia jak komputery czy drukarki, Fast Ethernet sprawia, że wszystko działa sprawnie i szybko. Co ważne, migracja do 100 Mbps nie wymagała dużych wydatków na nowy sprzęt, bo może się dobrze zgrywało ze starą infrastrukturą 10 Mbps. Ostatecznie, Fast Ethernet to był fundament dla innych technologii, jak Gigabit Ethernet, które zaś wprowadziły jeszcze szybsze prędkości, ale zasada działania pozostała podobna.

Pytanie 6

Sieć komputerowa, która obejmuje wyłącznie urządzenia jednej organizacji, w której dostępne są usługi realizowane przez serwery w sieci LAN, takie jak strony WWW czy poczta elektroniczna to

A. Infranet
B. Intranet
C. Internet
D. Extranet
Internet to globalna sieć komputerowa, która łączy miliony urządzeń na całym świecie, umożliwiając wymianę informacji między użytkownikami z różnych lokalizacji. W związku z tym nie jest ograniczona do jednej organizacji, co sprawia, że nie może być traktowana jako wewnętrzna sieć. Z tego powodu wiele osób błędnie interpretuje Internet jako intranet, myląc ich funkcje i przeznaczenie. Extranet to z kolei sieć, która pozwala na dostęp do określonych zasobów organizacji wybranym podmiotom zewnętrznym, takim jak partnerzy czy klienci, co również odbiega od definicji intranetu. Infranet jest terminem, który nie jest powszechnie stosowany w kontekście sieci komputerowych, co może prowadzić do wątpliwości co do jego znaczenia. W obliczu tych nieporozumień, kluczowe jest zrozumienie, że intranet jest skoncentrowany na wewnętrznej komunikacji i zarządzaniu danymi w organizacji, podczas gdy Internet i extranet rozszerzają ten zasięg na zewnętrzne źródła. Typowymi błędami myślowymi w tym kontekście są generalizowanie pojęcia sieci komputerowej na podstawie jej globalnych funkcji, co prowadzi do zamieszania w zakresie definicji i zastosowań. Znajomość różnic między tymi typami sieci jest kluczowa w zarządzaniu informacjami oraz w zabezpieczaniu danych w organizacji.

Pytanie 7

Jakie urządzenie powinno być użyte do podłączenia komputerów, aby mogły działać w różnych domenach rozgłoszeniowych?

A. Koncentratora
B. Regeneratora
C. Mostu
D. Rutera
Ruter jest urządzeniem, które umożliwia komunikację między różnymi domenami rozgłoszeniowymi, co czyni go idealnym wyborem w przypadku potrzeby podłączenia komputerów pracujących w różnych segmentach sieci. Ruter działa na warstwie trzeciej modelu OSI, co oznacza, że operuje na adresach IP, a nie na adresach MAC, jak ma to miejsce w przypadku koncentratorów czy mostów. Dzięki temu ruter może efektywnie kierować ruch sieciowy pomiędzy różnymi sieciami, a także może realizować funkcje filtrowania, NAT (Network Address Translation) oraz zapory sieciowej. Przykładem zastosowania rutera może być sytuacja w firmie, gdzie różne działy (np. dział sprzedaży i dział IT) korzystają z odrębnych podsieci, a ruter zapewnia komunikację pomiędzy nimi, jednocześnie zapewniając bezpieczeństwo i kontrolę nad przesyłanymi danymi. W codziennej praktyce ruter pełni kluczową rolę w zarządzaniu ruchem oraz optymalizacji wydajności sieci, co jest zgodne z aktualnymi standardami w zakresie projektowania i zarządzania sieciami komputerowymi.

Pytanie 8

Sprzęt, który umożliwia konfigurację sieci VLAN, to

A. regenerator (repeater)
B. switch
C. most przezroczysty (transparent bridge)
D. firewall
Switch, czyli przełącznik sieciowy, jest kluczowym urządzeniem w architekturze sieci VLAN (Virtual Local Area Network). Pozwala on na tworzenie wielu logicznych sieci w ramach jednej fizycznej infrastruktury, co jest szczególnie przydatne w dużych organizacjach. Dzięki VLAN można segmentować ruch sieciowy, co zwiększa bezpieczeństwo i efektywność zarządzania siecią. Przykładem może być sytuacja, w której dział finansowy i dział IT w tej samej firmie funkcjonują w odrębnych VLAN-ach, co ogranicza dostęp do poufnych danych. Standardy takie jak IEEE 802.1Q definiują, w jaki sposób przełączniki mogą tagować ramki Ethernet, aby rozróżniać różne VLAN-y. Dobrą praktyką jest stosowanie VLAN-ów do izolowania ruchu, co nie tylko poprawia bezpieczeństwo, ale także zwiększa wydajność sieci poprzez ograniczenie rozprzestrzeniania się broadcastów. Warto również zwrócić uwagę na możliwość zarządzania VLAN-ami przez protokoły takie jak VTP (VLAN Trunking Protocol), co upraszcza administrację siecią w skomplikowanych środowiskach.

Pytanie 9

Elementem płyty głównej, który odpowiada za wymianę informacji pomiędzy procesorem a innymi komponentami płyty, jest

A. chipset
B. pamięć BIOS
C. system chłodzenia
D. pamięć RAM
Chipset to kluczowy element płyty głównej odpowiedzialny za zarządzanie komunikacją pomiędzy procesorem a innymi komponentami systemu, takimi jak pamięć RAM, karty rozszerzeń oraz urządzenia peryferyjne. Działa jako mostek, który umożliwia transfer danych oraz kontrolę dostępu do zasobów. Współczesne chipsety są podzielone na dwa główne segmenty: północny mostek (Northbridge), który odpowiada za komunikację z procesorem oraz pamięcią, oraz południowy mostek (Southbridge), który zarządza interfejsami peryferyjnymi, takimi jak SATA, USB i PCI. Zrozumienie roli chipsetu jest istotne dla projektowania systemów komputerowych, ponieważ jego wydajność i możliwości mogą znacząco wpłynąć na ogólną efektywność komputera. Dla przykładu, wybierając chipset o wyższej wydajności, użytkownik może poprawić parametry pracy systemu, co jest kluczowe w zastosowaniach wymagających dużej mocy obliczeniowej, takich jak renderowanie grafiki czy obróbka wideo. W praktyce, chipsety są również projektowane z uwzględnieniem standardów branżowych, takich jak PCI Express, co zapewnia ich kompatybilność z najnowszymi technologiami.

