Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 24 kwietnia 2025 12:37
  • Data zakończenia: 24 kwietnia 2025 12:59

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Instalacja, do której należy podłączyć palnik, powinna być pokryta farbą w kolorze

A. szarym
B. żółtym
C. zielonym
D. niebieskim
Wybór kolorów takich jak niebieski, szary czy zielony do oznaczenia instalacji gazowych jest niewłaściwy z kilku powodów. Kolor niebieski często jest stosowany w instalacjach wodociągowych, co może prowadzić do mylenia systemów i niepotrzebnych nieporozumień, szczególnie w sytuacjach awaryjnych. Z kolei szary kolor nie ma powszechnie ustalonego znaczenia w kontekście instalacji przemysłowych, co sprawia, że jego zastosowanie może wprowadzać chaos w identyfikacji różnych systemów. Zielony, choć często używany do oznaczania instalacji związanych z bezpieczeństwem i ochroną, również nie jest standardowym kolorem dla instalacji gazowych. Taki błąd myślowy może wynikać z braku wiedzy o normach dotyczących kolorów stosowanych w różnych branżach oraz ich konkretnych zastosowaniach. W branży instalacyjnej jakość i bezpieczeństwo są kluczowe, dlatego stosowanie odpowiednich oznaczeń kolorystycznych zgodnie z regulacjami i normami jest nieodzowne. Wybór niewłaściwego koloru może prowadzić do poważnych konsekwencji, w tym do zwiększonego ryzyka wypadków, co podkreśla znaczenie znajomości standardów i dobrych praktyk w tej dziedzinie.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie metody można zastosować do rozdzielania i koncentracji składników próbki?

A. wymywanie lub wymianę jonową
B. spawanie
C. mineralizację suchą
D. rozpuszczanie i rozcieńczanie
Wybrane odpowiedzi, takie jak stapianie, rozpuszczanie i rozcieńczanie czy wymywanie lub wymiana jonowa, wskazują na niewłaściwe podejście do procesu analizy próbek. Stapianie to technika, która polega na podgrzewaniu materiałów do ich stanu ciekłego, jednak nie prowadzi do skutecznego rozdzielania składników próbki, a jedynie do ich fizycznej zmiany stanu skupienia, co nie jest odpowiednie w kontekście analizy chemicznej. Rozpuszczanie i rozcieńczanie mogą być użyteczne w niektórych przypadkach, lecz w kontekście rozdzielania składników próbki nie są wystarczające, ponieważ wiele składników może pozostać w zawiesinie lub nie rozpuścić się w danym rozpuszczalniku. Przykładem może być sytuacja, w której próbka zawiera nieorganiczne sole, które są słabo rozpuszczalne, co prowadzi do niepełnego wydobycia informacji. Wymiana jonowa oraz wymywanie to techniki stosowane głównie w kontekście oczyszczania wody lub usuwania zanieczyszczeń, a nie do analizy składników chemicznych próbki. Te metody nie są w stanie dostarczyć pełnego obrazu zawartości chemicznej, co jest kluczowe w badaniach analitycznych. W praktyce, nieprawidłowe zastosowanie tych technik może prowadzić do błędnych interpretacji wyników i złej oceny jakości analizowanej próbki.

Pytanie 6

Na ilustracji numery rzymskie wskazują

A. I – chłodnicę, II – destylat
B. I – rozdzielacz, II – destylat
C. I – chłodnicę, II – sublimat
D. I – rozdzielacz, II – sublimat
Odpowiedź I – chłodnicę, II – destylat jest poprawna, ponieważ chłodnica jest elementem wykorzystywanym w procesach destylacji, który służy do kondensacji pary. W tym procesie para destylatu przechodzi przez chłodnicę, gdzie jest schładzana, a następnie skraplana, co pozwala na uzyskanie czystego cieczy, takiej jak destylat. Destylacja jest powszechnie stosowana w przemyśle chemicznym oraz petrochemicznym do rozdzielania mieszanin cieczy na składniki na podstawie ich różnic w temperaturze wrzenia. W praktyce, przestrzeganie zasad projektowania i eksploatacji sprzętu destylacyjnego, w tym doboru odpowiednich materiałów i parametrów procesowych, jest kluczowe dla osiągnięcia wysokiej wydajności i jakości produktu końcowego. Ponadto, dobór odpowiednich rodzajów chłodnic (np. chłodnice rurowe, spiralne, czy płytowe) w zależności od charakterystyki procesu oraz właściwości zachodzących substancji ma duże znaczenie dla efektywności całego systemu. Zrozumienie roli chłodnicy i destylatu w kontekście procesów chemicznych jest niezbędne dla każdego inżyniera chemika, co podkreśla znaczenie tej odpowiedzi.

