Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 14 maja 2025 06:02
  • Data zakończenia: 14 maja 2025 06:08

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Zgodnie z normami ochrony przeciwpożarowej, do gaszenia urządzeń elektrycznych pod napięciem przekraczającym 1000 V należy zastosować gaśnicę

A. proszkową oznaczoną ABC/E
B. pianową oznaczoną AF
C. proszkową oznaczoną ABC
D. śniegową oznaczoną BC
Wybór gaśnicy do elektryki to nie taka prosta sprawa, trzeba znać klasyfikacje i zasady bezpieczeństwa. Odpowiedzi z gaśnicą śniegową BC oraz pianową AF nie są odpowiednie, bo mają swoje ograniczenia, jeśli chodzi o urządzenia pod napięciem. Gaśnice śniegowe są super do gaszenia cieczy palnych i gazów, ale w przypadku elektryki mogą narazić nas na ryzyko porażenia prądem. Gaśnice pianowe też nie są najlepszym rozwiązaniem, bo ich przewodność może być niebezpieczna właśnie przy pożarach elektrycznych. Co prawda, gaśnice proszkowe ABC są dość uniwersalne, ale brak tego 'E' oznacza, że nie są stworzone do strefy elektrycznej. Wybierając niewłaściwą gaśnicę, można narazić siebie i innych na niebezpieczeństwo – gaszenie pożaru może się wręcz pogorszyć. Podczas pożarów elektrycznych ważne jest używanie sprzętu, który jest skuteczny i bezpieczny. To, co mówi europejska norma PN-EN 2, ma ogromne znaczenie w tych sprawach.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Który instrument pomoże w monitorowaniu jakości sprężonego powietrza pod kątem wilgotności oraz obecności kondensatu?

A. Miernik przepływu powietrza
B. Miernik punktu rosy
C. Detektor wycieków
D. Termomanometr bimetaliczny
Miernik przepływu powietrza, detektor wycieków czy termomanometr bimetaliczny to urządzenia, które mają swoje zastosowania w systemach sprężonego powietrza, ale nie sprawdzą się, gdy chodzi o pomiar wilgotności i kondensatu. Miernik przepływu powietrza głównie ocenia, ile powietrza przechodzi przez system, co jest ważne, ale nie mówi nic o ilości wody w sprężonym powietrzu. Korzystanie z tego urządzenia może prowadzić do mylnych wniosków o jakości powietrza, zwłaszcza gdy nie jest odpowiednio osuszone. Detektor wycieków koncentruje się na znajdowaniu wycieków powietrza, co jest ważne dla efektywności, ale nie mówi nic o wilgotności. Z kolei termomanometr bimetaliczny mierzy temperaturę i ciśnienie, które też nie mają bezpośredniego związku z kondensatem w sprężonym powietrzu. Moim zdaniem, to może być mylące, bo mogą sugerować, że kontrola jakości powietrza to tylko monitorowanie przepływu czy wykrywanie wycieków, a tak naprawdę kluczowa jest kontrola wilgotności. Dlatego dobrze jest wybierać odpowiednie narzędzia do pomiaru, żeby utrzymać wysokie standardy jakości powietrza w przemysłowych systemach.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Silnik krokowy (skokowy) nie reaguje na próby zmiany prędkości obrotów. Możliwą przyczyną nieprawidłowego działania silnika może być

