Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 21 maja 2025 22:29
  • Data zakończenia: 21 maja 2025 22:43

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie podłoże powinno być zabezpieczone stalową siatką podtynkową przed nałożeniem tynku?

A. Z betonu zwykłego
B. Ceglane
C. Z betonu komórkowego
D. Drewniane
Odpowiedź dotycząca podłoża drewnianego jest prawidłowa, ponieważ przed otynkowaniem należy stosować stalową siatkę podtynkową w celu zapewnienia lepszej przyczepności tynku do powierzchni. Drewno, w przeciwieństwie do innych materiałów budowlanych, posiada właściwości, które mogą prowadzić do odkształceń i pęknięć. Stalowa siatka działa jako stabilizator, zapobiegając pękaniu tynku, co jest szczególnie istotne w przypadku drewnianych konstrukcji. Zastosowanie siatki podtynkowej jest również zgodne z normami budowlanymi, które zalecają takie rozwiązania w sytuacjach, gdy tynk ma być aplikowany na materiałach, które mogą się kurczyć lub rozszerzać. Przykładowo, w budownictwie mieszkaniowym, gdzie często stosuje się drewno jako materiał konstrukcyjny, zastosowanie siatki podtynkowej zwiększa trwałość i estetykę wykończenia. Dobrą praktyką jest także wykorzystanie siatek o odpowiedniej gęstości otworów, co jeszcze bardziej podnosi ich efektywność.

Pytanie 2

Ile trzeba zapłacić za cegły potrzebne do zbudowania ściany o powierzchni 28 m2, jeżeli 140 cegieł jest wymaganych do wykonania 1 m2 ściany o grubości 38 cm, a cena jednej cegły wynosi 1,50 zł?

A. 5 880,00 zł
B. 3 920,00 zł
C. 7 980,00 zł
D. 1 596,00 zł
Aby obliczyć koszt cegieł potrzebnych do wykonania ściany o powierzchni 28 m², zaczynamy od ustalenia, ile cegieł potrzebujemy. Z danych wynika, że do wykonania 1 m² ściany potrzeba 140 cegieł. Zatem dla 28 m² obliczamy: 28 m² * 140 cegieł/m² = 3 920 cegieł. Następnie, znając cenę jednej cegły, która wynosi 1,50 zł, obliczamy całkowity koszt: 3 920 cegieł * 1,50 zł/cegła = 5 880,00 zł. To podejście jest zgodne z najlepszymi praktykami w budownictwie, gdzie przed rozpoczęciem prac kosztorysowych dokonuje się szczegółowych obliczeń, aby uniknąć niedoszacowania materiałów budowlanych. Dobrze przeprowadzone obliczenia pozwalają na efektywne zarządzanie budżetem i uniknięcie dodatkowych kosztów na etapie realizacji projektu.

Pytanie 3

Do realizacji tynków zewnętrznych na elewacji budynku pięciokondygnacyjnego należy zastosować rusztowanie

A. stojakowego
B. kozłowego
C. warszawskiego
D. stolikowego
Rusztowanie stojakowe jest odpowiednim rozwiązaniem do wykonywania tynków zewnętrznych na elewacji 5-kondygnacyjnego budynku, ponieważ zapewnia stabilne i bezpieczne wsparcie dla pracowników i materiałów budowlanych. Tego rodzaju rusztowanie jest projektowane z myślą o dużych wysokościach, co czyni je idealnym dla obiektów wielokondygnacyjnych. W odróżnieniu od innych typów rusztowań, jak kozłowe, które są przeznaczone do zadań na niższych wysokościach, rusztowanie stojakowe umożliwia łatwe poruszanie się po elewacji, a jego konstrukcja pozwala na szybkie dostosowanie do zmieniających się warunków budowlanych. Przykładowo, podczas tynkowania elewacji, rusztowanie stojakowe może być łatwo rozbudowywane w górę, co daje dostęp do wyższych kondygnacji bez ryzyka utraty stabilności. Zastosowanie rusztowania spełniającego normy bezpieczeństwa, takie jak PN-EN 12810 i PN-EN 12811, jest kluczowe dla zminimalizowania ryzyka wypadków przy pracy oraz zwiększenia efektywności realizacji projektu.

Pytanie 4

Ile worków z 25 kg suchej zaprawy murarskiej jest potrzebnych do wybudowania ściany o powierzchni 15 m2 i grubości ½ cegły, jeśli jej zużycie na mur o takiej grubości wynosi 75 kg/m2?

A. 75 worków
B. 25 worków
C. 15 worków
D. 45 worków
Aby obliczyć liczbę worków suchej zaprawy murarskiej potrzebnej do wymurowania ściany o powierzchni 15 m² i grubości ½ cegły, należy najpierw zrozumieć, jakie są wymagania materiałowe. Ponieważ zużycie zaprawy wynosi 75 kg/m², obliczamy całkowite zapotrzebowanie na materiał, mnożąc powierzchnię ściany przez zużycie: 15 m² * 75 kg/m² = 1125 kg. Następnie, aby określić liczbę worków, które są dostępne po 25 kg każdy, dzielimy całkowitą wagę przez wagę jednego worka: 1125 kg / 25 kg/work = 45 worków. Taki sposób obliczeń jest zgodny z dobrymi praktykami w budownictwie, gdzie precyzyjne obliczenia materiałowe są kluczowe dla optymalizacji kosztów i uniknięcia niedoborów podczas pracy. Zastosowanie tej metody zapewnia efektywność i zgodność z normami budowlanymi.

Pytanie 5

Do budowy ścian fundamentowych należy używać zaprawy, której głównym spoiwem jest

A. wapno suchogaszone
B. cement portlandzki
C. wapno palone
D. gips budowlany
Cement portlandzki jest podstawowym spoiwem stosowanym w murowaniu ścian fundamentowych, ponieważ zapewnia wysoką wytrzymałość oraz trwałość konstrukcji. Jego skład chemiczny, który zawiera krzemionkę, glinę, wapno i inne składniki, pozwala na uzyskanie odporności na działanie wilgoci oraz agresywnych substancji chemicznych, co jest kluczowe w przypadku fundamentów narażonych na działanie wód gruntowych. W praktyce, zaprawy murarskie na bazie cementu portlandzkiego są stosowane w różnych warunkach atmosferycznych, co czyni je uniwersalnym rozwiązaniem w budownictwie. Ponadto, stosowanie cementu portlandzkiego jest zgodne z normami budowlanymi (np. PN-EN 197-1), które określają wymagania dla materiałów budowlanych. Dobre praktyki wskazują na konieczność odpowiedniego dozowania wody oraz dodatków, co wpływa na właściwości zaprawy i jej zdolność do wiązania. W przypadku fundamentów, odpowiednie przygotowanie zaprawy ma kluczowe znaczenie dla bezpieczeństwa i stabilności całej konstrukcji.

Pytanie 6

Na podstawie fragmentu instrukcji producenta oblicz, ile palet bloczków gazobetonowych o wymiarach
24×24×59 cm potrzeba do wymurowania dwóch ścian wysokości 2,75 m, długości 6 m i grubości 24 cm każda.

