Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 15 maja 2025 21:42
  • Data zakończenia: 15 maja 2025 21:54

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jak wyraża się moc silnika spalinowego?

A. Nm
B. kWh
C. kW
D. MPa
Podawanie mocy silnika spalinowego w kWh jest niepoprawne, ponieważ kilowatogodzina to jednostka energii, a nie mocy. Moc, jako tempo wykonywania pracy, jest wyrażana w kilowatach (kW), które wskazują, jak szybko silnik może generować energię. Użycie Nm, czyli niutonometrów, odnosi się do momentu obrotowego, a nie do mocy. Moment obrotowy jest miarą siły działającej na dźwignię, co jest ważne przy ocenie zdolności silnika do pokonywania oporu, ale nie informuje o jego mocy. Z kolei MPa to jednostka ciśnienia, która również nie ma bezpośredniego związku z mocą silnika. Typowe błędy myślowe, które prowadzą do mylnego rozumienia tych jednostek, wynikają z niejasności pomiędzy pojęciami energii, mocy i momentu obrotowego. Wiele osób przyjmuje, że większa wartość momentu obrotowego automatycznie oznacza większą moc, jednak moc jest funkcją zarówno momentu obrotowego, jak i prędkości obrotowej silnika. Przy projektowaniu maszyn i pojazdów, ważne jest, aby jasno rozróżniać te jednostki i ich zastosowanie, co jest kluczowe dla efektywności i wydajności systemów mechanicznych.

Pytanie 2

W standardowym układzie napędowym do połączenia skrzyni biegów z tylnym mostem wykorzystywany jest

A. łącznik z tworzywa sztucznego
B. wał napędowy
C. przegub kulowy
D. wał korbowy
Wał napędowy jest kluczowym elementem w klasycznym układzie napędowym, który łączy skrzynię biegów z mostem napędowym. Jego główną rolą jest przenoszenie momentu obrotowego z silnika, który jest generowany przez skrzynię biegów, na koła pojazdu. Wał napędowy jest zazwyczaj wykonany z materiałów o wysokiej wytrzymałości, takich jak stal, aby wytrzymać duże obciążenia oraz drgania, które występują podczas pracy. W praktyce, wał napędowy jest także wyposażony w przeguby, które pozwalają na kompensację ruchów zawieszenia. Dzięki temu, nawet jeśli koła nie poruszają się na tej samej wysokości, wał napędowy może efektywnie przenosić moc. W nowoczesnych pojazdach stosuje się różne rozwiązania, takie jak wały o zmiennej długości czy systemy tłumienia drgań, które poprawiają komfort jazdy oraz wydajność układu napędowego. Standardy branżowe, takie jak ISO 9001, kładą nacisk na jakość materiałów oraz precyzję wykonania, co jest kluczowe dla bezpieczeństwa i efektywności działania wałów napędowych.

Pytanie 3

Typowy objaw uszkodzenia uszczelki pod głowicą to

A. przedostawanie się oleju do układu chłodzenia
B. nadmierne zużycie paliwa
C. trudności w uruchomieniu silnika
D. zwiększone drgania nadwozia
Uszczelka pod głowicą jest kluczowym elementem, który zapewnia szczelność pomiędzy blokiem silnika a głowicą cylindra. Jej uszkodzenie może prowadzić do różnych problemów, z których jednym z najbardziej charakterystycznych jest przedostawanie się oleju do układu chłodzenia. Dzieje się tak, ponieważ uszczelka pełni rolę bariery, oddzielając różne płyny eksploatacyjne. Gdy ulega uszkodzeniu, olej może przenikać do układu chłodzenia, co skutkuje zanieczyszczeniem płynu chłodzącego. W praktyce objawia się to obecnością oleju w zbiorniku wyrównawczym lub tzw. „majonezem” na korku wlewu oleju. Takie zjawisko jest niebezpieczne, ponieważ może prowadzić do przegrzania silnika, zmniejszenia efektywności chłodzenia oraz poważniejszych uszkodzeń mechanicznych. W branży motoryzacyjnej, szybkie zdiagnozowanie i naprawa uszkodzonej uszczelki pod głowicą są kluczowe dla utrzymania sprawności pojazdu. Standardy serwisowe zalecają regularne sprawdzanie stanu płynów eksploatacyjnych oraz monitorowanie potencjalnych objawów, aby zapobiec poważniejszym awariom.

Pytanie 4

Podczas demontażu łożysk z uszczelniającym pierścieniem, siłę należy kierować bezpośrednio na

A. elementy toczne łożyska
B. zdejmowany pierścień łożyska
C. wszystkie części łożyska
D. niedemontowalny pierścień łożyska
Wybór innych odpowiedzi może prowadzić do poważnych błędów w procesie demontażu łożysk. Próba oddziaływania siłą na niezdejmowany pierścień łożyska jest niebezpieczna, ponieważ może prowadzić do uszkodzenia całej struktury łożyska oraz osadzenia elementów mocujących. W przypadku działania na wszystkie elementy łożyska, siły mogą być nierównomierne, co zwiększa ryzyko deformacji lub zniszczenia zarówno łożyska, jak i wału, na którym jest zamocowane. Oddziaływanie na elementy toczne łożyska również jest niewłaściwe, gdyż są one zaprojektowane do pracy w specyficznych warunkach obciążeniowych, a ich usunięcie bez odpowiedniego wsparcia może prowadzić do ich trwałego uszkodzenia. Te nieprawidłowe podejścia są często wynikiem braku znajomości podstawowych zasad budowy i działania łożysk oraz nieprzestrzegania standardów demontażu, które zalecają kierowanie siły na konkretne, zdejmowane elementy. Dlatego kluczowe jest stosowanie się do zaleceń producentów oraz ogólnych norm branżowych, aby uniknąć kosztownych napraw i utraty funkcjonalności maszyn.

Pytanie 5

W przypadku, gdy zużycie gładzi tulei cylindrowej jest mniejsze niż kolejny wymiar naprawczy, poddaje się ją regeneracji poprzez

A. azotowanie
B. roztaczanie
C. nawęglanie
D. hartowanie
Roztaczanie jest procesem technologicznym mającym na celu przywrócenie odpowiednich wymiarów tulei cylindrowej, które uległy zużyciu. Proces ten polega na usunięciu zużytej warstwy materiału i nadaniu nowego, precyzyjnego kształtu. Jest to szczególnie ważne w kontekście elementów silnikowych, gdzie precyzyjne dopasowanie ma kluczowe znaczenie dla ich prawidłowego działania. Roztaczanie można przeprowadzać na różnych maszynach, takich jak tokarki czy frezarki, a dobór narzędzi i parametrów obróbczych jest uzależniony od materiału tulei oraz wymagań jakościowych. W praktyce, regeneracja przez roztaczanie pozwala na znaczne wydłużenie żywotności elementów, co jest zgodne z zasadami zrównoważonego rozwoju i oszczędności materiałowych w przemyśle. Warto podkreślić, że roztaczanie jest standardową metodą regeneracji w branży motoryzacyjnej oraz w przemyśle maszynowym, co potwierdzają liczne normy i procedury opracowane przez profesjonalne organizacje.

