Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 1 maja 2025 22:54
  • Data zakończenia: 1 maja 2025 23:14

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jak można zmierzyć prędkość przepływu gazu?

A. używając czujnika termoelektrycznego
B. przy pomocy pirometru radiacyjnego
C. za pomocą zwężki Venturiego
D. z wykorzystaniem impulsatora fotoelektrycznego
Zwężka Venturiego jest urządzeniem pomiarowym, które wykorzystuje zjawisko Bernoulliego do pomiaru prędkości przepływu płynów, w tym gazów. Gdy gaz przechodzi przez zwężkę, jego prędkość wzrasta, a ciśnienie spada. Zmiana ciśnienia na wejściu i wyjściu zwężki pozwala na obliczenie prędkości przepływu, korzystając z równań dynamicznych. Zastosowanie zwężki Venturiego jest szerokie, obejmując przemysł chemiczny, energetykę oraz instalacje HVAC. Umożliwia ona nie tylko pomiar prędkości, ale również kontrolę i regulację przepływu mediów. Obliczenia dokonuje się najczęściej w oparciu o prawo Bernoulliego oraz równanie ciągłości, co czyni zwężkę skutecznym narzędziem w wielu zastosowaniach inżynieryjnych. Przykładem mogą być systemy wentylacyjne, gdzie precyzyjny pomiar przepływu gazu jest kluczowy dla efektywności energetycznej i jakości powietrza.

Pytanie 3

Jakie jest zastosowanie transoptora?

A. galwanicznego połączenia obwodów
B. sygnalizacji transmisji
C. zamiany impulsów elektrycznych na promieniowanie świetlne
D. galwanicznej izolacji obwodów
Transoptor, znany również jako optoizolator, jest urządzeniem elektronicznym, które służy do galwanicznej izolacji obwodów. Jego podstawową funkcją jest zapewnienie separacji elektrycznej pomiędzy dwoma obwodami, co eliminuje ryzyko przeniesienia zakłóceń, przepięć oraz różnic potencjałów między nimi. Przykładem zastosowania transoptora jest w układach sterowania, gdzie sygnał z jednostki sterującej (np. mikroprocesora) jest izolowany od obwodu mocy, co jest kluczowe dla zabezpieczenia delikatnych komponentów. Transoptory znajdują szerokie zastosowanie w systemach automatyki przemysłowej, gdzie są używane do interfejsowania czujników z systemami sterującymi, a także w telekomunikacji, gdzie pozwalają na przesyłanie sygnałów bezpośrednio między różnymi poziomami potencjału. Stosowanie transoptorów jest zgodne z najlepszymi praktykami w inżynierii elektronicznej, które kładą duży nacisk na bezpieczeństwo oraz niezawodność układów elektronicznych, zwłaszcza w środowiskach przemysłowych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jaką metodę łączenia materiałów należy wybrać do połączenia stali nierdzewnej z mosiądzem?

A. Lutowania twardego
B. Klejenia
C. Zgrzewania
D. Lutowania miękkiego
Lutowanie twarde jest techniką łączenia, która polega na wykorzystaniu stopu o wyższej temperaturze topnienia niż w przypadku lutowania miękkiego. Jest to proces, który zapewnia silne i trwałe połączenia, co czyni go idealnym do łączenia metali o różnych właściwościach, takich jak stal nierdzewna i mosiądz. W przypadku tych dwóch materiałów, lutowanie twarde umożliwia osiągnięcie wysokiej wytrzymałości na rozciąganie oraz odporności na korozję, co jest kluczowe w aplikacjach przemysłowych. W praktyce lutowanie twarde wymaga zastosowania odpowiednich lutów, które mają podobne właściwości fizyczne i chemiczne do łączonych materiałów. Dobrą praktyką jest również precyzyjne przygotowanie powierzchni, aby zapewnić skuteczną adhezję. Lutowanie twarde jest szeroko stosowane w branży motoryzacyjnej, elektronicznej oraz w produkcji sprzętu medycznego, gdzie niezawodność połączeń jest kluczowa.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Ciecze hydrauliczne, które przekazują energię, lecz nie oferują ochrony przed korozją ani smarowania, to ciecze klasy

