Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 maja 2025 12:51
  • Data zakończenia: 25 maja 2025 13:00

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas funkcjonowania urządzenia zaobserwowano nasilenie hałasu, spowodowane przez łożysko toczne. Odpowiednią metodą naprawy maszyny może być

A. wymiana całego łożyska
B. zmniejszenie nadmiaru smaru w łożysku
C. wymiana osłony łożyska
D. zmniejszenie luzów łożyska
Wymiana całego łożyska jest odpowiednim rozwiązaniem w przypadku stwierdzenia zwiększonego hałasu, gdyż najczęściej oznacza to, że łożysko uległo uszkodzeniu lub zużyciu. W praktyce, łożyska toczne są zaprojektowane do pracy z minimalnym luzem i w odpowiednio smarowanych warunkach. Gdy zauważamy hałas, to zazwyczaj jest skutkiem odkształceń materiałowych lub uszkodzenia elementów tocznych, co może prowadzić do dalszych uszkodzeń mechanicznych w obrębie układu napędowego. W takim przypadku wymiana całego łożyska eliminuje ryzyko wystąpienia kolejnych awarii w przyszłości. Dobrą praktyką w branży jest również przeprowadzanie analizy przyczyn źródłowych usterki, co pozwala na zrozumienie, dlaczego łożysko uległo uszkodzeniu, co może być związane z niewłaściwym smarowaniem, luzami, czy też eksploatacją w warunkach przekraczających specyfikacje producenta. Wymiana łożyska powinna być przeprowadzana zgodnie z obowiązującymi standardami, takimi jak ISO 281, które określają metodologię doboru i oceny łożysk, co zwiększa niezawodność całego urządzenia.

Pytanie 2

Czym charakteryzuje się filtr dolnoprzepustowy?

A. przepuszcza sygnały sinusoidalne o częstotliwości wyższej od częstotliwości granicznej
B. wzmacnia sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
C. przepuszcza sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
D. tłumi sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
Filtr dolnoprzepustowy jest urządzeniem, które umożliwia przechodzenie sygnałów o częstotliwości mniejszej od określonej częstotliwości granicznej, skutecznie tłumiąc sygnały o wyższych częstotliwościach. Użycie filtrów dolnoprzepustowych jest powszechne w systemach audio, gdzie pozwalają one na eliminację niepożądanych wysokoczęstotliwości, co skutkuje czystszych dźwiękiem. Przykładem praktycznego zastosowania jest użycie filtrów w subwooferach, które mają za zadanie reprodukcję niskich częstotliwości. W zastosowaniach telekomunikacyjnych filtry dolnoprzepustowe są wykorzystywane w celu eliminacji zakłóceń wysokoczęstotliwościowych, umożliwiając lepszą jakość sygnału. Ponadto, filtry te są integralną częścią wielu układów elektronicznych, na przykład w systemach pomiarowych, gdzie są używane do wygładzania sygnałów oraz eliminacji szumów. W praktyce inżynieryjnej, dobór filtrów dolnoprzepustowych opiera się na analizie częstotliwościowej oraz parametrach projektowych, co jest zgodne z zasadami dobrych praktyk w dziedzinie elektroniki i telekomunikacji.

Pytanie 3

Która z wymienionych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Spawanie
B. Klejenie
C. Zaginanie
D. Zgrzewanie
Zgrzewanie, spawanie i zaginanie to techniki, które są powszechnie stosowane do trwałego łączenia elementów wykonanych z tworzyw sztucznych, co może prowadzić do nieporozumień związanych z ich zastosowaniem. Zgrzewanie polega na podgrzewaniu miejsc styku dwóch elementów do momentu ich stopienia, a następnie ich łączeniu. Proces ten tworzy jednorodną strukturę materiału, co sprawia, że połączenie jest trwałe i wytrzymałe na obciążenia. W przypadku spawania, szczególnie w kontekście tworzyw sztucznych, można używać różnych metod, takich jak spawanie gorącym powietrzem czy spawanie w kąpieli cieczy. Oba te procesy również skutkują trwałym połączeniem, które jest często porównywalne z właściwościami mechanicznymi materiału bazowego. Zaginanie natomiast polega na deformacji materiału pod wpływem siły, co w przypadku tworzyw może prowadzić do trwałego kształtowania, ale nie do połączenia dwóch elementów w sensie ich zespolenia. Wiele osób może mylić te techniki, myśląc, że każda z nich może być użyta w każdej sytuacji, co prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że trwałe połączenia wymagają zastosowania odpowiednich metod, które działają w oparciu o fizykę i mechanikę materiałów, a nie tylko na zasadzie chemii powierzchni. Brak znajomości różnic między tymi technikami może prowadzić do nieodpowiednich wyborów w projektach inżynieryjnych, co z kolei może skutkować osłabieniem konstrukcji i problemami w eksploatacji.

Pytanie 4

Demontaż przekładni pasowej zaczyna się od

A. zdemontowania koła pasowego o mniejszej średnicy
B. poluzowania naciągu pasów
C. demontażu wałów
D. zdemontowania koła pasowego o większej średnicy
Wybór do demontażu koła pasowego o mniejszej lub większej średnicy jako pierwszego kroku w procesie demontażu przekładni pasowych jest niewłaściwy. Takie podejście ignoruje fundamentalne zasady eksploatacji układów pasowych, które nakładają obowiązek zapewnienia odpowiedniego naciągu pasów przed ich demontażem. Rozpoczynając od wymontowania kół pasowych, można napotkać znaczne trudności związane z ich usunięciem, co może prowadzić do uszkodzenia komponentów. Bez poluzowania naciągu, siły działające na pasy mogą powodować ich deformację, a także niepotrzebne obciążenie łożysk i wałów. Dodatkowo, poluzowanie wałów przed demontażem kół pasowych jest praktykowane w określonych sytuacjach, jednak nie jest to standardowa procedura rozpoczynająca demontaż. Często prowadzi to do błędnych wniosków, że demontaż można rozpocząć od kół pasowych, co jest sprzeczne z zaleceniami producentów i normami branżowymi. Ignorowanie tego kroku może skutkować uszkodzeniami mechanicznymi oraz wydłużeniem czasu przestoju maszyn, co jest nieefektywne z punktu widzenia zarządzania produkcją. Dlatego kluczowe jest przestrzeganie właściwej kolejności podczas demontażu układów pasowych dla zapewnienia ich bezpieczeństwa i efektywności działania.

Pytanie 5

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. trójdrogowy trójpołożeniowy (3/3)
B. trójdrogowy dwupołożeniowy (3/2)
C. pięciodrogowy dwupołożeniowy (5/2)
D. pięciodrogowy trójpołożeniowy (5/3)
Zawór pięciodrogowy trójpołożeniowy (5/3) to właściwy wybór, bo pozwala na pełną kontrolę nad ruchem tłoczyska w siłowniku pneumatycznym. Można go zatrzymać w dowolnej pozycji, co jest super ważne w różnych zastosowaniach. Ten zawór ma pięć portów i trzy położenia robocze, co oznacza, że możemy zasilać siłownik z jednej strony (położenie 1), z drugiej (położenie 2) lub zatrzymać go w neutralnej pozycji (położenie 3). Dzięki temu wszystko działa precyzyjnie, co jest kluczowe np. w automatyce produkcyjnej czy robotyce. Używanie takich standardowych komponentów, jak zawory 5/3, to naprawdę dobry pomysł, bo zapewniają one niezawodność i łatwość w podłączeniu do innych części systemu. Przykładem mogą być linie montażowe, gdzie dokładne pozycjonowanie elementów jest mega istotne dla efektywności.