Pytanie 6

Filtry oleju zamontowane w pojeździe powinny

A. zostać wyrzucone do pojemnika na odpady komunalne
B. zostać zakopane w ziemi
C. zostać spalone w piecu
D. zostać przekazane do utylizacji
Oddanie filtrów oleju do utylizacji jest kluczowym krokiem w dbaniu o środowisko. Filtry oleju zawierają zanieczyszczenia, takie jak metale ciężkie i związki chemiczne, które mogą być szkodliwe dla ekosystemów, jeśli zostaną niewłaściwie usunięte. Utylizacja filtrów olejowych powinna być przeprowadzana zgodnie z obowiązującymi przepisami prawa i normami dotyczącymi odpadów niebezpiecznych. Wiele warsztatów samochodowych oraz stacji obsługi pojazdów oferuje usługi odbioru i utylizacji filtrów olejowych, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej. Prawidłowa utylizacja filtrów zapobiega ich przedostawaniu się do środowiska, co może prowadzić do zanieczyszczenia gleby i wód gruntowych. Z tego powodu istotne jest, aby każdy właściciel pojazdu zdawał sobie sprawę z tej odpowiedzialności i zawsze oddawał zużyte filtry oleju w odpowiednie miejsca, co również wspiera recykling materiałów i przyczynia się do ochrony środowiska.

Pytanie 7

EGR to skrót oznaczający system

A. zmiennych faz rozrządu
B. wspomagania układu kierowniczego
C. recyrkulacji spalin
D. wspomagania układu hamulcowego
EGR, czyli układ recyrkulacji spalin, odgrywa kluczową rolę w redukcji emisji szkodliwych gazów w silnikach spalinowych. Działa na zasadzie wprowadzania części spalin z powrotem do komory spalania, co obniża temperaturę spalania i zmniejsza powstawanie tlenków azotu (NOx). Zastosowanie EGR jest zgodne z normami emisji, takimi jak Euro 6, które wymagają od producentów samochodów wdrażania technologii redukujących emisję zanieczyszczeń. Przykładowo, w silnikach diesel'owych, efektywność układu EGR może zmniejszyć emisję NOx nawet o 30-50%, co znacząco wpływa na jakość powietrza. W praktyce, system EGR może być realizowany na różne sposoby, w tym poprzez EGR chłodzony, który dodatkowo obniża temperaturę spalin przed ich ponownym wprowadzeniem do silnika, co zwiększa wydajność. Z tego względu, zrozumienie działania EGR jest niezbędne dla inżynierów zajmujących się projektowaniem i optymalizacją silników spalinowych oraz w kontekście przepisów dotyczących ochrony środowiska.

Pytanie 8

Co oznacza kod SAE 80W-90?

A. płynu hamulcowego
B. oleju silnikowego
C. oleju skrzyni biegów
D. płynu chłodniczego
Olej SAE 80W-90 to coś, co stosuje się w skrzyniach biegów. Oznaczenie 'SAE' mówi nam, że przeszedł testy według norm stowarzyszenia inżynierów motoryzacyjnych, więc możemy być pewni, że jest ok. Te liczby '80W' mówią o tym, jak olej się zachowuje w zimie – im mniejsza liczba, tym lepiej się leje w chłodniejsze dni. Z kolei '90' to lepkość w wyższych temperaturach, co jest ważne, żeby skrzynia biegów dobrze działała, nawet gdy dostaje w kość. Używanie oleju SAE 80W-90 to dobry wybór, bo chroni mechanizmy i zmniejsza ich zużycie. Można go spotkać w manualnych skrzyniach biegów, zarówno w osobówkach, jak i autach dostawczych, gdzie ważne jest, żeby olej zachowywał odpowiednią lepkość, by wszystko działało jak należy.

Pytanie 9

Podczas wymiany szyby w pojeździe należy użyć szyby

A. zalecanej przez autoryzowany serwis.
B. ze znakiem homologacji.
C. polecanej przez niezależny warsztat.
D. z logo producenta samochodu.
Wybór szyby rekomendowanej przez autoryzowany serwis może wydawać się rozsądny, jednak nie zawsze gwarantuje to, że produkt spełnia wymagane normy bezpieczeństwa. Wiele autoryzowanych serwisów stosuje różne firmy dostarczające szyby, a niektóre z nich mogą oferować komponenty, które nie mają odpowiednich certyfikatów homologacyjnych. Z kolei zalecenie niezależnego warsztatu może prowadzić do użycia zamienników, które nie są przetestowane pod kątem wytrzymałości i jakości, co z kolei może wpłynąć na bezpieczeństwo użytkowników pojazdu. Użycie szyby z logo producenta również nie jest wystarczającym zabezpieczeniem; nie każda szyba, nawet od producenta, ma homologację i spełnia wszystkie normy. Może się zdarzyć, że oryginalne komponenty nie są zgodne z aktualnymi normami bezpieczeństwa, co stawia pod znakiem zapytania ich efektywność. Szyby ze znakiem homologacji są jedynym pewnym wyborem, ponieważ zapewniają, że zostały poddane rygorystycznym testom i spełniają wszystkie wymogi regulacyjne. Dlatego ważne jest, aby przy wymianie szyby kierować się nie tylko marką, ale przede wszystkim spełnianiem norm oraz certyfikacją, co jest kluczowe dla ogólnego bezpieczeństwa na drodze.

Pytanie 10

Układ hamulcowy należy odpowietrzyć

A. rozpoczynając od koła najdalszego od pompy hamulcowej
B. rozpoczynając od koła najbliższego pompie hamulcowej
C. w tym samym kierunku co wskazówki zegara
D. w przeciwnym kierunku do wskazówek zegara
Odpowietrzanie układu hamulcowego należy przeprowadzać zaczynając od najdalszego koła od pompy hamulcowej, ponieważ w takim układzie powietrze, które ma tendencję do gromadzenia się w najdalszych częściach systemu, zostanie usunięte w pierwszej kolejności. Ta metoda zapewnia, że wszelkie zanieczyszczenia i powietrze są eliminowane w sposób efektywny, co umożliwia uzyskanie pełnej efektywności hamowania. Standardowe praktyki w branży motoryzacyjnej wskazują, że odpowiednie odpowietrzenie układu hamulcowego nie tylko poprawia jego wydajność, ale także zwiększa bezpieczeństwo pojazdu. W wielu warsztatach korzysta się z instrukcji producenta, które zazwyczaj zalecają tę metodę. Przykładowo, przy odpowietrzaniu układu hamulcowego w samochodach osobowych, technicy często rozpoczynają od tylnego koła po przeciwnej stronie od pompy, aby uniknąć ponownego wprowadzenia powietrza do systemu. Prawidłowo wykonane odpowietrzanie skutkuje sztywniejszym pedale hamulca oraz lepszą reakcją na nacisk.