Pytanie 7

Do filtracji osadów drobnokrystalicznych wykorzystuje się filtry

A. elastyczne, o najmniejszych porach
B. sztywne, o najmniejszych porach
C. elastyczne, o największych porach
D. sztywne, o największych porach
Wybór sączków miękkich, o najmniejszych porach, nie jest właściwy w kontekście filtracji osadów drobnokrystalicznych. Miękkie materiał sączków nie zapewniają wymaganej twardości i stabilności, co prowadzi do ich odkształcania się podczas procesu filtracji. Osady drobnokrystaliczne, ze względu na swoją strukturę, wymagają użycia materiałów, które mogą wytrzymać ciśnienie i nie ulegają deformacji. Ponadto, sączki o największych porach, niezależnie od ich twardości, nie są wystarczająco efektywne w oddzielaniu drobnych cząstek, co prowadzi do zanieczyszczenia przefiltrowanej cieczy. W kontekście standardów filtracji, kluczowe jest, aby dobór materiału był zgodny z wymaganiami dotyczącymi oczyszczania próbek i uzyskiwania wiarygodnych wyników analitycznych. Wybór niewłaściwego typu sączka często wynika z błędnego zrozumienia funkcji, jakie pełnią różne materiały filtracyjne. W laboratoriach należy szczególnie zwrócić uwagę na charakterystyki fizyczne i chemiczne używanych materiałów, aby zapewnić optymalną wydajność podczas procesów filtracyjnych i uniknąć ryzyka kontaminacji, które może znacząco wpłynąć na wyniki eksperymentów.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie oznaczenie znajduje się na naczyniach szklanych kalibrowanych do wlewu?

A. Ex
B. In
C. R
D. W
Oznaczenie In na naczyniach szklanych kalibrowanych na wlew wskazuje, że naczynie to jest zaprojektowane do precyzyjnego pomiaru objętości cieczy, która ma zostać wlane w jego wnętrze. W praktyce oznaczenie to oznacza, że objętość wskazana na naczyniu jest równa objętości cieczy, gdy jej poziom osiąga oznaczenie kalibracyjne. Naczynia te są szeroko stosowane w laboratoriach chemicznych, biologicznych oraz w przemyśle farmaceutycznym, gdzie dokładność pomiarów jest kluczowa. Przykładem zastosowania może być przygotowywanie roztworów o określonej stężeniu, gdzie precyzyjna objętość reagentów jest niezbędna do uzyskania powtarzalnych wyników analiz. Warto również zwrócić uwagę na standardy ISO oraz normy ASTM, które regulują wymagania dotyczące kalibracji naczyń, co zapewnia wysoką jakość i rzetelność wyników eksperymentalnych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Który z procesów jest endotermiczny?

A. rozpuszczanie azotanu(V) amonu w wodzie
B. rozcieńczanie stężonego kwasu siarkowego(VI)
C. rozpuszczanie wodorotlenku sodu w wodzie
D. roztwarzanie magnezu w kwasie solnym
Rozpuszczanie wodorotlenku sodu w wodzie, rozcieńczanie stężonego kwasu siarkowego(VI) oraz roztwarzanie magnezu w kwasie solnym nie są procesami endotermicznymi. W rzeczywistości, rozpuszczanie wodorotlenku sodu w wodzie jest procesem egzoenergetycznym, co oznacza, że wydziela energię w postaci ciepła. Podczas tego procesu temperatura roztworu wzrasta, co jest efektem uwolnienia energii, a nie jej absorpcji. Podobnie, rozcieńczanie stężonego kwasu siarkowego(VI) z wodą generuje dużą ilość ciepła, co może prowadzić do niebezpiecznych reakcjach, jeśli nie jest przeprowadzane ostrożnie. Roztwarzanie magnezu w kwasie solnym również jest reakcją egzoenergetyczną, ponieważ podczas tego procesu wydzielają się gazy (w tym wodór), a reakcja ta jest silnie egzotermiczna, co oznacza, że wydziela dużo ciepła. Typowym błędem myślowym, który prowadzi do błędnych wniosków, jest utożsamianie wszystkich procesów rozpuszczania z absorpcją ciepła, podczas gdy wpływ na temperaturę roztworu zależy od rodzaju reagentu oraz jego interakcji z rozpuszczalnikiem. Kluczowe jest zrozumienie, jakie procesy są egzotermiczne, a jakie endotermiczne, aby prawidłowo przewidywać zmiany temperatury w różnych reakcjach chemicznych.

Pytanie 12

Jak nazywa się naczynie o płaskim dnie, które wykorzystuje się do pozyskiwania substancji stałej poprzez stopniowe odparowanie rozpuszczalnika z roztworu?