Pytanie 6

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC
B. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu
C. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
D. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
Wprowadzenie sterownika PLC w tryb STOP oraz wyłączenie zasilania elektrycznego i pneumatycznego układu to kluczowe kroki przed rozpoczęciem wymiany zaworu elektropneumatycznego. Takie podejście minimalizuje ryzyko błędów oraz zapewnia bezpieczeństwo podczas prac serwisowych. W trybie STOP sterownik nie wykonuje żadnych operacji, co zapobiega niekontrolowanemu działaniu urządzeń. Wyłączenie zasilania elektrycznego oraz pneumatycznego jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa pracy z systemami pneumatycznymi i automatyki. Przykładowo, w przemyśle automatycznym często stosuje się blokady mechaniczne i elektryczne, aby upewnić się, że urządzenia są całkowicie unieruchomione. Dobrym standardem jest również przeprowadzenie analizy ryzyka przed rozpoczęciem takich prac oraz oznaczenie strefy roboczej, aby zminimalizować ryzyko wypadków. W ten sposób, poprzez zastosowanie odpowiednich procedur, można uniknąć niebezpiecznych sytuacji i zapewnić bezpieczne warunki pracy.

Pytanie 7

W sieci TN - C doszło do przerwania przewodu PEN. Jakie są tego konsekwencje?

A. pojawieniem się napięcia na obudowie urządzeń podłączonych do gniazda z bolcem ochronnym
B. spadkiem napięcia zasilającego do 0,5 UN
C. przepaleniem bezpieczników w obwodzie
D. brakiem zasilania dla wszystkich odbiorników
Odpowiedź jest prawidłowa, ponieważ przerwanie przewodu PEN w sieci TN-C prowadzi do sytuacji, w której obudowy urządzeń podłączonych do gniazd z bolcem ochronnym mogą stać się naładowane. Przewód PEN pełni rolę zarówno przewodu neutralnego, jak i ochronnego, dlatego jego przerwanie wprowadza ryzyko wystąpienia napięcia na obudowach urządzeń. W przypadku braku przewodu ochronnego, prąd zwarciowy nie ma drogi do ziemi, co może skutkować niebezpiecznym wzrostem napięcia na obudowach urządzeń. W praktyce, takie zjawisko może wystąpić w instalacjach, gdzie nie zastosowano odpowiednich środków ochrony, takich jak wyłączniki różnicowoprądowe. Zgodnie z normą PN-IEC 60364, w przypadku sieci TN-C konieczne jest zachowanie szczególnej ostrożności i regularne wykonywanie pomiarów, aby zapewnić bezpieczeństwo użytkowników. Wszelkie nieprawidłowości w funkcjonowaniu sieci powinny być bezzwłocznie usuwane, aby zminimalizować ryzyko porażenia prądem elektrycznym.

Pytanie 8

Prędkość ruchu tłoczyska w siłowniku hydraulicznym ma odwrotną zależność od

A. efektywności siłownika
B. powierzchni roboczej tłoka
C. natężenia przepływu medium roboczego do siłownika
D. wydajności siłownika
Wybór odpowiedzi dotyczącej sprawności siłownika, mocy wyjściowej lub natężenia przepływu czynnika roboczego jako czynników wpływających na prędkość tłoczyska siłownika hydraulicznego ilustruje kilka błędnych koncepcji w zakresie zrozumienia zasad hydrauliki. Sprawność siłownika odnosi się do efektywności przetwarzania energii hydraulicznej na energię mechaniczną, która nie ma bezpośredniego wpływu na prędkość tłoczyska, a raczej na to, jak efektywnie siłownik wykonuje pracę w danym cyklu. Można zauważyć, że wysoka sprawność może prowadzić do lepszej wydajności systemu, ale nie zmienia samego związku między natężeniem przepływu a prędkością tłoczyska. Z kolei moc wyjściowa siłownika, która jest produktem ciśnienia i wydajności, również nie jest bezpośrednio powiązana z prędkością tłoczyska, ponieważ moc może być zachowana przy różnych prędkościach w zależności od warunków pracy. Ostatecznie, natężenie przepływu czynnika roboczego jest zwarcie związane z prędkością tłoczyska, jednak to powierzchnia tłoka decyduje o tym, jak to natężenie wpływa na ruch tłoczyska. W wielu przypadkach, błędne wnioski prowadzą do nieoptymalnych wyborów w projektowaniu układów hydraulicznych, co może skutkować zmniejszoną efektywnością i zwiększonym zużyciem energii.

Pytanie 9

Które z wymienionych materiałów sztucznych jest najbardziej odpowiednie do wytwarzania kół zębatych?

A. Lateks
B. Silikon
C. Poliuretan
D. Poliamid
Poliamid, znany również jako nylon, jest jednym z najlepszych tworzyw sztucznych do produkcji kół zębatych ze względu na swoje doskonałe właściwości mechaniczne. Ma wysoką wytrzymałość na rozciąganie oraz odporność na ścieranie, co czyni go idealnym materiałem do zastosowań, gdzie występują znaczne obciążenia. Dzięki niskiemu współczynnikowi tarcia, poliamid zmniejsza zużycie energii i przedłuża żywotność elementów mechanicznych. Przykłady zastosowania obejmują przemysł motoryzacyjny, gdzie koła zębate z poliamidu są używane w układach przekładniowych, a także w urządzeniach przemysłowych, takich jak maszyny CNC. Poliamid jest także odporny na działanie olejów i rozpuszczalników, co dodatkowo zwiększa jego wszechstronność. Zgodnie z dobrymi praktykami inżynieryjnymi, wybór poliamidu do produkcji kół zębatych jest zgodny z wieloma normami branżowymi, co potwierdza jego zalety w kontekście efektywności i trwałości w aplikacjach inżynieryjnych.

Pytanie 10

Do sposobów oceny stanu łożysk tocznych nie wlicza się pomiaru

A. prędkości
B. temperatury
C. szumów
D. drgań
Pomiar prędkości łożysk tocznych nie jest typową metodą oceny ich stanu, ponieważ w praktyce nie dostarcza jednoznacznych informacji o ich kondycji. Zamiast tego, standardowe metody oceny stanu łożysk obejmują pomiar drgań, szumów oraz temperatury. Pomiar drgań jest szczególnie istotny, ponieważ pozwala na wykrycie nieprawidłowości w pracy łożysk, takich jak uszkodzenia, niewłaściwe dopasowanie czy problemy z lubryfikacją. Metody oceny stanu oparte na pomiarze szumów mogą wskazywać na nieprawidłowości w działaniu lub zużycie łożysk. Z kolei pomiar temperatury łożysk tocznych jest kluczowy w ocenie warunków pracy, ponieważ podwyższona temperatura może być oznaką niewłaściwego smarowania lub nadmiernego obciążenia. W związku z tym, pomiar prędkości nie jest praktykowany jako metoda oceny stanu łożysk tocznych w kontekście monitorowania ich wydajności i trwałości.

