Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 14 maja 2025 14:48
  • Data zakończenia: 14 maja 2025 15:09

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jakie cechy ma przewód U/UTP 4×2×0,5?

A. ekranowany o czterech żyłach w podwójnej izolacji o długości 0,5 m
B. ekranowany czterożyłowy o przekroju 0,5 mm2
C. nieekranowany czterożyłowy o przekroju 0,5 mm2
D. nieekranowany o czterech żyłach w podwójnej izolacji o długości 0,5 m
Przewód U/UTP 4×2×0,5 oznacza, że mamy do czynienia z nieekranowanym przewodem, który składa się z czterech par żył, gdzie każda para składa się z dwóch żył o przekroju 0,5 mm². Tego rodzaju przewody są powszechnie stosowane w sieciach telekomunikacyjnych, w tym w systemach lokalnych LAN. Nieekranowane przewody U/UTP są popularne ze względu na ich elastyczność oraz odpowiednią wydajność w transmisji danych w typowych warunkach. Standardy, takie jak ANSI/TIA-568, definiują wymagania dotyczące przewodów i ich instalacji, co sprawia, że U/UTP jest często używany w biurach i domach, gdzie nie ma silnych zakłóceń elektromagnetycznych. Przykłady zastosowania to instalacje Ethernetowe, gdzie przewody U/UTP mogą obsługiwać prędkości transmisji do 1 Gbps na odległości do 100 metrów, co czyni je idealnym wyborem dla większości zastosowań domowych i biurowych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jaki standard kompresji audio jest stosowany w Polsce w dekoderach telewizji cyfrowej naziemnej DVB-T?

A. MPEG-2
B. MPEG-1
C. MPEG-4
D. MPEG-3
MPEG-4, znany też jako MPEG-4 Part 14, to standard kompresji audio i wideo, który wszedł w życie w latach 90. XX wieku. Stał się popularny, bo świetnie radzi sobie z kompresją danych, a jednocześnie oferuje wysoką jakość obrazu i dźwięku. Jeśli chodzi o telewizję cyfrową naziemną DVB-T, to MPEG-4 jest szeroko stosowany do nadawania sygnałów, bo pozwala zmniejszyć wymagania dotyczące przepustowości, a jakość odbioru pozostaje wysoka. W Polsce mamy przykład z platformą DVB-T, która dzięki niemu umożliwia odbiór kanałów telewizyjnych w HD. Co ciekawe, MPEG-4 wspiera również interaktywne treści i różne aplikacje multimedialne, przez co jest bardzo wszechstronny w nadawaniu. A to, że jest zgodny z nowoczesnymi urządzeniami, tylko zwiększa jego popularność i dostępność dla użytkowników. Warto też dodać, że MPEG-4 to rozwinięcie wcześniejszych standardów, jak MPEG-1 i MPEG-2, oferując lepszą kompresję i dostosowanie do nowoczesnych technologii, takich jak streaming i wideo na żądanie.

Pytanie 8

Odbiornik cyfrowy DVB-C jest zaprojektowany do przyjmowania sygnałów telewizyjnych

A. naziemnych
B. z internetu
C. satelitarnych
D. kablowych
Odbiornik DVB-C to sprzęt stworzony właśnie do telewizji kablowej. Działa dzięki standardowi DVB-C, czyli Digital Video Broadcasting - Cable. Co to oznacza? Że sygnał jest przesyłany przez kable koncentryczne. Dzięki temu, jakość obrazu i dźwięku jest na naprawdę dobrym poziomie, a do tego można oglądać więcej kanałów niż w tradycyjny sposób. Telewizje kablowe, które korzystają z DVB-C, oferują różne pakiety programowe, co daje użytkownikom dostęp do masy kanałów, w tym tych w jakości HD czy VOD, czyli video na żądanie. To fajne, bo nie tylko można oglądać ulubione programy, ale także korzystać z EPG, czyli elektronicznego przewodnika po programach, oraz interaktywnych usług, co znacząco ułatwia korzystanie z telewizji.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Zidentyfikowanie usterek w urządzeniach elektronicznych powinno rozpocząć się od weryfikacji