A. Tygiel Schotta
B. Eksykator
C. Krystalizator
D. Kolba Kjeldahla
Krystalizator to takie płaskodenne naczynie, które często widzimy w laboratoriach chemicznych. Używamy go do uzyskiwania substancji stałej w wyniku krystalizacji, co jest dosyć fajnym procesem. Krystalizacja polega na tym, że powoli odparowujemy rozpuszczalnik z roztworu, a to sprzyja tworzeniu się ładnych kryształów. Dobrze zaprojektowane krystalizatory mają dużą powierzchnię parowania, więc to przyspiesza cały proces. W praktyce, często korzystamy z krystalizatorów, żeby oczyścić różne substancje chemiczne, ale też w produkcji soli czy związków organicznych. Z mojego doświadczenia, w laboratoriach ważne jest, żeby monitorować temperaturę i ciśnienie, bo to wpływa na efektywność krystalizacji. A jeśli chodzi o świetne wyniki, to można wspomagać wytrącanie kryształów poprzez dodanie zarodków krystalicznych – to też dobrze mieć na uwadze.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakie są zalecenia dotyczące postępowania z odpadowymi roztworami kwasów oraz zasad?

A. Roztwory kwasów i zasad należy mocno zagęścić i zobojętnić stężonymi roztworami NaOH oraz HCl, aby uzyskać odpady w postaci stałych soli
B. Roztwory kwasów i zasad można umieścić bez neutralizacji w tym samym pojemniku, gdzie będą się wzajemnie neutralizowały
C. Roztwory kwasów i zasad należy rozcieńczyć, zobojętnić zgodnie z procedurą, a następnie umieścić w osobnych pojemnikach
D. Roztwory kwasów i zasad można wylewać do kanalizacji, przepłukując silnym strumieniem wody w celu maksymalnego rozcieńczenia
Podawane koncepcje, wskazujące na możliwość mieszania roztworów kwasów i zasad bez neutralizacji, są nieprawidłowe. W rzeczywistości, choć teoretycznie takie mieszanie może prowadzić do ich wzajemnego zobojętnienia, w praktyce niesie ze sobą wiele zagrożeń. Po pierwsze, niekontrolowane łączenie silnych kwasów z mocnymi zasadami może prowadzić do gwałtownych reakcji, wydzielania dużych ilości ciepła oraz potencjalnego rozprysku niebezpiecznych substancji. Mieszanie powinno być przeprowadzane w kontrolowanych warunkach, z odpowiednim sprzętem ochronnym i w pojemnikach przeznaczonych do tego celu. Kolejnym błędem jest sugerowanie, że odpady te można wylewać do kanalizacji, co jest absolutnie niedopuszczalne. Wylanie roztworów chemicznych do kanalizacji może spowodować zanieczyszczenie wód gruntowych oraz systemu wodociągowego, co jest sprzeczne z przepisami ochrony środowiska. Również stwierdzenie, że odpady należy silnie zatężyć i zobojętniać stężonymi roztworami NaOH i HCl jest niebezpieczne. Tego typu praktyki mogą prowadzić do powstawania niebezpiecznych oparów oraz reakcji egzotermicznych, które mogą być trudne do kontrolowania. Aby zapewnić bezpieczeństwo i zgodność z przepisami, najlepiej jest stosować procedury ustalone przez organizacje zajmujące się ochroną zdrowia i środowiska, które przewidują odpowiednie metody neutralizacji i przechowywania odpadów chemicznych.

Pytanie 16

Mając wagę laboratoryjną z dokładnością pomiaru 10 mg, nie da się wykonać odważki o masie

A. 0,013 g
B. 130 mg
C. 1300 mg
D. 13 g
Odpowiedzi takie jak 1300 mg, 13 g i 130 mg są niepoprawne z kilku powodów. Z perspektywy technicznej, każda z tych mas jest znacznie większa niż minimalna granica dokładności wagi wynosząca 10 mg, co oznacza, że można je zmierzyć z poziomem precyzji, który zapewnia ta waga. Jednakże, nie uwzględniają one kluczowego aspektu związanego z wymaganiami dotyczących dokładności przy ważeniu mniejszych mas. Błąd w myśleniu polega na nieodróżnieniu granicy dokładności od możliwości pomiarowych. Waga laboratoryjna o dokładności 10 mg jest idealna do ważenia substancji o masach powyżej tej wartości, ale nie może być wykorzystywana do pomiarów, które są poniżej tej granicy, ponieważ wyniki mogą być nieprecyzyjne i niepewne. Na przykład, przygotowując roztwory o dużej dokładności, jak w przypadku chemii analitycznej, musimy wystrzegać się używania wag, które nie mogą dokładnie zmierzyć masy próbki. W laboratoriach często korzysta się z wag o wyższej dokładności, takich jak wagi analityczne, które pozwalają na ważenie do 0,1 mg, co zwiększa zakres precyzyjnego ważenia. Ponadto, standardy laboratoryjne, takie jak ISO, podkreślają znaczenie stosowania odpowiednich narzędzi pomiarowych, aby zapewnić wiarygodność wyników eksperymentów i analiz. Dlatego istotne jest, aby mieć świadomość ograniczeń wag i stosować je zgodnie z ich parametrami technicznymi.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakim narzędziem dokonuje się poboru próbki wody?