Pytanie 10

Aby zweryfikować schemat połączeń kabla UTP Cat 5e w sieci lokalnej, należy zastosować

A. analizatora protokołów sieciowych
B. testera okablowania
C. reflektometr kablowy TDR
D. reflektometr optyczny OTDR
Tester okablowania jest narzędziem służącym do sprawdzania poprawności podłączeń kabli sieciowych, w tym kabla UTP Cat 5e. Działa na zasadzie pomiaru ciągłości przewodów, identyfikacji biegunów oraz pomiaru parametrów elektrycznych, takich jak tłumienie, impedancja czy przesłuch. Dzięki testerom okablowania można szybko zlokalizować błędy, takie jak zwarcia, przerwy w przewodach czy niewłaściwe podłączenia. W praktyce, zastosowanie testera okablowania jest kluczowe podczas instalacji i konserwacji sieci komputerowych, zapewniając, że każde połączenie jest zgodne z normami, takimi jak TIA/EIA-568. W przypadku sieci UTP Cat 5e, tester pozwala również na weryfikację, czy kabel spełnia wymagania dotyczące przepustowości do 1 Gbps oraz zapewnia odpowiednią jakość sygnału na odległości do 100 metrów. Dobrą praktyką jest przeprowadzanie testów po zakończeniu instalacji oraz okresowe sprawdzanie stanu kabli, co umożliwia wczesne wykrywanie potencjalnych problemów.

Pytanie 11

/dev/sda: Czas odczytu z pamięci podręcznej: 18100 MB w 2.00 sekundy = 9056.95 MB/sek. Przedstawiony wynik wykonania polecenia systemu Linux jest używany do diagnostyki

A. karty sieciowej
B. pamięci operacyjnej
C. układu graficznego
D. dysku twardego
Odpowiedź dotycząca diagnostyki dysku twardego jest prawidłowa, ponieważ wynik polecenia '/dev/sda: Timing cached reads' odnosi się do wydajności operacji odczytu na poziomie systemu plików. Wartość 18100 MB w 2 sekundy, co odpowiada 9056.95 MB/s, jest wskaźnikiem szybkości, z jaką system operacyjny może odczytać dane z pamięci podręcznej dysku twardego. Tego typu informacje są istotne dla administratorów systemów, którzy chcą monitorować i optymalizować wydajność pamięci masowej. W kontekście praktycznym, można wykorzystać tę diagnozę do identyfikacji problemów z wolnym dostępem do danych, co może wpływać na ogólną wydajność serwerów czy komputerów. Warto również zauważyć, że regularne monitorowanie tych parametrów oraz ich analiza w kontekście obciążenia systemu są zgodne z dobrą praktyką w zarządzaniu infrastrukturą IT.

Pytanie 12

Wynikiem wykonania komendy arp -a 192.168.1.1 w systemie MS Windows jest pokazanie

A. sprawdzenia połączenia z komputerem o wskazanym IP
B. spisu aktywnych połączeń sieciowych
C. ustawień protokołu TCP/IP interfejsu sieciowego
D. adresu MAC urządzenia o wskazanym IP
Wybór odpowiedzi związanych z ustawieniami TCP/IP interfejsu sieciowego oraz listą aktywnych połączeń sieciowych oparty jest na błędnym zrozumieniu działania polecenia arp. Nie odnoszą się one bezpośrednio do funkcji tej komendy. Ustawienia TCP/IP są konfigurowane na poziomie systemu operacyjnego i nie są wyświetlane przez polecenie arp, które skupia się na mapowaniu adresów IP do MAC. Ponadto, arp -a nie prezentuje listy aktywnych połączeń, ponieważ nie jest to jego funkcjonalność; to narzędzie służy do analizy stanu tabeli ARP. Kontrola połączenia z komputerem o podanym IP jest także mylną interpretacją tej komendy. Minimalna funkcjonalność arp ogranicza się do identyfikacji adresów MAC w lokalnej sieci, a nie do testowania połączeń. Typowym błędem jest mylenie polecenia arp z innymi narzędziami diagnostycznymi, takimi jak ping, które są zaprojektowane do oceny dostępności urządzeń w sieci. Zrozumienie różnicy między tymi narzędziami jest kluczowe dla efektywnej diagnostyki sieci i może prowadzić do niepoprawnych wniosków, jeśli nie zostanie prawidłowo uwzględnione w procesie rozwiązywania problemów.

Pytanie 13

Awaria klawiatury może być spowodowana przez uszkodzenie

Ilustracja do pytania
A. kontrolera DMA
B. matrycy CCD
C. czujnika elektromagnetycznego
D. przełącznika membranowego
Kontroler DMA, czyli Direct Memory Access, jest komponentem używanym do bezpośredniego przesyłania danych między urządzeniami peryferyjnymi a pamięcią bez angażowania procesora. Choć ważny w kontekście ogólnej wydajności systemu, nie jest bezpośrednio odpowiedzialny za działanie klawiatury. Mylenie roli kontrolera DMA z elementami klawiatury może wynikać z błędnego zrozumienia architektury sprzętowej komputera. Czujnik elektromagnetyczny nie ma związku z działaniem klawiatury komputerowej, gdyż jest on powszechnie stosowany w systemach do wykrywania pola magnetycznego, co nie ma zastosowania w standardowych klawiaturach. Matryca CCD, czyli Charge-Coupled Device, to technologia stosowana w kamerach i aparatach do przetwarzania obrazów, a nie w urządzeniach wejściowych takich jak klawiatury. Błędne przypisanie funkcji matrycy CCD do klawiatury może wynikać z nieznajomości technologii używanych w różnych urządzeniach. Ważne jest, aby zrozumieć funkcje i zastosowanie poszczególnych komponentów w systemie komputerowym, co pozwala na lepszą diagnozę i serwis urządzeń. Rozróżnienie, które elementy są kluczowe w różnych kontekstach, jest fundamentalne w profesjonalnym serwisowaniu sprzętu.

Pytanie 14

Jakie polecenie w systemach operacyjnych Windows służy do prezentacji konfiguracji interfejsów sieciowych?

A. ipconfig
B. ifconfig
C. hold
D. tracert
Odpowiedź 'ipconfig' jest poprawna, ponieważ jest to narzędzie w systemach operacyjnych Windows, które służy do wyświetlania i konfiguracji ustawień interfejsów sieciowych. Umożliwia administratorom i użytkownikom łatwe sprawdzenie adresów IP, maski podsieci oraz bramy domyślnej dla wszystkich aktywnych interfejsów sieciowych. Przykładowo, użycie polecenia 'ipconfig /all' dostarcza szczegółowych informacji o każdym interfejsie, w tym o adresach MAC, statusie połączenia oraz konfiguracji DHCP. Jest to standardowe narzędzie w administracji sieciami, które często jest wykorzystywane w praktyce do diagnozowania problemów z połączeniami sieciowymi. Znajomość tego narzędzia jest kluczowa dla każdego, kto zajmuje się zarządzaniem sieciami komputerowymi, zarówno w środowisku lokalnym, jak i w większych infrastrukturach. Warto również dodać, że 'ipconfig' współpracuje z innymi poleceniami, takimi jak 'ping' lub 'tracert', co zwiększa jego użyteczność w diagnostyce sieci.