A. zbyt wysokie napięcie zasilające
B. brak modyfikacji częstotliwości impulsów z kontrolera
C. wysyłanie impulsów sterujących w błędnej kolejności
D. nadmierne obciążenie silnika
Podawanie impulsów sterujących w niewłaściwej kolejności może wpływać na działanie silnika krokowego, jednak nie jest to przyczyna braku zmiany prędkości obrotowej w kontekście tego pytania. Silniki krokowe działają na zasadzie sekwencyjnego przełączania poszczególnych cewek, które odpowiadają za obrót wirnika. Jeśli impulsy są podawane w niewłaściwej kolejności, może to skutkować zablokowaniem silnika lub nieprawidłowym ruchem, jednak nie wstrzyma to samej zmiany prędkości. Zbyt duże obciążenie silnika również może prowadzić do problemów, takich jak nadmierne grzanie lub zmniejszenie momentu obrotowego, ale nie bezpośrednio do braku zmiany prędkości - silnik może wciąż reagować na zmiany prędkości, nawet jeśli z trudnością. Z kolei zbyt wysokie napięcie zasilania przynosi ryzyko uszkodzenia silnika i nie jest standardem pracy silników krokowych, które powinny być zasilane napięciem zgodnym z ich specyfikacją. Te koncepcje często prowadzą do nieporozumień. Kluczowe jest zrozumienie, że silnik krokowy wymaga odpowiedniej częstotliwości impulsów, aby móc swobodnie zmieniać swoją prędkość obrotową. Osoby zajmujące się projektowaniem systemów automatyki powinny zwracać szczególną uwagę na konfigurację systemów sterowania, aby uniknąć takich błędów w przyszłości.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Która z poniższych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Klejenia
B. Zaginania
C. Spawania
D. Zgrzewania
Zaginanie to proces, który polega na deformacji materiału w celu nadania mu odpowiedniego kształtu, ale nie łączy trwale dwóch lub więcej elementów. W kontekście tworzyw sztucznych, zaginanie może być wykorzystane do formowania jednego elementu, na przykład przy produkcji obudów czy detali dekoracyjnych. Nie wymaga to jednak żadnych dodatkowych technik łączenia, co czyni je nieodpowiednim wyborem do trwałego łączenia. Techniki takie jak zgrzewanie, spawanie czy klejenie są stosowane do tworzenia trwałych połączeń, natomiast zaginanie jest bardziej procesem wytwórczym. Zgodnie z normami branżowymi, takimi jak ISO 527 dotyczące właściwości mechanicznych tworzyw sztucznych, zginanie może być stosowane do testowania elastyczności materiałów, ale nie do ich łączenia. Przykładem zastosowania zaginania może być produkcja elementów meblowych, gdzie tworzywa sztuczne są formowane w odpowiednie kształty bez potrzeby ich łączenia z innymi elementami. Dlatego zaginanie jest techniką, która doskonale sprawdza się w kształtowaniu detali, ale nie w ich trwałym łączeniu.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, który jest sterowany przez PLC, należy zająć się zasilaniem pneumatycznym.

A. dezaktywować zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu i przewody
B. wprowadzić sterownik PLC w tryb STOP, odłączyć zasilanie elektryczne oraz pneumatyczne układu
C. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz wyłączyć PLC
D. odłączyć przewody zasilające sterownik oraz przewody pneumatyczne od elektrozaworu
Wszystkie zaproponowane odpowiedzi pomijają kluczowe aspekty bezpieczeństwa związane z wymianą zaworu elektropneumatycznego. Kluczowym elementem każdej procedury konserwacji jest zapewnienie, że system jest całkowicie wyłączony i nie może być przypadkowo uruchomiony. Odpowiedzi, które sugerują odłączenie przewodów zasilających lub pneumatycznych bez wcześniejszego wprowadzenia PLC w tryb STOP oraz wyłączenia zasilania, są niebezpieczne. Przykładowo, odłączenie przewodów zasilających bez wcześniejszego zablokowania programu sterującego może prowadzić do sytuacji, gdzie system się uruchomi, co stwarza ryzyko dla operatora. Ponadto, wiele z tych podejść nie uwzględnia konieczności całkowitego odcięcia zasilania pneumatycznego, co może prowadzić do niekontrolowanego wypływu sprężonego powietrza. Tego rodzaju pominięcia są typowe dla osób, które nie zaznajomiły się z obowiązującymi standardami bezpieczeństwa w automatyce przemysłowej, takimi jak normy ISO czy ANSI Z535, które mają na celu zapewnienie bezpiecznego środowiska pracy. Bezpośrednie podejście do serwisowania komponentów pneumatycznych powinno zatem zawsze zaczynać się od wyłączenia systemu i odpowiedniego zabezpieczenia przed jego przypadkowym włączeniem, co jest fundamentalne dla zachowania bezpieczeństwa w miejscu pracy.