Informacje producenta bloczków betonu komórkowego
Wymiary bloczka
[cm]
Zużycie
[szt./m²]
Masa
[kg]
Liczba na palecie
[szt.]
24×24×59722,448
12×24×59712,296
8×24×5979,2144

A. 3 palety.
B. 58 palet.
C. 5 palet.
D. 116 palet.
Poprawna odpowiedź to 5 palet, co można wyjaśnić na podstawie obliczeń dotyczących wymagań materiałowych do wykonania dwóch ścian o podanych wymiarach. Wysokość każdej ściany wynosi 2,75 m, długość 6 m, a grubość 24 cm. Aby obliczyć całkowitą liczbę bloczków gazobetonowych potrzebnych do budowy, najpierw obliczamy objętość jednej ściany: 2,75 m * 6 m * 0,24 m = 3,96 m³. Dla dwóch ścian otrzymujemy 3,96 m³ * 2 = 7,92 m³. Bloczek gazobetonowy o wymiarach 24x24x59 cm ma objętość 0,024 m * 0,024 m * 0,059 m = 0,000028416 m³. Obliczamy, ile bloczków potrzebujemy: 7,92 m³ / 0,000028416 m³ ≈ 278,9, co zaokrąglamy do 279 bloczków. Na jednej palecie zmieści się 48 bloczków, więc dzieląc 279 przez 48, uzyskujemy około 5,8, co zaokrąglamy do 5 palet. W praktyce, zrozumienie takich obliczeń jest niezbędne w branży budowlanej, aby odpowiednio zarządzać materiałami i kosztami, co jest zgodne z dobrą praktyką inżynieryjną.

Pytanie 7

W jakim momencie powinno się przeprowadzać odbiór robót murarskich?

A. Przed zakończeniem tynków, ale po zamontowaniu ościeżnic okien i drzwi
B. Przed zakończeniem tynków i przed zamontowaniem ościeżnic okien i drzwi
C. Po zakończeniu tynków, lecz przed zamontowaniem ościeżnic okien i drzwi
D. Po zakończeniu tynków oraz zamontowaniu ościeżnic okien i drzwi
Odpowiedź, która wskazuje, że odbiór robót murarskich powinien odbywać się przed wykonaniem tynków, ale po osadzeniu ościeżnic okien i drzwi, jest zgodna z dobrą praktyką budowlaną. Odbiór robót murarskich ma na celu zweryfikowanie jakości wykonania konstrukcji oraz zgodności z projektem budowlanym. Osadzenie ościeżnic jest kluczowe, ponieważ ich prawidłowa instalacja ma wpływ na późniejsze prace wykończeniowe, w tym na tynkowanie. W przypadku odbioru przed tynkowaniem, można ocenić ewentualne wady konstrukcyjne, takie jak nierówności, pęknięcia czy błędne wymiary. Po osadzeniu ościeżnic można również sprawdzić, czy wszystkie otwory są odpowiednio przygotowane i ich wymiary są zgodne z wymaganiami. W praktyce oznacza to, że przed przystąpieniem do tynkowania, wykonawca powinien przeprowadzić szczegółowy odbiór, co pozwoli uniknąć problemów, które mogą wystąpić w trakcie dalszych prac budowlanych.

Pytanie 8

Zanim przystąpimy do otynkowania ściany z dwóch różnych materiałów, miejsce ich połączenia należy

A. wypełnić zaprawą cementową
B. pokryć siatką podtynkową
C. zaszpachlować gipsem
D. pokryć preparatem gruntującym
Pokrycie miejsca styku różnych materiałów siatką podtynkową jest kluczowym krokiem przed otynkowaniem, ponieważ zapewnia dodatkową stabilność i elastyczność w miejscach, gdzie mogą wystąpić różnice w rozszerzalności cieplnej i kurczeniu się materiałów. Siatka podtynkowa, zazwyczaj wykonana z włókna szklanego lub stali, umożliwia równomierne rozłożenie naprężeń na powierzchni, co minimalizuje ryzyko pęknięć i uszkodzeń tynku w dłuższym okresie. W praktyce, stosowanie siatki podtynkowej w narożach oraz w obszarach styku różnych materiałów, takich jak beton i cegła, jest zalecane przez wiele standardów budowlanych, takich jak PN-EN 13914-1. Dzięki tej metodzie można również uzyskać lepszą przyczepność tynku, co jest istotne dla trwałości i estetyki wykończenia. Warto również pamiętać, że po nałożeniu siatki należy starannie pokryć ją warstwą tynku, aby zapewnić pełne zamaskowanie siatki i uzyskanie gładkiej powierzchni. Zastosowanie siatki podtynkowej jest powszechną praktyką w budownictwie, co potwierdzają liczne publikacje i normy branżowe.

Pytanie 9

Tynki przeznaczone do użytku na zewnątrz obiektów powinny wyróżniać się wysoką

A. mrozoodpornością
B. higroskopijnością
C. nasiąkliwością
D. kapilarnością
Zaprawy tynkarskie, które nie są mrozoodporne, mogą zostać błędnie wybrane przez osoby nieznające się na materiałach budowlanych. Zastosowanie materiałów o wysokiej kapilarności, nasiąkliwości lub higroskopijności na zewnątrz budynków prowadzi do wielu problemów. Kapilarność odnosi się do zdolności materiału do transportu wody w górę poprzez mikroskopijne kanały. W przypadku tynków zewnętrznych, wysoka kapilarność może skutkować nadmiernym wchłanianiem wilgoci, co w połączeniu z mrozem prowadzi do degradacji struktury materiału. Nasiąkliwość, z drugiej strony, wskazuje na zdolność materiału do wchłaniania wody, co również nie jest pożądane w tynkach zewnętrznych, ponieważ może prowadzić do osłabienia tynku oraz sprzyjać powstawaniu pleśni i grzybów. Higroskopijność to zdolność materiału do pochłaniania wilgoci z powietrza, co w przypadku tynków zewnętrznych może prowadzić do gromadzenia się wody wewnątrz materiału, co z kolei przyspiesza procesy degradacji. W rezultacie, wybierając tynki, które nie spełniają norm dotyczących mrozoodporności, narażamy budynek na przyspieszoną degradację oraz koszty napraw. Kluczowym jest, aby zawsze oceniać materiały według ich właściwości i przeznaczenia, co pozwoli uniknąć typowych błędów w wyborze zapraw.”

Pytanie 10

Oblicz, ile cegieł dziurawek trzeba przygotować do budowy dwóch ścianek działowych o wymiarach 2,4×6,0 m i grubości 25 cm każda, jeśli norma zużycia tych cegieł to 93,40 szt./m2?

A. 1401 sztuk
B. 2690 sztuk
C. 1345 sztuk
D. 2801 sztuk
Aby obliczyć liczbę cegieł dziurawek potrzebnych do wykonania dwóch ścianek działowych o wymiarach 2,4 × 6,0 m, musimy najpierw policzyć powierzchnię jednej ścianki. Powierzchnia jednej ścianki wynosi 2,4 m × 6,0 m = 14,4 m². Skoro mamy dwie ścianki, całkowita powierzchnia wynosi 2 × 14,4 m² = 28,8 m². Następnie, korzystając z normy zużycia cegieł wynoszącej 93,40 szt./m², obliczamy potrzebną liczbę cegieł: 28,8 m² × 93,40 szt./m² ≈ 2690 sztuk. Taki sposób kalkulacji jest zgodny z dobrymi praktykami w budownictwie, które zalecają dokładne obliczenia materiałowe, aby uniknąć niepotrzebnych opóźnień i kosztów związanych z niedoborem materiałów. Warto również zwrócić uwagę na dokładność pomiarów, ponieważ każdy błąd w wymiarowaniu może prowadzić do znacznych różnic w ilości materiałów, co jest kluczowe w planowaniu budowy.

Pytanie 11

Koszt robocizny związany z wykonaniem 1 m2 tynku mozaikowego wynosi 20,00 zł. Oblicz całkowity wydatek na wykonanie (materiał i robocizna) tego tynku na ścianach o powierzchni 200 m2, jeżeli opakowanie (25 kg) tynku drobnoziarnistego kosztuje 150,00 zł, a jego zużycie to 3 kg/m2.