A. diod zabezpieczających
B. bezpieczników
C. elementów biernych
D. tranzystorów
Zaczynając lokalizację uszkodzeń w sprzęcie elektronicznym od sprawdzenia bezpieczników, postępujesz zgodnie z najlepszymi praktykami diagnostyki elektronicznej. Bezpieczniki są pierwszą linią obrony w obwodach elektrycznych, mając na celu ochronę przed przeciążeniem i zwarciem, co może prowadzić do uszkodzenia innych komponentów. Sprawdzenie stanu bezpieczników jest kluczowe, ponieważ uszkodzony bezpiecznik może oznaczać, że obwód był przeciążany lub że wystąpiło zwarcie, co może wskazywać na bardziej poważny problem w urządzeniu. Po zidentyfikowaniu i wymianie uszkodzonego bezpiecznika, zaleca się dalsze testowanie obwodów, aby zlokalizować źródło problemu. W praktyce, często stosuje się multimetr do pomiaru ciągłości obwodu bezpiecznika, co jest szybkim i skutecznym sposobem na określenie jego stanu. Dobrą praktyką jest również prowadzenie dokumentacji dotyczącej stanu i wymiany bezpieczników, co może być pomocne przy przyszłych naprawach oraz w analizie awarii.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Tłumienność wynosząca 1 dB/km wskazuje, że na odcinku światłowodu o długości 10 km dochodzi do rozproszenia

A. 10% wartości mocy sygnału przychodzącego
B. 80% wartości mocy sygnału przychodzącego
C. 20% wartości mocy sygnału przychodzącego
D. 90% wartości mocy sygnału przychodzącego
Tłumienność światłowodu wynosząca 1 dB/km oznacza, że na każdy kilometr sygnał traci 1 dB mocy. Czyli jak mamy odcinek 10 km, to całkowite tłumienie wynosi 10 dB. Można to zobaczyć w wzorze: P_out = P_in * 10^(-L/10), gdzie L to tłumienie w dB, a P_in to moc sygnału na początku. Jak L wynosi 10 dB, to P_out wychodzi tak: P_out = P_in * 10^(-10/10) = P_in * 0.1. Ostatecznie oznacza to, że 10% mocy sygnału przechodzi na końcu, co sugeruje, że 90% mocy ucieka. Ta wiedza jest naprawdę przydatna, jak się projektuje systemy komunikacji optycznej, bo musimy ogarniać, jak najmniej stracić na jakości sygnału. Na przykład, w sieciach telekomunikacyjnych inżynierowie muszą planować długości odcinków światłowodów i ich tłumienność, żeby wszystko działało jak najlepiej.

Pytanie 19

Jaką rolę w systemie antenowym TV-SAT odgrywa konwerter?

A. Dostarcza antenie napięcie przemienne.
B. Dostarcza antenie napięcie stałe.
C. Zwiększa i przekształca częstotliwość sygnału z anteny.
D. Tłumi i zmienia częstotliwość sygnału antenowego.
Konwerter w instalacji antenowej TV-SAT pełni kluczową rolę, polegającą na wzmacnianiu i przetwarzaniu sygnału. Odbiera sygnały mikrofalowe z satelity, które są na bardzo wysokich częstotliwościach, a następnie przekształca je na niższe częstotliwości, które mogą być przesyłane przez kable do odbiornika. Zmiana ta jest niezbędna, ponieważ kable stosowane w instalacjach satelitarnych, takie jak kabel koncentryczny, mają ograniczenia dotyczące długości i pasma, co sprawia, że wyższe częstotliwości nie mogą być przesyłane efektywnie. W praktyce konwerter działa na zasadzie wzmocnienia sygnału, co zapewnia lepszą jakość odbioru. Dobre praktyki w instalacji konwertera obejmują jego właściwe umiejscowienie na antenie, co minimalizuje straty sygnału oraz użycie wysokiej jakości kabli, aby zredukować tłumienie. Warto również zwrócić uwagę na dobór konwertera, który odpowiada standardom DVB-S lub DVB-S2, aby zapewnić zgodność z nowoczesnymi systemami odbioru telewizyjnego.

Pytanie 20

Sygnał z wewnętrznej anteny osiąga wartość 40 dBμV. Aby na wejściu antenowym telewizora uzyskać sygnał o poziomie 60 dBμV, jaki wzmacniacz o określonym wzmocnieniu powinien być zastosowany?