Pytanie 11

Gdy u pracownika pojawią się pierwsze oznaki zatrucia tlenkiem węgla (ból głowy, uczucie zmęczenia, duszność oraz nudności), co należy zrobić w pierwszej kolejności?

A. wywołać u poszkodowanego wymioty
B. wyprowadzić poszkodowanego na świeże powietrze
C. umieścić poszkodowanego w bezpiecznej pozycji do czasu przybycia lekarza
D. podać poszkodowanemu środki przeciwbólowe
Wyprowadzenie poszkodowanego na świeżym powietrzu to bardzo ważny krok, jeśli podejrzewasz, że ktoś mógł się zatruć tlenkiem węgla. Ten gaz jest bezbarwny i nie ma zapachu, a może naprawdę poważnie zaszkodzić zdrowiu, nawet doprowadzić do tragedii. Gdy pojawiają się pierwsze objawy, takie jak ból głowy, duszności czy nudności, natychmiast trzeba przenieść osobę do dobrze wentylowanego miejsca. Na przykład, jeśli ktoś czuje się źle w zamkniętym pomieszczeniu, wyprowadzenie go na zewnątrz może pomóc w poprawie dostępu do tlenu i zmniejszyć tym samym stężenie tlenku węgla w organizmie. Nie można czekać na pomoc medyczną, tylko trzeba działać od razu. Dobrze jest najpierw zapewnić świeże powietrze, a potem wezwać pomoc, tak żeby specjaliści ocenić stan osoby i podjąć odpowiednie kroki. Moim zdaniem, wiedza o tym, jak się zachować w takich sytuacjach, jest super ważna.

Pytanie 12

Gdzie stosowany jest odśrodkowy regulator prędkości obrotowej?

A. w paliwowej pompie wysokiego ciśnienia w systemie Common Rail
B. w przeponowej pompie paliwowej silnika z zapłonem iskrowym
C. w rzędowej pompie wtryskowej
D. w pompie tłoczkowej o niskim ciśnieniu
Rzędowa pompa wtryskowa jest kluczowym elementem systemu zasilania silników diesla, a zastosowanie odśrodkowego regulatora prędkości obrotowej w tej konstrukcji ma na celu zapewnienie optymalnej wydajności i precyzyjnego dawkowania paliwa. Odśrodkowy regulator działa na zasadzie wykorzystania siły odśrodkowej, co przekłada się na automatyczne dostosowanie dawki paliwa w zależności od prędkości obrotowej silnika. Dzięki temu, pompa wtryskowa może dostarczać odpowiednią ilość paliwa w zależności od aktualnych warunków pracy, co wpływa na oszczędność paliwa, redukcję emisji spalin oraz poprawę osiągów silnika. W praktyce, takie rozwiązania są zgodne z najlepszymi praktykami branżowymi, które zalecają zastosowanie regulacji w systemach wtryskowych w celu zwiększenia efektywności energetycznej i zmniejszenia wpływu na środowisko. Przykładem może być nowoczesna technologia Common Rail, w której dokładne dawkowanie paliwa jest kluczowe dla osiągnięcia wysokiej sprawności silnika.

Pytanie 13

Jasnobłękitny kolor spalin wydobywających się z układu wydechowego wskazuje

A. na zbyt niską temperaturę pracy silnika
B. na przedostawanie się cieczy chłodzącej do cylindrów
C. na nieszczelność przylgni zaworowych
D. na zbyt duży luz między tłokiem a cylindrem
Wiele osób może błędnie interpretować jasnobłękitny kolor spalin jako symptom zbyt niskiej temperatury pracy silnika. W rzeczywistości, niska temperatura pracy silnika zazwyczaj objawia się innymi symptomami, takimi jak zwiększone zużycie paliwa czy gorsza dynamika pojazdu. Zbyt niska temperatura pracy nie wpływa bezpośrednio na kolor spalin, a raczej na ich gęstość i skład chemiczny. Warto zauważyć, że silniki są projektowane z myślą o osiągnięciu optymalnej temperatury pracy, co pozwala na efektywne spalanie paliwa i minimalizację emisji zanieczyszczeń. Kolejną mylną interpretacją może być myślenie, że jasnobłękitne spaliny świadczą o dostawaniu się cieczy chłodzącej do cylindrów. W takim przypadku, typowym objawem byłby różowy lub niebieskawy dym, ale niekoniecznie jasno-niebieski. Problemy z nieszczelnością przylgni zaworowych, które mogą generować dym w kolorze niebieskim, są również rzadziej spotykane i mają inne objawy, jak na przykład nieszczelności w układzie dolotowym. Konsekwencją tych błędnych analiz jest nie tylko niezrozumienie działania silnika, ale także ryzyko podejmowania nieodpowiednich działań naprawczych, co może prowadzić do poważniejszych usterek.

Pytanie 14

Czym jest honowanie?

A. metoda obróbki plastycznej
B. metoda obróbki wygładzającej
C. metoda obróbki cieplnej
D. metoda obróbki chemicznej
Honowanie to proces obróbczy, który ma na celu wygładzenie i poprawę jakości wykończenia powierzchni w otworach cylindrycznych, jak również w innych kształtach. Używa się go głównie do osiągania wysokiej precyzji wymiarowej i gładkości powierzchni, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak produkcja silników, skrzyń biegów, czy elementów hydraulicznych. Proces honowania polega na użyciu narzędzi skrawających, które wykonują ruch posuwisto-zwrotny, co pozwala na usunięcie mikrowad i nadmiaru materiału. Przykłady zastosowania honowania obejmują przygotowanie otworów cylindrycznych w silnikach spalinowych, gdzie wymagana jest duża dokładność, oraz w produkcji wałów korbowych. Zgodnie z dobrymi praktykami branżowymi, honowanie jest realizowane na maszynach honujących, które są zaprojektowane tak, aby zapewnić stałą kontrolę nad parametrami obróbczy, co przekłada się na powtarzalność i jakość wytwarzanych elementów. W standardach przemysłowych, takich jak ISO 9001, honowanie jest uznawane za kluczowy proces w utrzymaniu wysokiej jakości produkcji.

Pytanie 15

Który z podanych komponentów zawieszenia ma funkcję sprężynującą?

A. Resor piórowy
B. Zakończenie drążka kierowniczego
C. Tłumik
D. Łącznik stabilizatora
Resor piórowy jest kluczowym elementem zawieszenia, który pełni funkcję sprężynującą w pojazdach. Jego zadaniem jest absorpcja sił działających na pojazd podczas jazdy, co poprawia komfort podróżowania oraz stabilność pojazdu. Resory piórowe składają się z kilku warstw sprężystych, które rozkładają obciążenia na większą powierzchnię, co przyczynia się do ich efektywności. W praktyce, resory piórowe są często stosowane w pojazdach użytkowych oraz w samochodach terenowych, gdzie wymagane są wysokie osiągi w trudnych warunkach. Dobrą praktyką jest regularne sprawdzanie stanu resorów, ponieważ ich zużycie może prowadzić do pogorszenia właściwości jezdnych oraz zwiększenia ryzyka awarii. W standardach branżowych, jak ISO 9001, zaleca się prowadzenie systematycznej konserwacji oraz wymiany elementów zawieszenia w celu zapewnienia bezpieczeństwa i wydajności pojazdu.

