Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 22 maja 2025 22:17
  • Data zakończenia: 22 maja 2025 22:33

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie środki ochronne należy zastosować podczas sporządzania 1M roztworu zasady sodowej ze stężonego roztworu NaOH, na opakowaniu którego widnieje oznaczenie S/36/37/39?

Numer zwrotu SWarunki bezpiecznego stosowania
S36Używać odpowiedniej odzieży ochronnej
S37Używać odpowiednich rękawic
S38W przypadku niewystarczającej wentylacji używać sprzętu do oddychania
S39Używać okularów lub maski ochronnej

A. Gumowe rękawice i maskę ochronną.
B. Odzież ochronną i maskę tlenową.
C. Fartuch ochronny, rękawice i maskę tlenową.
D. Odzież ochronną, rękawice i okulary ochronne.
Odpowiedź 'Odzież ochronną, rękawice i okulary ochronne.' jest poprawna, ponieważ zgodnie z oznaczeniami S/36/37/39 na opakowaniu NaOH, wymagane są wymienione środki ochrony osobistej. Oznaczenie S36 wskazuje na obowiązek noszenia odzieży ochronnej, co ma na celu minimalizację kontaktu skóry z substancją chemiczną, która może być silnie żrąca. S37 sugeruje stosowanie rękawic ochronnych, które chronią dłonie przed skutkami kontaktu z niebezpiecznymi substancjami, a S39 odnosi się do konieczności używania okularów ochronnych lub maski, aby zapobiec dostaniu się substancji do oczu. W praktyce, stosowanie tych środków ochrony jest kluczowe podczas pracy z chemikaliami, aby zminimalizować ryzyko urazów i zapewnić bezpieczeństwo w laboratorium. Przykładowo, w laboratoriach chemicznych zaleca się także regularne szkolenia z zakresu BHP, które podkreślają znaczenie odpowiednich środków ochrony osobistej.

Pytanie 2

Z kolby miarowej o pojemności 1 dm3, zawierającej roztwór HCl o stężeniu 0,1 mol/dm3, pobrano pipetą 2,5 cm3, a następnie przeniesiono do kolby miarowej o pojemności 20 cm3 i rozcieńczono wodą "do kreski" miarowej. Jakie stężenie ma otrzymany roztwór?

A. 0,1250 mol/dm3
B. 0,0125 mol/dm3
C. 0,0500 mol/dm3
D. 0,0005 mol/dm3
Nieprawidłowe odpowiedzi mogą wynikać z kilku typowych błędów obliczeniowych i nieporozumień dotyczących zasad rozcieńczania roztworów. Na przykład, wybór stężenia 0,0005 mol/dm³ może być konsekwencją błędnego przeliczenia objętości lub liczby moli, gdzie użytkownik mógł zaniżyć wyniki przez omyłkowe zastosowanie niewłaściwych jednostek. Odpowiedź 0,0500 mol/dm³ sugeruje, że osoba myślała o stężeniu przed rozcieńczeniem, nie uwzględniając faktu, że dodanie wody do roztworu zmienia całkowitą objętość. W przypadku stężenia 0,1250 mol/dm³, błąd może wynikać z mylenia stężenia początkowego z końcowym, co jest częstym błędem w obliczeniach chemicznych. Tego rodzaju nieprawidłowości mogą prowadzić do poważnych konsekwencji w praktycznych zastosowaniach chemicznych, takich jak niepoprawne przygotowanie odczynników do doświadczeń czy analiz, które mogą skutkować błędnymi wynikami. Dlatego w laboratoriach niezwykle istotne jest stosowanie odpowiednich procedur obliczeniowych oraz dokładne sprawdzanie wszystkich obliczeń, aby uniknąć takich pomyłek, które mogą wpłynąć na jakość i dokładność prowadzonych badań.

Pytanie 3

Aby w badanej próbie w trakcie zmiany pH nastąpiła zmiana barwy na malinową, należy użyć

Zmiany barw najważniejszych wskaźników kwasowo-zasadowych
WskaźnikBarwa w środowiskuZakres pH zmiany barwy
KwasowymObojętnymZasadowym
oranż metylowyczerwonażółtażółta3,2÷4,4
lakmus
(mieszanina substancji)
czerwonafioletowaniebieska4,5÷8,2
fenoloftaleinabezbarwnabezbarwnamalinowa8,2÷10,0
wskaźnik uniwersalny
(mieszanina substancji)
czerwona
(silnie kwaśne)
pomarańczowa
(słabo kwaśne)
żółtaniebieska
(silnie zasadowe)
zielona
(słabo zasadowe)
co jeden stopień skali
herbatażółtaczerwona-brunatnabrązowa
sok z czerwonej kapustyfioletowaniebieskazielona

A. oranżu metylowego.
B. fenoloftaleiny.
C. lakmusu.
D. wskaźnika uniwersalnego.
Fenoloftaleina to naprawdę fajny wskaźnik pH, który zmienia kolor z bezbarwnego na malinowy, gdy pH jest w granicach od 8,2 do 10,0. Więc jeśli pH jest niższe niż 8,2, to zostaje bezbarwna. To sprawia, że jest super do wykrywania zasadowego środowiska. Używamy jej w laboratoriach chemicznych, szczególnie przy titracji, bo tam zmiany pH są kluczowe. Zauważyłem też, że fenoloftaleina jest przydatna w różnych branżach, na przykład w farmacji i w analizach wody, bo pomaga ocenić, czy próbki są zasadowe. Z moich doświadczeń wynika, że przed wyborem wskaźnika warto dokładnie obliczyć pH próbki, żeby dobrze zrozumieć wyniki. No i trzeba ostrożnie podchodzić do fenoloftaleiny, bo w większych stężeniach może być szkodliwa dla organizmów wodnych.

Pytanie 4

Deminimalizowaną wodę można uzyskać przez

A. filtrację
B. wymianę jonową
C. destylację próżniową
D. destylację prostą
Woda demineralizowana to woda, z której usunięto wszystkie lub prawie wszystkie rozpuszczone sole mineralne. Jednym z najskuteczniejszych sposobów jej pozyskania jest wymiana jonowa. Proces ten polega na użyciu żywic jonowymiennych, które są zdolne do wymiany jonów w roztworze. Kiedy woda przepływa przez kolumnę wypełnioną żywicą, jony niepożądane (takie jak Ca²⁺, Mg²⁺ czy Na⁺) są zastępowane przez jony H⁺ lub OH⁻, co prowadzi do powstania czystej wody. Wymiana jonowa jest szczególnie istotna w przemyśle farmaceutycznym, gdzie woda demineralizowana jest używana jako rozpuszczalnik w procesach produkcyjnych oraz w laboratoriach analitycznych, gdzie czystość wody jest kluczowa dla dokładności wyników. Warto zauważyć, że ta metoda jest często preferowana w porównaniu do innych technik, ponieważ skutecznie eliminuje zarówno aniony, jak i kationy. Dążenie do uzyskania wody o wysokiej czystości chemicznej jest zgodne z normami ISO 3696, które definiują wymagania dla wody do zastosowań laboratoryjnych.