A. 60 dB
B. 100 dB
C. 40 dB
D. 20 dB
Wybór wzmocnienia sygnału na poziomie 40 dB, 60 dB czy 100 dB nie jest właściwy, ponieważ nie uwzględnia rzeczywistej różnicy między poziomami sygnału. Wzmocnienie 40 dB sugerowałoby, że sygnał wzmacniany do 80 dBμV, co jest nadmiernym wzmocnieniem w tym przypadku, mogącym prowadzić do przesterowania sygnału na wejściu odbiornika. Takie przesterowanie może skutkować zniekształceniem i degradacją jakości odbieranych sygnałów. Podobnie, wzmocnienia 60 dB i 100 dB są niewłaściwe, ponieważ prowadziłyby do jeszcze większego wzrostu poziomu sygnału, co nie tylko przekraczałoby wymagany poziom, ale także wprowadzałoby znaczące problemy z szumami i interferencjami. W praktyce, dobierając wzmacniacz, należy kierować się zasadą, że wzmocnienie powinno być dokładnie dopasowane do różnicy pomiędzy poziomem sygnału wejściowego a pożądanym poziomem sygnału wyjściowego. Każde nadmierne wzmocnienie może prowadzić do zakłóceń, co jest szczególnie ważne w aplikacjach telewizyjnych, gdzie jakość sygnału jest kluczowa dla odbioru. Przy doborze wzmacniaczy warto zwrócić uwagę na specyfikacje producenta oraz normy branżowe, aby uniknąć problemów z jakością odbioru.

Pytanie 21

Jakim urządzeniem należy się posłużyć, aby zmierzyć amplitudę sygnału z generatora taktującego mikroprocesorowy układ o częstotliwości f = 25 MHz?

A. Amperomierzem prądu zmiennego z rezystorem szeregowym 10 kOhm
B. Oscyloskopem o podstawie czasu 100 ns/cm
C. Częstościomierzem o maksymalnym zakresie 50 MHz
D. Woltomierzem prądu zmiennego o wewnętrznej rezystancji 100 kOhm/V
Odpowiedź dotycząca oscyloskopu o podstawie czasu 100 ns/cm jest prawidłowa, ponieważ oscyloskop jest urządzeniem zaprojektowanym do analizy sygnałów czasowych i ich amplitudy w bardzo wysokich częstotliwościach. W przypadku sygnału o częstotliwości 25 MHz, czas trwania jednego okresu wynosi 40 ns. Podstawa czasu 100 ns/cm pozwala na uchwycenie co najmniej dwóch pełnych cykli sygnału, co jest niezbędne do dokładnej analizy jego kształtu oraz amplitudy. Oscyloskopy umożliwiają również pomiar parametrów takich jak pik-pik, co jest kluczowe przy badaniu sygnałów cyfrowych. W praktyce, oscyloskop jest często używany w laboratoriach elektronicznych i podczas testowania układów cyfrowych, co czyni go standardowym narzędziem w branży. Zastosowanie oscyloskopu przy pomiarze sygnałów o wysokiej częstotliwości jest zgodne z najlepszymi praktykami inżynieryjnymi, zapewniając precyzyjny i wiarygodny pomiar, który jest nieoceniony w procesie projektowania i diagnozowania układów elektronicznych. Warto również zaznaczyć, że oscyloskopy są wyposażone w różne tryby analizy, co pozwala na monitorowanie sygnałów w czasie rzeczywistym oraz ich zapisanie do późniejszej analizy.

Pytanie 22

Podczas regularnego przeglądu systemu telewizyjnego należy między innymi

A. zmierzyć impedancję falową kabla koncentrycznego
B. oczyścić oraz pomalować antenę, a następnie ją ustawić
C. zmierzyć poziom sygnału w gniazdku abonenckim oraz ocenić jakość połączeń wtyków F
D. określić rezystancję falową kabla i w razie potrzeby ją skorygować
Pomiar poziomu sygnału w gnieździe abonenckim oraz sprawdzenie jakości połączeń wtyków F jest kluczowym krokiem w ramach okresowego przeglądu instalacji telewizyjnej. Umożliwia to ocenę, czy sygnał docierający do odbiornika jest wystarczającej jakości dla prawidłowego odbioru programów telewizyjnych. Zmierzony poziom sygnału powinien mieścić się w zalecanym zakresie, zazwyczaj pomiędzy -10 dBmV a +10 dBmV, co zapewnia stabilny odbiór bez zakłóceń. Jakość połączeń wtyków F jest także istotna, ponieważ ich niewłaściwe podłączenie może prowadzić do strat sygnału, co w dłuższej perspektywie może skutkować degradacją jakości obrazu. Sprawdzanie i ewentualne poprawianie tych połączeń jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie regularnych kontroli w celu zapewnienia wysokiej jakości sygnału i długiej żywotności instalacji. Dodatkowo, pomiar impedancji falowej kabla koncentrycznego, choć istotny, nie jest bezpośrednio związany z ocena jakości sygnału w gnieździe abonenckim.