Pytanie 16

Wartością tarcia wewnętrznego cieczy dla oleju smarnego jest

A. lepkość
B. gęstość
C. utlenianie
D. smarność
Lepkość jest miarą oporu, jaki ciecz stawia podczas przepływu i jest kluczowym parametrem w ocenie właściwości olejów smarowych. Wysoka lepkość oznacza, że ciecz jest bardziej gęsta i oporna na przepływ, co jest korzystne w zastosowaniach wymagających skutecznego smarowania. Przykładowo, oleje silnikowe muszą mieć odpowiednią lepkość, aby skutecznie chronić silnik przed zużyciem oraz zapewniać odpowiednie smarowanie w różnych temperaturach pracy. Standardy, takie jak SAE, określają klasyfikacje lepkości, co pozwala na wybór odpowiedniego oleju do konkretnego zastosowania. Na przykład, olej 10W-40 ma różne właściwości lepkości w niskich i wysokich temperaturach, co czyni go wszechstronnym wyborem dla wielu silników. Ponadto, lepkość wpływa na inne parametry, takie jak temperatura krzepnięcia i przewodność cieplna, co jest istotne w kontekście efektywności energetycznej urządzeń mechanicznych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jakie zjawisko fizyczne wyróżnia przetwornik piezoelektryczny?

A. Modyfikacja rezystancji przewodnika w reakcji na przyłożoną siłę rozciągającą
B. Zmiana napięcia na końcach elementu przewodzącego prąd w wyniku działania pola magnetycznego
C. Wytwarzanie ładunku elektrycznego na powierzchni elementu pod wpływem zastosowanej siły kompresyjnej lub rozciągającej
D. Wytwarzanie siły elektromotorycznej na granicy dwóch metali
Zjawiska opisane w niepoprawnych odpowiedziach nie są zgodne z zasadami działania przetworników piezoelektrycznych i mogą prowadzić do nieporozumień w zrozumieniu ich funkcji. Pierwsza z błędnych opcji sugeruje, że zmiana rezystancji przewodnika pod wpływem siły rozciągającej jest zjawiskiem charakterystycznym dla przetworników piezoelektrycznych. W rzeczywistości, przetworniki te nie operują na zasadzie zmiany rezystancji, lecz na generowaniu ładunku elektrycznego, co jest zupełnie innym procesem fizycznym. Zmiana rezystancji związana jest z zjawiskiem piezorezystancyjnym, które występuje w niektórych materiałach, ale nie stanowi mechanizmu działania piezoelektryczności. Kolejna błędna koncepcja odnosi się do zmiany różnicy potencjałów pod wpływem pola magnetycznego. Przetworniki piezoelektryczne nie są bezpośrednio związane z efektami magnetycznymi, a ich działanie polega na mechanicznym wytwarzaniu ładunku elektrycznego, a nie na interakcji z polem magnetycznym. Ostatnia niepoprawna odpowiedź sugeruje generowanie siły elektromotorycznej na złączu dwóch metali, co dotyczy efektu Seebecka, a nie piezoelektryczności. To zjawisko jest związane z różnicą temperatur między dwoma różnymi metalami, co prowadzi do powstania napięcia, jednak nie ma związku z mechanizmem działania przetworników piezoelektrycznych. Zrozumienie tych różnic jest kluczowe dla prawidłowej interpretacji funkcji przetworników w kontekście szerokiego spektrum zastosowań technologicznych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Której z podanych metod nie wykorzystuje się do trwałego łączenia elementów wykonanych z plastiku?

A. Klejenia
B. Spawania
C. Zaginania
D. Zgrzewania
Spawanie to technika, która polega na łączeniu dwóch elementów poprzez ich lokalne stopienie, co umożliwia uzyskanie trwałego połączenia. W kontekście tworzyw sztucznych, spawanie często wykorzystuje się w procesach produkcyjnych, gdzie materiał jest podgrzewany do temperatury topnienia, a następnie łączony z innym elementem. Ta metoda jest szczególnie ceniona w przypadku dużych konstrukcji, gdzie wymagana jest wysoka wytrzymałość połączeń. Klejenie, z drugiej strony, polega na zastosowaniu specjalnych substancji, które penetrują powierzchnie materiałów i tworzą silne wiązania chemiczne. Kleje stosowane do tworzyw sztucznych są projektowane tak, aby zapewnić optymalne wiązanie, co czyni je odpowiednimi do użycia w różnych warunkach. Zgrzewanie, podobnie jak spawanie, jest procesem, który wykorzystuje ciepło do połączenia elementów, co sprawia, że jest efektywną techniką w przemyśle, szczególnie przy produkcji komponentów z tworzyw sztucznych. Typowe błędy myślowe, które mogą prowadzić do mylnych wniosków, obejmują mylenie zginania z technikami łączenia. Zginanie, mimo że może być użyteczne w formowaniu materiałów, nie wprowadza trwałych połączeń, co jest kluczowe w kontekście postawionego pytania. W związku z tym, niezrozumienie różnicy pomiędzy modyfikacją kształtu a łączeniem elementów może prowadzić do błędnych wyborów w procesie projektowania i produkcji.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakie czynności są niezbędne do utrzymania sprawności urządzeń hydraulicznych?