Pytanie 16

W przypadku silnika czterosuwowego, gdy prędkość obrotowa wału korbowego wynosi 3000 obr/min, jaka jest prędkość obrotowa wałka rozrządu?

A. 6 000 obr/min
B. 1 500 obr/min
C. 750 obr/min
D. 3 000 obr/min
Jak się patrzy na prędkości w silniku 4-suwowym, trzeba zrozumieć, jak działa wał korbowy i wałek rozrządu. W tych silnikach wał korbowy robi pełny obrót, a wałek rozrządu tylko pół. Więc, jeśli wał korbowy jest na 3000 obr/min, wałek powinien być na 1500 obr/min. Jak ktoś wybiera 750 obr/min, to może myśleć, że wałek jest jeszcze wolniejszy, a to nie ma sensu. Z kolei 3000 obr/min sugeruje, że wałek chodzi tak samo jak wał korbowy, co jest po prostu błędne. 6000 obr/min znowu pokazuje, że myślą, że wałek powinien mieć więcej obrotów, a to też jest zła droga, bo za szybkie kręcenie wałka może spowodować uszkodzenia. Widać, że niektórzy nie rozumieją, jak to wszystko powinno działać razem, a takie myślenie może prowadzić do problemów w silniku, jak źle ustawiony rozrząd, co wpływa na jego wydajność. Moim zdaniem, lepiej zacząć od podstaw, żeby uniknąć takich zamieszania.

Pytanie 17

Układ, który napełnia się płynem eksploatacyjnym oznaczonym jako R 134a, to

A. klimatyzacji
B. hamulcowy
C. wspomagania
D. chłodzący
Odpowiedź 'klimatyzacji' jest prawidłowa, ponieważ R 134a jest jednym z najpopularniejszych czynników chłodniczych stosowanych w systemach klimatyzacji w pojazdach. R 134a, chemicznie znany jako tetrafluoroetan, jest gazem o niskiej toksyczności i wpływie na środowisko, co czyni go odpowiednim wyborem w kontekście globalnych regulacji dotyczących ochrony atmosfery. W systemach klimatyzacji, R 134a jest wykorzystywany do transportu ciepła z wnętrza pojazdu na zewnątrz, umożliwiając schłodzenie kabiny. Proces ten polega na odparowaniu czynnika chłodniczego w parowniku, który absorbuje ciepło z wnętrza pojazdu, a następnie sprężeniu go w sprężarce, co powoduje wzrost temperatury i ciśnienia. Po skropleniu w skraplaczu, czynnik wraca do postaci cieczy i cykl się powtarza. Właściwe napełnienie układu czynnikiem R 134a i jego regularna konserwacja są kluczowe dla efektywności energetycznej systemu oraz komfortu użytkowników pojazdu.

Pytanie 18

Numer VIN (Vehicle Identification Number) pojazdu jest zbudowany

A. z 18 znaków
B. z 10 znaków
C. z 14 znaków
D. z 17 znaków
Numer identyfikacyjny pojazdu VIN (Vehicle Identification Number) rzeczywiście składa się z 17 znaków. Jest to międzynarodowy standard, który został wprowadzony w 1981 roku, aby umożliwić jednoznaczną identyfikację pojazdów. Struktura VIN zawiera różnorodne informacje, takie jak producent, typ pojazdu, miejsce produkcji, rok produkcji oraz unikalny numer seryjny. Przykładowo, pierwsze trzy znaki VIN przedstawiają WMI (World Manufacturer Identifier), który identyfikuje producenta i jego lokalizację. Kolejne pięć znaków to VDS (Vehicle Descriptor Section), który określa cechy pojazdu, takie jak jego model, silnik oraz inne parametry techniczne. Ostatnie dziewięć znaków to VIS (Vehicle Identifier Section), który jest unikalnym numerem pojazdu. Dzięki tej standaryzacji możliwe jest łatwe śledzenie historii pojazdów, co jest kluczowe w kontekście wymiany informacji pomiędzy producentami, dealerami oraz organami rejestracyjnymi.

Pytanie 19

Pomiar jałowego skoku pedału hamulca przeprowadza się przy użyciu

A. płytek referencyjnych
B. przymiaru kreskowego
C. kątomierza
D. mikrometru
Pomiar jałowego skoku pedału hamulca dokonuje się za pomocą przymiaru kreskowego, ponieważ jest to narzędzie zapewniające dokładność i precyzję w pomiarach. Przymiar kreskowy, znany również jako suwmiarka, pozwala na mierzenie wymiarów z dużą dokładnością, co jest kluczowe w kontekście regulacji układów hamulcowych. Dzięki zastosowaniu przymiaru kreskowego, technik może łatwo określić, czy skok pedału hamulca mieści się w normach przewidzianych przez producenta pojazdu. W praktyce stosuje się go do pomiarów w warsztatach samochodowych, gdzie precyzyjne dostosowanie układów hamulcowych ma kluczowe znaczenie dla bezpieczeństwa. Zgodnie z normami branżowymi, regularne pomiary i kontrola skoku pedału hamulca są zalecane w celu utrzymania właściwego stanu technicznego pojazdów. Dodatkowo, umiejętność posługiwania się przymiarem kreskowym jest niezbędna w pracy każdego mechanika, co podkreśla znaczenie tego narzędzia w codziennych czynnościach serwisowych.

Pytanie 20

Co należy sprawdzić i ewentualnie wymienić, gdy w pojeździe podczas startu występują zauważalne wibracje silnika oraz drgania?

A. opony
B. tarcze hamulcowe
C. amortyzatory
D. tarcze sprzęgła z dociskiem
Odpowiedź dotycząca tarczy sprzęgła z dociskiem jest prawidłowa, ponieważ drgania silnika oraz wibracje podczas ruszania z miejsca mogą być spowodowane niewłaściwym działaniem sprzęgła. Tarcza sprzęgła i docisk są kluczowymi komponentami w układzie przeniesienia napędu, a ich uszkodzenie może prowadzić do nieefektywnego połączenia pomiędzy silnikiem a skrzynią biegów. W przypadku, gdy tarcza jest zużyta lub uszkodzona, może dochodzić do poślizgu, co objawia się widocznymi wibracjami. Zastosowanie sprzęgła o wysokiej jakości oraz regularne kontrole stanu technicznego są zgodne z dobrymi praktykami w motoryzacji. Zaleca się, aby mechanicy regularnie sprawdzali stan sprzęgła, zwłaszcza w pojazdach intensywnie eksploatowanych, by uniknąć poważniejszych uszkodzeń. Wymiana tarczy sprzęgła jest złożonym procesem, który powinien być przeprowadzony przez wykwalifikowanego specjalistę, aby zapewnić niezawodność i bezpieczeństwo pojazdu.