A. 3 600,00 zł
B. 3 800,00 zł
C. 4 000,00 zł
D. 7 600,00 zł
Aby obliczyć całkowity koszt wykonania tynku mozaikowego na ścianach o powierzchni 200 m², należy wziąć pod uwagę zarówno koszty materiałów, jak i robocizny. Koszt robocizny wynosi 20,00 zł za 1 m², co przy 200 m² daje łącznie 4 000,00 zł. Ponadto, do wykonania tynku potrzeba 3 kg tynku na 1 m², co oznacza, że na 200 m² zużyjemy 600 kg tynku. Ponieważ opakowanie tynku ma masę 25 kg, potrzebujemy 24 opakowań (600 kg / 25 kg). Koszt jednego opakowania to 150,00 zł, więc całkowity koszt materiału wynosi 3 600,00 zł (24 opakowania x 150,00 zł). Suma kosztów robocizny i materiałów wynosi 7 600,00 zł (4 000,00 zł + 3 600,00 zł). Takie obliczenia są zgodne z praktykami branżowymi, gdzie precyzyjne oszacowanie kosztów jest kluczowe dla budżetowania projektów budowlanych.

Pytanie 12

Rodzaj rusztowania wykorzystywanego w pomieszczeniach, zbudowanego z dwóch podpór oraz pomostu roboczego, to rusztowanie

A. kozłowe
B. wspornikowe
C. stojakowe
D. modułowe
Rusztowanie kozłowe to świetne rozwiązanie, zwłaszcza w zamkniętych przestrzeniach. Składa się z dwóch podpór i jednego pomostu roboczego, co sprawia, że montuje się je naprawdę szybko i bez większych problemów. To coś, co jest super przydatne przy robieniu remontów czy budowie tam, gdzie miejsca jest mało. Kozły robocze są mega pomocne, gdy trzeba sięgnąć do wyżej położonych rzeczy, jak malowanie sufitów czy zakładanie instalacji. Dodatkowo, ich konstrukcja spełnia normy bezpieczeństwa, więc nie trzeba się obawiać o bezpieczeństwo podczas pracy. Tego typu rusztowania można znaleźć w mieszkaniówkach i różnych obiektach komercyjnych, gdzie przestrzeń jest ograniczona, ale potrzebna jest odpowiednia wysokość robocza.

Pytanie 13

Jakie narzędzie jest używane do aplikacji tynków cienkowarstwowych na ścianie?

A. paca stalowa z ząbkami
B. kaelnia trapezowa
C. kaelnia trójkątna
D. paca ze stali nierdzewnej
Paca ze stali nierdzewnej jest narzędziem specjalistycznym, które znajduje zastosowanie w nakładaniu tynków cienkowarstwowych na ściany. Wykonana ze stali nierdzewnej, charakteryzuje się odpornością na korozję oraz trwałością, co sprawia, że jest idealna do pracy z materiałami tynkarskimi, które mogą zawierać substancje chemiczne. Jej gładka powierzchnia pozwala na równomierne rozprowadzanie tynku, co jest kluczowe dla uzyskania estetycznego i funkcjonalnego wykończenia. W praktyce, użycie pacy ze stali nierdzewnej umożliwia precyzyjne wygładzanie i formowanie tynku, co ma bezpośredni wpływ na jakość powierzchni ściany oraz jej trwałość. Zgodnie z najlepszymi praktykami w branży budowlanej, należy także pamiętać o regularnym czyszczeniu narzędzi, aby uniknąć zanieczyszczeń, które mogą wpłynąć na końcowy efekt pracy. Dodatkowa wiedza na temat różnorodnych rodzajów tynków oraz technik ich aplikacji może jeszcze bardziej usprawnić proces tynkowania, a odpowiedni dobór narzędzi jest kluczowy dla osiągnięcia pożądanych rezultatów.

Pytanie 14

Zaprawa murarska powstaje z połączenia wody, dodatków lub domieszek oraz spoiwa

A. nieorganicznym i kruszywa grubego
B. organicznym i kruszywa drobnego
C. nieorganicznego i kruszywa drobnego
D. organicznym i kruszywa grubego
Zaprawa murarska to tak naprawdę mieszanka kilku rzeczy – wody, spoiwa i czasami różnych dodatków. Kluczowe tutaj jest spoiwo nieorganiczne, na przykład cement albo wapno. Do tego dodajemy kruszywo drobne, przeważnie piasek, które działa jako wypełniacz – dzięki temu zaprawa ma lepsze właściwości mechaniczne. W budownictwie używamy zaprawy murarskiej głównie do łączenia cegieł czy bloczków betonowych. Ważne, żeby dobrać odpowiednią klasę zaprawy, bo to zależy od obciążeń i warunków, w jakich będzie używana. Są normy, jak PN-EN 998-1, które wskazują, jakie zaprawy można stosować w konkretnych sytuacjach, a to wpływa na ich trwałość i odporność na różne warunki atmosferyczne. Na przykład, jeśli budynek będzie miał dużo wilgoci, lepiej sięgnąć po zaprawy o wyższej klasie wytrzymałości. Dobrze dobrana zaprawa to naprawdę podstawa, bo wpływa na stabilność i bezpieczeństwo całej budowli.

Pytanie 15

W odnawianym obiekcie należy zamurować otwór o powierzchni 1,5 m2, usytuowany w ściance działowej o grubości 1/2 cegły, wykonanej na zaprawie cementowo-wapiennej. Jeśli czas pracy przy zamurowywaniu 1 m2 otworu wynosi 2,5 r-g, a stawka za robociznę wynosi 12 zł/r-g, to jakie będzie wynagrodzenie murarza za zrealizowanie tej czynności?

A. 48 zł
B. 60 zł
C. 30 zł
D. 45 zł
Aby obliczyć wynagrodzenie murarza za zamurowanie otworu o powierzchni 1,5 m2, należy najpierw ustalić nakład robocizny. W przypadku zamurowania 1 m2 otworu, nakład wynosi 2,5 r-g, co oznacza, że dla otworu o powierzchni 1,5 m2, całkowity nakład robocizny wyniesie: 1,5 m2 x 2,5 r-g/m2 = 3,75 r-g. Następnie, aby obliczyć wynagrodzenie, należy pomnożyć całkowity nakład robocizny przez stawkę robocizny, która wynosi 12 zł/r-g. Zatem wynagrodzenie murarza wynosi: 3,75 r-g x 12 zł/r-g = 45 zł. Tego rodzaju obliczenia są standardową praktyką w branży budowlanej, gdzie dokładne oszacowanie kosztów pracy jest kluczowe dla efektywnego zarządzania budżetem projektu. Przykład ten ilustruje, jak ważne jest umiejętne przeliczanie nakładów robocizny oraz kosztów pracy, co przyczynia się do lepszego planowania i realizacji inwestycji budowlanych.

Pytanie 16

Jeżeli w trakcie remontu czas pracy na wykonanie 100 m2 tynku wynosi 35 r-g, to ile czasu będzie potrzebne na otynkowanie ścian pomieszczenia o wymiarach 5×6 m i wysokości 3 m?

A. 31,5 r-g
B. 23,1 r-g
C. 10,5 r-g
D. 35,0 r-g
Odpowiedź 23,1 r-g jest poprawna, ponieważ aby obliczyć czas potrzebny na otynkowanie ścian pokoju, należy najpierw określić powierzchnię tynku, którą trzeba pokryć. Pokój o wymiarach 5 m na 6 m i wysokości 3 m ma powierzchnię ścian równą: 2 * (5 m + 6 m) * 3 m = 66 m2. Następnie, mając informację, że nakład robocizny na 100 m2 tynku wynosi 35 r-g, możemy obliczyć czas potrzebny na pokrycie 66 m2 tynku. Proporcjonalnie, czas na 1 m2 wynosi 35 r-g / 100 m2 = 0,35 r-g. Dlatego czas na 66 m2 tynku to: 66 m2 * 0,35 r-g/m2 = 23,1 r-g. Tego typu obliczenia są kluczowe w praktyce budowlanej, ponieważ pozwalają na precyzyjne planowanie kosztów i czasu pracy, co jest zgodne z najlepszymi praktykami w branży budowlanej.