Pytanie 15

Zewnętrzny dysk 3,5 cala o pojemności 5 TB, przeznaczony do archiwizacji lub tworzenia kopii zapasowych, dysponuje obudową z czterema różnymi interfejsami komunikacyjnymi. Który z tych interfejsów powinno się użyć do podłączenia do komputera, aby uzyskać najwyższą prędkość transferu?

A. eSATA 6G
B. WiFi 802.11n
C. FireWire80
D. USB 3.1 gen 2
Wybór eSATA 6G, WiFi 802.11n lub FireWire80 jako interfejsu do podłączenia dysku zewnętrznego nie jest optymalnym rozwiązaniem, gdyż żaden z tych interfejsów nie oferuje tak wysokich prędkości przesyłu danych jak USB 3.1 gen 2. eSATA 6G może osiągnąć prędkości do 6 Gbps, co jest zbliżone, ale nadal niższe niż maksymalne możliwości USB 3.1 gen 2. Dodatkowo, eSATA nie obsługuje zasilania, co może wymagać dodatkowego zasilania dla dysku zewnętrznego, co jest niepraktyczne w wielu sytuacjach. WiFi 802.11n oferuje prędkości do 600 Mbps, ale z racji na zmienne warunki sygnału, opóźnienia i zakłócenia, rzeczywista wydajność przesyłu danych jest znacznie niższa. WiFi nie jest więc odpowiednie do transferu dużych plików, gdzie stabilność i szybkość są kluczowe. FireWire 80, mimo że był szybszy od wcześniejszych standardów FireWire, nie osiąga prędkości USB 3.1 gen 2, co czyni go przestarzałym wyborem w kontekście nowoczesnych zastosowań. Często pojawiającym się błędem w myśleniu jest przekonanie, że starsze standardy mogą wciąż konkurować z nowymi technologiami; rzeczywistość technologiczna zmienia się z dnia na dzień, a zatem korzystanie z przestarzałych interfejsów może prowadzić do znaczących opóźnień i utraty danych.

Pytanie 16

Kiedy w komórce arkusza MS Excel zamiast liczb wyświetlają się znaki ########, to przede wszystkim należy zweryfikować, czy

A. wprowadzona formuła zawiera błąd
B. wystąpił błąd podczas obliczeń
C. zostały wprowadzone znaki tekstowe zamiast liczb
D. liczba nie mieści się w komórce i nie można jej poprawnie zobrazować
Wybór odpowiedzi, że wprowadzona formuła zawiera błąd, może wynikać z nieporozumienia dotyczącego interpretacji pojawiających się znaków ########. Znak ten nie wskazuje na problemy z formułą, lecz na to, że wartość liczby przekracza dostępny obszar w komórce. Użytkownicy często myślą, że błędy w obliczeniach są powodem, dla którego nie widzą wartości w arkuszu, co prowadzi do mylnego wniosku o błędnych formułach. To podejście jest błędne, ponieważ Excel nie wyświetli błędnej formuły w formacie widocznym jako ########; zamiast tego, wyświetli komunikat o błędzie, taki jak #DIV/0! lub #VALUE!. Ponadto, podejście, w którym uważa się za problem wprowadzenie znaków tekstowych zamiast liczb, również jest mylące. Choć można również spotkać się z sytuacją, w której tekst zostanie wprowadzony w miejsce liczby, to również wtedy Excel zazwyczaj wyświetli komunikat o błędzie. Należy więc zrozumieć, że znaki ######## mają konkretne znaczenie, które odnosi się do problemów z wyświetlaniem danych, a nie z błędami w formułach czy typach danych. Kluczową umiejętnością w pracy z arkuszami kalkulacyjnymi jest umiejętność rozróżniania tych sytuacji i podejmowania odpowiednich działań w zależności od problemu. Warto zatem zawsze analizować kontekst, aby lepiej poradzić sobie z napotykanymi trudnościami w pracy z Excel.

Pytanie 17

Jak nazywa się jednostka danych PDU w warstwie sieciowej modelu ISO/OSI?

A. bit
B. segment
C. pakiet
D. ramka
Odpowiedź "pakiet" jest prawidłowa, ponieważ w warstwie sieciowej modelu ISO/OSI jednostką danych PDU (Protocol Data Unit) jest właśnie pakiet. Warstwa sieciowa, odpowiadająca za trasowanie i przekazywanie danych pomiędzy różnymi sieciami, wysyła i odbiera pakiety. Przykładem protokołu działającego na tej warstwie jest IP (Internet Protocol), który fragmentuje dane na pakiety, dodając odpowiednie nagłówki, co umożliwia ich prawidłowe przesyłanie przez różne sieci. W praktyce, pakiety umożliwiają efektywne zarządzanie ruchem sieciowym, eliminując potrzebę przesyłania dużych bloków danych naraz, co zwiększa wydajność i niezawodność komunikacji. Zrozumienie funkcji pakietów w warstwie sieciowej jest kluczowe dla projektowania i zarządzania sieciami komputerowymi, w tym dla implementacji rozwiązań opartych na protokołach TCP/IP oraz dla rozwiązywania problemów związanych z przesyłem danych w sieciach lokalnych i WAN.

Pytanie 18

Użytkownik laptopa z systemem Windows 7 widzi dostępne sieci Wi-Fi przedstawione na rysunku. Przy konfiguracji połączenia z siecią Z1 musi określić dla tej sieci

Ilustracja do pytania
A. typ zabezpieczeń
B. nazwę SSID
C. klucz zabezpieczeń
D. adres MAC
Podanie adresu MAC nie jest częścią standardowej konfiguracji połączenia z siecią bezprzewodową dla użytkownika końcowego. Adres MAC jest unikalnym identyfikatorem sprzętowym karty sieciowej i nie jest wymogiem podczas łączenia się do sieci Wi-Fi. Adres ten może być używany przez administratorów do filtrowania dostępu na poziomie routera, jednak użytkownik nie podaje go podczas konfiguracji. Nazwa SSID jest identyfikatorem sieci, który pozwala użytkownikowi wybrać odpowiednią sieć z listy dostępnych. Sama nazwa nie jest zabezpieczeniem, a jedynie oznaczeniem sieci. Znajomość SSID jest konieczna, ale nie wystarczająca do uzyskania dostępu do sieci chronionej hasłem. Typ zabezpieczeń, jak WPA2, określa metodę szyfrowania i ochrony danych w sieci, ale użytkownik nie musi go podawać podczas łączenia się z siecią. Jest to ustawienie konfiguracyjne definiowane przez administratora sieci i z reguły jest automatycznie wykrywane przez urządzenie podczas próby połączenia. Właściwe zrozumienie tych pojęć pozwala na prawidłowe i bezpieczne korzystanie z sieci bezprzewodowych, unikając typowych błędów związanych z bezpieczeństwem i konfiguracją sieci.