Pytanie 23

Na stanowiskach zajmujących się naprawą i konserwacją sprzętu elektronicznego nie jest wymagane

A. zerowania ochronnego
B. wyłączników różnicowoprądowych
C. klimatyzacji
D. uziemienia ochronnego
Klimatyzacja, choć może być korzystna w pewnych warunkach pracy, nie jest wymagana na stanowiskach do naprawy i konserwacji urządzeń elektronicznych. Kluczowe jest, aby urządzenia te były odpowiednio wentylowane, co można osiągnąć poprzez naturalną cyrkulację powietrza lub odpowiednie systemy wentylacyjne. Dobrą praktyką w tym zakresie jest zapewnienie, że temperatura w pomieszczeniu nie przekracza zalecanych norm, aby nie wpływać negatywnie na wrażliwe komponenty elektroniczne. Zastosowanie klimatyzacji może być korzystne w kontekście stabilizacji temperatury, ale nie jest to wymóg normatywny. Przykładem może być warsztat serwisowy, gdzie mechanicy stosują wentylację, aby utrzymać optymalne warunki pracy, ale niekoniecznie korzystają z klimatyzacji. Warto zaznaczyć, że odpowiednie warunki pracy, w tym temperatura, mają kluczowe znaczenie dla wydajności i trwałości sprzętu elektronicznego.

Pytanie 24

Urządzenie, które może być używane na zewnątrz i cechuje się wysoką odpornością na negatywne działanie warunków atmosferycznych, to

A. multiswitch.
B. głowica w.cz.
C. tuner telewizji satelitarnej.
D. konwerter satelitarny.
Konwerter satelitarny to naprawdę ważne urządzenie w telewizji satelitarnej. Działa tak, że zamienia sygnały z satelity na coś, co dekodery lub tunery mogą zrozumieć i wykorzystać. Jest bardzo odporny na różne złe warunki pogodowe, więc spokojnie można go używać na zewnątrz. W praktyce montuje się go na antenach satelitarnych, gdzie musi znosić deszcz, śnieg, wiatr i wysokie lub niskie temperature. Jakość materiałów, z jakich jest zrobiony, ma ogromne znaczenie, bo to zapewnia jego trwałość i niezawodność. Istnieją różne standardy budowy konwerterów, jak na przykład EN 50083, które określają, jak powinny działać i jakie muszą być odporne na pogodę. Dzięki temu, użytkownicy mogą cieszyć się dobrym sygnałem telewizyjnym, nawet jak pogoda jest zmienna. Ważne jest, żeby dobrze wybrać konwerter, bo to wpływa na jakość odbioru, szczególnie w miejscach, gdzie sygnał nie jest najlepszy.

Pytanie 25

Do jakiego złącza podłącza się sygnał: wizji zespolony, kolor R, kolor G, kolor B, luminancji i chrominancji oraz sygnał audio kanału lewego i prawego?

A. JACK
B. DIN 5
C. EUROSCART
D. S-VHS
Złącze S-VHS jest przeznaczone głównie do przesyłania sygnału wideo w wyższej jakości niż standardowy sygnał kompozytowy, ale nie obsługuje zintegrowanego przesyłania kolorów R, G, B ani sygnału audio. S-VHS, z uwagi na swoją konstrukcję, skupia się jedynie na jakości obrazu, co ogranicza jego zastosowanie w kontekście przesyłania pełnego sygnału multimedialnego. Odpowiedź JACK, znana głównie jako złącze audio, również nie jest właściwa, ponieważ jest to złącze mono lub stereo, które nie może obsługiwać sygnałów wideo. Podobnie, złącze DIN 5, mimo że może być używane do różnych zastosowań audio, nie jest przystosowane do przesyłania zarówno sygnałów wideo, jak i audio w formie, która zintegrowałaby wszystkie wymienione sygnały. Wybór niewłaściwego złącza często wynika z nieporozumienia dotyczącego jego funkcji i zastosowania. Aby uniknąć takich błędów, kluczowe jest zrozumienie specyfikacji oraz możliwości każdego złącza, a także ich funkcji w kontekście całego systemu audio-wideo.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jaką czujkę powinno się zastosować, aby sygnalizować otwarcie drzwi?