Pytanie 21

W hydraulicznej instalacji sterowania sprzęgłem znajduje się

A. olej ATF 220
B. płyn R134a
C. olej silnikowy
D. płyn hamulcowy
Hydrauliczny układ sterowania sprzęgłem jest kluczowym elementem w nowoczesnych samochodach, który umożliwia płynne przełączanie biegów. Prawidłowe działanie tego układu opiera się na zastosowaniu płynu hamulcowego, który charakteryzuje się odpowiednimi właściwościami, takimi jak stabilność temperaturowa, niskie właściwości kompresyjne oraz odporność na działanie wysokich ciśnień. Płyn hamulcowy ma również właściwości smarne, co zapobiega zużywaniu się uszczelek i innych elementów układu. W praktyce, jeśli płyn hamulcowy nie jest używany, mogą wystąpić problemy z przekazywaniem siły, co skutkuje trudnościami w operowaniu sprzęgłem. Standardy branżowe, takie jak DOT 3, DOT 4 czy DOT 5.1, określają wymagania dotyczące jakości i właściwości płynów hamulcowych, co jest istotne dla zapewnienia bezpieczeństwa i trwałości układów hydraulicznych. W związku z tym, stosowanie odpowiedniego płynu hamulcowego w układzie sterowania sprzęgłem jest niezbędne dla sprawności oraz długowieczności całego systemu.

Pytanie 22

Stopień sprężania w silnikach spalinowych definiujemy jako stosunek objętości

A. całkowitej cylindra do objętości komory spalania
B. komory spalania do objętości całkowitej cylindra
C. skokowej do objętości całkowitej cylindra
D. całkowitej cylindra do objętości skokowej
Stopień sprężania w silnikach spalinowych definiuje się jako stosunek objętości całkowitej cylindra do objętości komory spalania. Prawidłowe zrozumienie tego pojęcia jest kluczowe dla oceny wydajności silnika oraz jego pracy. W praktyce, wyższy stopień sprężania pozwala na lepsze wykorzystanie mieszanki paliwowo-powietrznej, co skutkuje zwiększoną mocą oraz efektywnością energetyczną. Przykładowo, w silnikach wysokoprężnych, które zazwyczaj charakteryzują się dużo wyższymi wartościami stopnia sprężania niż silniki benzynowe, proces sprężania powietrza w cylindrze prowadzi do jego nagrzania, co umożliwia zapłon paliwa bez użycia świecy zapłonowej. W branży motoryzacyjnej standardy dotyczące stopnia sprężania są ściśle regulowane, a inżynierowie projektujący silniki często dążą do optymalizacji tego parametru, aby osiągnąć jak najlepsze parametry pracy silnika oraz spełnić normy emisji spalin.

Pytanie 23

Przy użyciu urządzenia BHE-5 możliwe jest zdiagnozowanie systemu

A. kierowniczego
B. hamulcowego
C. napędowego
D. zapłonowego
Urządzenie BHE-5 jest specjalistycznym narzędziem służącym do diagnozowania systemów hamulcowych w pojazdach. Jego główną funkcją jest ocena skuteczności działania układu hamulcowego poprzez analizę różnych parametrów, takich jak ciśnienie w układzie, czas reakcji oraz efektywność samych hamulców. Używając BHE-5, mechanicy są w stanie dokładnie zlokalizować wszelkie nieprawidłowości, co przekłada się na zwiększenie bezpieczeństwa na drodze. Standardy branżowe, takie jak ISO 9001, kładą duży nacisk na jakość diagnostyki, co czyni używanie tego typu urządzeń niezbędnym w warsztatach samochodowych. Przykładem zastosowania BHE-5 może być sytuacja, w której klient zgłasza problemy z wydolnością hamulców. Mechanicy, korzystając z tego urządzenia, mogą szybko zidentyfikować przyczyny problemu i zaproponować odpowiednie rozwiązania, co pozwoli uniknąć poważniejszych awarii i zwiększy komfort jazdy.

Pytanie 24

Aby przeprowadzić regulację luzu zaworowego, potrzebne jest

A. mikrometr
B. szczelinomierz
C. passametr
D. głębokościomierz
Szczelinomierz jest narzędziem pomiarowym wykorzystywanym do precyzyjnego ustalania luzu zaworowego w silnikach spalinowych. Luz zaworowy jest kluczowym parametrem, który wpływa na prawidłową pracę silnika, jego osiągi oraz efektywność. Użycie szczelinomierza pozwala na dokładne zmierzenie odstępu między końcem zaworu a jego gniazdem, co jest niezbędne do optymalizacji pracy silnika. Przykładowo, w silnikach z mechanicznymi zaworami, zbyt mały luz może prowadzić do przegrzewania i uszkodzenia zaworów, natomiast zbyt duży luz może powodować hałas i obniżoną efektywność spalania. Zgodnie z dobrymi praktykami branżowymi, regulację luzu zaworowego należy przeprowadzać cyklicznie, zgodnie z harmonogramem serwisowym producenta, co zapewnia długotrwałą i bezawaryjną pracę silnika. Użycie szczelinomierza jest zatem kluczowe, aby zapewnić odpowiednią precyzję i jakość wykonania tej regulacji.

Pytanie 25

Czujnik zegarowy ma zastosowanie w pomiarze

A. średnicy czopa wału korbowego
B. bicia osiowego tarczy hamulcowej
C. średnicy trzonka zaworu
D. grubości okładziny klocka hamulcowego
Czujnik zegarowy, znany również jako wskaźnik zegarowy lub wskaźnik mikrometryczny, jest precyzyjnym narzędziem pomiarowym, które służy do mierzenia bicia osiowego tarczy hamulcowej. Ten typ czujnika wykorzystywany jest w mechanice precyzyjnej do oceny niewielkich odchyleń w poziomie lub w pionie. W przypadku tarczy hamulcowej, monitorowanie bicia osiowego jest kluczowe, ponieważ nadmierne bicie może prowadzić do nierównomiernego zużycia klocków hamulcowych oraz obniżenia efektywności hamowania. Standardy branżowe, takie jak normy SAE (Society of Automotive Engineers) oraz ISO, zalecają regularne kontrole bicia osiowego elementów układu hamulcowego, aby zapewnić maksymalne bezpieczeństwo i wydajność. Przykładem zastosowania czujnika zegarowego może być diagnostyka stanu układu hamulcowego w warsztatach samochodowych, gdzie technicy wykorzystują to narzędzie do oceny i eliminacji problemów z drganiami tarcz, co przedłuża żywotność komponentów oraz zwiększa bezpieczeństwo pojazdów.