Pytanie 19

Aby móc zakładać konta użytkowników, komputerów oraz innych obiektów i centralnie gromadzić o nich informacje, należy zainstalować rolę na serwerze Windows

A. usługi certyfikatów Active Directory
B. usługi domenowe Active Directory
C. usługi Domain Name System w usłudze Active Directory
D. Active Directory Federation Service
Active Directory Federation Service (AD FS) jest technologią, która umożliwia federacyjne uwierzytelnianie, co oznacza, że pozwala na logowanie się użytkowników do różnych aplikacji z wykorzystaniem jednego zestawu poświadczeń. Choć AD FS jest potężnym narzędziem w kontekście współpracy z innymi organizacjami i aplikacjami chmurowymi, nie służy do centralnego zarządzania kontami użytkowników i komputerów w sieci, co czyni ją nieodpowiednią rolą do realizacji opisanego celu. Usługi certyfikatów Active Directory są z kolei używane do zarządzania certyfikatami cyfrowymi w sieci, co jest istotne w kontekście bezpieczeństwa, ale nie mają one bezpośredniego zastosowania w tworzeniu kont użytkowników. Usługi DNS w Active Directory służą do rozwiązywania nazw w sieci i są niezbędne do prawidłowego funkcjonowania AD, ale także nie obejmują one zarządzania obiektami. Wiele osób może mylnie interpretować funkcje tych usług jako wystarczające do zarządzania obiektami w domenie, jednak każda z nich ma swoje specyficzne zastosowanie i nie zastępuje roli usług domenowych Active Directory. Zrozumienie tej różnicy jest kluczowe dla efektywnego zarządzania infrastrukturą IT oraz dla zapewnienia odpowiednich poziomów bezpieczeństwa i dostępu w organizacjach.

Pytanie 20

Do czego służy narzędzie 'ping' w sieciach komputerowych?

A. Zarządzania przepustowością sieci
B. Tworzenia kopii zapasowych danych
C. Sprawdzania dostępności hosta w sieci
D. Przesyłania plików między komputerami
Narzędzie 'ping' jest podstawowym, lecz niezwykle użytecznym narzędziem w administracji sieci komputerowych. Służy do sprawdzania dostępności hosta w sieci oraz mierzenia czasu, jaki zajmuje przesłanie pakietów danych do tego hosta i z powrotem. Działa na zasadzie wysyłania pakietów ICMP (Internet Control Message Protocol) echo request do wybranego adresu IP i oczekiwania na echo reply. Dzięki temu można zweryfikować, czy host jest osiągalny i w jakim czasie. Jest to szczególnie przydatne przy diagnozowaniu problemów z siecią, takich jak brak połączenia czy opóźnienia w transmisji danych. Umożliwia także identyfikację problemów związanych z routingiem. W praktyce, administratorzy sieci używają 'ping' do szybkiego sprawdzenia statusu urządzeń sieciowych oraz serwerów, co jest zgodne z dobrymi praktykami i standardami branżowymi. Narzędzie to jest dostępne w większości systemów operacyjnych i stanowi nieocenioną pomoc w codziennej pracy z sieciami.

Pytanie 21

W nagłówku ramki standardu IEEE 802.3, który należy do warstwy łącza danych, znajduje się

A. numer portu
B. adres MAC
C. parametr TTL
D. adres IPv4
W kontekście standardu IEEE 802.3, zrozumienie roli adresu MAC jest istotne, aby uniknąć powszechnych nieporozumień związanych z innymi elementami związanymi z sieciami komputerowymi. Adres IP, na przykład, jest używany na wyższej warstwie modelu OSI, czyli w warstwie sieciowej, a nie w warstwie łącza danych. Adres IP służy do lokalizowania urządzeń w szerszej sieci, takiej jak Internet, gdzie adresy MAC nie mają zastosowania poza lokalnym segmentem. Parametr TTL (Time To Live) odnosi się do liczby routerów, przez które pakiet może przejść, zanim zostanie odrzucony, co dotyczy głównie ruchu na warstwie sieciowej. Numer portu z kolei jest używany do identyfikacji konkretnych aplikacji lub usług w ramach protokołów transportowych, takich jak TCP czy UDP. Te elementy, choć istotne w kontekście komunikacji sieciowej, nie mają miejsca w nagłówku ramki IEEE 802.3. Typowym błędem myślowym jest mylenie różnych warstw modelu OSI oraz ich funkcji. Ważne jest, aby zapamiętać, że każda warstwa ma swoje unikalne zadania i używa specyficznych identyfikatorów, co pozwala na efektywne zarządzanie i routing danych w sieciach komputerowych.

Pytanie 22

Jak nazywa się proces dodawania do danych z warstwy aplikacji informacji powiązanych z protokołami funkcjonującymi na różnych poziomach modelu sieciowego?

A. Enkapsulacja
B. Fragmentacja
C. Dekodowanie
D. Multipleksacja
Segmentacja jest procesem, który polega na dzieleniu danych na mniejsze części, zwane segmentami, w celu ich efektywnego przesyłania przez sieć. Choć segmentacja jest ważnym elementem w warstwie transportowej, to nie obejmuje całego procesu dodawania informacji na różnych poziomach modelu sieciowego, co jest istotą enkapsulacji. Ponadto, dekodowanie odnosi się do procesu interpretacji przesyłanych danych przez odbiorcę, co jest odwrotnością enkapsulacji. W kontekście protokołów sieciowych, dekodowanie nie dodaje nowych informacji do danych, a jedynie je odczytuje. Multipleksacja z kolei to technika, która umożliwia przesyłanie wielu sygnałów przez ten sam kanał komunikacyjny, również nie jest związana z procesem dodawania informacji do danych. Typowym błędem myślowym jest mylenie tych pojęć z enkapsulacją, co prowadzi do nieporozumień dotyczących sposobu, w jaki dane są przygotowywane do przesyłu. Szczególnie w kontekście projektowania protokołów i systemów komunikacyjnych, ważne jest, aby zrozumieć rolę każdego z tych procesów oraz ich odpowiednie zastosowania i różnice. Właściwe zrozumienie ogólnych zasad ich działania jest kluczowe dla budowy wydajnych i bezpiecznych systemów sieciowych.