A. pływaka.
B. czerpaka.
C. przelewki.
D. odbieralnika.
Czerpak jest urządzeniem stosowanym do pobierania próbek wody, które umożliwia dokładne i kontrolowane uchwycenie próbki z określonego miejsca. W praktyce czerpaki są często wykorzystywane w laboratoriach analitycznych oraz w sytuacjach, gdzie zachowanie jakości próbki jest kluczowe. Czerpaki są projektowane w różnorodny sposób, aby dostosować się do specyfiki badanego medium oraz przeprowadzanych analiz. Na przykład, w przypadku pobierania wód gruntowych, czerpaki mogą być wyposażone w mechanizmy, które minimalizują zanieczyszczenia z zewnątrz. W kontekście standardów, takie jak ISO 5667, definiują metody pobierania prób wody, co jest istotne dla zapewnienia wiarygodności wyników badań. Dzięki zrozumieniu właściwego zastosowania czerpaka, technicy mogą efektywnie monitorować jakość wody i przeprowadzać analizy zgodnie z przyjętymi normami. W przypadku badań środowiskowych, czerpaki pozwalają na pobieranie prób wody z różnych głębokości, co jest istotne dla analizy jakości wód w zbiornikach wodnych.

Pytanie 19

Destylacja to metoda

A. oddzielania płynnej mieszanki poprzez odparowanie i kondensację jej składników
B. transformacji ciała z formy ciekłej w stałą
C. zmiany ze stanu stałego w stan gazowy, omijając stan ciekły
D. syntezy substancji zachodząca w obecności katalizatora
Destylacja jest procesem rozdzielania składników mieszaniny ciekłej, który opiera się na różnicy w ich temperaturach wrzenia. W praktyce polega to na odparowaniu jednej lub więcej frakcji z cieczy, a następnie ich skropleniu w osobnym naczyniu. Proces ten jest szeroko stosowany w przemyśle chemicznym oraz petrochemicznym do oczyszczania i separacji substancji, takich jak woda, alkohole czy oleje. Przykładem może być destylacja ropy naftowej, gdzie różne frakcje, takie jak benzyna, nafta czy olej napędowy, są oddzielane poprzez kontrolowane podgrzewanie. Zastosowanie destylacji można również zauważyć w laboratoriach chemicznych, gdzie wykorzystuje się ją do oczyszczania rozpuszczalników. Standardy branżowe, takie jak ASTM D86, opisują metody i procedury przeprowadzania destylacji, co jest kluczowe dla zapewnienia powtarzalności i dokładności wyników. W kontekście bezpieczeństwa, ważne jest stosowanie odpowiednich materiałów i urządzeń, aby zminimalizować ryzyko związane z procesem, zwłaszcza w przypadku substancji łatwopalnych.

Pytanie 20

Jakie procedury powinny być stosowane podczas ustalania miana roztworu?

A. Ustalanie miana roztworu polega na starannym zagęszczeniu roztworu, aby osiągnąć wcześniej ustalone stężenie
B. Ustalanie miana roztworu polega na dokładnym rozcieńczeniu roztworu, aby uzyskać wcześniej zaplanowane stężenie
C. Ustalanie miana każdego roztworu powinno być wykonane natychmiast po jego przygotowaniu
D. Ustalanie miana roztworu polega na dokładnym określeniu stężenia roztworu, w reakcji z roztworem substancji podstawowej o precyzyjnie znanym stężeniu
Nastawianie miana roztworu to kluczowy proces w chemii analitycznej, który polega na dokładnym ustaleniu stężenia roztworu przez reakcję z roztworem substancji podstawowej o znanym stężeniu. Ta metoda jest niezwykle istotna, ponieważ precyzyjne określenie miana roztworu pozwala na uzyskanie wiarygodnych wyników analitycznych. Na przykład, w przypadku titracji, przy użyciu roztworu wzorcowego o znanym stężeniu, możemy ustalić stężenie substancji analitowanej, co ma kluczowe znaczenie w laboratoriach chemicznych oraz w badaniach jakościowych i ilościowych. Zgodnie z dobrą praktyką laboratoryjną, należy zapewnić, aby roztwory wzorcowe były przygotowane i przechowywane w odpowiednich warunkach, aby ich stężenie pozostało niezmienne. Ważne jest także wykonywanie pomiarów pod kontrolą określonych protokołów i standardów, jak np. ISO 17025, które zapewniają wysoką jakość i dokładność wyników pomiarów.