Pytanie 5

Etykieta roztworu kwasu azotowego(V) o koncentracji 6 mol/dm3 powinna zawierać nazwę substancji oraz

A. masę, koncentrację i numer katalogowy
B. masę, datę przygotowania i numer katalogowy
C. koncentrację, producenta i wykaz zanieczyszczeń
D. koncentrację, ostrzeżenia H oraz datę przygotowania
Poprawna odpowiedź wskazuje, że etykieta roztworu kwasu azotowego(V) o stężeniu 6 mol/dm3 powinna zawierać stężenie, zwroty zagrożeń H oraz datę sporządzenia. Umożliwia to nie tylko identyfikację substancji, ale także informuje użytkownika o potencjalnych zagrożeniach związanych z jej stosowaniem. Zwroty zagrożeń H (Hazard statements) są kluczowym elementem, który świadczy o ryzyku związanym z kontaktami, na przykład: H290 - może być żrący dla metali, H314 - powoduje poważne oparzenia skóry oraz uszkodzenia oczu. Podawanie stężenia kwasu jest istotne dla oceny jego reaktywności oraz właściwego postępowania ze substancją. Data sporządzenia pozwala na śledzenie ważności roztworu oraz jego stabilności. Przykładem zastosowania jest laboratorium chemiczne, gdzie precyzyjne etykiety pomagają utrzymać bezpieczeństwo i zgodność z przepisami BHP. W branży laboratoryjnej standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) dostarczają wytycznych dotyczących etykietowania substancji chemicznych, co znacząco zwiększa bezpieczeństwo pracy.

Pytanie 6

Z podanego wykazu wybierz sprzęt potrzebny do zmontowania zestawu do sączenia pod próżnią.

123456
pompka wodnalejek
z długą nóżką
kolba
okrągłodenna
kolba ssawkowalejek sitowychłodnica
powietrzna

A. 1,2,4
B. 1,4,5
C. 4,5,6
D. 1,2,3
Odpowiedzi 1, 4 i 5 są na pewno trafione. Do zmontowania zestawu do sączenia pod próżnią potrzebujemy trzech głównych elementów: pompy wodnej (1), kolby ssawkowej (4) i lejka sitowego (5). Pompa wodna robi tutaj robotę, bo to ona wytwarza próżnię, która jest kluczowa do filtracji. Kolba ssawkowa to takie naczynie, gdzie zbiera się filtrat, chroniąc nas przed różnymi zanieczyszczeniami. No i lejek sitowy, on pozwala na dodanie materiału filtracyjnego, co jest mega ważne, żeby cały proces działał sprawnie. W laboratoriach chemicznych używa się takich zestawów na porządku dziennym, bo precyzyjne oddzielanie substancji jest niezbędne, kiedy robimy analizy. Dlatego wybór tych elementów nie tylko sprawia, że to działa, ale też jest bezpieczne.

Pytanie 7

Odpady z rozpuszczalników organicznych, takich jak benzen czy aceton, zawierające co najmniej 80% danego rozpuszczalnika, należy

A. odprowadzać bezpośrednio do kanalizacji.
B. poddać recyklingowi w celu odzyskania rozpuszczalnika.
C. połączyć z ziemią okrzemkową i przekazać do utylizacji.
D. zniszczyć poprzez zastosowanie odpowiednich procesów.
Odpady z rozpuszczalników organicznych, takich jak benzen czy aceton, które mają przynajmniej 80% tego rozpuszczalnika, powinny być poddawane recyklingowi. To naprawdę zgodne z zasadami zrównoważonego rozwoju i tego, jak powinniśmy zarządzać odpadami. Recykling pozwala nam na ich ponowne wykorzystanie w przemysłowych procesach, dzięki czemu zmniejszamy ilość śmieci i ograniczamy potrzebę pozyskiwania nowych surowców. W praktyce chodzi o różne metody, jak destylacja, które pomagają odzyskać czysty rozpuszczalnik. Na przykład w przemyśle lakierniczym często korzysta się z takich procesów, co jest korzystne, bo zmniejsza koszty i wpływ na środowisko. Pamiętaj, że zgodnie z prawem, te odpady są klasyfikowane jako niebezpieczne, więc dobre zarządzanie nimi i ich recykling są naprawdę kluczowe dla zdrowia ludzi i ochrony naszej planety.

Pytanie 8

Jakie pH ma roztwór buforowy otrzymany w wyniku zmieszania 0,2 M roztworu kwasu octowego i 0,2 M roztworu octanu sodu, w stosunku objętościowym 3 : 2?

Bufor octanowy według Walpole'a
0,2 M
kwas octowy [ml]
0,2 M
octan sodu [ml]
pH
7,03,04,39
6,04,04,58
5,05,04,75
4,06,04,94
3,07,05,13

A. 4,94
B. 4,58
C. 5,13
D. 4,39
Odpowiedź 4,58 jest jak najbardziej trafna! Można ją uzyskać dzięki równaniu Hendersona-Hasselbalcha, które łączy pH, pKa oraz stosunek stężeń kwasu i zasady. Kwas octowy, czyli CH₃COOH, ma pKa w okolicach 4,76. W naszym buforze mamy stosunek 3:2 dla kwasu octowego i octanu sodu, co daje nam 0,6 M kwasu i 0,4 M zasady. Podstawiając te wartości do równania, dostajemy: pH = pKa + log([A-]/[HA]) = 4,76 + log(0,4/0,6) = 4,58. Takie obliczenia są naprawdę ważne w laboratoriach chemicznych. Kontrola pH to kluczowy sprawa w wielu procesach, na przykład w biologii molekularnej czy w produkcji leków, gdzie stabilność pH ma ogromny wpływ na działanie substancji.

Pytanie 9

Zestaw do filtracji nie zawiera

A. kolby miarowej
B. szklanej bagietki
C. szklanego lejka
D. metalowego statywu
Kolba miarowa nie jest elementem zestawu do sączenia, ponieważ jej główną funkcją jest dokładne pomiarowanie objętości cieczy. W procesach sączenia, szczególnie w laboratoriach chemicznych i biologicznych, kluczowe jest oddzielenie fazy stałej od cieczy, co odbywa się najczęściej z wykorzystaniem lejek szklany, który jest niezbędny do precyzyjnego kierowania cieczy do naczynia zbiorczego. Bagietka szklana służy do przenoszenia lub dozowania niewielkich ilości substancji, a statyw metalowy jest używany do stabilizacji elementów podczas eksperymentów. W kontekście dobrych praktyk laboratoryjnych, ważne jest zrozumienie roli każdego z tych narzędzi, aby efektywnie przeprowadzać procedury analityczne, takie jak filtracja, gdzie kluczowe jest użycie lejka i odpowiednich filtrów, a kolba miarowa nie jest konieczna w tym procesie. Zrozumienie tych różnic pozwala na lepsze planowanie i przeprowadzanie działań laboratoryjnych, co jest niezbędne w pracy każdego chemika.

Pytanie 10

Z próbek przygotowuje się ogólną próbkę

A. wtórnych
B. pierwotnych
C. analitycznych
D. laboratoryjnych
Przygotowanie próbki ogólnej z próbek pierwotnych jest kluczową procedurą w wielu dziedzinach analityki. Próbki pierwotne to te, które są pozyskiwane bezpośrednio z miejsca danego badania, co zapewnia ich reprezentatywność i integralność. Umożliwia to właściwe odwzorowanie warunków, w jakich dana substancja występuje w naturze. Na przykład w analizach środowiskowych, takich jak badanie jakości wód czy gleby, próbki pierwotne pobierane są bezpośrednio z miejsca, co pozwala na dokładne przeanalizowanie ich właściwości chemicznych i fizycznych. Zgodnie z normami ISO, odpowiednie pobieranie próbek jest istotne dla zachowania właściwych standardów jakości i rzetelności wyników. W praktyce, przygotowanie próbki ogólnej z próbek pierwotnych pozwala na przeprowadzenie dalszych analiz, takich jak spektrometria, chromatografia czy mikroskopia, co daje możliwość uzyskania danych nie tylko o składzie chemicznym, ale także o potencjalnych zanieczyszczeniach i ich źródłach. Zrozumienie tej procedury jest kluczowe dla wszelkich prac badawczych i przemysłowych, dlatego istotne jest, aby praktycy i naukowcy stosowali się do ścisłych wytycznych dotyczących pobierania i przygotowania próbek.