Pytanie 11

W rezystancyjnych termometrach (oporowych) wykorzystuje się zjawisko związane ze zmianą

A. wielkości elementu aktywnego pod wpływem temperatury
B. napięcia na końcówkach termoelementu podczas zmian temperatury
C. rezystywności metali oraz półprzewodników w odpowiedzi na ciśnienie
D. rezystancji metali albo półprzewodników przy zmianach temperatury
W termometrach rezystancyjnych wykorzystuje się zjawisko zmiany rezystancji materiałów, takich jak metale czy półprzewodniki, w odpowiedzi na zmiany temperatury. Zjawisko to jest oparte na właściwościach elektrycznych zastosowanych materiałów, które determinują ich rezystywność. Przykładowo, w przypadku platyny, która jest najczęściej stosowanym materiałem w termometrach rezystancyjnych, rezystancja rośnie proporcjonalnie do temperatury. Tego typu termometry są szeroko stosowane w laboratoriach oraz przemyśle, ponieważ zapewniają wysoką dokładność i stabilność pomiarów. W praktyce wykorzystuje się je w różnych zastosowaniach, od monitorowania procesów chemicznych po kontrolę temperatury w systemach HVAC. Normy i standardy, takie jak IEC 60751, określają klasyfikacje i wymagania dla termometrów rezystancyjnych, co zapewnia ich niezawodność i spójność w pomiarach. Zrozumienie zjawiska rezystancji jako funkcji temperatury jest kluczowe dla efektywnego wykorzystania tych urządzeń w różnych aplikacjach.

Pytanie 12

Który z poniższych czujników nie może być użyty jako czujnik zbliżeniowy?

A. Pojemnościowego
B. Rezystancyjnego
C. Optycznego
D. Indukcyjnego
Czujnik rezystancyjny nie może być zastosowany jako czujnik zbliżeniowy, ponieważ jego działanie opiera się na pomiarze oporu elektrycznego, który zmienia się w odpowiedzi na zewnętrzne zmiany, takie jak temperatura czy siła nacisku. W przeciwieństwie do czujników pojemnościowych, optycznych i indukcyjnych, które mogą wykrywać obecność obiektów na podstawie ich właściwości fizycznych lub elektromagnetycznych, czujnik rezystancyjny wymaga bezpośredniego kontaktu z obiektem, aby zareagować na zmiany. Przykładem zastosowania czujnika rezystancyjnego jest pomiar temperatury w termistorze, gdzie zmiana oporu jest bezpośrednio związana z temperaturą. W kontekście nowoczesnych systemów automatyki, użycie czujników zbliżeniowych, takich jak pojemnościowe czy indukcyjne, staje się kluczowe dla poprawy bezpieczeństwa i efektywności procesów, ponieważ pozwalają na detekcję obiektów bez potrzeby fizycznego kontaktu, co znacząco zwiększa trwałość i niezawodność systemów. Praktyki te są zgodne z aktualnymi standardami w dziedzinie automatyki i robotyki.

Pytanie 13

Wartość natężenia oświetlenia podczas wykonywania precyzyjnych zadań powinna wynosić

A. 600 lx
B. 100 lx
C. 300 lx
D. 800 lx
Natężenie oświetlenia na poziomie 800 lx jest zalecane w miejscach, gdzie wykonywane są precyzyjne prace, takich jak laboratoria, warsztaty czy strefy montażowe. Tego rodzaju oświetlenie zapewnia wystarczającą ilość światła, co jest kluczowe dla dokładności i jakości wykonania zadań. Zbyt niskie natężenie oświetlenia może prowadzić do zmęczenia wzroku, obniżenia wydajności i zwiększonego ryzyka błędów. Przykład zastosowania tej zasady można zaobserwować w branży elektronicznej, gdzie montaż drobnych komponentów wymaga wyjątkowej precyzji. Zgodnie z normami takimi jak PN-EN 12464-1, specyfikującymi wymagania dotyczące oświetlenia miejsc pracy, natężenie oświetlenia na poziomie 800 lx jest odpowiednie dla miejsc wymagających koncentracji oraz dokładności. Należy również pamiętać o równomiernym rozkładzie światła, co jest równie istotne dla eliminacji cieni, które mogą utrudniać widoczność detali. Wysokiej jakości oświetlenie to klucz do efektywności i bezpieczeństwa w miejscu pracy.

Pytanie 14

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. odfiltrowanie cząstek stałych z powietrza
B. spływ kondensatu wodnego do najniższego punktu instalacji
C. rozbijanie kropli oleju strumieniem sprężonego powietrza
D. rozchodzenie się mgły olejowej w instalacji
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.

Pytanie 15

Czy panewka stanowi część składową?

A. sprzęgła sztywnego tulejowego
B. zaworu pneumatycznego
C. łożyska ślizgowego
D. łożyska kulkowego
Panewka jest kluczowym elementem łożysk ślizgowych, które są szeroko stosowane w różnych zastosowaniach inżynieryjnych, takich jak silniki, maszyny przemysłowe czy urządzenia hydrauliczne. Panewka działa jako element osłony, która umożliwia swobodny ruch wału w obrębie obudowy, minimalizując tarcie i zużycie. W przypadku łożysk ślizgowych, panewka może być wykonana z różnych materiałów, takich jak tworzywa sztuczne, metale czy kompozyty, a jej wybór zależy od specyficznych warunków pracy, takich jak obciążenie, prędkość i temperatura. Standardy branżowe, takie jak ISO 11358, dostarczają wytycznych dotyczących projektowania i doboru materiałów dla panewki, co pozwala na osiągnięcie wysokiej wydajności oraz długiej żywotności łożyska. Przykładem zastosowania panewki w łożyskach ślizgowych są silniki spalinowe, gdzie panewka wału korbowego pozwala na przenoszenie dużych sił bez nadmiernego zużycia.

Pytanie 16

Jaki środek smarny oraz o jakiej konsystencji powinno się wykorzystać w celu zmniejszenia oporu tarcia w siłownikach pneumatycznych?

A. Olej w postaci mgły olejowej
B. Półciekły smar plastyczny
C. Smar o stałej konsystencji
D. Olej w postaci płynnej
Olej w postaci mgły olejowej jest optymalnym środkiem smarnym do zastosowania w siłownikach pneumatycznych, ponieważ skutecznie obniża tarcie i zużycie elementów ruchomych, co przekłada się na ich dłuższą żywotność. Typowa mgła olejowa jest wytwarzana poprzez rozpylanie oleju, co pozwala na równomierne pokrycie powierzchni roboczych. Dzięki temu olej penetruje w najtrudniej dostępne miejsca w mechanizmach, co zwiększa efektywność smarowania. W praktyce, olej w postaci mgły jest często używany w zautomatyzowanych systemach, gdzie precyzja i efektywność smarowania są kluczowe. Zgodnie z normami ISO 6743-99, oleje do smarowania pneumatycznego powinny spełniać określone wymagania dotyczące lepkości i stabilności. Wybór odpowiedniego środka smarnego jest kluczowy nie tylko dla wydajności, ale i dla bezpieczeństwa operacji, dlatego dobór oleju w postaci mgły jest zgodny z najlepszymi praktykami branżowymi.