Pytanie 17

W przypadku tynków z klasy II i III maksymalne odchylenie promieni krzywizny powierzchni wnęki od zaplanowanego promienia nie może przekraczać

A. 30 mm
B. 5 mm
C. 10 mm
D. 7 mm
Wybór odpowiedzi 30 mm, 5 mm lub 10 mm jest niewłaściwy, ponieważ nie spełniają one wymogów dotyczących odchyleń promieni krzywizny dla tynków kategorii II i III. Odpowiedź 30 mm wprowadza poważny błąd, gdyż tak duże odchylenie może prowadzić do znacznych zaburzeń estetycznych oraz funkcjonalnych. W praktyce budowlanej, nadmierne odchylenia mogą skutkować zbieraniem się wody w zakamarkach, co z kolei prowadzi do degradacji tynku, a nawet korozji elementów budowlanych. Odpowiedź 5 mm, mimo że jest mniejsza niż 7 mm, również nie jest odpowiednia, ponieważ nie spełnia wymogów projektowych, które zostały jasno określone dla tynków tej kategorii. Tynki muszą być aplikowane z zachowaniem precyzyjnych wymiarów, aby zapewnić trwałość oraz estetykę wykonania. Przykłady nieprawidłowych podejść w aplikacji tynków mogą prowadzić do powstawania szczelin, pęknięć oraz innych defektów, które są nieakceptowalne w kontekście standardów budowlanych. Ostatecznie, wybór odpowiednich wartości odchyleń jest kluczowy dla osiągnięcia wysokiej jakości wykończenia oraz długotrwałej użyteczności, co jest istotne dla każdego projektu budowlanego.

Pytanie 18

Który z rodzajów tynków dekoracyjnych charakteryzuje się twardą, gładką i lśniącą strukturą, przypominającą polerowany kamień?

A. Sztablatura
B. Sztukateria
C. Sgraffito
D. Stiuk
Stiuk to tynk szlachetny, który charakteryzuje się twardą, gładką i lśniącą powierzchnią, co sprawia, że imituje polerowany kamień. Jest stosowany w architekturze zarówno wewnętrznej, jak i zewnętrznej, często w eleganckich wnętrzach lub jako element dekoracyjny fasad budynków. Proces jego aplikacji wymaga dużej precyzji i doświadczenia, ponieważ polega na nakładaniu wielu warstw specjalnie przygotowanej masy tynkarskiej, która po wyschnięciu jest szlifowana i polerowana. Przykładowo, stiuk często spotyka się w klasycznych pałacach oraz kościołach, gdzie elewacje lub wnętrza mają naśladować drogie materiały kamienne, co podnosi prestiż budowli. Dobrze wykonany stiuk nie tylko nadaje estetyczny wygląd, ale również zapewnia trwałość i odporność na różne czynniki atmosferyczne, co czyni go popularnym wyborem wśród architektów i projektantów.

Pytanie 19

Jakie spoiwo powoduje korozję stali?

A. Wapienne
B. Cementowo-wapienne
C. Gipsowe
D. Cementowe
Spoiwo gipsowe wywołuje korozję stali ze względu na swoje właściwości chemiczne i fizyczne. Gips, jako materiał krystaliczny, w obecności wody może wydzielać kwas siarkowy, który reaguje z metalami, prowadząc do ich utlenienia. W praktyce, w budownictwie, gipsowe tynki i gipsowe elementy konstrukcyjne są stosowane w pomieszczeniach wilgotnych, co zwiększa ryzyko korozji stali zbrojeniowej, jeśli nie są odpowiednio zabezpieczone. Zastosowanie odpowiednich powłok antykorozyjnych oraz zastosowanie stali o podwyższonej odporności na korozję to standardy, które powinny być przestrzegane, aby minimalizować ryzyko uszkodzeń konstrukcji. W branży budowlanej rekomenduje się także regularne przeglądy stanu technicznego konstrukcji, aby wczesne wykrywanie korozji mogło umożliwić podjęcie odpowiednich działań naprawczych.

Pytanie 20

Na podstawie informacji podanych w instrukcji producenta oblicz, ile kg suchej zaprawy należy wsypać do 25 dm3 wody, aby zachować właściwe proporcje składników mieszanki.

Instrukcja producenta
Proporcje mieszania
woda/sucha mieszanka
0,2 dm3/kg
Wydajność1,5 kg/m2/mm
Czas zużycia zaprawyok. 2 godzin

A. 112,5 kg
B. 37,5 kg
C. 50 kg
D. 125 kg
Wybór nieprawidłowej odpowiedzi na to pytanie wskazuje na pewne zrozumienie błędnych proporcji w kontekście mieszania składników. Wiele osób może mylnie interpretować zasady dotyczące ilości suchej zaprawy na podstawie objętości wody, co prowadzi do nadmiernego lub niewystarczającego użycia materiałów. Na przykład, odpowiedzi takie jak 50 kg czy 37,5 kg mogą wynikać z niepoprawnych kalkulacji, gdzie użytkownik mógł błędnie ocenić proporcje i zastosować nieodpowiednią metodę obliczania. Często zdarza się, że osoby nieświadomie dzielą objętość wody przez zbyt wysoką wartość, co prowadzi do zaniżenia wymaganej ilości suchej zaprawy. Podobnie, odpowiedzi takie jak 112,5 kg mogłyby być wynikiem błędnego mnożenia lub dodawania, które nie uwzględniają rzeczywistych proporcji. W praktyce ważne jest, aby zawsze odnosić się do instrukcji producenta, które są wynikiem wieloletnich badań i doświadczeń w branży budowlanej. Nieprzestrzeganie właściwych proporcji może skutkować nieodpowiednią konsystencją zaprawy, co w dłuższej perspektywie wpływa na jakość konstrukcji. Dlatego też kluczowe jest, aby proces przygotowania mieszanki był oparty na sprawdzonych danych oraz standardach branżowych, aby uniknąć kosztownych błędów i zapewnić trwałość wykonanych prac.

Pytanie 21

Odpowiednia organizacja miejsca pracy przy wykonywaniu robót murarskich polega na podzieleniu go na

A. 3 prostopadłe do muru pasma: robocze, materiałowe, transportowe
B. 3 równoległe do muru pasma: robocze, materiałowe, transportowe
C. 4 równoległe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
D. 4 prostopadłe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
Właściwa organizacja stanowiska roboczego w robót murarskich jest kluczowa dla efektywności i bezpieczeństwa pracy. Podział stanowiska na trzy równoległe do muru pasma: robocze, materiałowe i transportowe, jest zgodny z najlepszymi praktykami w zakresie organizacji pracy w budownictwie. Pasmo robocze to obszar, w którym wykonuje się główne czynności murarskie, co pozwala na płynne układanie materiałów budowlanych. Pasmo materiałowe powinno być zorganizowane w sposób umożliwiający łatwy dostęp do cegieł, zaprawy oraz innych niezbędnych materiałów, co zwiększa wydajność pracy. Pasmo transportowe natomiast powinno być wolne od przeszkód, co ułatwia przemieszczanie się i transportowanie materiałów do miejsca roboczego. Taki podział nie tylko zwiększa efektywność pracy, ale także minimalizuje ryzyko wypadków, ponieważ pozwala na lepszą kontrolę nad otoczeniem roboczym, a także umożliwia zachowanie porządku. Warto również pamiętać, że zgodnie z normami ISO oraz Kodeksem Pracy, odpowiednia organizacja stanowiska pracy jest kluczowa dla zachowania bezpieczeństwa pracowników.

Pytanie 22

Która z wymienionych czynności nie jest częścią badań kontrolnych przeprowadzanych podczas odbioru tynków cienkowarstwowych?