Pytanie 11

Ekstrakcję w trybie ciągłym przeprowadza się

A. w aparacie Soxhleta
B. w zestawie do ogrzewania
C. w rozdzielaczu z korkiem
D. w kolbie płaskodennej
Proces ekstrakcji w sposób ciągły odbywa się w aparacie Soxhleta, który jest standardowym urządzeniem stosowanym w chemii analitycznej oraz w laboratoriach badawczych. Działa na zasadzie cyklicznego przepływu rozpuszczalnika, który wielokrotnie przepływa przez materiał, z którego ma zostać wydobyty składnik aktywny. W aparacie Soxhleta, rozpuszczalnik jest podgrzewany do wrzenia, a jego opary skraplają się w kondensatorze, skąd spływają z powrotem do komory ekstrakcyjnej zawierającej próbkę. Ta efektywna cyrkulacja umożliwia skuteczniejsze rozpuszczanie substancji, co jest kluczowe w wielu zastosowaniach, takich jak wydobywanie olejków eterycznych, substancji czynnych z roślin czy w analizach chemicznych. Dobre praktyki w zakresie ekstrakcji obejmują także dobór odpowiedniego rozpuszczalnika oraz kontrolę temperatury, aby zminimalizować straty substancji i uzyskać wysoką czystość produktu końcowego. Ponadto, dzięki ciągłemu procesowi, możliwe jest uzyskanie większych ilości ekstraktu w krótszym czasie, co zwiększa efektywność laboratorium.

Pytanie 12

Jakie jest stężenie procentowe roztworu HCl (M=36,46 g/mol) o gęstości 1,19 g/cm3 oraz stężeniu molowym 12 mol/dm3?

A. 36,8%
B. 78,3%
C. 19,6%
D. 39,2%
W przypadku stężeń procentowych, zrozumienie roli gęstości oraz stężenia molowego jest kluczowe dla prawidłowego oszacowania wartości procentowych. Odpowiedzi wskazujące na błędne wartości stężenia często wynikają z pomyłek w obliczeniach lub nieodpowiedniego zastosowania definicji stężenia. Niezrozumienie, że stężenie procentowe odnosi się do masy substancji w stosunku do masy całego roztworu, może prowadzić do błędnych wyników. Na przykład, niektóre odpowiedzi mogły powstać poprzez pomieszanie jednostek, takich jak gęstość i stężenie molowe, co jest powszechnym błędem w obliczeniach chemicznych. Ponadto, pomijanie przeliczeń masy do stężenia procentowego nie tylko prowadzi do błędnych wniosków, ale także może wpływać na całkowity wynik eksperymentu. W praktyce laboratoryjnej niezbędne jest zrozumienie, że błędne założenia dotyczące masy roztworu lub objętości mogą znacznie zafałszować wyniki. Dlatego kluczowe jest przestrzeganie dobrych praktyk przy obliczaniu stężeń, w tym dokładne ważenie substancji oraz stosowanie odpowiednich wzorów do obliczeń, aby uniknąć pomyłek i uzyskać wiarygodne dane eksperymentalne.

Pytanie 13

Na podstawie danych w tabeli próbkę, w której będzie oznaczany BZT, należy przechowywać

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h

A. w szklanej butelce.
B. w polietylenowej butelce.
C. w butelce z ciemnego szkła.
D. w metalowym naczyniu.
Wybór niewłaściwego materiału do przechowywania próbek do oznaczania BZT może prowadzić do zafałszowania wyników analizy, co jest istotnym problemem w praktykach laboratoryjnych. Przechowywanie próbek w polietylenowej butelce nie jest odpowiednie, ponieważ polietylen może wchodzić w reakcje chemiczne z substancjami obecnymi w próbce, co z kolei może prowadzić do zmiany ich właściwości fizykochemicznych i nieadekwatnych wyników. Metalowe naczynia również nie są zalecane, ponieważ mogą reagować z niektórymi związkami chemicznymi, a ich powierzchnia może prowadzić do adsorpcji substancji, co zniekształca analizowane wartości. Wybór szklanej butelki nie wystarczy, jeśli nie jest to szkło ciemne; przezroczyste szkło nie zapewnia ochrony przed promieniowaniem UV, co prowadzi do degradacji składników próbki. Takie podejście jest sprzeczne z zaleceniami międzynarodowych standardów dotyczących przechowywania próbek w laboratoriach analitycznych, które jasno określają, że próbki wymagają konkretnego typu opakowania, aby uniknąć wpływu światła na ich integralność. Dlatego ważne jest, aby w procesie przechowywania próbek kierować się nie tylko dostępnością materiałów, ale przede wszystkim ich właściwościami chemicznymi i fizycznymi, aby zachować jakość analizy.

Pytanie 14

Jak przebiega procedura unieszkodliwiania rozlanego kwasu siarkowego(VI)?

A. dokładnym spłukaniu miejsc z kwasem roztworem wodorotlenku sodu
B. spłukaniu miejsc z kwasem gorącą wodą
C. dokładnym spłukaniu miejsc z kwasem roztworem węglanu sodu
D. zbieraniu kwasu tlenkiem wapnia w celu późniejszej utylizacji
Spłukiwanie plam kwasu siarkowego roztworem węglanu sodu może wydawać się atrakcyjną opcją, ponieważ węglan sodu neutralizuje kwasy, jednak w praktyce ta metoda jest mało skuteczna w przypadku silnych kwasów, takich jak kwas siarkowy(VI). W wyniku reakcji może powstać dwutlenek węgla, co generuje dodatkowe ryzyko, zwłaszcza w pomieszczeniach zamkniętych, gdzie gromadzenie się gazu może prowadzić do niebezpiecznych warunków. Z kolei spłukiwanie roztworem wodorotlenku sodu, mimo że również jest techniką neutralizacji, może prowadzić do powstania niebezpiecznych odpadów alkalicznych. Takie podejście może spowodować dalsze zanieczyszczenie środowiska i zwiększenie ryzyka dla zdrowia ludzi i zwierząt. Ponadto, spłukiwanie gorącą wodą nie ma sensu, ponieważ ciepło może przyspieszyć proces parowania, co prowadzi do uwolnienia szkodliwych oparów kwasu siarkowego do atmosfery. Ważne jest, aby zrozumieć, że każda technika unieszkodliwiania substancji niebezpiecznych musi być oparta na solidnych podstawach chemicznych oraz najlepszych praktykach, takich jak stosowanie odpowiednich reagentów do neutralizacji oraz zapewnienie bezpieczeństwa operacji.

Pytanie 15

Jakie jest znaczenie skrótu: cz. na etykiecie reagentu chemicznego?

A. Czysty
B. Czystość chemiczna
C. Czystość do analizy
D. Czystość spektralna
Skrót 'cz.' na etykiecie odczynnika chemicznego oznacza 'czysty'. Jest to termin powszechnie używany w chemii, który wskazuje, że dany odczynnik jest odpowiedniej jakości i spełnia określone standardy czystości. Czystość odczynnika jest kluczowym aspektem w badaniach analitycznych, gdyż zanieczyszczenia mogą wpływać na wyniki pomiarów oraz jakość przeprowadzanych reakcji chemicznych. Na przykład w spektroskopii czy chromatografii ważne jest, aby stosowane substancje były jak najbardziej czyste, aby uniknąć interferencji. W praktyce, odczynniki oznaczone jako czyste są używane w laboratoriach do analizy chemicznej, syntezy chemicznej oraz w innych zastosowaniach, gdzie zanieczyszczenia mogą prowadzić do błędnych wyników. Standardy takie jak ASTM i ISO dostarczają wytycznych dotyczących jakości odczynników, co pomaga w zapewnieniu ich odpowiedniej czystości.

Pytanie 16

Jak definiuje się próbkę wzorcową?