A. Kontaktronową
B. Ultradźwiękową
C. Podczerwieni
D. Mikrofalową
Czujka kontaktronowa jest najodpowiedniejszym rozwiązaniem do sygnalizacji otwarcia drzwi, ponieważ wykorzystuje zasadę działania, która opiera się na zbliżeniu dwóch styków magnetycznych. Gdy drzwi się otwierają, magnes umieszczony na drzwiach oddala się od styków, co powoduje ich rozłączenie. Taki mechanizm jest niezwykle niezawodny i często stosowany w systemach alarmowych oraz zabezpieczeniach budynków. Kontaktrony charakteryzują się prostotą instalacji oraz niskim zużyciem energii, co czyni je idealnym rozwiązaniem w przypadku monitorowania otwarcia drzwi. W praktyce czujki te można znaleźć w różnych aplikacjach, od domowych systemów alarmowych po zabezpieczenia w obiektach komercyjnych. Dobrą praktyką jest także ich integracja z systemami automatyki budynkowej, co zwiększa komfort użytkowania oraz efektywność zabezpieczeń. Warto podkreślić, że kontaktrony są zgodne z normami branżowymi dotyczącymi bezpieczeństwa i ochrony, co potwierdza ich skuteczność i powszechną akceptację w branży.

Pytanie 30

Co należy zrobić jako pierwsze, gdy u pacjenta występuje zatrzymanie akcji serca oraz brak oddechu?

A. podać leki
B. wykonać sztuczne oddychanie oraz masaż serca
C. sprawdzić drożność dróg oddechowych
D. umożliwić położenie na boku
W sytuacji zatrzymania akcji serca oraz braku oddechu najważniejsze jest, aby w pierwszej kolejności sprawdzić drożność dróg oddechowych. Bez zapewnienia drożności dróg oddechowych, nie będzie możliwe skuteczne przeprowadzenie wentylacji ani masażu serca, ponieważ niewłaściwie ukierunkowane powietrze nie dotrze do płuc. W praktyce, podczas udzielania pierwszej pomocy, należy niezwłocznie unikać wszelkich przeszkód, które mogą blokować drogi oddechowe, takich jak język, wymioty czy inne ciała obce. W standardach resuscytacji, takich jak wytyczne American Heart Association (AHA), kluczowym krokiem jest ocena i otwarcie dróg oddechowych, co powinno być zrealizowane poprzez zastosowanie manewru uniesienia podbródka lub przechylenia głowy do tyłu. Przykładem zastosowania tej zasady jest sytuacja, w której ratownik wykonuje te czynności przed przystąpieniem do udzielania sztucznego oddychania, co może znacząco zwiększyć szanse na przeżycie osoby poszkodowanej.

Pytanie 31

Opady śniegu mogą prowadzić do znacznego obniżenia jakości odbioru sygnału

A. telewizji satelitarnej
B. telewizyjnego naziemnego
C. telewizji kablowej
D. radiowego naziemnego
Opady śniegu mogą znacząco wpłynąć na jakość odbioru sygnału telewizji satelitarnej ze względu na charakterystykę transmisji satelitarnej, która opiera się na sygnałach radiowych wysyłanych z satelitów krążących na wysokich orbitach. Sygnały te są podatne na zjawiska atmosferyczne, takie jak opady deszczu czy śniegu, które mogą powodować tłumienie sygnału. W przypadku opadów śniegu, cząsteczki wody i kryształki lodu mogą powodować znaczące straty sygnału, co skutkuje zakłóceniami lub całkowitym brakiem odbioru. Dla przykładu, w sytuacji intensywnych opadów śniegu, użytkownicy telewizji satelitarnej mogą doświadczać problemów z sygnałem, co może objawiać się w postaci zniekształceń obrazu, zacinania się transmisji lub brakiem sygnału. Standardy dotyczące instalacji anten satelitarnych oraz dobre praktyki wskazują, że odpowiednie umiejscowienie anteny oraz jej właściwe zabezpieczenie przed opadami mogą minimalizować te problemy, jednak całkowite ich wyeliminowanie może być trudne. Z tego powodu w regionach o dużych opadach śniegu, użytkownicy powinni rozważyć systemy, które potrafią zredukować wpływ warunków atmosferycznych na jakość sygnału.