Pytanie 26

Skrót TPMS na desce rozdzielczej samochodu oznacza, że pojazd jest wyposażony w

A. system monitorowania ciśnienia w oponach kół
B. układ przeciwpoślizgowy
C. diagnostyczne złącze komunikacyjne
D. system sterowania aktywnym zawieszeniem
Skrót TPMS, czyli Tire Pressure Monitoring System, oznacza system monitorowania ciśnienia w oponach kół. Jego głównym celem jest zapewnienie bezpieczeństwa i optymalnej wydajności pojazdu poprzez monitorowanie ciśnienia w oponach podczas jazdy. Niski poziom ciśnienia w oponach może prowadzić do zwiększonego zużycia paliwa, pogorszenia przyczepności oraz większego ryzyka uszkodzenia opon. W przypadku wykrycia niskiego ciśnienia, system TPMS aktywuje kontrolkę na tablicy rozdzielczej, co informuje kierowcę o konieczności sprawdzenia i ewentualnego uzupełnienia ciśnienia. Zgodnie z regulacjami prawnymi w wielu krajach, w tym w Unii Europejskiej i Stanach Zjednoczonych, nowe pojazdy muszą być wyposażone w takie systemy, co podkreśla ich znaczenie w poprawie bezpieczeństwa na drogach. W praktyce, regularne monitorowanie ciśnienia opon za pomocą TPMS może przyczynić się do przedłużenia ich żywotności i poprawy komfortu jazdy, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 27

Wymiana 4 dm3 oleju silnikowego i filtra oleju trwa 1 godzinę. Na podstawie fragmentu cennika ustal koszt usługi.

Fragment cennika

WyszczególnienieJednostka miaryCena w zł
Robocziznaroboczogodzina50,00
Olej silnikowy1dm³20,00
Filtr olejusztuka20,00

A. 150,00 zł
B. 110,00 zł
C. 90,00 zł
D. 130,00 zł
Odpowiedź 150,00 zł jest poprawna, ponieważ dokładnie odzwierciedla całkowity koszt związany z wymianą oleju silnikowego i filtra. Koszt roboczogodziny wynosi 50,00 zł, co jest standardowym stawka w branży motoryzacyjnej, uwzględniającym wynagrodzenie technika oraz ogólne koszty operacyjne warsztatu. Następnie, do wymiany potrzebne są 4 dm³ oleju silnikowego, a przy cenie za 1 dm³ wynoszącej 20,00 zł, koszt oleju wyniesie 80,00 zł. Koszt filtra oleju, standardowo wynoszący 20,00 zł, również musi być uwzględniony w całkowitym kosztorysie. Sumując wszystkie składniki: 50,00 zł (robocizna) + 80,00 zł (olej) + 20,00 zł (filtr), otrzymujemy 150,00 zł. Takie podejście do kalkulacji kosztów jest zgodne z dobrymi praktykami w branży, co pozwala na przejrzystość w ustalaniu cen usług motoryzacyjnych, a także umożliwia klientom dokładne zrozumienie, za co płacą.

Pytanie 28

Zjawisko, w którym siła hamująca osłabia się, a następnie zanika w wyniku przegrzania, na przykład podczas długotrwałego hamowania, to

A. pochłanianie
B. przyczepność
C. honowanie
D. fading
Fading to proces, który zachodzi w układach hamulcowych, polegający na osłabieniu siły hamującej w wyniku ich przegrzania. W praktyce oznacza to, że podczas długotrwałego hamowania, na przykład w trakcie intensywnego zjazdu ze wzniesienia, materiały hamulcowe mogą osiągnąć temperatury, które prowadzą do zmiany ich właściwości. W przypadku hamulców tarczowych, nadmierne ciepło może powodować, że klocki hamulcowe tracą skuteczność, co jest szczególnie niebezpieczne w sytuacjach wymagających dużej precyzji i odpowiedzialności, jak np. na torze wyścigowym czy w transporcie publicznym. W branży motoryzacyjnej stosuje się różne materiały, takie jak węgiel lub ceramika, które mają lepsze właściwości cieplne, zmniejszając ryzyko fadingu. Praktyczne zrozumienie tego zjawiska jest kluczowe dla inżynierów projektujących systemy hamulcowe oraz dla kierowców, którzy muszą być świadomi ograniczeń swoich pojazdów, szczególnie w trudnych warunkach drogowych.

Pytanie 29

Przegub homokinetyczny zapewnia

A. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów nie są w tej samej linii
B. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów są w tej samej linii
C. stałą prędkość obrotową oraz kątową wałów napędzającego i napędzanego
D. zmienną prędkość obrotową a także kątową wałów napędzającego i napędzanego
Przegub równobieżny, czyli przegub homokinetyczny, jest naprawdę ważnym elementem w układach napędowych, szczególnie w autach. Jego największą zaletą jest to, że pozwala na zachowanie stałej prędkości obrotowej, niezależnie od tego, jak są ustawione osie. Dlatego właśnie wykorzystuje się go w autach osobowych i różnych maszynach. Na przykład, w napędach na cztery koła, te przeguby pozwalają na pokonywanie zakrętów bez straty mocy, co wpływa na lepszą stabilność i przyczepność. Przeguby te są też projektowane według branżowych standardów, jak ISO 9001, co daje pewność ich jakości. Gdyby osie obrotu były nierównoległe, inne typy przegubów mogłyby wprowadzać wibracje lub zmieniać prędkość, co mogłoby zaszkodzić systemowi napędowemu.

Pytanie 30

Jakie substancje wykorzystuje się do konserwacji przegubów krzyżakowych?

A. oleju przekładniowego
B. oleju silnikowego
C. smaru stałego
D. silikonu
Smar stały jest najczęściej stosowanym środkiem do konserwacji przegubów krzyżakowych ze względu na jego zdolność do długotrwałego smarowania oraz skutecznej ochrony przed zużyciem i korozją. Przeguby krzyżakowe, które są kluczowymi elementami układów napędowych w pojazdach i maszynach, wymagają regularnego smarowania, aby zapewnić ich prawidłowe funkcjonowanie i wydajność. Smary stałe, zwłaszcza te o wysokiej lepkości i odporności na wysokie temperatury, doskonale sprawdzają się w trudnych warunkach pracy, redukując tarcie i minimalizując ryzyko uszkodzenia. W praktyce użycie smaru stałego w przegubach krzyżakowych polega na jego aplikacji w sposób zapewniający równomierne pokrycie oraz dotarcie do wszystkich ruchomych części. Zgodnie z normami branżowymi, takimi jak ISO 6743, ważne jest, aby dobierać smar odpowiedni do specyfikacji producenta, co wpływa na żywotność i efektywność pracy przegubów.