Pytanie 17

Jakie komponenty powinny być wykorzystane do stworzenia półsterowanego mostka prostowniczego?

A. Diody i tyrystory
B. Triaki oraz diaki
C. Triaki
D. Diody
Półsterowany mostek prostowniczy to układ, który wykorzystuje diody oraz tyrystory do konwersji prądu zmiennego na prąd stały. Użycie diod w tym układzie jest kluczowe, ponieważ pełnią one funkcję prostowników, umożliwiając przepływ prądu w jednym kierunku. Tyrystory natomiast pozwalają na kontrolowanie momentu, w którym prąd zaczyna płynąć, co jest szczególnie istotne w aplikacjach wymagających regulacji mocy. Przykładem zastosowania półsterowanego mostka prostowniczego jest zasilanie silników elektrycznych, gdzie konieczne jest nie tylko prostowanie, ale także kontrolowanie prędkości obrotowej silnika. W takich aplikacjach zarządzanie energią i efektywnością jest kluczowe, a użycie tyrystorów pozwala na uzyskanie lepszej jakości sygnału oraz redukcję strat energii. Zgodnie z normami branżowymi, takie układy są często wykorzystywane w przemyśle automatyki, a ich prawidłowe projektowanie wymaga znajomości zasad działania komponentów elektronicznych oraz ich interakcji w obwodach. W praktyce, dobrze zaprojektowany mostek prostowniczy zwiększa niezawodność i efektywność systemu zasilania.

Pytanie 18

Pracownik upadł na twardą nawierzchnię z wysokości 4 metrów i doznał drobnego urazu głowy, jednak jest przytomny i odczuwa mrowienie w kończynach. Co należy zrobić w pierwszej kolejności?

A. podnieść poszkodowanego i opatrzyć ranę głowy
B. pozostawić poszkodowanego w pozycji leżącej i wezwać pomoc
C. przenieść poszkodowanego w bezpieczne miejsce i wezwać pomoc
D. posadzić poszkodowanego na krześle i opatrzyć ranę głowy
W sytuacji, gdy pracownik doznał urazu po upadku z wysokości, kluczowe jest zapewnienie mu bezpieczeństwa oraz niedopuszczenie do pogorszenia jego stanu. Pozostawienie poszkodowanego w pozycji leżącej minimalizuje ryzyko poważniejszych obrażeń, takich jak uraz kręgosłupa czy wstrząs mózgu. W takiej pozycji można również monitorować jego stan oraz ułatwić dostęp do oddechu, co jest istotne w przypadku potencjalnych problemów z oddychaniem. Natychmiastowe wezwanie pomocy medycznej jest niezbędne, ponieważ tylko wykwalifikowany personel medyczny może przeprowadzić szczegółową ocenę stanu poszkodowanego oraz zapewnić odpowiednie leczenie. Dobre praktyki w zakresie pierwszej pomocy podkreślają, że nie należy przemieszczać poszkodowanego, chyba że grozi mu bezpośrednie niebezpieczeństwo, takie jak pożar czy wybuch. Na przykład, w przypadku urazów głowy, stabilizacja kręgosłupa jest absolutnie priorytetowa. Zastosowanie standardów pierwszej pomocy, takich jak ABC (Airway, Breathing, Circulation), pozwala na efektywne zarządzanie sytuacją, zapewniając bezpieczeństwo i komfort poszkodowanego do czasu przybycia służb medycznych.

Pytanie 19

Podnośnik hydrauliczny do samochodów dysponuje tłokiem roboczym o średnicy 100 mm. Tłoczek pompy w tym urządzeniu ma średnicę 10 mm. Kiedy podnośnik unosi obciążenie wynoszące 20 kN, jaka jest siła działająca na tłoczek pompy?

A. 2000 N
B. 20 N
C. 2 N
D. 200 N
Odpowiedź 200 N jest prawidłowa, ponieważ w hydraulicznych systemach podnośników działa zasada Pascala, która stwierdza, że zmiana ciśnienia w cieczy rozprzestrzenia się równomiernie we wszystkich kierunkach. W tym przypadku mamy do czynienia z tłokiem roboczym o średnicy 100 mm, co daje mu promień 50 mm. Obliczając pole powierzchni tego tłoka, używamy wzoru na pole koła: A = πr², co daje A = π(50 mm)² = 7854 mm². Tłoczek pompy z średnicą 10 mm ma promień 5 mm, więc jego pole wynosi A = π(5 mm)² = 78,5 mm². Wykorzystując równanie siły F = P*A, gdzie P to ciśnienie, możemy wyznaczyć siłę na tłoczku. Siła działająca na tłok roboczy wynosi 20 kN, czyli 20000 N. Ciśnienie w układzie obliczamy jako P = F/A = 20000 N / 7854 mm² = 2,546 N/mm². Następnie obliczamy siłę na tłoczku pompy: F = P*A = P * 78,5 mm² = 2,546 N/mm² * 78,5 mm² = 200 N. Takie obliczenia są kluczowe w inżynierii hydraulicznej, ponieważ pozwalają na prawidłowe dobieranie komponentów oraz ich późniejsze eksploatowanie zgodnie z normami bezpieczeństwa.

Pytanie 20

Co może się zdarzyć, gdy w trakcie montażu silnika trójfazowego nastąpi przerwanie przewodu ochronnego PE?

A. przeciążenia instalacji elektrycznej, co może skutkować pożarem
B. awarii stojana silnika
C. wzrostu temperatury silnika podczas pracy, co może prowadzić do zapalenia się silnika
D. pojawienia się napięcia na obudowie silnika, co grozi porażeniem prądem elektrycznym
Odpowiedź dotycząca pojawienia się napięcia na obudowie silnika oraz ryzyka porażenia prądem elektrycznym jest prawidłowa, ponieważ przewód ochronny PE (ochronny) ma kluczowe znaczenie w zapewnieniu bezpieczeństwa użytkowania urządzeń elektrycznych. W przypadku przerwania tego przewodu, obudowa silnika może znaleźć się pod napięciem, ponieważ nie będzie możliwości odprowadzenia prądów upływowych do ziemi. Taki stan stwarza zagrożenie dla osób pracujących w pobliżu, gdyż kontakt z obudową, która jest na potencjale elektrycznym, może prowadzić do porażenia prądem. W praktyce, aby zminimalizować ryzyko tego typu zdarzeń, zaleca się stosowanie systemów detekcji uszkodzeń izolacji oraz regularne przeglądy instalacji elektrycznej. Ponadto, zgodnie z normą PN-EN 61140, urządzenia powinny być wyposażone w odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zareagować na niebezpieczne różnice napięcia i wyłączyć zasilanie w sytuacji awaryjnej.