Pytanie 21

Skalę wzorców do oznaczenia barwy przygotowano w cylindrach Nesslera o pojemności 100 cm3. Barwa oznaczona w tabeli jako X wynosi

Skala wzorców do barwy
Ilość wzorcowego roztworu podstawowego cm3 (c=500 mg Pt/dm3)01,02,03,0
Barwa w stopniach
mg Pt/dm3
05X15

A. 7
B. 5,5
C. 10
D. 20
Wybór odpowiedzi 10 mg Pt/dm³ jest poprawny, ponieważ oparty jest na założeniach dotyczących liniowej skali wzorców stosowanej do oznaczania barwy. Dla 1,0 cm³ roztworu podstawowego wartość wynosi 5 mg Pt/dm³. Zgodnie z zasadami chemii analitycznej, jeśli zwiększamy objętość roztworu podstawowego, to również proporcjonalnie wzrasta stężenie substancji, co jest zgodne z zasadą zachowania masy. W tym przypadku, dla 2,0 cm³ roztworu podstawowego, barwa będzie podwójna, co prowadzi do uzyskania wartości 10 mg Pt/dm³. Tego rodzaju podejście jest powszechnie stosowane w laboratoriach analitycznych, gdzie precyzyjne oznaczanie stężeń ma kluczowe znaczenie dla wiarygodności wyników. Zastosowanie tej metody w praktyce jest istotne dla analizy chemicznej w różnych dziedzinach, takich jak badania środowiskowe czy kontrola jakości w przemyśle chemicznym.

Pytanie 22

Mianowanie roztworu o stężeniu przybliżonym można wykonać poprzez

A. miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu.
B. miareczkowanie innym roztworem, który nie jest mianowany.
C. miareczkowanie tym samym roztworem mianowanym o ściśle określonym stężeniu.
D. zmierzenie gęstości tego roztworu.
Miareczkowanie innym roztworem niemianowanym jest podejściem, które w praktyce może prowadzić do znaczących błędów pomiarowych. Roztwory niemianowane często mają zmienną koncentrację, co skutkuje trudnościami w dokładnym określeniu stężenia substancji, którą chcemy zbadać. Ponadto, brak dokładnych danych o stężeniu roztworu wyjściowego uniemożliwia precyzyjne obliczenia i może prowadzić do fałszywych wniosków. W kontekście odczytywania gęstości roztworu, chociaż gęstość może dostarczać informacji o stężeniu, nie jest to wystarczająco dokładna metoda, ponieważ gęstość zależy od wielu czynników, takich jak temperatura i obecność innych substancji w roztworze. Miareczkowanie tym samym roztworem mianowanym również jest błędne, ponieważ nie dostarcza nowych informacji o stężeniu, a wręcz przeciwnie, może prowadzić do potwierdzenia niepełnych danych. Takie podejścia często wynikają z błędnego założenia, że można uzyskać wiarygodne wyniki na podstawie niepełnych informacji, co jest jednym z najczęstszych błędów w chemii analitycznej. Praktyka ta podkreśla znaczenie korzystania z dobrze zdefiniowanych i standardowych procedur, aby uzyskać powtarzalne i dokładne wyniki pomiarów.

Pytanie 23

Aby przygotować 500 cm3 roztworu KMnO4 (M = 158 g/mol) o stężeniu 0,02 mol/dm3, ile należy zważyć?

A. 15,8 g KMnO4
B. 7,95 g KMnO4
C. 1,58 g KMnO4
D. 3,16 g KMnO4
W przypadku analizy błędnych odpowiedzi warto zwrócić uwagę na kilka kluczowych aspektów dotyczących obliczeń chemicznych. Często popełnianym błędem jest mylenie jednostek objętości; na przykład, jeżeli ktoś obliczał masę KMnO4 dla 500 cm³, ale nie przeliczył tej wartości na dm³, może to prowadzić do znaczących pomyłek. Warto pamiętać, że 500 cm³ to 0,5 dm³, co jest kluczowe dla poprawności obliczeń. Dodatkowo, nieprawidłowy wybór jednostek stężenia, jak np. użycie stężenia masowego zamiast molowego, może wprowadzić w błąd. Innym typowym błędem jest pominięcie mocy molowej, co prowadzi do przeszacowania lub niedoszacowania wymaganej masy substancji. W kontekście przygotowywania roztworów, zgodność z normami oraz dobrymi praktykami laboratoryjnymi jest kluczowa. Na przykład, nieodpowiednia masa może wpłynąć na wyniki analizy, co w konsekwencji prowadzi do błędnych wniosków. Dlatego zawsze zaleca się staranność i dokładność w obliczeniach oraz stosowanie odpowiednich jednostek. To nie tylko zwiększa precyzję, ale i pozwala uniknąć kosztownych pomyłek w dalszych etapach badań chemicznych.