Pytanie 31

Pojęcia takie jak: kąt wyprzedzenia osi sworznia zwrotnicy oraz kąt nachylenia osi sworznia zwrotnicy są powiązane z systemem

A. napędowym
B. kierowniczym
C. jezdnym
D. hamulcowym
Odpowiedzi dotyczące układu napędowego, jezdnego czy hamulcowego są po prostu nieprawidłowe, bo skupiają się na zupełnie innych rzeczach w budowie i działaniu pojazdu. Układ napędowy to ten, który przenosi moc z silnika na koła, więc jego elementy, jak skrzynia biegów czy wały napędowe, nie mają nic wspólnego z kątami, o których mówisz. Kąt wyprzedzenia i kąt pochylenia nie wpływają na to, jak samochód przyspiesza. Z drugiej strony, układ jezdny dotyczy zawieszenia i kontaktu auta z nawierzchnią. Choć kąt pochylenia osi sworznia w jakiś sposób może wpływać na zawieszenie, to jednak nie jest to kluczowy parametr dla całego układu. A układ hamulcowy, który zatrzymuje auto, również nie ma z tym związku, bo te kąty bardziej dotyczą sterowności i stabilności. Mylenie tych układów i ich roli to częsty błąd, który może prowadzić do błędnych wniosków o tym, jak one działają i jak je ustawić.

Pytanie 32

Niska moc hamowania pojazdu może wynikać z

A. zbyt dużych luzów w zawieszeniu
B. braku wspomagania układu kierowniczego
C. wycieku z cylinderka hamulcowego
D. zużycia łożysk kół
Odpowiedź dotycząca wycieku z cylinderka hamulcowego jako przyczyny niedostatecznej siły hamowania pojazdu jest poprawna. Cylinder hamulcowy jest kluczowym elementem układu hamulcowego, a jego uszkodzenia mogą prowadzić do znacznych strat ciśnienia płynu hamulcowego. W przypadku wycieku, ciśnienie generowane podczas naciśnięcia pedału hamulca nie jest wystarczające do skutecznego hamowania. Praktycznie oznacza to, że siła przenoszona na klocki hamulcowe jest zbyt niska, co może prowadzić do wydłużenia drogi hamowania lub całkowitej utraty możliwości hamowania. W celu zapewnienia sprawności układu hamulcowego, regularne inspekcje oraz wymiany płynów hamulcowych są niezbędne i powinny być realizowane zgodnie z zaleceniami producenta pojazdu oraz standardami branżowymi, takimi jak normy SAE. Przykładem dobrej praktyki jest okresowe sprawdzanie poziomu płynu hamulcowego oraz wizualna inspekcja cylinderków hamulcowych w celu wykrycia ewentualnych nieszczelności.

Pytanie 33

Jak długo trwa całkowita regulacja zbieżności przedniej osi na urządzeniu czterogłowicowym, jeśli kompensacja bicia jednego koła zajmuje 5 minut, a regulacja zbieżności kół przednich 10 minut?

A. 35 minut
B. 40 minut
C. 30 minut
D. 20 minut
Wybór innej odpowiedzi może być wynikiem nieprecyzyjnego zrozumienia procesu regulacji zbieżności kół oraz jak czas potrzebny na wykonanie poszczególnych czynności wpływa na całkowity czas operacji. Odpowiedzi takie jak 40 minut czy 35 minut mogą sugerować, że osoba odpowiadająca zsumowała czas kompensacji bicia oraz czas regulacji zbieżności w sposób nieodpowiedni, myląc całkowity czas operacyjny z czasem potrzebnym na każdą czynność. W rzeczywistości, na urządzeniu czterogłowicowym procedura regulacji kół jest zoptymalizowana, co pozwala na jednoczesne działanie na wszystkich kołach, a nie ich sekwencyjne regulowanie. Z kolei odpowiedzi 20 minut i 40 minut wskazują na błędne założenia dotyczące długości czasu, który jest niezbędny do wykonania pełnej regulacji. W przypadku regulacji zbieżności kół, kluczowe jest zrozumienie, że czas działania nie jest liniowy, a każda operacja ma swoje specyficzne wymagania czasowe. Zrozumienie tych zasad jest istotne nie tylko dla prawidłowego przeprowadzenia regulacji, ale również dla odpowiedniego planowania czasu pracy w warsztacie, co wpływa na efektywność i obciążenie pracowników.

Pytanie 34

W trakcie diagnozowania pojazdu na linii testowej przeprowadza się pomiar geometrii przedniego zawieszenia w formie

A. kąta nachylenia koła
B. zbieżności całkowitej kół
C. kąta nachylenia osi zwrotnicy
D. kąta wyprzedzenia sworznia zwrotnicy
Pomiar zbieżności całkowitej kół jest kluczowym elementem diagnostyki geometrii zawieszenia pojazdu. Oznacza on kąt, pod jakim przednie koła ustawione są względem siebie, gdy pojazd porusza się na prostym odcinku drogi. Właściwe ustawienie zbieżności ma fundamentalne znaczenie dla bezpieczeństwa jazdy oraz wydajności pojazdu. Ich niewłaściwe wartości mogą prowadzić do nierównomiernego zużycia opon, a także negatywnie wpływać na prowadzenie i stabilność auta. Na przykład, zbyt dużą zbieżność może powodować szybsze zużycie opon na wewnętrznych krawędziach, co w konsekwencji prowadzi do kosztownych wymian. Praktyka diagnostyczna wymaga regularnego sprawdzania geometrii zawieszenia, zwłaszcza po kolizjach czy wymianach części układu zawieszenia. W branży standardem stały się narzędzia optyczne i laserowe, które umożliwiają precyzyjne pomiary zbieżności, a przez to skuteczne dostosowywanie ustawień zawieszenia do specyfikacji producenta, co jest kluczowe dla zapewnienia optymalnych właściwości jezdnych i komfortu użytkownika.

Pytanie 35

Aby określić stopień zużycia oleju silnikowego, należy przeprowadzić pomiar

A. refraktometrem
B. wiskozymetrem
C. pirometrem
D. multimetrem
Pomiar zużycia oleju silnikowego nie może być skutecznie dokonany przy użyciu pirometru, refraktometru ani multimetru, ponieważ te urządzenia zostały zaprojektowane do zupełnie innych zastosowań. Pirometr, na przykład, jest urządzeniem służącym do pomiaru temperatury obiektów na odległość, co nie ma żadnego związku z określaniem właściwości oleju. Użycie pirometru w tym kontekście prowadzi do błędnych wniosków, jako że temperatura sama w sobie nie jest wskaźnikiem stanu oleju. Refraktometr mierzy współczynnik załamania światła, co jest przydatne w analizie cieczy, ale nie dostarcza informacji o lepkości oleju, która jest kluczowa dla określenia jego przydatności do dalszego użytku. Natomiast multimetr, używany głównie do pomiaru napięcia, natężenia i oporu, także nie ma zastosowania w ocenie stanu oleju. Niezrozumienie specyfiki tych narzędzi oraz ich właściwego zastosowania w kontekście diagnostyki olejów silnikowych może prowadzić do nieefektywnej konserwacji i potencjalnych uszkodzeń silnika. Dlatego kluczowe jest użycie odpowiedniego sprzętu, takiego jak wiskozymetr, aby uzyskać miarodajny wynik i podjąć decyzje dotyczące serwisowania silnika.