Pytanie 23

Na rysunkach technicznych dotyczących instalacji sieci komputerowej oraz dedykowanej instalacji elektrycznej, symbolem pokazanym na rysunku oznaczane jest gniazdo

Ilustracja do pytania
A. elektryczne bez styku ochronnego
B. komputerowe
C. telefoniczne
D. elektryczne ze stykiem ochronnym
Symbol na rysunku przedstawia gniazdo elektryczne ze stykiem ochronnym co jest zgodne z normami bezpieczeństwa obowiązującymi w instalacjach elektrycznych. Styk ochronny znany również jako uziemienie to dodatkowy przewód w gniazdku który ma na celu ochronę przed porażeniem elektrycznym. Jego obecność jest kluczowa w urządzeniach elektrycznych które mogą mieć części przewodzące dostępne dla użytkownika. W praktyce takie gniazda stosowane są powszechnie w gospodarstwach domowych i budynkach komercyjnych zapewniając dodatkowe zabezpieczenie przed przepięciami czy błędami w instalacji. Zgodnie z normą PN-IEC 60364 instalacje elektryczne powinny być projektowane i wykonane w sposób zapewniający ochronę podstawową i ochronę przy uszkodzeniu. Dodatkowo symbol ten jest powszechnie rozpoznawany w dokumentacji technicznej co ułatwia identyfikację typu gniazda w projektach i schematach instalacji.

Pytanie 24

Na diagramie okablowania strukturalnego przy jednym z komponentów znajduje się oznaczenie MDF. Z którym punktem dystrybucji jest powiązany ten komponent?

A. Głównym
B. Kampusowym
C. Budynkowym
D. Pośrednim
Wybór budynkowego punktu dystrybucyjnego jako odpowiedzi może wydawać się logiczny, jednak w rzeczywistości budynkowy punkt dystrybucyjny (IDF, czyli Intermediate Distribution Frame) jest podpunktem w hierarchii okablowania strukturalnego, który obsługuje konkretne piętra czy sekcje budynku. IDF jest wykorzystywany do połączenia MDF z użytkownikami końcowymi, co oznacza, że nie pełni roli głównego węzła, a raczej pomocniczego. W kontekście odpowiedzi związanej z punktem kampusowym, ten typ dystrybucji odnosi się do połączenia między różnymi budynkami w obrębie jednego kampusu, co również nie jest zgodne z definicją MDF. Odpowiedź dotycząca punktu pośredniego również nie jest adekwatna, ponieważ punkt pośredni (także znany jako IDF) służy do dalszego rozdzielania sygnałów ze MDF do poszczególnych użytkowników, a nie jako główny węzeł. Typowe błędy myślowe w tym kontekście polegają na myleniu roli poszczególnych punktów dystrybucyjnych oraz niewłaściwym przypisaniu ich funkcji w schemacie okablowania, co prowadzi do zrozumienia, że każdy z takich punktów ma swoje ściśle określone zadanie w infrastrukturze sieciowej. Właściwe zrozumienie hierarchii i funkcji MDF jest kluczowe dla budowy wydajnych i efektywnych sieci komunikacyjnych.

Pytanie 25

Jakie protokoły pełnią rolę w warstwie transportowej modelu ISO/OSI?

A. ICMP
B. SMTP
C. TCP
D. UDP
TCP (Transmission Control Protocol) jest protokołem połączeniowym warstwy transportowej w modelu ISO/OSI, który zapewnia niezawodne, uporządkowane i kontrolowane przesyłanie danych między urządzeniami w sieci. W odróżnieniu od protokołów bezpołączeniowych, takich jak UDP, TCP ustanawia sesję komunikacyjną przed rozpoczęciem transferu danych, co pozwala na monitorowanie i zarządzanie przesyłem informacji. TCP implementuje mechanizmy takie jak kontrola przepływu, retransmisja zagubionych pakietów oraz segregacja danych w odpowiedniej kolejności. Przykłady zastosowania TCP obejmują protokoły aplikacyjne, takie jak HTTP (używane w przeglądarkach internetowych) oraz FTP (używane do przesyłania plików). Zastosowanie TCP jest zgodne z dobrymi praktykami w zakresie komunikacji sieciowej, gdzie niezawodność i integralność danych są kluczowe. W kontekście standardów, TCP współpracuje z protokołem IP (Internet Protocol) w modelu TCP/IP, co jest fundamentem funkcjonowania większości współczesnych sieci komputerowych.

Pytanie 26

Jakie są wartości zakresu częstotliwości oraz maksymalnej prędkości przesyłu danych w standardzie 802.11g WiFi?

A. 5 GHz 300 Mbps
B. 2,4 GHz 54 Mbps
C. 5 GHz 54 Mbps
D. 2,4 GHz 300 Mbps
Wybór odpowiedzi, która wskazuje pasmo 5 GHz, jest błędny, ponieważ standard 802.11g nigdy nie działa w tym zakresie częstotliwości. Pasmo 5 GHz jest wykorzystywane przez inne standardy, takie jak 802.11a oraz 802.11n, które oferują wyższe prędkości transmisji, ale nie są zgodne z 802.11g. Dodatkowo, odpowiedzi sugerujące maksymalne prędkości 300 Mbps są mylące, ponieważ takich szybkości nie osiąga się w kontekście 802.11g. W rzeczywistości, maksymalna prędkość transmisji dla tego standardu to 54 Mbps, co jest w znacznym stopniu ograniczone przez warunki środowiskowe, takie jak zakłócenia radiowe oraz przeszkody w postaci ścian czy mebli. Często zdarza się, że użytkownicy mylą różne standardy Wi-Fi, co prowadzi do nieporozumień dotyczących ich wydajności oraz zastosowań. Warto również zauważyć, że standard 802.11g jest zgodny z 802.11b, co oznacza, że urządzenia obsługujące starszy standard mogą działać w tej samej sieci, ale z ograniczoną prędkością. Zrozumienie różnic między tymi standardami jest kluczowe dla efektywnego zarządzania sieciami bezprzewodowymi oraz optymalizacji ich wydajności w codziennym użytkowaniu.

Pytanie 27

Które z poniższych stwierdzeń na temat protokołu DHCP jest poprawne?

A. To jest protokół trasowania
B. To jest protokół dostępu do bazy danych
C. To jest protokół konfiguracji hosta
D. To jest protokół transferu plików
Protokół DHCP (Dynamic Host Configuration Protocol) jest kluczowym elementem w zarządzaniu sieciami komputerowymi, zyskującym na znaczeniu w środowiskach, gdzie urządzenia często dołączają i odłączają się od sieci. Jego podstawową funkcją jest automatyczna konfiguracja ustawień IP dla hostów, co eliminuje potrzebę ręcznego przypisywania adresów IP. Dzięki DHCP, administratorzy mogą zdefiniować pulę dostępnych adresów IP oraz inne parametry sieciowe, takie jak maska podsieci, brama domyślna czy serwery DNS. Przykładowo, w dużych firmach oraz środowiskach biurowych, DHCP pozwala na łatwe zarządzanie urządzeniami, co znacząco zwiększa efektywność i redukuje ryzyko błędów konfiguracyjnych. Protokół ten opiera się na standardach IETF, takich jak RFC 2131, co zapewnia zgodność i interoperacyjność w różnych systemach operacyjnych oraz sprzęcie. W praktyce, używając DHCP, organizacje mogą szybko dostosować się do zmieniających się wymagań sieciowych, co stanowi podstawę nowoczesnych rozwiązań IT.