A. Pomiar grubości tynku
B. Sprawdzenie przyczepności tynku do podłoża
C. Badanie nasiąkliwości tynku
D. Weryfikacja prawidłowości przygotowania podłoża
Badanie nasiąkliwości tynku nie jest zaliczane do badań kontrolnych wykonywanych podczas odbioru tynków pocienionych, ponieważ jego celem jest ocena zdolności tynku do wchłaniania wody, co ma większe znaczenie w kontekście tynków tradycyjnych. W przypadku tynków pocienionych, które charakteryzują się innymi właściwościami technicznymi, bardziej istotne są testy takie jak badanie przyczepności tynku do podłoża, które pozwala ocenić, czy tynk jest prawidłowo osadzony na podłożu, oraz badanie grubości tynku, które zapewnia zgodność z wymaganiami projektowymi. W praktyce, przeprowadzanie badań nasiąkliwości może nie przynieść użytecznych informacji, gdyż tynki pocienione mają na celu zmniejszenie nasłonecznienia, co wpływa na ich właściwości użytkowe. Standardy branżowe, takie jak PN-EN 998-1, wskazują na kluczowe parametry do oceny tynków, co potwierdza, że badanie nasiąkliwości nie jest priorytetowe w procesie odbioru tynków pocienionych.

Pytanie 23

Zaprawę tynkarską produkowaną w zakładzie, oznaczoną symbolem R, wykorzystuje się do realizacji tynków

A. jednowarstwowych zewnętrznych
B. szlachetnych
C. izolujących cieplnie
D. renowacyjnych
Zaprawa tynkarska oznaczona symbolem R jest stosowana przede wszystkim do wykonywania tynków renowacyjnych, co jest ściśle związane z jej właściwościami. Renowacyjne tynki mają na celu przywrócenie estetyki oraz funkcjonalności powierzchni, które mogą być uszkodzone lub w złym stanie. Zaprawy te charakteryzują się wysoką przyczepnością do podłoża, elastycznością oraz odpornością na czynniki atmosferyczne, co czyni je idealnym rozwiązaniem w przypadku starszych budynków, gdzie istnieje ryzyko pęknięć lub kruszenia się tynku. W praktyce, podczas renowacji zabytków, stosuje się zaprawy R, aby zapewnić odpowiednią ochronę i trwałość elewacji, a także aby zachować tradycyjne metody budowlane. W kontekście standardów, zaprawy te powinny spełniać normy PN-EN 998-1 dotyczące zapraw do tynkowania, co gwarantuje ich wysoką jakość i odpowiednie właściwości użytkowe.

Pytanie 24

Do sporządzenia zaprawy cementowo-wapiennej odmiany E zaplanowano użycie 100 dm3 cementu. Korzystając z informacji zawartych w tabeli określ, ile pozostałych składników należy przygotować do jej wykonania.

Proporcje składników
(mierzone objętościowo)
Symbol
odmiany
Zaprawy cementoweodmiana 1 : 2A
odmiana 1 : 3B
odmiana 1 : 4C
Zaprawy cementowo-wapienneodmiana 1 : 0,25 : 3D
odmiana 1 : 0,5 : 4E
odmiana 1 : 1 : 6F
odmiana 1 : 2 : 9G
Zaprawy wapienneodmiana 1 : 1,5H
odmiana 1 : 2I
odmiana 1 : 4J

A. 50 dm3 piasku i 400 dm3 wapna.
B. 50 dm3 wapna i 200 dm3 piasku.
C. 50 dm3 piasku i 200 dm3 wapna.
D. 50 dm3 wapna i 400 dm3 piasku.
Poprawna odpowiedź to 50 dm3 wapna i 400 dm3 piasku, co jest zgodne z wymaganiami dla zaprawy cementowo-wapiennej odmiany E. W praktyce, proporcje składników w zaprawach cementowych mają kluczowe znaczenie dla uzyskania odpowiednich właściwości mechanicznych oraz wytrzymałości na czynniki zewnętrzne. W przypadku zaprawy E, stosunek cementu do wapna i piasku wynosi 1:0.5:4, co oznacza, że na każdą jednostkę cementu (100 dm3) przypada 50 dm3 wapna oraz 400 dm3 piasku. Proporcje te powinny być ściśle przestrzegane, aby zapewnić optymalną konsystencję i trwałość zaprawy. Prawidłowe użycie składników wpływa także na właściwości estetyczne, takie jak kolor i struktura powierzchni gotowego produktu. Warto zwrócić uwagę na jakość używanych materiałów, co również jest zgodne z dobrymi praktykami budowlanymi, ponieważ zanieczyszczenia mogą znacząco obniżyć wytrzymałość zaprawy. Przykładowo, w przypadku zastosowania niewłaściwych proporcji, możemy zaobserwować pęknięcia lub osłabienie strukturalne muru, co z kolei prowadzi do kosztownych napraw.

Pytanie 25

Nałożenie tradycyjnego tynku na wyjątkowo gładką powierzchnię może prowadzić do

A. odczepiania się tynku od podłoża
B. powstawania rys skurczowych na powierzchni
C. łamania się tynku zaraz po jego wyschnięciu
D. występowania plam i wykwitów na powierzchni ściany
Jak się nałoży tradycyjny tynk na super gładką powierzchnię, to może się on odspajać. Dlaczego? Bo takie gładkie ściany, jak beton polerowany czy płyty gipsowo-kartonowe, mają mało szorstkości. A to utrudnia tynkowi dobrze się wgryźć. Dlatego przed tynkowaniem warto użyć gruntu albo jakiegoś specjalnego preparatu, żeby poprawić przyczepność. Poradziłbym też wybrać tynki, które są bardziej elastyczne i plastyczne, bo lepiej znoszą lekkie ruchy podłoża. To zmniejsza szanse na odspajanie się. No i ważne, żeby trzymać się standardów, jak normy PN-EN 998, bo to pomaga utrzymać jakość i trwałość efektu końcowego. Właściwe przygotowanie podłoża jest kluczowe, bo od tego wiele zależy.

Pytanie 26

Aby zmniejszyć ilość wody w betonie przy temperaturze otoczenia od +5°C do +10°C, warto zastosować dodatek

A. uplastyczniającą
B. napowietrzającą
C. przeciwmrozową
D. uszczelniającą
Odpowiedź "uplastyczniającą" jest prawidłowa, ponieważ domieszki uplastyczniające są stosowane w celu poprawy plastyczności mieszanki betonowej, co pozwala na zmniejszenie ilości wody potrzebnej do uzyskania odpowiedniej konsystencji. W temperaturach od +5°C do +10°C, co jest dość chłodnym zakresem, woda w mieszance betonowej może mieć tendencję do zamarzania lub opóźnienia w związaniu. Dodając domieszkę uplastyczniającą, możemy zredukować stosunek wody do cementu, co z kolei poprawia moc i trwałość betonu. Przykłady zastosowania domieszek uplastyczniających obejmują produkcję betonów architektonicznych, gdzie estetyka i jednorodność mieszanki są kluczowe, oraz w sytuacjach, gdy wymagane są wyspecjalizowane właściwości, takie jak odporność na mrozy. Zgodnie z normami PN-EN 206 oraz PN-EN 934-2, użycie domieszek powinno być poparte odpowiednimi badaniami, aby zapewnić zgodność z wymaganiami projektowymi oraz trwałością konstrukcji.

Pytanie 27

Na podstawie danych zawartych w tabeli określ maksymalną odległość, w której należy wykonać szczeliny dylatacyjne w ścianie jednowarstwowej wymurowanej z pustaków ceramicznych, o spoinach pionowych niewypełnionych.