Pytanie 36

Jakie ciśnienie oleju w systemie smarowania silnika jest prawidłowe, gdy obroty mieszczą się w zakresie od 2000 do 3000 obr/min?

A. 2,0 MPa
B. 4,0 MPa
C. 0,1 MPa
D. 0,4 MPa
Chociaż wybór 2,0 MPa, 4,0 MPa lub 0,1 MPa może wydawać się logiczny, każda z tych wartości jest niewłaściwa w kontekście ciśnienia oleju w silniku w przedziale prędkości obrotowych 2000-3000 obr/min. Wybór 2,0 MPa przekracza górną granicę optymalnego ciśnienia, co może prowadzić do niekorzystnych warunków pracy pompy olejowej. Zbyt wysokie ciśnienie oleju może wynikać z zatorów w układzie smarowania lub niewłaściwego doboru oleju, co może skutkować uszkodzeniami uszczelek czy przewodów olejowych, a także prowadzić do nadmiernego zużycia pompy. Podobnie, 4,0 MPa jest wartością ekstremalnie wysoką, która w praktyce może powodować uszkodzenia mechaniczne w układzie smarowania. Zbyt niskie ciśnienie, jak w przypadku 0,1 MPa, jest równie niebezpieczne, ponieważ nie zapewnia odpowiedniego smarowania elementów silnika, co może prowadzić do ich przegrzania lub zatarcia. Przedziały ciśnienia oleju są ściśle określane w specyfikacjach technicznych silników, a ich ignorowanie może prowadzić do poważnych awarii. Wartości te można znaleźć w dokumentacji producentów, co podkreśla znaczenie znajomości tych norm dla każdego mechanika i właściciela pojazdu.

Pytanie 37

Ciśnienie definiujemy jako siłę działającą na jednostkę

A. długości
B. wagi
C. powierzchni
D. gęstości
Ciśnienie definiuje się jako siłę działającą na jednostkę powierzchni. Jest to kluczowa koncepcja w fizyce i inżynierii, mająca zastosowanie w wielu dziedzinach, od mechaniki płynów po budownictwo. Przykładem praktycznym może być analiza sił działających na konstrukcje, takie jak mosty czy budynki, gdzie inżynierowie muszą uwzględniać ciśnienie wywierane przez wiatr, śnieg czy inne czynniki zewnętrzne. Zgodnie z zasadą Pascala, zmiany ciśnienia w zamkniętym płynie są przenoszone wszędzie równomiernie, co ma istotne znaczenie w hydraulice. Ciśnienie jest również kluczowe w medycynie, gdzie monitorowanie ciśnienia krwi może dostarczać informacji o stanie zdrowia pacjenta. W przemyśle, ciśnienie jest ważne w procesach takich jak pakowanie, gdzie odpowiednia siła musi być zastosowana do uzyskania szczelności opakowań. W myśl norm ISO, pomiar ciśnienia wymaga stosowania odpowiednich instrumentów, takich jak manometry, które muszą być kalibrowane zgodnie z międzynarodowymi standardami.

Pytanie 38

Jaką precyzję pomiarową uzyskuje mikrometr, w którym zastosowano bęben z 50 podziałkami, a skok współpracującej śruby mikrometrycznej wynosi 0,5 mm?

A. 0,5 mm
B. 0,05 mm
C. 0,01 mm
D. 0,1 mm
Pojawia się wiele nieporozumień dotyczących dokładności pomiarowej mikrometrów, szczególnie w odniesieniu do parametrów takich jak skok śruby czy liczba nacięć na bębnie. Odpowiedzi sugerujące dokładność na poziomie 0,1 mm, 0,5 mm lub 0,05 mm bazują na błędnym oszacowaniu lub pomyłkach w obliczeniach. Na przykład, wybór 0,1 mm jako dokładności może wynikać z przeoczenia faktu, że mikrometr jest narzędziem, które służy do bardzo dokładnych pomiarów, a 0,1 mm byłoby zbyt dużym błędem w kontekście precyzyjnych aplikacji inżynieryjnych. Z kolei odpowiedź 0,5 mm w ogóle nie odnosi się do metody pomiarowej mikrometru, ponieważ wskazuje na wartość całkowitego skoku, a nie na rozdzielczość pomiarową. Odpowiedź 0,05 mm również nie uwzględnia liczby nacięć, prowadząc do mylnego przekonania, że taka wartość pomiaru jest odpowiednia dla narzędzi, które są zbudowane z myślą o znacznie większej precyzji. Wszelkie niepoprawne podejścia do tego tematu mogą prowadzić do istotnych błędów w projektach inżynieryjnych, gdzie precyzja jest kluczowa dla sukcesu operacji. W praktyce, właściwe zrozumienie zasad działania mikrometrów i ich dokładności pomiarowej jest niezbędne do efektywnego wykorzystania ich w różnych dziedzinach techniki.

Pytanie 39

Metoda ochrony przed korozją, która polega na nawalcowaniu na element cienkiej warstwy blachy z metalu odpornego na korozję, to

A. platerowanie
B. metalizacja
C. galwanizacja
D. napawanie
Platerowanie to proces, który polega na nałożeniu cienkiej warstwy materiału odpornego na korozję na metalowy element. W przemyśle naprawdę często się to stosuje, żeby zwiększyć trwałość różnych części, które są narażone na niekorzystne warunki, jak np. deszcz czy chemikalia. Weźmy na przykład przemysł motoryzacyjny – tam często plateruje się części silników, żeby wydłużyć ich żywotność. Z tego, co pamiętam, to według normy ISO 11844 ważne są parametry takie jak temperatura i ciśnienie podczas platerowania. To ma wpływ na jakość powłoki. W miejscach, gdzie trzeba zachować właściwości przewodzące materiału, platerowanie jest idealnym rozwiązaniem, zwłaszcza w elektronice.

Pytanie 40

Jakie urządzenie służy do specjalistycznego osłuchiwania silnika?

A. analizatorem spalin
B. przyrządem do pomiaru hałasu
C. dymomierzem
D. stetoskopem Bryla
Stetoskop Bryla to specjalistyczne narzędzie, które jest niezwykle przydatne w diagnostyce silników spalinowych. Działa na zasadzie analizy dźwięków generowanych przez silnik, co pozwala na dokładne osłuchiwanie jego pracy, identyfikację ewentualnych usterek oraz ocenę stanu technicznego. Użycie stetoskopu umożliwia mechanikom zlokalizowanie źródła hałasu, co jest kluczowe w diagnostyce problemów takich jak luzy w zaworach, uszkodzenia łożysk czy niewłaściwa praca układu zapłonowego. W praktyce, mechanicy często korzystają z tego narzędzia podczas rutynowych przeglądów oraz w sytuacjach awaryjnych, gdzie szybka diagnoza może zapobiec poważnym uszkodzeniom silnika. Stetoskop Bryla jest zgodny z najlepszymi praktykami branżowymi, zapewniając precyzyjny pomiar oraz łatwość użycia, co czyni go nieocenionym narzędziem w warsztatach samochodowych.