Pytanie 28

Zrzut ekranu ilustruje wynik polecenia arp -a. Jak należy zrozumieć te dane?

Ikona CMDWiersz polecenia
C:\>arp -a
Nie znaleziono wpisów ARP

C:\>

A. Adres MAC hosta jest niepoprawny
B. Host nie jest podłączony do sieci
C. Brak aktualnych wpisów w protokole ARP
D. Komputer ma przypisany niewłaściwy adres IP
Polecenie arp -a to naprawdę fajne narzędzie do pokazywania tabeli ARP na komputerze. W skrócie, ARP jest mega ważny w sieciach lokalnych, bo pozwala na odnajdywanie adresów MAC bazując na adresach IP. Jak widzisz komunikat 'Nie znaleziono wpisów ARP', to znaczy, że komputer nie miał ostatnio okazji porozmawiać z innymi urządzeniami w sieci lokalnej. Może to być dlatego, że nic się nie działo albo komputer dopiero co wystartował. Dla adminów sieciowych to dość istotna informacja, bo mogą dzięki temu sprawdzać, czy coś jest nie tak z łącznością. Z tego, co zauważyłem, kiedy urządzenie łączy się z innym w tej samej sieci, ARP automatycznie zapisuje adres MAC przypisany do IP w tabeli. I to, że nie ma wpisów, może też oznaczać, że sieć jest dobrze skonfigurowana i nie było jeszcze żadnych interakcji, które wymagałyby tego tłumaczenia. Ogólnie monitorowanie tabeli ARP to dobry pomysł, bo można szybko wychwycić problemy z łącznością oraz sprawdzić, jak dobrze działa sieć.

Pytanie 29

Ile sieci obejmują komputery z adresami IP przedstawionymi w tabeli oraz standardową maską sieci?

Komputer 1172.16.15.5
Komputer 2172.18.15.6
Komputer 3172.18.16.7
Komputer 4172.20.16.8
Komputer 5172.20.16.9
Komputer 6172.21.15.10

A. Dwóch
B. Jednej
C. Czterech
D. Sześciu
Analizując błędne odpowiedzi kluczowe jest zrozumienie jak maska podsieci wpływa na klasyfikację komputerów w ramach sieci. Odpowiedź wskazująca że wszystkie komputery znajdują się w jednej sieci (1) ignoruje fakt że adresy IP klasy B z maską 255.255.0.0 mają pierwsze dwie liczby jako identyfikatory sieci. Różnorodne początki adresów takie jak 172.16 172.18 i 172.20 oznaczają że komputery znajdują się w odrębnych sieciach. Odpowiedź sugerująca sześć różnych sieci (2) może wynikać z nieprawidłowego rozumienia jak działa maska sieci. Każdy adres IP nie musi być przypisany do osobnej sieci a maska określa zakres adresów które są częścią tej samej sieci. W przypadku klasy B maska 255.255.0.0 wskazuje że sieć jest identyfikowana przez pierwsze dwie części adresu co wyraźnie dzieli te komputery na mniej niż sześć sieci. Odpowiedź że tylko dwie sieci są obecne (4) może być efektem błędnego założenia że adresy o podobnych początkowych liczbach są w tej samej sieci co jest nieprawdą w kontekście adresów klasy B. Dlatego zrozumienie jak maski podsieci działają pozwala na dokładne określenie liczby sieci i uniknięcie takich błędów. Poprawna analiza wymaga uwzględnienia struktury adresu i logiki stosowanej do podziału adresów IP na podsieci co jest kluczowe w efektywnym zarządzaniu zasobami sieciowymi.

Pytanie 30

Liczba 205(10) w zapisie szesnastkowym wynosi

A. CC
B. CD
C. DD
D. DC
Odpowiedź CD (12) jest w porządku, bo w systemie szesnastkowym używamy cyfr od 0 do 9 oraz liter A do F. A na przykład A to 10, B to 11, a C to 12. Jak przeliczasz 205 z dziesiętnego na szesnastkowy, to dzielisz przez 16. Po pierwszym dzieleniu 205 przez 16 dostajesz 12 jako iloraz i 13 jako resztę. A ta reszta 13 to w szesnastkowym D, a iloraz 12 to C. Więc 205(10) zapisujesz jako CD(16). Wiedza o takich konwersjach jest mega ważna w informatyce, zwłaszcza jak chodzi o programowanie, bo często potrzeba operować na różnych systemach liczbowych. Na przykład, w HTML kolory zapisujemy w systemie szesnastkowym, co pokazuje, jak istotne są prawidłowe konwersje.

Pytanie 31

Jaką partycją w systemie Linux jest magazyn tymczasowych danych, gdy pamięć RAM jest niedostępna?

A. swap
B. sys
C. var
D. tmp
Wybór odpowiedzi nieprawidłowych może prowadzić do licznych nieporozumień dotyczących zarządzania pamięcią w systemie Linux. Partycja 'var' jest miejscem przechowywania plików danych zmiennych, takich jak logi systemowe czy tymczasowe pliki aplikacji. Nie ma ona jednak funkcji związanej z pamięcią wirtualną ani z zarządzaniem pamięcią, a jej głównym celem jest umożliwienie aplikacjom przechowywanie danych, które mogą się zmieniać w trakcie pracy systemu. Podobnie, 'sys' to interfejs systemowy, który dostarcza informacji o stanie systemu i umożliwia interakcję z jądrem systemu Linux, lecz nie ma związku z zarządzaniem pamięcią. Odpowiedź 'tmp' odnosi się do katalogu, w którym przechowywane są tymczasowe pliki, ale nie jest to partycja ani obszar pamięci, który służyłby jako pamięć wirtualna. Wiele osób myli funkcje tych katalogów i partycji, co prowadzi do przekonania, że mogą one zastąpić swap. Kluczowym błędem jest zrozumienie, że swap jest dedykowaną przestrzenią na dysku, która jest wykorzystywana wyłącznie w celu zarządzania pamięcią RAM, a inne partycje czy katalogi mają zupełnie inne przeznaczenia i funkcje w architekturze systemu operacyjnego. Właściwe zrozumienie tych zależności jest kluczowe dla efektywnego zarządzania zasobami w systemie Linux.

Pytanie 32

Jakie jest adres rozgłoszeniowy sieci, w której funkcjonuje host z adresem IP 195.120.252.32 oraz maską podsieci 255.255.255.192?