A. HG
B. HL
C. HR
D. HH
Ciecze hydrauliczne typu HL, HG i HR mocno różnią się od HH i mogą wprowadzać w błąd, jeśli chodzi o zastosowanie. Ciecze HL mają dodatki, które chronią przed korozją i smarują, więc są lepsze tam, gdzie trzeba dbać o elementy przed zużyciem. Gdy są stosowane w warunkach wysokiego ciśnienia i temperatury, ich smarujące właściwości mogą bardzo wpłynąć na żywotność hydrauliki. Jeśli chodzi o ciecze HG, to one są stworzone z myślą o ryzykownych środowiskach, jak przemysł petrochemiczny, gdzie istnieje większe zagrożenie pożarem. Z kolei ciecze HR, też chroniące przed korozją, sprawdzają się w bardziej skomplikowanych układach hydraulicznych, gdzie obciążenia są większe i warunki pracy trudniejsze. Często mylimy się przy wyborze cieczy hydraulicznych, bo nie rozumiemy ich specyficznych potrzeb, dlatego warto znać klasyfikacje i właściwości płynów, żeby dopasować je do wymagań, a takie normy jak ISO 11158 są tu bardzo pomocne.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu
B. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
C. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
D. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC
Wprowadzenie sterownika PLC w tryb STOP oraz wyłączenie zasilania elektrycznego i pneumatycznego układu to kluczowe kroki przed rozpoczęciem wymiany zaworu elektropneumatycznego. Takie podejście minimalizuje ryzyko błędów oraz zapewnia bezpieczeństwo podczas prac serwisowych. W trybie STOP sterownik nie wykonuje żadnych operacji, co zapobiega niekontrolowanemu działaniu urządzeń. Wyłączenie zasilania elektrycznego oraz pneumatycznego jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa pracy z systemami pneumatycznymi i automatyki. Przykładowo, w przemyśle automatycznym często stosuje się blokady mechaniczne i elektryczne, aby upewnić się, że urządzenia są całkowicie unieruchomione. Dobrym standardem jest również przeprowadzenie analizy ryzyka przed rozpoczęciem takich prac oraz oznaczenie strefy roboczej, aby zminimalizować ryzyko wypadków. W ten sposób, poprzez zastosowanie odpowiednich procedur, można uniknąć niebezpiecznych sytuacji i zapewnić bezpieczne warunki pracy.

Pytanie 14

Na obudowie urządzenia wystąpiło niebezpieczne napięcie dotykowe. Który wyłącznik zredukowałby zasilanie urządzenia, gdy ktoś dotknie jego obudowy?

A. Silnikowy
B. Różnicowoprądowy
C. Termiczny
D. Nadprądowy
Wyłącznik różnicowoprądowy (RCD) jest urządzeniem zabezpieczającym, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym. Działa na zasadzie monitorowania różnicy prądów wpływających i wypływających z obwodu. W momencie, gdy dochodzi do upływu prądu, na przykład w wyniku uszkodzenia izolacji lub dotknięcia obudowy przez osobę, RCD natychmiast odłącza zasilanie. Tego typu wyłączniki są standardem w instalacjach elektrycznych w miejscach, gdzie może wystąpić zagrożenie porażeniem, takich jak łazienki, kuchnie oraz miejsca pracy. Przykład zastosowania to montaż RCD w obwodach zasilających gniazda elektryczne w domach, które chronią użytkowników przed niebezpiecznym napięciem dotykowym. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane tam, gdzie istnieje ryzyko kontaktu z wodą, aby minimalizować ryzyko wystąpienia poważnych wypadków. Działanie RCD jest szybkie, często w ciągu 25-30 ms, co czyni je niezwykle skutecznym w ochronie przed porażeniem.