Pytanie 24

Jakim kolorem zazwyczaj oznacza się przewody w instalacji gazowej w laboratorium?

A. zielonym
B. żółtym
C. szarym
D. niebieskim
Oznakowanie przewodów instalacji gazowej jest kluczowym elementem zapewnienia bezpieczeństwa w laboratoriach, a jego niewłaściwe zrozumienie może prowadzić do poważnych konsekwencji. Szary kolor, który nie jest stosowany do oznaczania gazów, często kojarzy się z neutralnością i brakiem zagrożeń. W rzeczywistości jednak, szare oznaczenie nie dostarcza informacji o potencjalnych niebezpieczeństwach związanych z przewodami gazowymi. Niebieski kolor, często używany do oznaczania gazów, takich jak azot, jest mylony z oznaczeniem gazów palnych, co może prowadzić do nieporozumień w sytuacjach, gdy bezpieczeństwo jest kluczowe. Zielony kolor natomiast, w wielu systemach oznakowania, dotyczy substancji neutralnych lub medycznych, co również nie ma zastosowania do instalacji gazowych w laboratoriach. Te błędne koncepcje mogą wynikać z braku znajomości odpowiednich norm i standardów, które jasno określają zasady oznaczania różnych rodzajów instalacji. Głównym błędem myślowym jest założenie, że jakiekolwiek oznaczenie kolorystyczne jest wystarczające, podczas gdy w rzeczywistości konieczne jest przestrzeganie określonych wytycznych, aby uniknąć wypadków. Dlatego ważne jest, aby pracownicy byli dobrze zaznajomieni z zasadami bezpieczeństwa oraz standardami oznakowania, aby właściwie reagować w sytuacjach awaryjnych.

Pytanie 25

Do kolby destylacyjnej wprowadzono 200 cm3 zanieczyszczonego acetonu o gęstości d = 0,9604 g/cm3 oraz czystości 90% masowych. W celu oczyszczenia przeprowadzono proces destylacji, w wyniku czego uzyskano 113,74 g czystego acetonu. Jakie były straty acetonu podczas destylacji?

A. 18,33%
B. 34,20%
C. 65,80%
D. 81,77%
Wybierając inne odpowiedzi, można napotkać kilka typowych pułapek myślowych. Często zdarza się, że studenci mylnie zakładają, iż straty acetonu można obliczyć jako prostą różnicę między masą początkową a masą końcową bez uwzględnienia rzeczywistej zawartości czystego acetonu. W takich przypadkach dochodzi do nieprawidłowego założenia co do ilości czystego acetonu w początkowej próbce. Ponadto, niektóre osoby mogą błędnie oszacować straty, nie uwzględniając gęstości substancji oraz jej czystości, co prowadzi do znacznych odchyleń w obliczeniach. Straty mogą być również źle interpretowane jako różnica objętości, co nie jest adekwatne, gdyż konieczne jest przejście na jednostki masy dla porównania. Aby uniknąć tych błędów, ważne jest, by przy każdej analizie chemicznej szczegółowo zrozumieć, jakie dane są potrzebne do prawidłowego obliczenia. Rekomenduje się także stosowanie standardowych procedur analitycznych oraz dokumentację każdego kroku procesu, co zwiększa transparentność i umożliwia identyfikację potencjalnych błędów. Dobre praktyki w laboratoriach chemicznych zakładają również regularne szkolenie personelu oraz dbałość o dokładność pomiarów, co może znacząco wpłynąć na jakość uzyskiwanych wyników.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakie jest pH 0,001-molowego roztworu NaOH?