A. Regularna wymiana filtrów
B. Regularna wymiana rozdzielacza
C. Miesięczny demontaż oraz montaż pomp
D. Codzienna wymiana oleju
Okresowa wymiana filtrów w urządzeniach hydraulicznych jest kluczowa dla zapewnienia ich sprawności oraz wydajności. Filtry hydrauliczne mają za zadanie zatrzymywać zanieczyszczenia, które mogą uszkodzić pompy, zawory oraz inne elementy układu hydraulicznego. Zanieczyszczenia te mogą pochodzić z różnych źródeł, takich jak procesy tarcia wewnętrznych komponentów, a także z zewnątrz, na przykład w wyniku nieprawidłowego napełniania systemu olejem. Regularna wymiana filtrów zgodnie z zaleceniami producentów oraz standardami branżowymi, takimi jak ISO 4406, pozwala na minimalizację ryzyka awarii oraz wydłużenie żywotności całego systemu hydraulicznego. Przykładem dobrych praktyk jest wprowadzenie harmonogramu konserwacji, który uwzględnia częstotliwość wymiany filtrów, co pozwala na monitorowanie stanu oleju oraz zanieczyszczeń w systemie. Taka praktyka jest szczególnie ważna w zastosowaniach przemysłowych, gdzie nieprzewidziane przestoje mogą generować znaczne straty finansowe.

Pytanie 28

Jakie napięcie musi być zastosowane do zasilania prostowniczego układu sześciopulsowego?

A. jednofazowym symetrycznym 2 x 115 V
B. trójfazowym 230 V/400 V
C. stałym 110 V
D. stałym 24 V
Zasilanie układu prostowniczego sześciopulsowego napięciem stałym lub jednofazowym nie jest właściwym podejściem w kontekście efektywności i funkcjonalności tego systemu. Zastosowanie napięcia stałego, na przykład 110 V lub 24 V, ogranicza możliwości konwersji energii, ponieważ prostowniki są zaprojektowane do pracy z prądem przemiennym. Napięcie jednofazowe 2 x 115 V również nie dostarcza odpowiedniej ilości impulsów do prostownika, co skutkuje nierównomiernym prostowaniem i zwiększonymi stratami energii. W rzeczywistości, układ sześciopulsowy wymaga zasilania trójfazowego, które dostarcza trzy fazy prądu przemiennego, co pozwala na efektywną konwersję energii. Prąd jednofazowy może prowadzić do powstawania harmonicznych oraz większych wahań napięcia, co negatywnie wpływa na stabilność pracy układu. Przykłady niewłaściwych aplikacji mogą obejmować użycie prostowników w aplikacjach, które nie są przystosowane do obciążenia jednofazowego, co może prowadzić do uszkodzenia sprzętu oraz obniżenia wydajności systemów energetycznych. Dlatego ważne jest, aby projektując systemy zasilania, wybierać odpowiednie źródła zgodne z wymaganiami technicznymi urządzeń.