A. fragment materiału pobrany z próbki laboratoryjnej, przeznaczony wyłącznie do jednego badania
B. próbkę o ściśle określonym składzie
C. próbkę utworzoną z próbki laboratoryjnej, z której następnie pobiera się próbkę analityczną
D. próbkę uzyskaną w wyniku zbierania próbek jednostkowych do jednego zbiornika zgodnie z ustalonym schematem
Próbka wzorcowa, definiowana jako próbka o dokładnie znanym składzie, jest kluczowym elementem w analizie laboratoryjnej. Jej głównym celem jest służyć jako punkt odniesienia do porównania z próbkami analitycznymi. W praktyce, użycie próbki wzorcowej pozwala na kalibrację instrumentów pomiarowych oraz weryfikację metod analitycznych. Przykładem zastosowania próbki wzorcowej jest analiza chemiczna, gdzie standardy wzorcowe, takie jak roztwory znanych stężeń substancji, są wykorzystywane do określenia stężenia analitów w próbkach rzeczywistych. Próbki wzorcowe są również istotne w kontekście zgodności z normami ISO, które wymagają stosowania takich standardów w procedurach analitycznych, zapewniając tym samym wiarygodność i powtarzalność wyników. Dodatkowo, laboratoria często korzystają z prób wzorcowych w ramach systemów zapewnienia jakości, co podkreśla ich znaczenie dla utrzymania wysokich standardów analitycznych oraz dokładności wyników.

Pytanie 17

Sód metaliczny powinien być przechowywany w laboratorium

A. w szklanych pojemnikach wypełnionych naftą
B. w szklanych naczyniach
C. w butelkach plastikowych
D. w butlach metalowych z wodą destylowaną
Sód metaliczny należy przechowywać w szklanych butlach wypełnionych naftą, ponieważ ma on silne właściwości reaktywne, szczególnie w kontakcie z wodą i powietrzem. Sód reaguje z wodą, wytwarzając wodór i ciepło, co może prowadzić do niebezpiecznych eksplozji. Nafta, jako substancja organiczna, skutecznie izoluje sód od kontaktu z wodą i wilgocią, co zapobiega jego utlenianiu oraz niebezpiecznym reakcjom chemicznym. Ponadto, szklane pojemniki są neutralne chemicznie i nie wchodzą w reakcje z sodem, co czyni je odpowiednim materiałem do przechowywania. Tego rodzaju praktyki są zgodne z normami bezpieczeństwa w laboratoriach chemicznych, gdzie szczególną uwagę zwraca się na odpowiednie metody przechowywania substancji niebezpiecznych. Warto również zauważyć, że w wielu laboratoriach stosuje się podobne metody przechowywania innych reaktywnych metali, aby zminimalizować ryzyko ich reakcji z substancjami zewnętrznymi.

Pytanie 18

Próbki wody, które mają być badane pod kątem zawartości krzemu, powinny być przechowywane w pojemnikach

A. ze szkła borowo-krzemowego
B. z kwarcu
C. z tworzywa sztucznego
D. ze szkła sodowego
Chociaż przechowywanie próbek w naczyniach ze szkła kwarcowego czy borowo-krzemowego może wydawać się sensowne, nie jest to najlepszy pomysł, gdy mowa o krzemie. Kwarc, choć jest trwały, może wprowadzać krzemionkę do próbki, przez co wyniki mogą być fałszywe. Z kolei szkło borowo-krzemowe też może mieć trochę krzemu, co znowu wpływa na pomiar. A szkło sodowe, no tutaj to już w ogóle, bo reaguje z różnymi substancjami w wodzie, zwłaszcza przy mocnych kwasach lub zasadach. Dużo osób myśli, że całe szkło jest neutralne, ale to nieprawda - ich właściwości mogą być bardzo różne. To wszystko prowadzi do tego, że źle dobrane materiały do przechowywania próbek mogą nam zepsuć wyniki analizy, co w badaniach środowiskowych czy przy ocenie jakości wody pitnej może mieć poważne skutki. Dlatego ważne jest, żeby używać naczyń, które są odpowiednie i nie dodają niczego do naszych próbek.

Pytanie 19

Nie należy używać gorącej wody do mycia

A. kolby miarowej
B. zlewki
C. kolby stożkowej
D. szkiełka zegarkowego
Kolba miarowa jest szklanym naczyniem laboratoryjnym, które służy do dokładnego pomiaru objętości cieczy. Z uwagi na jej konstrukcję, nagłe zmiany temperatury mogą prowadzić do uszkodzeń, takich jak pęknięcia czy odkształcenia. Gorąca woda może powodować, że szkło stanie się bardziej podatne na stres termiczny, co jest niebezpieczne, zwłaszcza w przypadku kolb miarowych, które są projektowane z myślą o precyzyjnych pomiarach. W standardach laboratoryjnych, takich jak normy ISO, zaleca się, aby naczynia wykonane ze szkła boro-krzemowego, wykorzystywane w laboratoriach, nie były narażane na nagłe zmiany temperatury. Dobrą praktyką jest mycie ich w letniej wodzie z detergentem, a następnie dokładne płukanie w wodzie destylowanej, aby zminimalizować ryzyko uszkodzenia i zapewnić dokładność pomiarów. Przy odpowiedniej konserwacji, kolby miarowe mogą służyć przez wiele lat, jednak ich właściwe użytkowanie jest kluczowe dla utrzymania ich funkcjonalności.

Pytanie 20

Woda, która została poddana dwukrotnej destylacji, to woda

A. odejonizowana
B. redestylowana
C. odmineralizowana
D. ultra czysta
Woda dwukrotnie destylowana to woda, która została poddana procesowi destylacji dwa razy, co pozwala na usunięcie znacznej większości zanieczyszczeń i rozpuszczonych substancji chemicznych. Dzięki temu uzyskuje się wodę o wysokiej czystości, często określaną mianem wody redestylowanej. Woda redestylowana jest szczególnie cenna w zastosowaniach laboratoryjnych i przemysłowych, gdzie wymagana jest wysoka jakość wody, np. w analizach chemicznych, w produkcji farmaceutyków, czy w zastosowaniach technologicznych, takich jak chłodzenie urządzeń. W kontekście standardów, woda redestylowana spełnia wymagania norm dotyczących czystości wody, takich jak te ustalone przez Farmakopeę. Przykładem jej zastosowania może być przygotowanie roztworów do badań, gdzie obecność nawet minimalnych zanieczyszczeń może wpłynąć na wyniki. Dlatego jej produkcja i wykorzystanie powinny odbywać się zgodnie z najlepszymi praktykami, aby zapewnić najwyższą jakość.

Pytanie 21

Który sposób przechowywania próbek żywności jest niezgodny z Rozporządzeniem Ministra Zdrowia?

Fragment Rozporządzenia Ministra Zdrowia w sprawie pobierania i przechowywania próbek żywności przez zakłady żywienia zbiorowego typu zamkniętego
(...)
Zakład przechowuje próbki, przez co najmniej 3 dni, licząc od chwili, kiedy cała partia została spożyta w miejscu wyłącznym właściwym do tego celu oraz w warunkach zapewniających utrzymanie temperatury +4°C lub niższej, w zależności od przechowywanego produktu.
Miejsce przechowywania próbek musi być tak zabezpieczone, aby dostęp do niego posiadał tylko kierujący zakładem lub osoba przez niego upoważniona.