Pytanie 15

W rezystancyjnych termometrach (oporowych) wykorzystuje się zjawisko związane ze zmianą

A. napięcia na końcówkach termoelementu podczas zmian temperatury
B. rezystywności metali oraz półprzewodników w odpowiedzi na ciśnienie
C. wielkości elementu aktywnego pod wpływem temperatury
D. rezystancji metali albo półprzewodników przy zmianach temperatury
W termometrach rezystancyjnych wykorzystuje się zjawisko zmiany rezystancji materiałów, takich jak metale czy półprzewodniki, w odpowiedzi na zmiany temperatury. Zjawisko to jest oparte na właściwościach elektrycznych zastosowanych materiałów, które determinują ich rezystywność. Przykładowo, w przypadku platyny, która jest najczęściej stosowanym materiałem w termometrach rezystancyjnych, rezystancja rośnie proporcjonalnie do temperatury. Tego typu termometry są szeroko stosowane w laboratoriach oraz przemyśle, ponieważ zapewniają wysoką dokładność i stabilność pomiarów. W praktyce wykorzystuje się je w różnych zastosowaniach, od monitorowania procesów chemicznych po kontrolę temperatury w systemach HVAC. Normy i standardy, takie jak IEC 60751, określają klasyfikacje i wymagania dla termometrów rezystancyjnych, co zapewnia ich niezawodność i spójność w pomiarach. Zrozumienie zjawiska rezystancji jako funkcji temperatury jest kluczowe dla efektywnego wykorzystania tych urządzeń w różnych aplikacjach.

Pytanie 16

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. R
B. I
C. Q
D. T
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Dobierz minimalny zestaw sterownika S7-200 do realizacji sterowania windą w budynku trzykondygnacyjnym. Wykorzystaj w tym celu opis elementów wejściowych/wyjściowych podłączonych do sterownika.

Elementy
wejściowe
jeden czujnik na każdej kondygnacji informujący o stanie drzwi zewnętrznych (otwarte/zamknięte)
jeden czujnik na każdej kondygnacji informujący o położeniu windy
jeden przycisk na każdej kondygnacji przywołujący windę
3 przyciski wewnątrz windy służące do wyboru kondygnacji
jeden przycisk wewnątrz windy informujący o awarii (AWARIA)
Elementy
wyjściowe
dwa styczniki załączające otwieranie i zamykanie drzwi
dwa styczniki uruchamiające jazdę kabiny na dół i jazdę kabiny do góry

A. S7-200 o 24 wejściach i 16 wyjściach
B. S7-200 o 14 wejściach i 10 wyjściach
C. S7-200 o 6 wejściach i 4 wyjściach
D. S7-200 o 8 wejściach i 6 wyjściach
Niepoprawne odpowiedzi, takie jak S7-200 o 8 wejściach i 6 wyjściach, S7-200 o 24 wejściach i 16 wyjściach oraz S7-200 o 6 wejściach i 4 wyjściach, nie spełniają wymagań dla skutecznego sterowania windą w budynku trzykondygnacyjnym. Przede wszystkim, w przypadku 8 wejść i 6 wyjść, liczba wejść jest zdecydowanie zbyt mała, aby obsłużyć wszystkie niezbędne czujniki, takie jak te monitorujące położenie windy, sygnały przycisków oraz inne sensory. Podobnie, 6 wejść i 4 wyjścia również nie są wystarczające, co prowadzi do ryzyka awarii systemu. Z drugiej strony, odpowiedź z 24 wejściami i 16 wyjściami, mimo że teoretycznie przekracza wymagania, w praktyce może prowadzić do zbędnych kosztów oraz złożoności systemu, co jest nieefektywne. W projektowaniu systemów automatyki niezwykle ważne jest, aby dobierać komponenty w sposób przemyślany, co oznacza nie tylko spełnienie minimalnych wymagań, ale także optymalizację kosztów. Niezrozumienie tego aspektu może prowadzić do błędnych założeń i nieefektywnej pracy systemu, co w konsekwencji może wpłynąć na bezpieczeństwo użytkowników oraz niezawodność działania urządzeń. Warto pamiętać, że właściwy dobór komponentów jest fundamentem każdej dobrze zaprojektowanej instalacji automatyki.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Aby zweryfikować ciągłość połączeń elektrycznych pomiędzy różnymi elementami systemu, należy skorzystać z