A. 195.120.252.0
B. 195.120.252.255
C. 195.120.252.63
D. 195.120.255.255
Adres rozgłoszeniowy sieci (broadcast address) jest używany do wysyłania pakietów do wszystkich urządzeń w danej sieci lokalnej. Aby obliczyć adres rozgłoszeniowy, należy najpierw określić adres sieci oraz maskę podsieci. W przypadku hosta o adresie IP 195.120.252.32 i masce 255.255.255.192, maska ta oznacza, że 26 bitów jest przeznaczonych na część sieci, a 6 bitów na część hosta. Przy takich parametrach, sieć jest zdefiniowana w zakresie adresów 195.120.252.0 do 195.120.252.63. Adres 195.120.252.0 to adres sieci, a 195.120.252.63 to adres rozgłoszeniowy, który jest uzyskiwany przez ustawienie wszystkich bitów części hosta na jedynki. W praktyce, adres rozgłoszeniowy pozwala na efektywną komunikację między urządzeniami w sieci, umożliwiając przesyłanie informacji do wszystkich hostów jednocześnie, co jest przydatne w wielu zastosowaniach, takich jak protokoły ARP czy DHCP. Warto pamiętać, że stosowanie poprawnych adresów rozgłoszeniowych jest kluczowe dla prawidłowego działania sieci oraz zgodności z normami RFC.

Pytanie 33

Określ rezultat wykonania zamieszczonego polecenia.

A. Skonfigurowany czas aktywności konta Test
B. Wyznaczona data wygaśnięcia konta Test
C. Zweryfikowana data ostatniego logowania na konto Test
D. Wymuszona zmiana hasła na koncie Test w ustalonym terminie
Ustawienie czasu aktywacji konta użytkownika nie jest związane z poleceniem przedstawionym w pytaniu. W rzeczywistości polecenie to dotyczy wygaśnięcia konta, a nie jego aktywacji. Czas aktywacji konta odnosi się do momentu, kiedy konto staje się aktywne i dostępne do logowania. W kontekście systemu Windows, opcja ta nie jest obsługiwana przez polecenie net user, ponieważ domyślnie konta są aktywowane w momencie ich tworzenia, chyba że zostały wprowadzone specjalne ograniczenia. Inna błędna odpowiedź wskazuje na sprawdzenie daty ostatniego logowania. Działanie to również nie jest możliwe za pomocą polecenia net user, które służy do modyfikacji atrybutów konta, a nie do raportowania informacji. Podobnie, wymuszenie zmiany hasła na koncie Test nie jest związane z podanym poleceniem. Wymuszenie zmiany hasła można osiągnąć za pomocą opcji /passwordchg, jednak nie ma to związku z datą wygaśnięcia konta. Wiele osób mylnie interpretuje działanie polecenia, co prowadzi do nieporozumień. Kluczowe jest zrozumienie funkcji polecenia oraz właściwego zastosowania odpowiednich opcji w kontekście administracji kontami użytkowników w systemie Windows.

Pytanie 34

Jakie urządzenie zapewnia zabezpieczenie przed różnorodnymi atakami z sieci i może również realizować dodatkowe funkcje, takie jak szyfrowanie danych przesyłanych lub automatyczne informowanie administratora o włamaniu?

A. punkt dostępowy
B. koncentrator
C. firewall sprzętowy
D. regenerator
Firewall sprzętowy, znany również jako zapora ogniowa, to kluczowe urządzenie w architekturze bezpieczeństwa sieci, które służy do monitorowania i kontrolowania ruchu sieciowego w celu ochrony przed nieautoryzowanym dostępem oraz atakami z sieci. Funkcjonalność firewalla obejmuje nie tylko blokowanie niepożądanych połączeń, ale także możliwość szyfrowania przesyłanych danych, co znacząco podnosi poziom bezpieczeństwa informacji. Przykładowo, w przedsiębiorstwie firewall może być skonfigurowany do automatycznego powiadamiania administratora o podejrzanych aktywnościach, co pozwala na szybką reakcję na potencjalne zagrożenia. Zgodnie z najlepszymi praktykami branżowymi, firewalle powinny być regularnie aktualizowane oraz dostosowywane do zmieniających się warunków w sieci, aby skutecznie przeciwdziałać nowym typom zagrożeń. Wiele organizacji wdraża rozwiązania firewallowe w połączeniu z innymi technologiami zabezpieczeń, co tworzy wielowarstwowy system ochrony, zgodny z zaleceniami standardów bezpieczeństwa takich jak ISO/IEC 27001.

Pytanie 35

Osoba korzystająca z lokalnej sieci musi mieć możliwość dostępu do dokumentów umieszczonych na serwerze. W tym celu powinna

A. posiadać konto użytkownika bez uprawnień administracyjnych na tym serwerze
B. zalogować się do domeny serwera oraz dysponować odpowiednimi uprawnieniami do plików znajdujących się na serwerze
C. należeć do grupy administratorzy na tym serwerze
D. połączyć komputer z tym samym przełącznikiem, do którego podłączony jest serwer
Zarządzanie dostępem do zasobów sieciowych wymaga zrozumienia podstawowych zasad dotyczących autoryzacji i uwierzytelniania. Próba uzyskania dostępu do plików na serwerze bez zalogowania się do domeny jest nieefektywna. Różne metody autoryzacji, takie jak konta użytkowników czy grupy, mają na celu zapewnienie, że tylko uprawnieni użytkownicy mają możliwość korzystania z określonych zasobów. Osoby, które sugerują, że wystarczy mieć konto użytkownika bez praw administracyjnych, nie dostrzegają znaczenia ról i uprawnień w kontekście dostępu sieciowego. Chociaż konto użytkownika może teoretycznie umożliwić dostęp, to bez odpowiednich uprawnień do plików na serwerze, jakiekolwiek próby otwarcia lub edycji tych plików zakończą się niepowodzeniem. Podobnie, zasugerowana koncepcja podłączenia komputera do tego samego przełącznika nie ma znaczenia, jeśli użytkownik nie ma skonfigurowanych odpowiednich uprawnień w systemie serwera. W rzeczywistości, fizyczne połączenie sieciowe jest tylko jednym z kroków dostępu, a nie kluczowym czynnikiem. Wreszcie, stwierdzenie, że bycie członkiem grupy administratorzy na serwerze jest wystarczające, nie uwzględnia praktyki, że takie uprawnienia powinny być przyznawane tylko w uzasadnionych przypadkach. Przyznawanie niepotrzebnych uprawnień administracyjnych może prowadzić do luk bezpieczeństwa i nieautoryzowanego dostępu do krytycznych danych.