A. Przechowywanie przez co najmniej 3 dni od czasu spożycia całej partii żywności.
B. Przechowywanie w specjalnie do tego celu wyznaczonym miejscu, do którego dostęp posiada kierownik zakładu lub osoba przez niego upoważniona.
C. Przechowywanie przez maksymalnie 3 dni od czasu pobrania próbek.
D. Przechowywanie w temperaturze maksymalnej +4°C.
Odpowiedź wskazująca na przechowywanie próbek przez maksymalnie 3 dni od czasu ich pobrania jest poprawna, ponieważ jest sprzeczna z przepisami zawartymi w Rozporządzeniu Ministra Zdrowia. Zgodnie z tymi regulacjami, zakład ma obowiązek przechowywać próbki przez co najmniej 3 dni, liczonych od momentu spożycia całej partii żywności. Ta zasada jest istotna, aby zapewnić odpowiednią kontrolę jakości i bezpieczeństwa żywności. W praktyce oznacza to, że próbki żywności muszą być dostępne do analizy przez określony czas, co jest kluczowe w przypadku wykrycia problemów zdrowotnych związanych z danym produktem. Zastosowanie tej regulacji wspiera przejrzystość procesu zarządzania jakością oraz umożliwia przeprowadzenie niezbędnych badań, co jest zgodne z dobrymi praktykami w branży spożywczej, takimi jak HACCP (Analiza Zagrożeń i Krytyczne Punkty Kontroli). Przechowywanie w odpowiednich warunkach i przez określony czas jest niezbędne dla zachowania integralności próbek i ich przydatności do analizy.

Pytanie 22

Do systemu odprowadzania ścieków, w formie rozcieńczonego roztworu wodnego o maksymalnej masie 100 g na raz, można wprowadzić

A. AgF
B. NaCl
C. Pb(NO3)2
D. BaCl2
NaCl, czyli chlorek sodu, jest substancją, która doskonale nadaje się do wprowadzania do systemu kanalizacyjnego w formie rozcieńczonego roztworu wodnego. Jest to związek chemiczny, który jest w pełni rozpuszczalny w wodzie i nie niesie ze sobą ryzyka wprowadzenia do środowiska toksycznych substancji. W kontekście standardów ochrony środowiska, NaCl jest szeroko stosowany w różnych dziedzinach, od przemysłu spożywczego po przemysł chemiczny, dzięki czemu jego obecność w kanalizacji jest akceptowalna. NaCl jest także stosowany do wspomagania procesów oczyszczania w oczyszczalniach ścieków, ponieważ wspiera działanie mikroorganizmów odpowiedzialnych za biodegradację organicznych zanieczyszczeń. Bezpieczeństwo stosowania soli kuchennej w ilości do 100 g jednorazowo jest zgodne z dobrymi praktykami w zakresie zarządzania odpadami, co czyni ją idealnym rozwiązaniem w tej sytuacji.

Pytanie 23

Naczynia z roztworem kwasu siarkowego(VI) o dużym stężeniu nie powinny być pozostawiane otwarte nie tylko za względów bezpieczeństwa, ale także dlatego, że kwas

A. zmniejszy swoją masę, ponieważ jest lotny
B. zmniejszy swoją masę, ponieważ jest higroskopijny
C. zwiększy swoje stężenie, ponieważ wyparuje woda
D. zwiększy swoją masę, ponieważ jest higroskopijny
Odpowiedź jest poprawna, ponieważ stężony roztwór kwasu siarkowego(VI) jest substancją higroskopijną, co oznacza, że ma zdolność do absorbowania wilgoci z otoczenia. Gdy naczynie z takim roztworem jest otwarte, kwas siarkowy może wchłaniać pary wodne z powietrza, co prowadzi do zwiększenia jego masy. Jest to istotne z perspektywy bezpieczeństwa, ponieważ przyrost masy roztworu może wpływać na jego stężenie oraz właściwości chemiczne. Na przykład, w praktyce laboratoryjnej, jeżeli kwas siarkowy jest przechowywany w otwartych naczyniach, może dojść do niezamierzonego wzrostu stężenia kwasu, co zwiększa ryzyko reakcji niepożądanych. W przemyśle chemicznym, gdzie kwas siarkowy jest powszechnie stosowany, kluczowe jest przestrzeganie odpowiednich norm i procedur przechowywania, aby uniknąć niebezpiecznych sytuacji. Dobrą praktyką jest stosowanie szczelnych pojemników oraz regularne monitorowanie właściwości roztworów, co pozwala na zapewnienie ich stabilności i bezpieczeństwa użytkowania.

Pytanie 24

Który z poniższych zestawów obejmuje jedynie sprzęt do pomiarów?

A. Kolba miarowa, biureta i pipeta
B. Kolba miarowa, zlewka oraz bagietka
C. Kolba miarowa, cylinder miarowy oraz eza
D. Kolba miarowa, kolba stożkowa oraz pipeta
Odpowiedź "Kolba miarowa, biureta i pipeta" jest poprawna, ponieważ wszystkie wymienione narzędzia są klasycznymi przykładami sprzętu miarowego używanego w laboratoriach chemicznych. Kolba miarowa służy do precyzyjnego pomiaru objętości cieczy, co jest kluczowe w wielu reakcjach chemicznych, gdzie dokładność jest niezbędna dla uzyskania powtarzalnych wyników. Biureta, z kolei, jest używana do dozowania cieczy w sposób kontrolowany, najczęściej w titracji, co pozwala na określenie stężenia substancji chemicznej. Pipeta natomiast jest narzędziem, które umożliwia przenoszenie małych objętości cieczy z dużą precyzją. W praktyce laboratoryjnej, wybór odpowiedniego sprzętu pomiarowego jest kluczowy dla uzyskania wiarygodnych danych. Używanie sprzętu zgodnego z normami, takimi jak ISO lub ASTM, zapewnia wysoką jakość pomiarów i minimalizuje ryzyko błędów. Właściwa znajomość i umiejętność posługiwania się tymi narzędziami jest niezbędna dla każdego chemika, co podkreśla znaczenie tej odpowiedzi.

Pytanie 25

Jaką metodę wykorzystuje się w laboratorium do rozdzielenia osadu AgCl od cieczy macierzystej w probówkach?

A. wytrząsarkę.
B. wirówkę.
C. komplet sit.
D. krystalizator.
W laboratoriach chemicznych oddzielanie osadu, takiego jak AgCl (chlorek srebra), od cieczy macierzystej to proces kluczowy w wielu analizach. Użycie wirówki jest najskuteczniejszym sposobem na osiągnięcie tego celu. Wirówka działa na zasadzie odśrodkowej siły, która powoduje, że cząsteczki o większej gęstości, takie jak osad AgCl, są wypychane do dołu probówki, podczas gdy ciecz, która jest mniej gęsta, pozostaje na górze. To pozwala na łatwe oddzielenie obu frakcji bez potrzeby stosowania dodatkowych metod mechanicznych. Przykładem zastosowania wirówki w laboratoriach jest przygotowanie próbek do analizy spektrofotometrycznej, gdzie precyzyjne oddzielenie osadu pozwala na dokładniejszy pomiar stężenia substancji w cieczy. Zgodnie z normami laboratoryjnymi, prawidłowe użycie wirówki zwiększa efektywność i dokładność analiz, co jest szczególnie istotne w kontekście badań jakościowych i ilościowych.

Pytanie 26

Substancje, które wykorzystuje się do ustalania miana roztworu, to

A. robocze
B. miarowe
C. wtórne
D. podstawowe
Substancje podstawowe to naprawdę ważna sprawa w laboratoriach. Służą do ustalania miana roztworu, bo mają znane i dokładne stężenia, które są punktem odniesienia do dalszych badań. W praktyce używamy ich do kalibracji sprzętu i w różnych procesach analitycznych, jak np. titracja, gdzie musimy precyzyjnie określić ilość analitu. Takimi substancjami mogą być np. sól sodowa kwasu benzoesowego czy kwas solny o ustalonym stężeniu. Wiedza o substancjach podstawowych jest super istotna, bo pomaga nam trzymać standardy jakości, takie jak ISO, które mówią o dokładności pomiarów chemicznych. Ważne, żeby te substancje były przechowywane w odpowiednich warunkach, żeby się nie zepsuły, bo to mogłoby wpłynąć na wyniki. Z mojego doświadczenia, znajomość tych substancji i umiejętność ich stosowania są kluczowe, jeśli chcemy uzyskiwać wiarygodne wyniki w analizach.