Pytanie 21

Urządzenie, którego dane techniczne przedstawiono w tabeli,

Ciecz roboczaOlej mineralny
WydajnośćDm3/min47 przy n=1450 min-1, p=1 MPa
Ciśnienie na wlocieMPa-0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamax. 10
Ciśnienie przeciekówMPamax. 0,2
Moment obrotowyNmmax. 235
Prędkość obrotowaobr/min1 000 do 1 800
Optymalna temperatura pracyK313÷338
Filtracjaμm16

A. otwiera i zamyka przepływ oleju.
B. utrzymuje stałe ciśnienie niezależnie od kierunku przepływu oleju.
C. wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
D. steruje kierunkiem przepływu oleju.
Wybrana odpowiedź jest poprawna, ponieważ urządzenie opisane w tabeli to pompa hydrauliczna, która ma na celu wytwarzanie strumienia oleju w układach hydraulicznych. Wydajność na poziomie 47 dm³/min oraz ciśnienie robocze 1 MPa wskazują na typowe parametry działania pomp hydraulicznych. W praktyce, pompy te są kluczowe w wielu zastosowaniach, takich jak systemy hydrauliczne w maszynach budowlanych, pojazdach, a także w przemyśle. Dobrą praktyką jest regularne monitorowanie parametrów pracy pompy, co pozwala na wczesne wykrywanie usterek i zapewnia długotrwałą efektywność systemu. Ponadto, zgodnie z normami hydraulicznymi, ważne jest, aby pompy były dobierane do konkretnych aplikacji, co zwiększa ich wydajność i bezpieczeństwo działania.

Pytanie 22

Jaką metodę łączenia metali należy wybrać, gdy maksymalna temperatura w trakcie łączenia nie może przekroczyć 450OC?

A. Lutowanie miękkie
B. Lutowanie twarde
C. Spawanie elektryczne
D. Spawanie gazowe
Lutowanie twarde, spawanie gazowe oraz spawanie elektryczne to techniki, które ze względu na procesy, jakie wykorzystują, nie są odpowiednie w sytuacji, gdy temperatura nie może przekraczać 450°C. Lutowanie twarde polega na łączeniu materiałów przy użyciu stopów lutowniczych, których temperatura topnienia jest znacznie wyższa niż w przypadku lutowania miękkiego, zwykle przekraczająca 450°C. To sprawia, że materiały mogą ulegać nieodwracalnym zmianom, co jest niedopuszczalne w wielu aplikacjach. Spawanie gazowe oraz spawanie elektryczne to procesy, które polegają na wytwarzaniu wysokotemperaturowego łuku elektrycznego lub ognia, co prowadzi do miejscowego topnienia materiału i zmiany jego właściwości fizycznych. Przy tych metodach temperatura w miejscu łączenia często znacznie przekracza 450°C, co może prowadzić do odkształceń, utraty wytrzymałości oraz innych negatywnych skutków dla komponentów. Typowym błędem myślowym jest zakładanie, że każda z tych technik jest odpowiednia w każdej sytuacji. Niezrozumienie różnicy w temperaturach procesów lutowniczych i spawalniczych może prowadzić do nieodwracalnych uszkodzeń materiałów, a także do niezgodności z wymaganiami jakościowymi i standardami branżowymi, które regulują procesy łączenia w różnych gałęziach przemysłu.

Pytanie 23

Jakie przyrządy pomiarowe powinno się wykorzystać do określenia mocy konsumowanej przez elektryczną nagrzewnicę z wentylatorem?

A. Termometr i oscyloskop
B. Mostek RLC oraz termometr
C. Amperomierz oraz woltomierz
D. Omomierz i amperomierz
Wybór amperomierza i woltomierza do pomiaru mocy pobieranej przez nagrzewnicę elektryczną z nadmuchem powietrza jest jak najbardziej właściwy. Amperomierz służy do pomiaru prądu płynącego przez urządzenie, natomiast woltomierz do pomiaru napięcia. Moc elektryczna oblicza się według wzoru P = U * I, gdzie P to moc w watach, U to napięcie w woltach, a I to prąd w amperach. Przykładowo, jeśli nagrzewnica pobiera prąd 10 A przy napięciu 230 V, to moc wynosi 2300 W. Takie podejście jest standardem w branży elektrotechnicznej, ponieważ pozwala na dokładne i bezpieczne określenie mocy urządzeń elektrycznych. Dobre praktyki zalecają również korzystanie z przyrządów pomiarowych o odpowiedniej klasie dokładności, aby zminimalizować błędy pomiarowe, zwłaszcza w zastosowaniach przemysłowych i domowych.

Pytanie 24

Transoptor wykorzystuje się do

A. galwanicznego połączenia obwodów
B. galwanicznej izolacji obwodów
C. konwersji impulsów elektrycznych na promieniowanie świetlne
D. sygnalizowania transmisji
Transoptor, znany również jako optoizolator, jest urządzeniem elektronicznym, które służy do galwanicznej izolacji obwodów elektrycznych. Jego głównym zadaniem jest zapewnienie nieprzerwanego, ale izolowanego połączenia pomiędzy dwoma obwodami, co pozwala na przesyłanie sygnałów elektrycznych bez bezpośredniego połączenia między nimi. Przykładem zastosowania transoptora jest integracja urządzeń pracujących przy różnych poziomach napięcia, takich jak mikroprocesory i elementy wykonawcze, co chroni wrażliwe układy przed wysokim napięciem. Transoptory są powszechnie stosowane w automatyce przemysłowej, telekomunikacji oraz systemach pomiarowych, gdzie izolacja jest kluczowa dla bezpieczeństwa i niezawodności. Dzięki nim możliwe jest także zminimalizowanie zakłóceń elektromagnetycznych, co jest zgodne z najlepszymi praktykami inżynieryjnymi w projektowaniu systemów elektronicznych.

Pytanie 25

Która metoda regulacji prędkości obrotowej silnika obcowzbudnego prądu stałego umożliwi efektywną regulację w szerokim zakresie od 0 do nn?

A. Rezystancją w obwodzie twornika
B. Rezystancją w obwodzie wzbudzenia
C. Napięciem przyłożonym do obwodu twornika
D. Napięciem przyłożonym do obwodu wzbudzenia
Rezystancja w obwodzie wzbudzenia silnika obcowzbudnego prądu stałego wpływa na siłę pola magnetycznego, co z kolei oddziałuje na moment obrotowy silnika. Zwiększenie rezystancji w tym obwodzie prowadzi do zmniejszenia prądu wzbudzenia, co skutkuje osłabieniem pola magnetycznego i może prowadzić do obniżenia momentu obrotowego przy danej wartości napięcia. Takie podejście może być stosowane w niektórych sytuacjach, ale nie zapewnia efektywnej regulacji prędkości w szerokim zakresie. Zwiększenie rezystancji w obwodzie twornika również nie jest właściwym rozwiązaniem, ponieważ prowadzi do strat mocy oraz obniżenia sprawności energetycznej silnika. Działania te mogą prowadzić do nieefektywnego działania, zwłaszcza w aplikacjach wymagających dynamicznej regulacji prędkości. Warto zwrócić uwagę, że stosowanie napięcia przyłożonego do obwodu wzbudzenia może wprowadzać dodatkowe problemy, takie jak trudności w uzyskaniu stabilnej pracy silnika w niższych prędkościach, co czyni tę metodę niepraktyczną. W kontekście najlepszych praktyk inżynieryjnych, należy unikać podejść, które nie gwarantują pełnej kontroli nad parametrami pracy silnika, a także mogą prowadzić do nadmiernych strat energetycznych i złożoności w implementacji systemu. Ostatecznie, wybór odpowiedniej metody regulacji prędkości powinien być oparty na analizie wymagań aplikacji oraz efektywności energetycznej.