Pytanie 36

Miarą wyrażaną w decybelach, która określa różnicę pomiędzy mocą sygnału wysyłanego w parze zakłócającej a mocą sygnału generowanego w parze zakłócanej, jest

A. rezystancja pętli
B. poziomu mocy wyjściowej
C. przesłuch zdalny
D. przesłuch zbliżny
Odpowiedzi takie jak 'przesłuch zdalny', 'poziomu mocy wyjściowej' oraz 'rezystancja pętli' są błędne, ponieważ nie definiują właściwie miary różnicy mocy sygnału przesyłanego w parze zakłócającej i sygnału wytworzonego w parze zakłócanej. Przesłuch zdalny nie odnosi się do lokalnych interakcji między sygnałami w tym samym kablu, lecz do zakłóceń, które mogą zachodzić w przypadku dłuższych odległości. Mówienie o 'poziomie mocy wyjściowej' również nie jest adekwatne, gdyż ten termin dotyczy mocy generowanej przez nadajniki, a nie interakcji między różnymi sygnałami. Z kolei 'rezystancja pętli' dotyczy parametrów elektrycznych obwodów, a nie pomiaru wpływu sygnałów na siebie. Typowe błędy myślowe w tym przypadku polegają na myleniu różnych pojęć związanych z transmisją sygnałów oraz niedostatecznym zrozumieniu, jakie parametry są istotne w kontekście zakłóceń sygnału. Uznawanie różnych miar za synonimy prowadzi do nieporozumień i problemów w projektowaniu systemów komunikacyjnych, co może skutkować obniżoną jakością usług oraz większymi kosztami wytwarzania i eksploatacji urządzeń elektronicznych.

Pytanie 37

W schemacie logicznym struktury okablowania, zgodnie z polską terminologią zawartą w normie PN-EN 50174, cechą kondygnacyjnego punktu dystrybucyjnego jest to, że

A. obejmuje zasięgiem całe piętro obiektu.
B. obejmuje zasięgiem cały obiekt.
C. łączy okablowanie obiektu i centralny punkt dystrybucji.
D. łączy okablowanie pionowe i międzylokalowe.
Kondygnacyjny punkt dystrybucyjny to naprawdę ważny element w systemie okablowania strukturalnego. Mówiąc prosto, to coś, co obsługuje całe piętro w budynku. Jego główna funkcja to rozdzielanie sygnałów i zasilania na danym poziomie, co pomaga nam zarządzać urządzeniami podłączonymi do sieci. W biurowcach, na każdym piętrze znajdziesz różne urządzenia, jak komputery czy drukarki, a te punkty dystrybucyjne sprawiają, że można je łatwo podłączyć do głównego systemu. Dzięki temu mamy lepszą organizację i więcej miejsca w pomieszczeniach technicznych. Dobrze jest też od czasu do czasu zrobić audyt całej infrastruktury, żeby upewnić się, że wszystko działa jak należy i żeby dostosować system do zmieniających się potrzeb użytkowników. Jak dobrze zaplanujemy te punkty, to nasza sieć będzie wydajniejsza i bardziej elastyczna, co jest super ważne w takich dynamicznych warunkach pracy.

Pytanie 38

W którym z rejestrów wewnętrznych procesora są przechowywane dodatkowe informacje o wyniku realizowanej operacji?

A. W rejestrze flagowym
B. W akumulatorze
C. W liczniku rozkazów
D. We wskaźniku stosu
W akumulatorze, wskaźniku stosu oraz liczniku rozkazów nie przechowuje się informacji o dodatkowych cechach wyników operacji w takim samym sensie jak w rejestrze flagowym. Akumulator jest głównie używany do przechowywania tymczasowych wyników obliczeń oraz operacji arytmetycznych, które są wykonywane przez procesor. Choć służy do przetwarzania danych, nie dostarcza informacji o statusie wyników, co ogranicza jego funkcjonalność w kontekście monitorowania stanów operacji. Wskaźnik stosu z kolei odpowiada za zarządzanie stosami danych w pamięci, umożliwiając przechowywanie adresów powrotu oraz lokalnych zmiennych, ale nie jest odpowiedzialny za rejestrowanie dodatkowych informacji o wynikach operacyjnych. Natomiast licznik rozkazów ma za zadanie śledzenie adresu następnej instrukcji do wykonania, co również nie ma związku z analizą wyników operacji. Typowe błędy myślowe, które mogą prowadzić do wyboru tych niepoprawnych odpowiedzi, to mylenie funkcji przechowywania wyników z funkcjami kontrolnymi. Istotne jest zrozumienie, że rejestr flagowy, jako element architektury procesora, pełni unikalną rolę w monitorowaniu stanów operacji, co jest kluczowe dla prawidłowego działania programów i optymalizacji ich wydajności.

Pytanie 39

W doborze zasilacza do komputera kluczowe znaczenie

A. współczynnik kształtu obudowy
B. ma rodzaj procesora
C. ma łączna moc wszystkich komponentów komputera
D. mają parametry zainstalowanego systemu operacyjnego
Wybór odpowiedniego zasilacza komputerowego jest kluczowy dla stabilności i wydajności całego systemu. Najważniejszym czynnikiem, który należy wziąć pod uwagę, jest łączna moc wszystkich podzespołów komputera, ponieważ zasilacz musi dostarczać wystarczającą ilość energii, aby zasilić każdy komponent. Niewłaściwa moc zasilacza może prowadzić do niestabilności systemu, losowych restartów, a nawet uszkodzeń sprzętu. Standardowo, całkowita moc wszystkich podzespołów powinna być zsumowana, a następnie dodane około 20-30% zapasu mocy, aby zapewnić bezpieczną i stabilną pracę. Na przykład, jeśli złożone komponenty wymagają 400 W, warto zaopatrzyć się w zasilacz o mocy co najmniej 500 W. Przy wyborze zasilacza warto także zwrócić uwagę na jego efektywność, co najlepiej określa certyfikacja 80 PLUS, która zapewnia, że zasilacz działa z wysoką efektywnością energetyczną. Dobrze zbilansowany zasilacz to fundament niezawodnego komputera, szczególnie w przypadku systemów gamingowych i stacji roboczych wymagających dużej mocy.

Pytanie 40

Jak nazywa się licencja oprogramowania pozwalająca na bezpłatne dystrybucję aplikacji?

A. MOLP
B. shareware
C. OEM
D. freware
Odpowiedź 'freware' jest poprawna, ponieważ odnosi się do kategorii oprogramowania, które jest udostępniane użytkownikom za darmo, co pozwala na jego swobodne rozpowszechnianie. W praktyce, użytkownicy mogą pobierać, instalować i używać tego oprogramowania bez konieczności ponoszenia żadnych kosztów. Przykłady oprogramowania freeware obejmują popularne narzędzia, takie jak GIMP, które jest darmową alternatywą dla Photoshopa, czy VLC Media Player, który pozwala na odtwarzanie różnorodnych formatów multimedialnych. Ważne jest, aby pamiętać, że freeware różni się od oprogramowania open source, które nie tylko jest darmowe, ale także umożliwia użytkownikom dostęp do kodu źródłowego i jego modyfikację. Standardy branżowe podkreślają znaczenie transparentności oraz dostępności oprogramowania, co jest zgodne z ideą freeware, która promuje innowacyjność i współpracę w społeczności technologicznej.