A. 13
B. 3
C. 11
D. 1
pH roztworu NaOH nie może wynosić 1, 3 ani 13, bo to się mija z podstawami chemii i tym, jak działają mocne zasady. pH 1 oznaczałoby, że mamy bardzo mocny kwas, a to nie zgadza się z tym, że NaOH jest zasadą. Żeby dobrze zrozumieć pH, trzeba znać skalę pH, która w gruncie rzeczy jest logarytmicznym wskaznikiem stężenia jonów wodorowych. NaOH, jako mocna zasada, dodaje do roztworu jony OH-, a ich obecność jest ważna, gdy patrzymy na pH. pH = 3 sugerowałoby, że mamy do czynienia z jakimś kwasem, a w tym przypadku to nie ma miejsca, bo roztwór jest zasadowy. Z kolei pH 13 jest bliskie poprawnej wartości, ale nie jest właściwe, bo pH roztworu NaOH w tym stężeniu jest na pewno niższe. Ludzie często mylą pH z pOH i sądzą, że mocne zasady mają pH bliskie 14 w niższych stężeniach, ale w rzeczywistości pH dla mocnych zasad może być znacznie niższe, zależnie od ich stężenia. Dlatego, żeby poprawnie analizować pH roztworów zasadowych, musisz zrozumieć ich chemiczne właściwości i to, jak się dysocjują w wodzie.

Pytanie 28

Ile gramów 80% kwasu mrówkowego trzeba zważyć, aby uzyskać 200 g 20% roztworu tego kwasu?

A. 50g
B. 200g
C. 80g
D. 20g
Przy analizie błędnych odpowiedzi często można zauważyć typowe pułapki związane z obliczeniami stężenia roztworów. Na przykład, wybór 200 g jako odpowiedzi może wynikać z błędnego założenia, że cała masa roztworu jest jednocześnie masą substancji czynnej, co jest nieprawidłowe. W rzeczywistości roztwór 20% oznacza, że tylko część masy to substancja chemiczna, a nie całość. Dlatego istotne jest, aby zrozumieć, że w obliczeniach chemicznych musimy oddzielić masę substancji czynnej od masy całkowitej roztworu. Z kolei wybór 20 g również jest nieprawidłowy, ponieważ odnosi się do zbyt małej ilości czystego kwasu mrówkowego, co nie wystarczyłoby do osiągnięcia pożądanej koncentracji w 200 g roztworu. Odpowiedź 80 g również jest błędna, ponieważ oznaczałaby zbyt dużą ilość 80% roztworu, nieproporcjonalnie do wymaganych 40 g czystego kwasu. Właściwe podejście do takich obliczeń wymaga zrozumienia zarówno zasad dotyczących stężenia, jak i umiejętności przekształcania jednostek masy oraz ich odpowiedniego zastosowania w praktyce laboratoryjnej. Umiejętność ta jest kluczowa w chemii, gdzie precyzyjne przygotowywanie roztworów ma kluczowe znaczenie dla jakości eksperymentów. W związku z tym, aby skutecznie stosować obliczenia stężenia, należy gruntownie przyswoić podstawowe zasady i metody obliczeniowe, co jest fundamentem każdej praktyki chemicznej.

Pytanie 29

Zabieg, który wykonuje się podczas pobierania próbki wody do analizy, mający na celu zachowanie jej składu chemicznego w trakcie transportu, określa się mianem

A. utrwalania
B. zagęszczania
C. oczyszczania
D. rozcieńczania
Odpowiedź 'utrwalania' jest prawidłowa, ponieważ proces ten ma kluczowe znaczenie w zachowaniu integralności chemicznej próbki wody podczas transportu do laboratorium. Utrwalanie polega na stosowaniu odpowiednich metod, takich jak dodanie substancji chemicznych, które stabilizują skład chemiczny próbki, zapobiegając rozkładowi lub zmianom w jej składzie. Przykładem może być dodanie kwasu solnego do próbki wody morskiej w celu zachowania stężenia metali ciężkich. Ważne jest także, aby wybrać odpowiednie pojemniki do transportu, które nie reagują z próbą, co jest zgodne z normami ISO 5667. W praktyce, przestrzeganie procedur pobierania i transportu próbek zgodnie z wytycznymi pozwala na uzyskanie wiarygodnych wyników analitycznych oraz minimalizację ryzyka zanieczyszczenia próbki. Właściwe utrwalanie próbek jest nie tylko istotne dla dokładności badań, ale także dla zapewnienia bezpieczeństwa przy dalszym ich przetwarzaniu.

Pytanie 30

Jakie substancje są potrzebne do uzyskania nierozpuszczalnego wodorotlenku cynku?