Pytanie 26

Sensory indukcyjne działające w trybie zbliżeniowym nie mogą być używane do detekcji elementów stworzonych

A. z miedzi
B. z aluminium
C. z polipropylenu
D. ze stali
Wybierając inne materiały, takie jak miedź, stal czy aluminium, można błędnie założyć, że sensory indukcyjne będą w stanie je wykryć. Miedź, będąca materiałem przewodzącym, podlega wpływowi pola elektromagnetycznego. Sensory indukcyjne są zaprojektowane do detekcji takich materiałów, a ich działanie opiera się na indukcji elektromagnetycznej. Z kolei stal, szczególnie ferromagnetyczna, jest zazwyczaj jednym z najlepszych materiałów do detekcji przez te sensory. Sensory indukcyjne są często stosowane do detekcji obiektów metalowych w różnych procesach przemysłowych, co sprawia, że wybór stali jako materiału wykrywalnego jest uzasadniony. Aluminium również jest materiałem, który można wykrywać, chociaż efektywność detekcji może być nieco niższa niż w przypadku stali. Problem z tymi odpowiedziami polega na mylnym przekonaniu, że każdy materiał metalowy można wykryć bez względu na jego właściwości elektryczne. W rzeczywistości wielkość obiektu, jego kształt oraz materiał, z którego jest wykonany, mają kluczowe znaczenie dla efektywności wykrywania. Użytkownicy powinni zwrócić uwagę na to, że różne typy czujników mają swoje specyficzne zastosowania związane z materiałami, co jest podkreślone w normach branżowych dotyczących automatyzacji i detekcji, takich jak IEC 60947-5-2.

Pytanie 27

Silnik komutatorowy przez dłuższy czas był przeciążony, co doprowadziło do powstania zwarć międzyzwojowych. Proces naprawy silnika obejmuje wymianę

A. łożysk
B. szczotek
C. uzwojenia
D. komutatora
Kiedy mówimy o naprawach silnika komutatorowego, wybór odpowiednich komponentów do wymiany jest kluczowy dla przywrócenia jego sprawności. Odpowiedzi takie jak łożyska, komutator czy szczotki, mimo że mogą być istotnymi elementami silnika, nie są odpowiednie w kontekście problemu z zwarciami międzyzwojowymi. W przypadku łożysk, ich zadaniem jest jedynie umożliwienie swobodnego obrotu wirnika, a ich uszkodzenie nie prowadzi bezpośrednio do zwarć w uzwojeniu. Z kolei komutator, który przekształca prąd stały na prąd zmienny, również nie jest bezpośrednią przyczyną takich awarii. Jeśli komutator jest uszkodzony, może to prowadzić do niewłaściwego działania silnika, ale nie jest to bezpośredni skutek przeciążenia uzwojenia. Wymiana szczotek, które są elementami stykowymi, również nie rozwiąże problemu przyczynowego, jakim są zwarcia w uzwojeniach. Te pomyłki wynikają często z braku zrozumienia roli poszczególnych elementów w silniku komutatorowym oraz ich wpływu na ogólną funkcjonalność urządzenia. Aby skutecznie naprawić silnik, konieczne jest zrozumienie, że uzwojenie w przypadku uszkodzeń związanych z przeciążeniem wymaga szczególnej uwagi, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 28

Gdy ciśnienie w zbiorniku kompresora rośnie, zakładając, że wilgotność i temperatura powietrza pozostają niezmienne, stan pary wodnej w zgromadzonym powietrzu

A. nie zmienia się, pod warunkiem, że wilgotność absolutna jest stała
B. zbliża się do linii punktu rosy
C. oddala się od linii punktu rosy
D. nie zmienia się w stosunku do linii punktu rosy
Wzrost ciśnienia w zbiorniku sprężarki powoduje, że powietrze staje się bardziej sprężone. Przy stałej wilgotności i temperaturze, wilgotność względna powietrza wzrasta, co oznacza, że stan pary wodnej w powietrzu zbliża się do linii punktu rosy. Linia punktu rosy jest granicą, przy której para wodna zaczyna kondensować w ciecz. W praktyce, im wyższe ciśnienie, tym więcej pary wodnej może być obecne w powietrzu, co prowadzi do podwyższenia ciśnienia cząstkowego pary wodnej. W zastosowaniach przemysłowych, kontrola ciśnienia i wilgotności powietrza jest kluczowa, zwłaszcza w procesach, w których może wystąpić kondensacja, jak w systemach pneumatycznych czy podczas przechowywania materiałów wrażliwych na wilgoć. Przykładowo, w przemyśle spożywczym lub farmaceutycznym, monitoring tych parametrów zapewnia, że procesy technologiczne przebiegają zgodnie z normami jakości, co z kolei wpływa na trwałość oraz bezpieczeństwo produktów końcowych.

Pytanie 29

Aby zabezpieczyć połączenia gwintowe przed niekontrolowanym odkręceniem, należy zastosować przeciwnakrętkę oraz wykorzystać

A. jednym kluczem nasadowym
B. dwoma kluczami płaskimi
C. jednym kluczem płaskim
D. dwoma kluczami nasadowymi
Użycie dwóch kluczy płaskich do zabezpieczenia połączeń gwintowych poprzez zastosowanie przeciwnakrętki jest standardową praktyką w branży. Dwa klucze płaskie pozwalają na jednoczesne blokowanie nakrętki oraz przeciwnakrętki, co minimalizuje ryzyko ich samoczynnego odkręcenia. W praktyce, jeden klucz jest używany do obracania nakrętki, podczas gdy drugi klucz stabilizuje przeciwnakrętkę. Tego typu połączenia są powszechnie stosowane w mechanice, budownictwie oraz inżynierii, gdzie obciążenia i wibracje mogą prowadzić do poluzowania elementów. Zastosowanie dwóch kluczy płaskich jest zgodne z zasadami dobrej praktyki inżynieryjnej, które podkreślają znaczenie prawidłowego montażu i konserwacji połączeń gwintowych. Ważne jest również, aby używać kluczy o odpowiednim rozmiarze, co zapewnia właściwe dopasowanie oraz minimalizuje ryzyko uszkodzenia zarówno gwintów, jak i narzędzi. Takie podejście jest kluczowe dla zapewnienia trwałości i niezawodności połączeń mechanicznych.