Rodzaj muruOdległości Ld między szczelinami dylatacyjnymi (w metrach) w ścianach
szczelinowychjedno- lub dwuwarstwowych o spoinach pionowych
warstwa zewnętrznawarstwa wewnętrznawypełnionychniewypełnionych
Z elementów ceramicznych12403025
Z innych elementów murowych8302520

A. 25 metrów.
B. 20 metrów.
C. 30 metrów.
D. 12 metrów.
Wybór innej odległości, jak 20, 12, czy 30 metrów, może wynikać z nieporozumienia dotyczącego zasad projektowania konstrukcji z pustaków ceramicznych. Odległość 20 metrów, mimo że może wydawać się odpowiednia, nie uwzględnia faktu, że dylatacje mają na celu nie tylko kompensację rozszerzalności cieplnej, ale także kontrolę naprężeń, które mogą prowadzić do uszkodzeń. Z kolei odległość 12 metrów nie jest zalecana, ponieważ prowadziłaby do nadmiaru dylatacji, co może osłabić integralność strukturalną i zwiększyć koszty budowy. Zastosowanie odległości 30 metrów z kolei przekracza normy branżowe, co może skutkować poważnymi problemami konstrukcyjnymi, takimi jak pęknięcia i osiadanie. Ważne jest, aby w każdym projekcie uwzględnić specyfikę materiałów oraz warunki lokalne, zwracając uwagę na standardy takie jak PN-EN 1996-1-1, które jasno określają optymalne odległości dylatacyjne. Typowym błędem myślowym jest błędne zakładanie, że większa odległość zwiększa stabilność, podczas gdy w rzeczywistości może to prowadzić do przeciążenia konstrukcji i poważnych konsekwencji. Dlatego kluczowe jest oparcie się na danych zawartych w tabelach i normach, które są wynikiem badań i praktyki inżynierskiej.

Pytanie 28

Kolejność technologiczna działań na pierwszym etapie prac rozbiórkowych budynku przy użyciu metod ręcznych przedstawia się następująco:

A. demontaż instalacji budowlanych, demontaż okien i drzwi, rozbiórka ścianek działowych
B. demontaż okien, rozbiórka ścianek działowych, demontaż instalacji budowlanych
C. rozbiórka dachu, demontaż okien, demontaż instalacji budowlanych
D. rozbiórka dachu, rozbiórka ścianek działowych, demontaż instalacji budowlanych
Poprawna odpowiedź wskazuje na odpowiednią kolejność prac w procesie rozbiórkowym, która jest zgodna z ogólnie przyjętymi standardami branżowymi. Na początku należy zdemontować instalacje budowlane, takie jak wodociągi, instalacje elektryczne oraz systemy grzewcze, aby uniknąć ewentualnych uszkodzeń lub zagrożeń bezpieczeństwa podczas dalszych prac. Następnie przystępuje się do demontażu okien i drzwi, co pozwala na swobodny dostęp do wnętrza budynku i minimalizuje ryzyko niekontrolowanego opadania elementów konstrukcyjnych. Ostatnim krokiem jest rozbiórka ścianek działowych, co pozwala na jednoczesne prowadzenie prac porządkowych po wcześniejszych etapach. Taki porządek prac jest zgodny z zaleceniami Krajowych Standardów Rozbiórek, które podkreślają znaczenie planowania i bezpieczeństwa w procesach budowlanych. Praktyczne przykłady zastosowania takiej kolejności można zaobserwować na placach budowy, gdzie przestrzeganie tych zasad zwiększa efektywność oraz bezpieczeństwo pracy.

Pytanie 29

Aby przygotować betonową mieszankę o objętościowej proporcji składników 1:2:4, jakie składniki należy zgromadzić?

A. 1 część żwiru, 2 części cementu i 4 części wody
B. 1 część piasku, 2 części żwiru i 4 części cementu
C. 1 część cementu, 2 części wody i 4 części żwiru
D. 1 część cementu, 2 części piasku i 4 części żwiru
Poprawna odpowiedź dotycząca proporcji składników do wykonania mieszanki betonowej o stosunku 1:2:4 odnosi się do zastosowania odpowiednich materiałów budowlanych. W tej proporcji 1 część cementu, 2 części piasku i 4 części żwiru zapewniają optymalną wytrzymałość i trwałość betonu. Cement działa jako spoiwo, które wiąże pozostałe składniki, piasek wypełnia przestrzenie między ziarnami żwiru, a żwir zapewnia odpowiednią strukturę oraz odporność na obciążenia. W praktyce, takie proporcje są powszechnie stosowane w budownictwie do wytwarzania betonu konstrukcyjnego, który jest używany w fundamentach, ścianach nośnych oraz elementach prefabrykowanych. Rekomendacje dotyczące mieszania betonu, takie jak norma PN-EN 206, podkreślają znaczenie starannego doboru składników oraz właściwego ich wymieszania, co wpływa na finalne właściwości mechaniczne betonu. Warto również zauważyć, że dobór odpowiedniej wody jest kluczowy, gdyż jej nadmiar może prowadzić do zmniejszenia wytrzymałości betonu, a zbyt mała ilość utrudnia prawidłowe wiązanie materiałów. Dlatego istotne jest przestrzeganie tych proporcji w praktyce budowlanej, by uzyskać trwałe i solidne konstrukcje.

Pytanie 30

Proces docieplania metodą lekką mokrą zaczyna się od

A. przymocowania siatki zbrojącej
B. przytwierdzenia materiału izolacyjnego
C. nałożenia tynku cienkowarstwowego
D. instalacji listwy startowej
Montaż listwy startowej jest kluczowym etapem w procesie docieplania budynków metodą lekką mokrą. Listwa startowa stanowi bazę dla systemu ociepleniowego i ma na celu zapewnienie odpowiedniego poziomu oraz stabilności dla kolejnych warstw, w tym materiału izolacyjnego. Poprawna instalacja listwy jest istotna, ponieważ zapobiega późniejszym deformacjom i zapewnia prawidłowe odprowadzenie wody, co ma kluczowe znaczenie dla trwałości całego systemu. Zazwyczaj listwę startową montuje się na poziomie podłogi, co umożliwia równomierne rozłożenie obciążenia. W praktyce, w zależności od zastosowanego materiału izolacyjnego, zaleca się dostosowanie wysokości listwy, aby zminimalizować ryzyko mostków termicznych. Dobrze zainstalowana listwa startowa jest fundamentem dla dalszych prac, w tym mocowania izolacji i aplikacji tynku, co potwierdzają standardy branżowe, takie jak ETAG 004, które regulują kwestie związane z systemami ociepleń zewnętrznych.

Pytanie 31

Z przedstawionego fragmentu rozporządzenia wynika, że budynek biurowy, który ma 9 kondygnacji nadziemnych o wysokości 3,00 m każda, a jego parter usytuowany jest 0,80 m nad poziomem terenu, należy do budynków.

Rozporządzenie ministra infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (fragment)
W celu określenia wymagań technicznych i użytkowych wprowadza się następujący podział budynków na grupy wysokości:
1. niskie (N) — do 12 m włącznie nad poziomem terenu lub mieszkalne o wysokości do 4 kondygnacji nadziemnych włącznie,
2. średniowysokie (SW) — ponad 12 m do 25 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 4 do 9 kondygnacji nadziemnych włącznie,
3. wysokie (W) — ponad 25 m do 55 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 9 do 18 kondygnacji nadziemnych włącznie,
4. wysokościowe (WW) — powyżej 55 m nad poziomem terenu.