Pytanie 29

Zamiana diody prostowniczej na płycie zasilacza wymaga

A. wycięcia uszkodzonej diody, uformowania i pobielenia końcówek nowej diody, a następnie jej wlutowania
B. wycięcia uszkodzonej diody, wylutowania jej końcówek oraz wlutowania nowej diody
C. wylutowania uszkodzonej diody, oczyszczenia otworów na płycie, uformowania i pobielenia końcówek nowej diody i jej wlutowania
D. wylutowania uszkodzonej diody oraz wlutowania nowej diody
Wybór odpowiedzi oznaczonej numerem 4 jest prawidłowy, ponieważ obejmuje wszystkie kluczowe etapy wymiany diody prostowniczej na płycie zasilacza. Pierwszym krokiem jest wylutowanie uszkodzonej diody, co jest niezbędne do usunięcia elementu, który nie działa poprawnie. Następnie ważne jest oczyszczenie otworów na płycie, aby upewnić się, że nie ma resztek lutowia, które mogą wpływać na jakość połączenia nowej diody. Kolejnym krokiem jest uformowanie i pobielenie końcówek nowej diody, co zapewnia lepszą adhezję podczas lutowania oraz zmniejsza ryzyko utlenienia. Ostatecznie, wlutowanie nowej diody powinno być przeprowadzone zgodnie z zasadami dobrego lutowania, aby zapewnić niezawodność i trwałość połączenia. Przestrzeganie tych kroków jest zgodne z rekomendacjami standardów IPC dotyczących montażu elektronicznego, co gwarantuje długotrwałe i bezpieczne funkcjonowanie urządzenia.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Po programowym aktywowaniu czterech wyjść tranzystorowych w sterowniku PLC, które sterują cewkami elektrozaworów, stwierdzono, że nie wszystkie działają poprawnie. Pomiar napięcia UBE (między bazą a emiterem) tranzystorów na poszczególnych wyjściach wykazał następujące wartości: UBE1 = 1 V, UBE2 = 3 V, UBE3 = 0,7 V, UBE4 = 5 V. Wyniki pomiarów sugerują uszkodzenie

A. tranzystorów na wyjściach 1 i 3
B. wyłącznie tranzystora na wyjściu 3
C. wyłącznie tranzystora na wyjściu 4
D. tranzystorów na wyjściach 2 i 4
Widzisz, tu pojawiają się błędy przy analizie problemu, które mogą prowadzić do mylnych diagnoz dotyczących tranzystorów. Z tych pomiarów wynika, że UBE1 ma tylko 1 V, co oznacza, że tranzystor na wyjściu 1 raczej nie działa prawidłowo, ale to nie znaczy, że jest zepsuty. Zmniejszone napięcie UBE na 1 V raczej sugeruje, że tranzystor nie jest na pełnym włączeniu. A jeśli chodzi o wyjście 3, to 0,7 V to całkiem w porządku wartość i nie możemy mówić o uszkodzeniu. Dodatkowo, wskazywanie na problem z wyjściem 2 przy napięciu 3 V, zapominając o tym, że to może być efekt złego podłączenia lub niepoprawnej konfiguracji obwodu, to też nie jest dobre podejście. W takich sytuacjach lepiej spojrzeć na cały układ, nie tylko na jedno wyjście. Przy diagnozowaniu tranzystorów ważne jest, żeby rozumieć, jak różne napięcia wpływają na ich działanie oraz potrafić dobrze interpretować wyniki pomiarów w kontekście całości systemu. W praktyce warto korzystać z dokumentacji technicznej i standardów, żeby trafnie znaleźć źródło problemu i wiedzieć, jak go naprawić.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Gaussotron.
B. Warystor.
C. Termistor.
D. Tensometr.
Tensometr, będący czujnikiem, który przekształca odkształcenie mechaniczne w zmianę rezystancji, działa na zupełnie innych zasadach. Jego głównym zastosowaniem jest mierzenie sił i momentów, co czyni go niezwykle użytecznym w inżynierii do monitorowania naprężeń w konstrukcjach. Obserwując zmiany rezystancji w odpowiedzi na odkształcenia, tensometr nie reaguje na napięcia w sposób, w jaki robi to warystor. Termistor, z kolei, to element, którego rezystancja zmienia się w odpowiedzi na zmiany temperatury, a nie napięcia. Używając go w obwodach, możemy monitorować temperaturę oraz regulować różne procesy, ale nie ma związku z gwałtownym spadkiem rezystancji wskutek wzrostu napięcia. Gaussotron to z kolei rodzaj detektora, który działa na zasadzie zjawisk magnetycznych, a nie elektrycznych, co czyni go nieodpowiednim w kontekście analizowanego pytania. Zrozumienie różnicy pomiędzy tymi elementami jest kluczowe dla prawidłowego projektowania układów elektronicznych oraz systemów pomiarowych. Typowe błędy myślowe, które mogą prowadzić do pomyłek w takich pytaniach, obejmują mylenie funkcji zależnych od napięcia i temperatury, co pokazuje, jak ważna jest znajomość specyfiki działania każdego z tych komponentów w praktyce inżynieryjnej.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.