Pytanie 27

Metoda oczyszczania substancji oparta na różnicach w rozpuszczalności poszczególnych składników w określonym rozpuszczalniku to

A. adsorpcja
B. destylacja
C. chromatografia
D. krystalizacja
Krystalizacja to proces oczyszczania substancji, który polega na wykorzystaniu różnic w rozpuszczalności składników w danym rozpuszczalniku. Podczas krystalizacji, gdy roztwór staje się nasycony, rozpuszczony substancja zaczyna wytrącać się w postaci kryształów. Ten proces jest szczególnie użyteczny w chemii i przemyśle farmaceutycznym, gdzie czystość substancji czynnej jest kluczowa. Przykładem może być produkcja soli kuchennej, gdzie rozpuszczona sól w wodzie jest poddawana procesowi odparowania, co prowadzi do wytrącenia się czystych kryształów soli. Krystalizacja jest zgodna z zasadami dobrej praktyki laboratoryjnej (GLP) oraz standardami czystości substancji, co czyni ją niezastąpioną metodą w analizie chemicznej i syntezach organicznych. Dzięki temu procesowi można uzyskać substancje o wysokiej czystości, co jest niezbędne w dalszych badaniach i aplikacjach przemysłowych.

Pytanie 28

Piktogram ukazujący czaszkę oraz skrzyżowane kości piszczelowe jest typowy dla substancji o działaniu

A. narkotycznym
B. żrącym dla skóry
C. korodującym na metale
D. toksycznym dla skóry
Piktogram przedstawiający czaszkę i skrzyżowane piszczele jest powszechnie stosowany do oznaczania substancji, które mają działanie toksyczne na skórę. Oznaczenie to informuje użytkowników o ryzyku, jakie niesie ze sobą kontakt danego związku chemicznego z ciałem. Substancje toksyczne mogą powodować poważne uszkodzenia, a w niektórych przypadkach nawet prowadzić do śmierci, jeśli nie zostaną odpowiednio zabezpieczone. Przykłady substancji, które mogą być oznaczone tym piktogramem, to niektóre pestycydy, rozpuszczalniki organiczne czy chemikalia wykorzystywane w laboratoriach. Zgodnie z obowiązującymi standardami, takimi jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów), prawidłowe oznaczenie substancji jest kluczowym elementem zapewnienia bezpieczeństwa w miejscu pracy oraz w codziennym użytkowaniu chemikaliów. Właściwe zrozumienie i respektowanie tych oznaczeń jest niezbędne do minimalizacji ryzyka zatrucia lub poparzeń chemicznych.

Pytanie 29

Przedstawiony piktogram powinien być zamieszczony na butelce zawierającej

Ilustracja do pytania
A. siarczan(VI) sodu.
B. chlorek baru.
C. azotan(V) rtęci.
D. perhydrol.
Chociaż chlorek baru, azotan(V) rtęci oraz siarczan(VI) sodu są związkami chemicznymi, które również mogą być używane w różnych procesach przemysłowych i laboratoryjnych, nie są one klasyfikowane jako substancje żrące w standardowych warunkach. Chlorek baru, używany często w przemyśle chemicznym, ma swoje zastosowania, jednak jego oznakowanie nie wymaga piktogramu korozji, ponieważ nie wywołuje poważnych uszkodzeń tkanek. Z kolei azotan(V) rtęci, mimo że jest substancją niebezpieczną, nie należy do grupy substancji żrących, ale raczej toksycznych i mutagenicznych, co może prowadzić do mylnej interpretacji jego zagrożeń. Siarczan(VI) sodu jest uznawany za substancję stosunkowo bezpieczną, zazwyczaj oznaczaną jako niegroźną. Typowym błędem myślowym jest pomylenie różnych kategorii zagrożeń chemicznych oraz nieodpowiednie przypisanie piktogramów do substancji, które ich nie wymagają. Właściwe zrozumienie klasyfikacji substancji chemicznych jest kluczowe dla zapewnienia bezpieczeństwa w laboratoriach oraz w przemyśle. Użytkownicy powinni być dobrze poinformowani o tym, jakie oznakowanie jest wymagane i zgodne z międzynarodowymi standardami, aby uniknąć niebezpiecznych sytuacji i wypadków.

Pytanie 30

Aby otrzymać 200 g roztworu siarczanu(VI) sodu o stężeniu 12%, należy wykorzystać

(Na – 23 g/mol; S – 32 g/mol; H – 1 g/mol; O – 16 g/mol)

A. 68,5 g Na2SO4·10H2O i 131,5 g H2O
B. 22,4 g Na2SO4·10H2O i 177,6 g H2O
C. 56,6 g Na2SO4·10H2O i 143,4 g H2O
D. 54,4 g Na2SO4·10H2O i 145,6 g H2O
Wiele osób ma problem z takimi obliczeniami, co może prowadzić do błędnych odpowiedzi. Często zdarza się, że mylą się w rozumieniu, że 12% to nie masa siarczanu(VI) sodu, tylko masa całego roztworu. Niektóre odpowiedzi, które podają inne masy Na2SO4·10H2O, mogą wynikać z nieprawidłowych wyliczeń lub błędnych założeń co do stężeń. Ważne, żeby pamiętać, że masa molowa Na2SO4·10H2O jest 322 g/mol – to bardzo ważne w tych kalkulacjach. Wiesz, czasem mały błąd przy liczeniu może zrujnować wyniki, więc warto być uważnym i nie spieszyć się. Z mojego doświadczenia, to proste rzeczy, a jednak łatwo je przeoczyć. Dlatego zrozumienie jak przygotować roztwór i umiejętność przeliczania mas molowych to klucz do sukcesu w naszej pracy laboratoryjnej.

Pytanie 31

Podstawowy zestaw do filtracji składa się ze statywu oraz

A. zlejka Büchnera, zlewki i bagietki
B. zlejka, zlewki i pipety
C. zlejka, dwóch zlewek i bagietki
D. z dwóch zlewek i bagietki
Wszystkie pozostałe odpowiedzi zawierają nieścisłości dotyczące składu podstawowego zestawu do sączenia. Odpowiedzi wskazujące na zlewki i pipety, czy też zlewkowe elementy, nie uwzględniają kluczowych komponentów, które są niezbędne do przeprowadzenia skutecznego procesu sączenia. Odpowiedzi te mogą prowadzić do błędnych wniosków dotyczących procedur laboratoryjnych oraz funkcji narzędzi chemicznych. Niezrozumienie, że statyw, zlewki oraz zlejka muszą współpracować, by efektywnie przeprowadzić filtrację, wykazuje braki w podstawowej wiedzy z zakresu chemii analitycznej. Zlewki pełnią funkcję przechowywania i transportu substancji, a ich pominięcie z zestawu do sączenia jest rażącym błędem, przez co można stracić cenną próbkę lub nieprawidłowo przeprowadzić analizę. Dodatkowo, wprowadzenie pipet jako elementu zestawu jest nieadekwatne, ponieważ ich głównym przeznaczeniem jest dozowanie cieczy, a nie bezpośrednia filtracja. Zrozumienie, jakie elementy są niezbędne do skutecznej pracy w laboratorium, jest kluczowe, aby uniknąć niebezpieczeństw oraz błędów w wynikach analitycznych.