A. niskich.
B. wysokich.
C. wysokościowych.
D. średniowysokich.
Zrozumienie, jak się klasyfikuje budynki według wysokości, to bardzo ważna sprawa, bo mogą się pojawić jakieś niejasności. Można spotkać się z odpowiedziami, które mówią, że budynek biurowy z 9 piętrami to coś średniowysokiego, niskiego albo wyskokowego, ale to mija się z prawdą. W przepisach nie ma dokładnej definicji 'średniowysoki', co może prowadzić do zamieszania. Budynek o 27 metrach zdecydowanie nie może być uznany za niski, bo te zazwyczaj mieszczą się poniżej 12 metrów. Jeśli się to pomija, to można wyciągnąć złe wnioski co do projektowania i budowy. Kiedy uznajemy, że budynek jest wysoki, projektanci muszą wziąć pod uwagę różne normy, co wpływa na systemy zabezpieczeń, takie jak windy przeciwpożarowe czy inne instalacje. Jeśli ktoś nie rozumie tego, to może to prowadzić do złego projektowania i niebezpiecznych sytuacji. Dlatego architekci i inżynierowie powinni znać definicje, ale też praktyczne skutki związane z klasyfikacją budynków.

Pytanie 32

Który sposób przygotowania cienkowarstwowej zaprawy murarskiej jest zgodny z przedstawioną instrukcją producenta?

Instrukcja producenta
Przygotowanie cienkowarstwowej zaprawy murarskiej
Zaprawę wsypać do odmierzonej ilości wody w proporcji 0,18 do 0,22 litra wody na 1 kg suchego proszku, następnie wymieszać mieszadłem mechanicznym do uzyskania jednorodnej masy. Odstawić na 3 do 5 minut i ponownie wymieszać. Zaprawę należy nakładać ręcznie pacą ząbkowaną lub innym narzędziem zwracając uwagę na dokładne wypełnienie spoin.

A. Wymieszać część suchego proszku z niewielką ilością wody, a następnie dodać pozostałą ilość wody oraz pozostałą ilość suchego proszku i ponownie wymieszać do uzyskania jednorodnej masy.
B. Do odmierzonej ilości wody wsypać porcję suchego proszku, razem wymieszać do uzyskania jednorodnej masy, następnie dolać wody.
C. Do odmierzonej ilości wody wsypać odpowiednią ilość suchego proszku, wymieszać do uzyskania jednorodnej masy, odstawić na określony czas i ponownie wymieszać.
D. Wymieszać część suchego proszku z wodą, następnie do uzyskanej mieszanki wsypać pozostałą ilość suchego proszku i razem wymieszać.
Poprawna odpowiedź opiera się na zaleceniach zawartych w instrukcji producenta, która jasno określa, że proces przygotowania zaprawy murarskiej powinien zaczynać się od odmierzenia odpowiedniej ilości wody. Następnie należy wsypać suchy proszek do wody, a całość dokładnie wymieszać, aby uzyskać jednorodną masę. Kluczowym krokiem jest odstawienie mieszanki na 3 do 5 minut, co pozwala na wchłonięcie wody przez proszek i aktywację składników chemicznych. Po tym czasie należy ponownie wymieszać zaprawę, aby zapewnić jej jednorodność. Praktyczne zastosowanie tej metody gwarantuje, że zaprawa uzyska właściwe parametry wytrzymałościowe oraz związki chemiczne będą właściwie aktywowane, co jest niezbędne dla osiągnięcia wysokiej jakości w trakcie murarskich prac budowlanych. Stosowanie odpowiednich proporcji wody do proszku potwierdzają także standardy budowlane, które zalecają staranność w przygotowaniach, aby uniknąć problemów z trwałością i stabilnością konstrukcji.

Pytanie 33

Do wypełnienia luk w ścianach z pełnej cegły należy zastosować

A. bloczków gazobetonowych
B. cegieł pełnych
C. cegieł z otworami
D. pustaków ceramicznych
Cegły pełne są materiałem budowlanym, który charakteryzuje się wysoką wytrzymałością i trwałością, co czyni je idealnym rozwiązaniem do uzupełniania ubytków w ścianach z cegły pełnej. Użycie cegieł pełnych zapewnia spójność strukturalną oraz estetyczną, ponieważ ich właściwości mechaniczne i kolorystyka są zbliżone do oryginalnych materiałów. W praktyce, przy renowacji lub naprawie starych budynków, cegły pełne stosuje się w miejscach, gdzie wymagana jest wysoka nośność i odporność na czynniki atmosferyczne. Dodatkowo, stosowanie tego samego rodzaju cegły w naprawie zapobiega pojawieniu się różnic w rozszerzalności cieplnej między różnymi materiałami, co może prowadzić do pęknięć. W budownictwie zaleca się przestrzeganie standardów, takich jak PN-EN 771-1, które określają wymagania dla cegieł i innych elementów murowych, co podkreśla znaczenie stosowania odpowiednich materiałów.

Pytanie 34

Jaką ilość mieszanki betonowej wykorzystano do stworzenia 3 stóp fundamentowych o rozmiarach 1,4 x 1,4 m i wysokości 0,5 m, jeśli norma zużycia mieszanki betonowej do uzyskania 1 m3 betonu wynosi 1,015 m3?

A. 2,984 m3
B. 5,880 m3
C. 0,995 m3
D. 2,940 m3
Aby obliczyć ilość mieszanki betonowej potrzebnej do wykonania 3 stóp fundamentowych o wymiarach 1,4 x 1,4 m i wysokości 0,5 m, należy najpierw obliczyć objętość jednego stopy fundamentowej. Obliczenie objętości polega na pomnożeniu długości, szerokości i wysokości: 1,4 m * 1,4 m * 0,5 m = 0,98 m3 dla jednej stopy. Następnie, mnożymy tę wartość przez 3, aby uzyskać łączną objętość wszystkich trzech stóp: 0,98 m3 * 3 = 2,94 m3. Jednakże norma zużycia mieszanki betonowej do wykonania 1 m3 betonu wynosi 1,015 m3, co oznacza, że na każdy 1 m3 betonu potrzebujemy 1,015 m3 mieszanki. Aby znaleźć całkowitą ilość mieszanki, należy pomnożyć objętość betonu przez normę: 2,94 m3 * 1,015 m3 = 2,984 m3. To pokazuje, jak ważne jest uwzględnienie norm zużycia w obliczeniach budowlanych, co jest praktyką powszechnie stosowaną w branży budowlanej, aby uniknąć niedoborów materiałów oraz zapewnić odpowiednią jakość wykonania. Takie podejście jest zgodne z najlepszymi praktykami w zakresie planowania i oszacowania materiałów budowlanych.

Pytanie 35

Na podstawie fragmentu instrukcji określ, jakiej długości pręty zbrojeniowe należy umieścić pod otworem okiennym o szerokości 150 cm?

Instrukcja wykonywania ścian zewnętrznych
w systemie Ytong
(fragment)


„ (...) W strefach podokiennych należy umieszczać zbrojenie poziome (firmowe do spoin wspornych lub dwa pręty ze stali żebrowanej o średnicy 8 mm). Należy pamiętać, aby zbrojenie przedłużyć co najmniej 0,5 metra poza krawędzie otworów."(...)

A. 250 cm
B. 150 cm
C. 225 cm
D. 200 cm
Odpowiedź 250 cm jest prawidłowa, ponieważ zgodnie z zasadami projektowania konstrukcji, pręty zbrojeniowe powinny wystawać poza otwór okienny, aby zapewnić odpowiednią nośność oraz stabilność. W tym przypadku, otwór o szerokości 150 cm wymaga, aby pręty zbrojeniowe były dłuższe o 0,5 metra z każdej strony, co daje dodatkowe 100 cm. Suma długości otworu i wystających prętów zbrojeniowych wynosi więc 250 cm. W praktyce, właściwe zbrojenie jest kluczowe dla zapobiegania pękaniu betonu oraz zwiększenia trwałości konstrukcji. Dobre praktyki w budownictwie zalecają stosowanie prętów zbrojeniowych zgodnie z normami Eurokod, które definiują szczegółowe wymagania dotyczące ich długości i umiejscowienia. Ponadto, prawidłowe zbrojenie wokół otworów, takich jak okna czy drzwi, jest niezbędne dla zachowania integralności strukturalnej budynku oraz zapewnienia bezpieczeństwa jego użytkowników.