A. woltomierza
B. wskaźnika napięcia
C. amperomierza
D. omomierza
Omomierz jest urządzeniem służącym do pomiaru oporu elektrycznego, co czyni go idealnym narzędziem do sprawdzania ciągłości połączeń elektrycznych. W kontekście instalacji elektrycznych, ciągłość połączeń jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności systemu. Użycie omomierza pozwala na szybkie zidentyfikowanie przerw w obwodzie oraz nieprawidłowych połączeń, co może być kluczowe w przypadku awarii. Przykładem praktycznego zastosowania omomierza jest testowanie przewodów przed ich podłączeniem do zasilania - w ten sposób można upewnić się, że nie ma przerw, które mogłyby prowadzić do ryzyka porażenia prądem lub uszkodzenia sprzętu. Dobre praktyki branżowe zalecają regularne sprawdzanie ciągłości połączeń w instalacjach elektrycznych, zwłaszcza w warunkach, gdzie mogą występować zmienne obciążenia lub wysokie napięcia. Ponadto, zgodnie z normami IEC 60364, przeglądy instalacji elektrycznych powinny obejmować pomiar oporu izolacji oraz ciągłości, co podkreśla znaczenie omomierza w codziennej pracy elektryków.

Pytanie 27

Tyrystor, w którym anoda ma dodatni potencjał, a katoda i bramka mają potencjał ujemny, znajduje się w stanie

A. nasycenia
B. zaporowym
C. przewodzenia
D. blokowania
Odpowiedzi, które podałeś, jak nasycenie, przewodzenie czy zaporowy, dotyczą różnych stanów pracy tyrystora, ale w tej sytuacji są niepoprawne. Stan nasycenia występuje, gdy tyrystor działa jako przełącznik i przewodzi prąd, ale tu mamy inaczej, bo anoda jest dodatnia, a katoda z bramką ujemna. Więc nie ma mowy o nasyceniu. Podobnie stan przewodzenia jest błędny, bo potrzebny jest impuls na bramkę, a tego nie ma w tym przypadku. Stan zaporowy też jest źle interpretowany, bo odnosi się do takiej sytuacji, gdzie tyrystor nie jest w pełni zablokowany, a w opisywanej sytuacji tak nie jest. Ważne, żeby zrozumieć, jak tyrystory kontrolują przepływ prądu, bo mylenie tych stanów może prowadzić do problemów w obwodach. Dobrze jest pamiętać, że zrozumienie tych spraw jest kluczowe, jeśli chodzi o projektowanie i stosowanie tyrystorów, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Pamięć EPROM (ang. Erasable Programmable Read-Only Memory) to typ pamięci cyfrowej realizowanej w formie układu scalonego, którą można

A. bezpowrotnie stracić po odłączeniu zasilania
B. tylko odczytywać
C. programować i usuwać elektrycznie
D. kasować za pomocą promieniowania ultrafioletowego
Odpowiedzi, które mówią o programowaniu i kasowaniu elektrycznym oraz utracie danych po wyłączeniu zasilania, są w kontekście pamięci EPROM nietrafione. Pamięć EPROM nie traci danych po odłączeniu prądu; jest to pamięć nieulotna. To znaczy, że dane się w niej trzymają, nawet jak wyłączymy zasilanie, co jest mega ważne w wielu aplikacjach. Poza tym, EPROM programuje się tylko przy użyciu promieniowania UV, a nie elektrycznie, jak w przypadku pamięci EEPROM, która z kolei pozwala na kasowanie i programowanie elektryczne. A odpowiedź, która mówi, że EPROM to tylko odczyt, jest też myląca, bo EPROM można zaprogramować przed użyciem, więc ma znacznie większe możliwości. Wydaje mi się, że te błędne myśli mogą wynikać z braku znajomości różnic między różnymi typami pamięci i z problemów ze zrozumieniem, jak dokładnie działają te mechanizmy. Znajomość tych różnic jest naprawdę ważna, jeśli chcemy dobrze stosować technologię pamięci w projektowaniu systemów elektronicznych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Aby zmierzyć nieznaną rezystancję z wysoką precyzją przy użyciu trzech rezystorów odniesienia o znanych wartościach, jaki przyrząd powinno się zastosować?