Pytanie 32

Zawarty fragment instrukcji odnosi się do

Po dodaniu do kolby Kjeldahla próbki analizowanego materiału, kwasu siarkowego(VI) oraz katalizatora, należy delikatnie ogrzewać zawartość kolby za pomocą palnika gazowego. W początkowym etapie ogrzewania zawartość kolby wykazuje pienienie i zmienia kolor na ciemniejszy. W tym czasie należy przeprowadzać ogrzewanie bardzo ostrożnie, a nawet z przerwami, aby uniknąć "wydostania się" czarnobrunatnej masy do szyjki kolby.

A. mineralizacji próbki na mokro
B. topnienia próbki
C. mineralizacji próbki na sucho
D. wyprażenia próbki do stałej masy
Wybór innych odpowiedzi, takich jak mineralizacja próbki na sucho, stapianie próbki czy wyprażenie próbki do stałej masy, jest błędny, ponieważ te metody mają różne cele i procedury. Mineralizacja na sucho polega na poddawaniu próbki wysokotemperaturowemu procesowi bez użycia rozpuszczalników, co w przypadku substancji organicznych może prowadzić do niepełnego rozkładu i utraty cennych informacji analitycznych. Takie podejście jest często stosowane do przygotowania próbek mineralnych, ale nie jest odpowiednie dla materiałów zawierających substancje organiczne. Stapianie próbki to proces charakteryzujący się połączeniem próbek z topnikami i ogrzewaniem w celu ich przetworzenia, co również nie odpowiada opisanej procedurze mineralizacji. Z kolei wyprażenie próbki do stałej masy polega na długotrwałym ogrzewaniu w sytuacji, gdy celem jest uzyskanie surowca o stałej masie, co nie jest tożsame z neutralizowaniem organicznych związków chemicznych w obecności kwasu. Dlatego też, błędne zrozumienie tych metod może prowadzić do nieefektywnych lub wręcz niemożliwych do zrealizowania analiz, co podkreśla znaczenie znajomości odpowiednich metod w kontekście celu badania. W praktyce laboratoryjnej kluczowym jest rozróżnienie tych metod, aby zastosować właściwe podejście do uzyskania wiarygodnych wyników.

Pytanie 33

Aby uzyskać drobnokrystaliczny osad BaSO4, należy wykonać poniższe kroki:
Do zlewki wlać 20 cm3 roztworu BaCl2, następnie dodać 100 cm3 wody destylowanej oraz kilka kropli roztworu HCl. Zawartość zlewki podgrzać na łaźni wodnej, a potem, ciągle mieszając, dodać 35 cm3 roztworu H2SO4.
Mieszaninę ogrzewać na łaźni wodnej przez 1 godzinę. Osad odsączyć i przepłukać kilkakrotnie gorącą wodą zakwaszoną kilkoma kroplami roztworu H2SO4.
Według przedstawionej procedury, do uzyskania osadu BaSO4 potrzebne są:

A. zlewka, pipeta wielomiarowa o pojemności 25 cm3, cylindry miarowe o pojemności 50 i 100 cm3, łaźnia wodna, bagietka, zestaw do sączenia, sączek "miękki"
B. zlewka, cylindry miarowe o pojemności 25, 50 i 100 cm3, łaźnia wodna, zestaw do sączenia, sączek "twardy"
C. zlewka, cylindry miarowe o pojemności 25, 50 i 100 cm3, palnik, trójnóg, zestaw do sączenia, sączek "miękki"
D. zlewka, cylindry miarowe o pojemności 50 i 100 cm3, pipeta jednomiarowa o pojemności 20 cm3, łaźnia wodna, bagietka, zestaw do sączenia, sączek "twardy"
Wybrana odpowiedź jest prawidłowa, ponieważ zawiera wszystkie niezbędne elementy do przeprowadzenia opisanego eksperymentu. Zlewka jest podstawowym naczyniem, w którym odbywa się reakcja chemiczna, a cylindry miarowe o pojemności 50 i 100 cm3 są kluczowe do dokładnego odmierzenia reagentów, takich jak BaCl2 i H2SO4. Użycie pipety jednomiarowej o pojemności 20 cm3 zapewnia precyzyjne dawkowanie roztworu BaCl2. Łaźnia wodna jest niezbędna do kontrolowania temperatury podczas ogrzewania mieszaniny, co zapobiega degradacji reagentów i zapewnia optymalne warunki dla reakcji tworzenia osadu BaSO4. Bagietka umożliwia dokładne mieszanie roztworu, co jest kluczowe dla uzyskania jednorodności reakcji. Zestaw do sączenia i sączek 'twardy' są niezbędne do separacji osadu BaSO4 od cieczy, co jest istotnym krokiem w procesie izolacji tego związku. Wszystkie te elementy są zgodne z dobrymi praktykami laboratoryjnymi, które nakładają nacisk na dokładność, precyzję oraz bezpieczeństwo w pracy z substancjami chemicznymi.

Pytanie 34

Oblicz, ile moli gazu można zebrać w pipecie gazowej o pojemności 500 cm3, jeśli gaz będzie gromadzony w warunkach normalnych. (W normalnych warunkach jeden mol gazu ma objętość 22,4 dm3)

A. 0,100 mola
B. 0,022 mola
C. 0,002 mola
D. 0,200 mola
Aby obliczyć liczbę moli gazu, który można zebrać w pipecie gazowej o pojemności 500 cm³ w warunkach normalnych, należy skorzystać z faktu, że w tych warunkach jeden mol gazu zajmuje objętość 22,4 dm³. Najpierw przekształcamy objętość pipecie z cm³ na dm³, co daje: 500 cm³ = 0,5 dm³. Następnie stosujemy wzór na obliczenie liczby moli: liczba moli = objętość gazu / objętość jednego mola. W naszym przypadku to będzie: liczba moli = 0,5 dm³ / 22,4 dm³/mol = 0,022 mól. To obliczenie jest zgodne z zasadami chemii gazów idealnych i przydatne w różnych zastosowaniach laboratoryjnych, takich jak przygotowywanie roztworów, gdzie precyzyjne dawkowanie reagentów jest kluczowe. Zrozumienie tego zagadnienia jest istotne nie tylko w chemii, ale również w dziedzinach pokrewnych, takich jak inżynieria chemiczna czy biotechnologia, gdzie kontrola warunków reakcji jest niezbędna dla uzyskania optymalnych wyników.

Pytanie 35

Jakie urządzenie wykorzystuje się do pobierania próbek gazów?

A. czerpak
B. aspirator
C. pojemnik
D. barometr
Aspirator jest urządzeniem zaprojektowanym do pobierania próbek gazów w sposób kontrolowany i skuteczny. Jego działanie opiera się na zasadzie podciśnienia, które umożliwia pobieranie gazów bez narażania ich na zanieczyszczenia czy straty. W praktyce, aspiratory są wykorzystywane w laboratoriach analitycznych, przemyśle chemicznym oraz w monitorowaniu jakości powietrza. Użycie aspiratora pozwala na precyzyjne pobieranie próbek z określonych lokalizacji, co jest kluczowe w analizach, takich jak badanie emisji z kominów, czy ocena stężenia substancji szkodliwych w atmosferze. Standardy, takie jak ISO 17025, podkreślają znaczenie urządzeń do pobierania próbek w kontekście wiarygodności wyników badań. Należy również pamiętać, że aspiratory są często stosowane w połączeniu z odpowiednimi filtrami, co dodatkowo zwiększa jakość pobieranych próbek. Takie podejście zapewnia integrację metod analitycznych z procedurami zapewnienia jakości.

Pytanie 36

Aby przygotować miano kwasu solnego, konieczne jest odważenie węglanu sodu o masie wynoszącej około 400 mg. Jaką precyzję powinna mieć waga używana do odważenia węglanu sodu?