Pytanie 30

W celu oceny stanu technicznego przycisku S1 wykonano pomiary rezystancji, których wyniki przedstawiono w tabeli. Na ich podstawie można stwierdzić, że przycisk S1 posiada zestyk

Nazwa elementuWartość rezystancji zestyków [Ω]
Przed przyciśnięciemPo przyciśnięciu
Przycisk S10,22

A. sprawny NC.
B. sprawny NO.
C. niesprawny NC.
D. niesprawny NO.
Przycisk S1, który oceniłeś jako sprawny NC, działa tak, że w spoczynku obwód jest zamknięty. To się zgadza z tym, jak powinien działać. Jeśli rezystancja wynosi 0,22 Ω przed naciśnięciem, to znaczy, że wszystko jest ok, bo obwód faktycznie jest zamknięty – to jest bardzo ważne dla zestyków NC. Kiedy naciśniesz przycisk, rezystancja skacze do ∞ Ω, co oznacza otwarcie obwodu, i to też jest typowe dla NO. Przyciski NC używa się w różnych sytuacjach, na przykład w automatyce przemysłowej, gdzie potrzebujesz, żeby maszyny się zatrzymywały w razie awarii. Dobrze jest wiedzieć, że w systemach awaryjnego zatrzymywania przyciski te w normalnych warunkach są zamknięte dla bezpieczeństwa, a w nagłych sytuacjach otwierają się, co chroni przed zagrożeniem. Wiedza o tym, jak działają przyciski NC, jest naprawdę istotna, nie tylko dla bezpieczeństwa, ale także w kontekście norm, które obowiązują w branży inżynieryjnej. To wszystko ma ogromne znaczenie w codziennej pracy.

Pytanie 31

Po programowym aktywowaniu czterech wyjść tranzystorowych w sterowniku PLC, które sterują cewkami elektrozaworów, stwierdzono, że nie wszystkie działają poprawnie. Pomiar napięcia UBE (między bazą a emiterem) tranzystorów na poszczególnych wyjściach wykazał następujące wartości: UBE1 = 1 V, UBE2 = 3 V, UBE3 = 0,7 V, UBE4 = 5 V. Wyniki pomiarów sugerują uszkodzenie

A. tranzystorów na wyjściach 2 i 4
B. tranzystorów na wyjściach 1 i 3
C. wyłącznie tranzystora na wyjściu 4
D. wyłącznie tranzystora na wyjściu 3
Zauważyłeś, że odpowiedź wskazuje na problemy z tranzystorami na wyjściach 2 i 4, co jest całkiem słuszne. Jak spojrzysz na pomiary napięcia UBE, to na wyjściu 4 wynosi ono 5 V. To oznacza, że tranzystor działa na pełnych obrotach, a dla typowych tranzystorów krzemowych powinno być w okolicach 0,7 V. Z kolei, na wyjściu 2 mamy 3 V, co jest zbyt dużo – to znaczy, że coś tu nie gra i tranzystor nie pracuje tak, jak powinien. Jak się takie rzeczy zdarzają, to mogą być problemy z działaniem podłączonych cewków, a to może być kłopotliwe. W przypadku sterowników PLC wszystko musi działać jak w zegarku, żeby system był ok. W sytuacjach awaryjnych, lepiej też regularnie robić testy i konserwację, by wyłapać takie usterki na czas. No i nie zaszkodzi znać standardy, jak IEC 61131, bo mogą pomóc unikać tego typu problemów w przyszłości.

Pytanie 32

Jedną z kluczowych funkcji oscyloskopu dwukanałowego jest dokonywanie pomiaru

A. indukcyjności własnej cewki
B. przesunięcia fazowego napięciowych przebiegów sinusoidalnych
C. natężenia pola elektrycznego
D. pojemności elektrycznej kondensatorów
Odpowiedź dotycząca pomiaru przesunięcia fazowego napięciowych przebiegów sinusoidalnych jest prawidłowa, ponieważ oscyloskop dwukanałowy jest narzędziem niezwykle przydatnym w analizie sygnałów elektrycznych. W kontekście pomiarów, przesunięcie fazowe jest kluczowym parametrem, który może mieć istotny wpływ na działanie układów elektronicznych, zwłaszcza w aplikacjach audio, telekomunikacyjnych oraz w systemach zasilania. Przykładowo, w układach synchronizacji sygnałów, dokładne ustawienie fazy jest niezbędne do optymalnej wydajności. Oscyloskop umożliwia pomiar różnicy fazy pomiędzy dwoma sygnałami, co może być kluczowe w ocenie stabilności systemów oraz w diagnostyce usterek. Ponadto, zgodnie z najlepszymi praktykami w inżynierii elektronicznej, pomiar fazy powinien być częścią rutynowych testów układów, aby zapewnić ich prawidłowe funkcjonowanie i minimalizować zakłócenia.

Pytanie 33

Jakiego rodzaju kinematykę posiada manipulator, jeśli jego przestrzeń robocza przypomina prostopadłościan?

A. RRR - trzy osie obrotowe
B. RTT - jedną oś obrotową i dwie osie prostoliniowe
C. RRT - dwie osie obrotowe i jedną oś prostoliniową
D. TTT - trzy osie prostoliniowe
Wybrałeś odpowiedź TTT, czyli trzy osie prostoliniowe, i to jest całkiem dobre! Manipulator, który ma prostopadłościanową przestrzeń roboczą, naprawdę daje radę poruszać się w trzech osiach: X, Y i Z. To ważne, bo w przemyśle, gdzie trzeba robić różne rzeczy, jak automatyzacja produkcji czy montaż, precyzyjne ruchy są kluczowe. Manipulatory z trzema osiami prostoliniowymi są mocno wykorzystywane w robotyce, na przykład do pakowania, paletowania, czy transportu materiałów. Z mojego doświadczenia, taki układ TTT daje dużą elastyczność przy układaniu przestrzeni roboczej i można go dostosować do różnych zastosowań. Wiesz, są też standardy, takie jak ISO 9283, które pokazują, jak ocenia się wydajność manipulatorów, a to wszystko podkreśla, jak ważny jest odpowiedni wybór kinematyki, żeby naprawdę osiągnąć dobre rezultaty.

Pytanie 34

Do jakiej kategorii pomiarów można zakwalifikować pomiar długości gwintowanego fragmentu śruby przy użyciu przymiaru kreskowego?

A. Uwikłanych
B. Pośrednich
C. Bezpośrednich
D. Złożonych
Pomiar długości nagwintowanego odcinka śruby z wykorzystaniem przymiaru kreskowego klasyfikowany jest jako pomiar bezpośredni, ponieważ zachodzi bezpośrednie porównanie wymiaru obiektu z jednostką miary, jaką jest przymiar. W praktyce oznacza to, że długość mierzona jest bezpośrednio z wykorzystaniem narzędzia, a nie poprzez obliczenia lub pomiary pośrednie. Przykładem zastosowania pomiaru bezpośredniego jest pomiar długości wałków, rur czy elementów konstrukcji, gdzie można zastosować przymiar lub suwmiarkę. W branży inżynieryjnej stosowanie pomiarów bezpośrednich jest kluczowe dla zapewnienia dokładności wymiarowej w procesie produkcji oraz w kontroli jakości. Zgodnie z normami ISO, pomiary bezpośrednie są preferowane w przypadkach, gdzie wymagana jest wysoka precyzja, co podkreśla znaczenie tych metod w codziennych zastosowaniach inżynieryjnych.