A. megaomomierz
B. omomierz
C. mostek Wheatstone'a
D. mostek Thomsona
Omomierz, mimo że na pierwszy rzut oka wydaje się odpowiednim narzędziem do pomiaru rezystancji, ma swoje ograniczenia, zwłaszcza w kontekście bardzo dokładnych pomiarów. Jego działanie opiera się na bezpośrednim pomiarze rezystancji, co może prowadzić do błędów wynikających z wpływu temperatury, pojemności czy indukcyjności. Ponadto, omomierze mogą mieć ograniczoną dokładność w przypadku pomiarów bardzo niskich lub wysokich wartości rezystancji, co czyni je mniej skutecznymi niż mostek Wheatstone'a. Megaomomierz, chociaż jest narzędziem do pomiaru dużych rezystancji, również może nie zapewniać wystarczającej precyzji w pomiarze wartości nieznanych, ponieważ jego zastosowanie jest głównie ograniczone do testów izolacji. Mostek Thomsona, z kolei, jest bardziej skomplikowanym układem, który nie jest powszechnie stosowany w praktycznych zastosowaniach w porównaniu do mostka Wheatstone'a. Typowe błędy myślowe prowadzące do wyboru tych narzędzi obejmują niedocenienie znaczenia równowagi w pomiarze oraz niezrozumienie wpływu czynników zewnętrznych na wyniki pomiarów. Dlatego istotne jest, aby przed dokonaniem wyboru narzędzia pomiarowego zrozumieć różnice między nimi oraz ich zastosowania w kontekście wymaganych standardów dokładności.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jaką z wymienionych czynności należy regularnie przeprowadzać w trakcie konserwacji systemu pneumatycznego?

A. Usuwać kondensat wodny
B. Wymieniać szybkozłącza
C. Wymieniać rury pneumatyczne
D. Regulować ciśnienie powietrza
Wymiana przewodów pneumatycznych, szybkozłączek oraz regulacja ciśnienia powietrza są czynnościami, które mogą być częścią konserwacji, jednak nie powinny być traktowane jako regularne zadania rutynowe. Wymiana przewodów pneumatycznych jest zazwyczaj związana z ich uszkodzeniem lub zużyciem, co oznacza, że nie jest konieczne przeprowadzanie tego procesu cyklicznie. Odpowiednie przewody powinny być wybrane zgodnie z normami i specyfikacjami, ale ich wymiana powinna odbywać się jedynie w sytuacjach kryzysowych, a nie na zasadzie rutyny. Szybkozłączki również mają swoją żywotność i powinny być wymieniane tylko w przypadku stwierdzenia nieszczelności lub uszkodzeń mechanicznych, co nie jest działaniem cyklicznym. Regulacja ciśnienia powietrza jest ważna, ale powinna odbywać się w momencie, gdy istnieje potrzeba dostosowania parametrów pracy systemu, a nie jako regularna czynność konserwacyjna. Te działania wiążą się z nieporozumieniem dotyczącym podejścia do konserwacji, gdzie użytkownicy mogą myśleć, że każda z tych czynności jest niezbędna do codziennego utrzymania układu. Kluczowym aspektem efektywnej konserwacji układu pneumatycznego jest monitorowanie i zapobieganie problemom, a nie tylko reagowanie na zaistniałe awarie. Dlatego istotne jest zastosowanie strategii prewencyjnej, w której kluczowym elementem pozostaje regularne usuwanie kondensatu, co ma fundamentalne znaczenie dla długotrwałej i niezawodnej pracy systemu.

Pytanie 40

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Gramatura wtrysku.
B. Dokładność pozycjonowania.
C. Liczba wrzecion.
D. Najwyższa prędkość ruchu dla poszczególnych osi.
Gramatura wtrysku to parametr odnoszący się głównie do procesów wtrysku tworzyw sztucznych, a nie frezowania. Frezarki numeryczne są urządzeniami przeznaczonymi do obróbki skrawaniem, a ich kluczowe parametry dotyczą precyzji i wydajności obróbczej. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to istotne wskaźniki efektywności operacyjnej frezarek. Na przykład, liczba wrzecion określa, ile narzędzi może być jednocześnie używanych do obróbki, co wpływa na zwiększenie wydajności procesu. Powtarzalność pozycjonowania definiuje zdolność maszyny do powtarzania tych samych operacji z dokładnością, co jest kluczowe w produkcji seryjnej. Maksymalna prędkość ruchu osi wpływa na szybkość realizacji zleceń, co ma bezpośrednie przełożenie na czas produkcji oraz koszty. Zrozumienie tych parametrów jest niezbędne dla efektywnego planowania procesów produkcyjnych oraz optymalizacji pracy frezarek numerycznych.