Pytanie 32

Warystor to komponent, który zabezpiecza urządzenia elektroniczne przed skutkami działania

A. promieniowania X.
B. niskich temperatur.
C. opadów deszczu.
D. wyładowań atmosferycznych.
Warystor, znany również jako rezystor nieliniowy, to element elektroniczny, który chroni urządzenia przed przepięciami, zwłaszcza wyładowaniami atmosferycznymi. Działa na zasadzie zmiany swojej rezystancji w zależności od napięcia, co pozwala na skuteczne odprowadzanie nadmiaru energii. W praktyce warystory są powszechnie stosowane w zasilaczach, urządzeniach elektronicznych oraz systemach telekomunikacyjnych, gdzie mogą zapobiegać uszkodzeniom spowodowanym nagłymi wzrostami napięcia. Standardy takie jak IEC 61000-4-5 dotyczą ochrony przed przepięciami, a warystory są kluczowymi komponentami w spełnianiu tych norm. Dzięki swoim właściwościom, warystory mogą znacznie zwiększyć niezawodność sprzętu, co jest szczególnie istotne w branżach, gdzie przerwy w działaniu mogą prowadzić do dużych strat finansowych. Warto również zauważyć, że odpowiedni dobór warystora do konkretnej aplikacji, w tym jego napięcia przebicia i charakterystyki prądowej, ma kluczowe znaczenie dla skuteczności ochrony.

Pytanie 33

Podczas wymiany uszkodzonego kondensatora filtrującego w zasilaczu sieciowym, tak aby uniknąć zwiększenia tętnień na wyjściu oraz ryzyka uszkodzenia kondensatora z powodu przebicia, można wybrać element o

A. mniejszej pojemności i mniejszym napięciu znamionowym
B. większej pojemności i większym napięciu znamionowym
C. mniejszej pojemności i większym napięciu znamionowym
D. większej pojemności i mniejszym napięciu znamionowym
Wybór kondensatora o mniejszej pojemności oraz mniejszym napięciu znamionowym jest często mylnie postrzegany jako wystarczający w wielu aplikacjach. Mniejsza pojemność prowadzi do niewystarczającego wygładzania napięcia, co może skutkować zwiększonym tętnieniem na wyjściu zasilacza. Wyższe tętnienia mogą wpływać negatywnie na działanie podłączonych urządzeń, takich jak komputery czy urządzenia audio, powodując szumy czy zniekształcenia. Zastosowanie kondensatora o mniejszym napięciu znamionowym zmniejsza margines bezpieczeństwa, co zwiększa ryzyko przebicia. Przykładem błędnych rozważań może być założenie, że kondensator o niższej pojemności będzie pracował w podobny sposób, co jego odpowiednik o wyższej pojemności. W rzeczywistości, różnice te mogą prowadzić do poważnych problemów, takich jak uszkodzenie komponentów w zasilaczu, co narusza standardy jakości obowiązujące w branży. Dobrą praktyką jest zawsze dobierać kondensatory zgodnie z wymogami aplikacji oraz zapewniać odpowiednie parametry, aby uniknąć potencjalnych usterek i zapewnić długotrwałą niezawodność systemu.