Pytanie 36

Na niewielkiej budowie do przygotowania betonu zastosowano dozowanie objętościowe składników. Murarz miał stworzyć beton zwykły w proporcjach 1 : 2 : 4. Oznacza to, że odmierzył

A. 1 wiadro piasku, 2 wiadra żwiru, 4 wiadra cementu
B. 1 wiadro żwiru, 2 wiadra cementu, 4 wiadra piasku
C. 1 wiadro cementu, 2 wiadra piasku, 4 wiadra żwiru
D. 1 wiadro cementu, 2 wiadra żwiru, 4 wiadra piasku
Niepoprawne odpowiedzi przedstawiają różne błędne interpretacje proporcji składników betonu. W przypadku każdej z tych opcji występuje pomylenie podstawowych komponentów: cementu, piasku i żwiru. Kluczowym błędem jest nieprawidłowe zrozumienie zasady dozowania objętościowego, co prowadzi do nieodpowiednich proporcji, które mogą wpłynąć na właściwości końcowego produktu, jakim jest beton. Na przykład, w odpowiedzi, która wskazuje na 1 wiadro piasku, 2 wiadra żwiru i 4 wiadra cementu, kolejność składników jest całkowicie odwrotna, co prowadzi do mieszanki zbyt bogatej w cement, co może skutkować nadmierną sztywnością i kruchością betonu. Inna odpowiedź, sugerująca użycie żwiru jako pierwszego składnika, również wprowadza w błąd, ponieważ zmienia proporcje, co z kolei może prowadzić do osłabienia struktury betonu. W kontekście projektowania mieszanek betonowych, niezwykle istotne jest przestrzeganie ustalonych proporcji, które zapewniają równowagę pomiędzy wytrzymałością a plastycznością. Mieszanki betonowe muszą być projektowane zgodnie ze standardem PN-EN 206, który określa wymogi techniczne dotyczące betonu, w tym odpowiednie proporcje składników, aby zapewnić ich odpowiednie właściwości użytkowe.

Pytanie 37

Jakie z podanych cegieł powinny być użyte do budowy lekkiej ścianki działowej o grubości 12 cm?

A. Ceramiczne pełne
B. Klinkierowe
C. Silikatowe pełne
D. Dziurawki
Dziurawki, czyli cegły ceramiczne z otworami, są idealnym materiałem do budowy lekkich ścianek działowych o grubości 12 cm. Dzięki swojej strukturze, dziurawki charakteryzują się niską masą oraz dobrą izolacyjnością akustyczną i termiczną. Otwory w cegle zmniejszają jej ciężar, co ma kluczowe znaczenie przy budowie ścianek działowych, gdzie nie ma potrzeby stosowania ciężkich materiałów. Zastosowanie takich cegieł pozwala na szybszy i łatwiejszy montaż ścianek, co przyspiesza cały proces budowy. Dodatkowo, dziurawki są często wykorzystywane w budownictwie ze względu na swoje dobre właściwości mechaniczne oraz łatwość w obróbce. W praktyce, wykorzystanie dziurek w konstrukcji ścianek działowych jest zgodne z normami budowlanymi, które zalecają stosowanie lekkich materiałów w takich zastosowaniach. Warto również zauważyć, że dziurawki są bardziej przyjazne dla środowiska, ponieważ często są produkowane z naturalnych surowców i mają niską emisję CO2 podczas produkcji.

Pytanie 38

Na podstawie informacji zawartych w tabeli określ, która ilość składników odpowiada proporcji wagowej stosowanej przy wykonaniu zaprawy cementowej klasy M7.

Skład i marka zapraw cementowych w zależności od klasy cementu
Klasa cementuSkład wagowy przy marce zaprawy
M4M7M12M15
32,51 : 5,51 : 4,51 : 3,51 : 3

A. 100 kg piasku i 450 kg cementu.
B. 100 kg cementu i 900 kg piasku.
C. 200 kg cementu i 900 kg piasku.
D. 200 kg piasku i 900 kg cementu.
Odpowiedź "200 kg cementu i 900 kg piasku" jest poprawna, ponieważ odpowiada proporcji wagowej 1:4,5, którą zastosowano przy wykonaniu zaprawy cementowej klasy M7. Zgodnie z tą proporcją, na każdą jednostkę cementu przypada 4,5 jednostki piasku. W tym przypadku, 200 kg cementu wymaga 900 kg piasku, co w pełni spełnia wymagania dotyczące tej mieszanki. Takie proporcje są kluczowe, ponieważ wpływają na właściwości mechaniczne zaprawy, takie jak wytrzymałość na ściskanie i trwałość. W praktyce, stosując te proporcje, uzyskujemy dobrze zharmonizowaną zaprawę, która zapewnia odpowiednią przyczepność i stabilność. Warto również pamiętać, że stosowanie właściwych proporcji jest zgodne z normami budowlanymi, co przekłada się na bezpieczeństwo i jakość realizowanych prac budowlanych.

Pytanie 39

Jakie narzędzie powinno się zastosować do usunięcia nadmiaru zaprawy podczas ręcznego tynkowania?

A. Czerpaka tynkarskiego
B. Łaty
C. Pacy
D. Kielni murarskiej
Wybór czerpaka tynkarskiego jako narzędzia do ściągania nadmiaru zaprawy jest niewłaściwy. Czerpak tynkarski służy przede wszystkim do przenoszenia zaprawy na miejsce pracy, a nie do wygładzania powierzchni. Jego konstrukcja nie jest przystosowana do precyzyjnego usuwania nadmiaru materiału, co jest kluczowym aspektem tynkowania. Z kolei paca, choć istotna, pełni inną funkcję. Jest stosowana do wygładzania i formowania zaprawy, jednak przy jej pomocy trudniej uzyskać równą powierzchnię w porównaniu do łaty. Kielnia murarska, będąca narzędziem o bardziej specyficznych zastosowaniach, również nie jest odpowiednia do ściągania nadmiaru zaprawy, ponieważ służy głównie do precyzyjnego nakładania materiału w mniejszych ilościach. Typowe błędy myślowe prowadzące do wyboru niewłaściwych narzędzi często wynikają z braku zrozumienia funkcji tych narzędzi oraz ich zastosowań w praktyce budowlanej. Brak znajomości technik tynkarskich oraz nieodpowiedni dobór narzędzi może skutkować nierówną powierzchnią, co w dłuższej perspektywie wpłynie negatywnie na estetykę oraz trwałość tynku.

Pytanie 40

Jakie jest spoiwo mineralne powietrzne?

A. cement hutniczy
B. wapno hydrauliczne
C. gips budowlany
D. cement portlandzki
Gips budowlany jest spoiwem mineralnym powietrznym, co oznacza, że twardnieje w wyniku kontaktu z powietrzem, a nie wymaga obecności wody. Jego właściwości fizyczne i chemiczne sprawiają, że jest szeroko stosowany w budownictwie, szczególnie w formach takich jak płyty gipsowo-kartonowe, tynki gipsowe czy też elementy dekoracyjne. Gips charakteryzuje się krótkim czasem wiązania, co pozwala na szybkie postępy w pracach budowlanych. W praktyce, jego zastosowanie jest zgodne z normami, takimi jak PN-EN 13279, które określają wymagania dla materiałów gipsowych w budownictwie. Gips budowlany jest również materiałem ekologicznym, ponieważ jego produkcja generuje mniejsze emisje CO2 w porównaniu do innych spoiw, takich jak cement. Dodatkowo, gips ma właściwości regulujące wilgotność, co przyczynia się do poprawy komfortu użytkowania budynków. Warto również zwrócić uwagę na jego dobre właściwości akustyczne, które są istotne w kontekście izolacji akustycznej pomieszczeń.