Pytanie 35

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Warystor.
B. Termistor.
C. Tensometr.
D. Gaussotron.
Warystor to element elektroniczny, którego rezystancja gwałtownie spada po przekroczeniu określonego napięcia, znanego jako napięcie nominalne. Ten mechanizm jest zjawiskiem nieliniowym, co oznacza, że warystor działa jako izolator, gdy napięcie jest poniżej tego poziomu, ale staje się przewodnikiem, gdy napięcie przekracza tę granicę. Warystory są często stosowane w obwodach ochronnych, aby zabezpieczać urządzenia przed przepięciami, na przykład w zasilaczach oraz w systemach zabezpieczeń. Gdy napięcie wzrasta, warystor skutecznie 'odprowadza' nadmiar energii, co zapobiega uszkodzeniu innych komponentów w obwodzie. Z punktu widzenia norm i dobrych praktyk, warystory są zalecane w projektach, gdzie występuje ryzyko przepięć, zgodnie z normami IEC 61000-4-5 dotyczącymi odporności na przepięcia. Dodatkowo, ich zastosowanie w ochronie obwodów elektronicznych staje się kluczowe w kontekście wzrastającej liczby urządzeń narażonych na zakłócenia sieciowe oraz zmienność napięcia.

Pytanie 36

Weryfikacja połączeń nitowanych, realizowana poprzez uderzanie młotkiem w nit, ma na celu wykrycie nieprawidłowości

A. nieprawidłowego kształtu zakuwki
B. pęknięcia powierzchni łba i zakuwki nitu
C. luźnego osadzenia nitu
D. odkształcenia nitu
Luźne osadzenie nitu jest kluczowym problemem, którego identyfikacja jest niezbędna dla zapewnienia trwałości i bezpieczeństwa połączeń nitowanych. Kontrola połączeń nitowanych, przeprowadzona poprzez ostukiwanie młotkiem nitu, pozwala na ocenę jego stabilności w obrębie materiału, z którym jest połączony. Jeśli nit jest luźny, może to prowadzić do osłabienia całej struktury, co jest szczególnie niebezpieczne w konstrukcjach lotniczych oraz budowlanych, gdzie wymagana jest wysoka niezawodność. Przykładem zastosowania tej metody kontroli może być ocena połączeń w kadłubach samolotów, gdzie każda wada może prowadzić do katastrofalnych skutków. W praktyce, jeśli po uderzeniu młotkiem następuje wyraźny dźwięk, może to sugerować luźne osadzenie nitu. Standardy takie jak ISO 13920 definiują wymagania dla jakości i kontroli połączeń, co podkreśla znaczenie skutecznych metod diagnostycznych, jak ta opisana.

Pytanie 37

Podczas działania silnika prądu stałego zauważono intensywne iskrzenie na komutatorze spowodowane nagromadzeniem pyłu ze szczotek. Aby naprawić tę awarię, należy wyłączyć silnik, a następnie

A. przetrzeć komutator olejem
B. posmarować olejem szczotki
C. umyć komutator wodą
D. wykonać szlifowanie komutatora
Wykonanie szlifowania komutatora jest niezbędnym krokiem w usuwaniu iskrzenia spowodowanego osadzeniem się pyłu ze szczotek. Szlifowanie komutatora polega na usunięciu nierówności i zanieczyszczeń, co zapewnia lepszy kontakt elektryczny pomiędzy komutatorem a szczotkami. Nierównomierne zużycie komutatora prowadzi do iskrzenia, które może z czasem doprowadzić do uszkodzenia zarówno szczotek, jak i innych elementów silnika. Szlifowanie powinno być przeprowadzane przy użyciu odpowiednich narzędzi, takich jak papier ścierny o odpowiedniej gradacji, aby uzyskać gładką powierzchnię komutatora. Ważne jest również, aby po szlifowaniu dokładnie oczyścić komutator z pyłu, aby zapobiec ponownemu pojawieniu się problemu. Takie procedury są zgodne z zaleceniami producentów silników i standardami branżowymi, co zapewnia długotrwałą i niezawodną pracę silnika. Dbanie o regularne konserwacje, w tym szlifowanie komutatora, jest kluczowe dla utrzymania wydajności silników prądu stałego.

Pytanie 38

Transformator specjalny działający w warunkach zbliżonych do zwarcia, do którego podłącza się przyrząd pomiarowy, nosi nazwę

A. transformator bezpieczeństwa
B. przekładnik napięciowy
C. przekładnik prądowy
D. transformator do zmiany liczby faz
Przekładnik prądowy jest urządzeniem zaprojektowanym do pomiaru prądu w obwodach elektrycznych, które działa w stanie zbliżonym do zwarcia. Jego głównym zadaniem jest proporcjonalne przekształcanie prądu wysokiego napięcia na prąd niskiego napięcia, umożliwiając tym samym bezpieczne podłączenie przyrządów pomiarowych, takich jak amperomierze, do obwodów. W praktyce, przekładniki prądowe są szeroko stosowane w systemach energetycznych, w tym w stacjach transformatorowych oraz rozdzielniach elektrycznych. Dzięki nim można monitorować i analizować prądy robocze oraz przeciążeniowe, co jest niezbędne do zapewnienia bezpieczeństwa i niezawodności pracy instalacji elektrycznych. W kontekście norm branżowych, przekładniki prądowe muszą spełniać określone standardy, takie jak normy IEC 60044, co zapewnia ich wysoką jakość i niezawodność w trudnych warunkach pracy. Użycie przekładników prądowych w systemach automatyki przemysłowej pozwala na dokładne monitorowanie parametrów energii, co jest kluczowe dla optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacji.

Pytanie 39

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. maskę przeciwpyłową
B. okulary ochronne
C. buty ochronne
D. kask ochronny
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.

Pytanie 40

Tachogenerator przy obrotach 1000 obr./min. wytwarza napięcie 30 V. Jaką wartość napięcia wygeneruje ten tachogenerator przy prędkości obrotowej 200 obr./min?

A. 6 V
B. 15 V
C. 5 V
D. 3 V
Prądnica tachometryczna działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej. W tym przypadku, przy prędkości obrotowej 1000 obr./min, prądnica generuje napięcie wynoszące 30 V. Możemy obliczyć napięcie przy niższej prędkości obrotowej, stosując proporcję. Zauważmy, że 200 obr./min to 20% 1000 obr./min. Jeśli napięcie jest proporcjonalne do prędkości, to przy 200 obr./min prądnica wygeneruje 20% z 30 V, co daje 6 V. Tego rodzaju obliczenia są powszechnie stosowane w inżynierii, szczególnie w systemach automatyki, gdzie precyzyjne pomiary napięcia są kluczowe dla prawidłowego działania urządzeń. Przykładowo, w systemach pomiarowych oraz w kontrolach zadań w automatyce przemysłowej, znajomość zależności między prędkością a generowanym napięciem pozwala na optymalizację procesów oraz zwiększenie efektywności energetycznej.