Pytanie 34

Aby zabezpieczyć naprawiane urządzenie elektroniczne przed działaniem ESD, należy

A. podłączyć urządzenie do źródła zasilania
B. otwierać urządzenie umieszczone na uziemionej macie
C. przy demontażu obudowy wykazać szczególną ostrożność
D. zasilać urządzenie poprzez transformator separujący
Otwarcie urządzenia umieszczonego na uziemionej macie jest kluczowym krokiem w zapobieganiu uszkodzeniom spowodowanym przez wyładowania elektrostatyczne (ESD). Uziemiona mata działa jak bariera ochronna, odprowadzając ładunki elektrostatyczne zgromadzone na powierzchni urządzenia lub na osobie wykonującej naprawy. Zgodnie z normą IEC 61340-5-1, takie praktyki są zalecane w środowiskach, gdzie wrażliwe komponenty elektroniczne są regularnie naprawiane. Używanie uziemionej maty minimalizuje ryzyko uszkodzenia delikatnych układów elektronicznych, które mogą być podatne na uszkodzenia spowodowane nawet niewielkimi wyładowaniami. Przykładem zastosowania takiej praktyki jest praca w laboratoriach serwisowych, gdzie technicy muszą często demontować i montować komponenty wrażliwe na ESD. Użycie uziemionej maty, w połączeniu z odpowiednim ubraniem antystatycznym, stanowi kompleksowe podejście do ochrony przed ESD.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Podwyższenie dobroci Q filtru RLC w selektywnym wzmacniaczu doprowadzi do

A. spadku częstotliwości środkowej fo
B. spadku współczynnika prostokątności
C. wzrostu współczynnika prostokątności
D. wzrostu częstotliwości środkowej fo
Zrozumienie wpływu dobroci Q na filtry RLC jest kluczowe, aby odpowiednio interpretować konsekwencje projektowe. Pierwsza z niepoprawnych odpowiedzi sugeruje, że zwiększenie dobroci Q mogłoby prowadzić do zwiększenia częstotliwości środkowej f0, co jest nieprawidłowe. W rzeczywistości wartość f0 jest określona przez komponenty RLC i nie zmienia się w wyniku zmiany dobroci Q. Zwiększenie Q nie wpływa na częstotliwość centralną, lecz na charakterystykę pasma przenoszenia. Kolejna odpowiedź sugerująca zmniejszenie częstotliwości środkowej f0 również jest mylna, jako że zmiana dobroci Q nie ma wpływu na jej wartość. W rzeczywistości, zwiększenie dobroci Q prowadzi do większej wyrazistości filtru, ale nie zmienia jego centralnej częstotliwości. Dlatego też, koncepcja współczynnika prostokątności jest nieodłącznie związana z dobrocią Q, a jego zmiana wpływa na szerokość pasma przenoszenia. Należy również zwrócić uwagę na to, że w praktyce stosuje się różne metody obliczania i regulacji Q, aby osiągnąć pożądane efekty w różnych zastosowaniach, takich jak filtry w radiotechnice czy systemy audio. Typowym błędem w analizie charakterystyki filtrów RLC jest mylenie dobroci Q z innymi parametrami, co może prowadzić do niepoprawnych wniosków dotyczących działania układów elektronicznych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Całkowity koszt wykonania instalacji alarmowej, przy wartości materiałów wynoszącej 2 000 zł netto oraz kosztach robocizny w wysokości 1 000 zł netto, wyniesie ile, jeżeli materiały są objęte 23% a usługa 8% podatkiem VAT?

A. 3 460 zł
B. 3 080 zł
C. 3 540 zł
D. 3 240 zł
Aby obliczyć łączny koszt instalacji alarmowej, należy najpierw ustalić wartość materiałów i robocizny, a następnie doliczyć odpowiednie stawki podatku VAT. W tym przypadku wartość materiałów wynosi 2 000 zł netto. Stawka VAT dla materiałów wynosi 23%, co daje kwotę 460 zł (2 000 zł x 0,23). Z kolei koszt robocizny wynosi 1 000 zł netto, a stawka VAT dla robocizny wynosi 8%, co daje kwotę 80 zł (1 000 zł x 0,08). Łączny koszt materiałów z VAT to 2 000 zł + 460 zł = 2 460 zł, natomiast łączny koszt robocizny z VAT to 1 000 zł + 80 zł = 1 080 zł. Sumując te wartości, otrzymujemy całkowity koszt instalacji wynoszący 2 460 zł + 1 080 zł = 3 540 zł. Takie obliczenia są zgodne z obowiązującymi przepisami VAT i są kluczowe w branży budowlanej oraz instalacyjnej, gdzie precyzyjne kalkulacje kosztów mają istotne znaczenie dla rentowności projektów.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.