A. 0,01 g
B. 1 g
C. 0,1 g
D. 0,001 g
Wybór wag o dokładności większej niż 0,001 g, jak 0,01 g, 0,1 g, czy 1 g, jest niewłaściwy w kontekście ważenia substancji o masie rzędu 400 mg. Odpowiednia dokładność wag jest podstawowym czynnikiem wpływającym na precyzję analityczną. W przypadku wag 0,1 g oznacza to, że błąd pomiaru może wynosić aż 100 mg, co jest absolutnie nieakceptowalne. Podobnie, 0,01 g daje nam 10 mg błędu, co może znacząco wpłynąć na wyniki analizy, zwłaszcza w delikatnych reakcjach chemicznych, gdzie nawet małe odchylenia mogą prowadzić do błędnych wyników. Waga o dokładności 1 g nie jest w ogóle odpowiednia do ważenia próbki o masie 400 mg, ponieważ błąd pomiarowy byłby zbyt duży, aby zapewnić wymaganą precyzję. To prowadzi do typowego błędu myślowego, polegającego na przypuszczeniu, że niższa dokładność jest wystarczająca dla wszystkich zastosowań. W praktyce laboratorium chemicznego, aby uzyskać wiarygodne wyniki, niezbędne jest stosowanie wag analitycznych, które zapewniają możliwie najmniejszy błąd pomiarowy, co jest zgodne z rygorystycznymi standardami analitycznymi, takimi jak ISO 17025, które podkreślają znaczenie dokładności w laboratoriach badawczych.

Pytanie 37

Piktogram nie jest konieczny dla

A. substancji, które mają działanie drażniące na oczy
B. substancji, które działają drażniąco na skórę
C. mieszanin samoreaktywnych typu G
D. substancji, które powodują korozję metali
Wybór substancji działających drażniąco na oczy oraz substancji działających drażniąco na skórę jako odpowiedzi na pytanie o piktogramy jest oparty na niewłaściwym zrozumieniu wymogów dotyczących klasyfikacji chemikaliów. Substancje te, zgodnie z regulacjami CLP, wymagają jednoznacznego oznakowania za pomocą piktogramów, ponieważ ich działanie na organizm człowieka jest dobrze udokumentowane i klasyfikowane jako niebezpieczne. Piktogramy mają na celu zapewnienie szybkiego i jasnego przekazu informacji o zagrożeniach dla osób pracujących z tymi substancjami. Osoby zajmujące się bezpieczeństwem chemicznym często popełniają błąd, nie rozróżniając pomiędzy różnymi kategoriami substancji oraz ich właściwościami niebezpiecznymi. Dodatkowo, wybór substancji powodujących korozję metali również nie jest trafny, ponieważ substancje te również wymagają odpowiednich piktogramów, aby ostrzegać o ich agresywnym działaniu na materiały. Powszechnym błędem jest myślenie, że jeśli substancja nie jest bezpośrednio niebezpieczna dla zdrowia, to nie wymaga oznakowania. W rzeczywistości, każda substancja, która ma potencjalne działanie szkodliwe, powinna być klasyfikowana i odpowiednio oznaczana, co jest kluczowe dla bezpieczeństwa w miejscu pracy oraz ochrony środowiska.

Pytanie 38

Rozpuszczalnik stosowany w procesie krystalizacji powinien

A. wchodzić w reakcję z substancją krystalizowaną
B. rozpuszczać zanieczyszczenia w przeciętnym zakresie
C. być substancją łatwopalną
D. doskonale rozpuszczać zanieczyszczenia lub w niewielkim stopniu
Wybór niewłaściwego rozpuszczalnika w procesie krystalizacji może prowadzić do wielu problemów. Propozycja, by rozpuszczalnik reagował z substancją krystalizowaną, jest fundamentalnie błędna, ponieważ takie reakcje chemiczne mogą prowadzić do zanieczyszczenia produktu końcowego, a nawet do jego degradacji. W kontekście krystalizacji, celem jest uzyskanie czystych kryształów, co wymaga, aby rozpuszczalnik nie reagował z substancją, lecz jedynie umożliwiał jej rozpuszczenie. Kolejną niepoprawną koncepcją jest pomysł, że rozpuszczalnik powinien rozpuszczać zanieczyszczenia w stopniu średnim. Taka sytuacja może prowadzić do powstania mieszaniny, która nie pozwoli na uzyskanie czystych kryształów, gdyż zanieczyszczenia będą wprowadzać dodatkowe substancje do struktury kryształów. Rozpuszczalniki łatwopalne są również niewłaściwym wyborem, gdyż ich stosowanie zwiększa ryzyko pożaru i stanowi zagrożenie w laboratoriach. Właściwy dobór rozpuszczalnika powinien być oparty na jego zdolności do selektywnego rozpuszczania i zapewnienia bezpiecznych warunków pracy, zgodnych z normami BHP oraz standardami przemysłowymi. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych wniosków, często wynikają z braku zrozumienia podstawowych zasad chemii i krystalizacji. Zrozumienie tych zagadnień jest niezbędne dla skutecznego przeprowadzenia procesu krystalizacji oraz uzyskania wysokiej jakości produktów chemicznych.

Pytanie 39

Ile gramów 80% kwasu mrówkowego trzeba zważyć, aby uzyskać 200 g 20% roztworu tego kwasu?

A. 80g
B. 200g
C. 50g
D. 20g
Aby obliczyć, ile gramów 80% kwasu mrówkowego należy użyć do przygotowania 200 g 20% roztworu, stosujemy zasadę zachowania masy oraz obliczenia dotyczące stężenia. Zacznijmy od ustalenia, ile czystego kwasu mrówkowego potrzebujemy w roztworze końcowym. 20% roztwór o masie 200 g zawiera 40 g czystego kwasu mrówkowego (20% z 200 g = 0,2 * 200 g). Teraz musimy ustalić, ile gramów 80% roztworu potrzeba, aby uzyskać te 40 g czystego kwasu. W 80% roztworze znajduje się 0,8 g czystego kwasu w 1 g roztworu. Dlatego, aby uzyskać 40 g czystego kwasu, musimy odważyć 50 g 80% roztworu (40 g / 0,8 = 50 g). To podejście jest zgodne z praktycznymi zasadami przygotowywania roztworów chemicznych, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla uzyskania pożądanych stężeń. Takie umiejętności są niezbędne w chemii analitycznej oraz w laboratoriach, gdzie dokładność ma znaczenie dla wyników eksperymentów i analiz.

Pytanie 40

Proces chemiczny, który polega na przejściu substancji w stanie stałym do roztworu, związany z reakcją tej substancji z rozpuszczalnikiem, to

A. roztwarzanie
B. ekstrakcja
C. krystalizacja
D. rozpuszczanie
Rozpuszczanie, krystalizacja i ekstrakcja to zjawiska, które mogą być mylone z roztwarzaniem, jednak każde z nich ma swoje unikalne cechy oraz przeznaczenie. Rozpuszczanie odnosi się ogólnie do procesu, w którym substancja stała przechodzi w stan roztworu, ale nie zawsze wiąże się z aktywną reakcją chemiczną z rozpuszczalnikiem. Krystalizacja to proces odwrotny do roztwarzania, w wyniku którego substancja przechodzi ze stanu rozpuszczonego do stałego, co jest kluczowe w otrzymywaniu czystych kryształów substancji chemicznych. Ekstrakcja natomiast odnosi się do procesu, w którym substancje są wyodrębniane z mieszanki, na przykład poprzez użycie rozpuszczalnika, ale nie oznacza to, że te substancje muszą ulegać reakcjom chemicznym. Typowym błędem myślowym jest mylenie tych pojęć, gdyż można sądzić, że wszelkie procesy związane z przemieszczaniem się substancji w roztworze są tożsame. Zrozumienie różnic pomiędzy tymi terminami jest kluczowe dla właściwego zarządzania procesami chemicznymi, szczególnie w kontekście przemysłu chemicznego, gdzie precyzyjne operacje są niezbędne do uzyskania pożądanych produktów o wysokiej jakości.