A. tlenek cynku i wodorotlenek sodu
B. chlorek cynku i wodorotlenek sodu
C. chlorek cynku i wodę
D. cynk i wodę
Chociaż chlorek cynku i woda mogą wydawać się logicznym połączeniem, reakcja ta nie prowadzi do wytworzenia nierozpuszczalnego wodorotlenku cynku. Chlorek cynku jest dobrze rozpuszczalny w wodzie, co oznacza, że nie dojdzie do wytrącenia Zn(OH)2, ponieważ wymagany jest dodatkowy reagent, który dostarczy jony hydroksylowe. Podobnie, reakcja samego cynku z wodą nie prowadzi do powstania wodorotlenku cynku. Cynk w reakcji z wodą tworzy cynkowy wodorotlenek dopiero w obecności wysokich temperatur lub w odpowiednich warunkach, co czyni ten proces niepraktycznym w standardowych warunkach laboratoryjnych. Z kolei tlenek cynku, będący azotkiem, z wodorotlenkiem sodu nie wyprodukuje wodorotlenku cynku, gdyż tlenek cynku nie wykazuje odpowiednich właściwości do tego typu reakcji. Pojawiają się tutaj typowe błędy myślowe związane z niepełnym zrozumieniem reakcji chemicznych oraz ich warunków, a także z myleniem etapów reakcji i produktów. Kluczowe jest zrozumienie, że do uzyskania nierozpuszczalnego osadu wymagane są odpowiednie reagenty oraz warunki reakcji, co podkreśla znaczenie wiedzy teoretycznej w praktycznych zastosowaniach chemicznych.

Pytanie 31

Nie należy używać do czyszczenia szklanych naczyń laboratoryjnych

A. stężonego kwasu siarkowego(VI) technicznego
B. mydlanego roztworu
C. alkoholowego roztworu NaOH
D. piasku oraz ściernych detergentów
Użycie piasku i ścierających środków myjących do mycia szklanych naczyń laboratoryjnych jest niewłaściwe z kilku powodów. Po pierwsze, materiały te mogą powodować zarysowania oraz uszkodzenia powierzchni szkła, co prowadzi do zmiany właściwości optycznych i chemicznych naczyń. Zarysowania mogą utrudniać dokładne czyszczenie, sprzyjać gromadzeniu się zanieczyszczeń i prowadzić do kontaminacji próbek. Zgodnie z najlepszymi praktykami w laboratoriach, do mycia szkła należy używać delikatnych środków czyszczących, które nie uszkodzą jego struktury. Alternatywą jest stosowanie specjalistycznych detergentów laboratoryjnych, które są zaprojektowane do usuwania resztek chemicznych i biologicznych bez ryzyka uszkodzenia naczyń. Warto także zwrócić uwagę na kwestie bezpieczeństwa, gdyż stosowanie nieodpowiednich środków czyszczących może prowadzić do nieprzewidywalnych reakcji chemicznych. Dlatego przestrzeganie standardów czyszczenia naczyń laboratoryjnych jest kluczowe dla zapewnienia ich trwałości oraz bezpieczeństwa pracy w laboratorium.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Substancje pomocnicze wykorzystywane do realizacji podstawowych analiz jakościowych i ilościowych, które nie wymagają wysokiej czystości, są oznaczane na opakowaniach symbolem

A. cz.ch.
B. techn.
C. cz.
D. cz.d.a.
Odpowiedź "cz." jest właściwa, ponieważ oznacza substancje pomocnicze, które są stosowane w analizach jakościowych i ilościowych, gdzie nie jest wymagana wysoka czystość chemiczna. Termin ten jest często używany w laboratoriach analitycznych oraz w procesach produkcyjnych, gdzie substancje te mogą służyć jako rozpuszczalniki, czy też reagenty w reakcjach chemicznych, ale nie muszą spełniać rygorystycznych norm czystości. Przykładem może być użycie substancji pomocniczych w analizach spektroskopowych, gdzie ich obecność nie wpływa negatywnie na wyniki analizy. W praktyce, korzystanie z takich substancji pozwala na oszczędności kosztów oraz uproszczenie procedur laboratoryjnych, co jest szczególnie ważne w laboratoriach zajmujących się rutynowymi analizami. Warto również zauważyć, że w kontekście dobrych praktyk laboratoryjnych, stosowanie substancji oznaczonych jako "cz." jest zgodne z wytycznymi dotyczącymi jakości w laboratoriach, które sugerują, aby dobierać materiały w zależności od wymagań jakościowych danej analizy.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Ile gramów cukru trzeba dodać do 200 gramów wody o temperaturze 20°C, aby uzyskać roztwór nasycony?

A. 400 g
B. 100 g
C. 200 g
D. 50 g
Odpowiedzi 200 g, 100 g i 50 g są błędne, ponieważ opierają się na nieporozumieniu związanym z pojęciem nasycenia roztworu. W praktyce, mniej niż 400 g cukru w 200 g wody nie wystarczy do osiągnięcia stanu nasycenia. W przypadku 200 g cukru, można uznać, że roztwór byłby raczej rozcieńczony, co z kolei prowadzi do błędnych wniosków o możliwościach rozpuszczania substancji. Podobnie, 100 g cukru to niewielka ilość w porównaniu do potencjalnej rozpuszczalności, co również nie zaspokoiłoby wymogów nasycenia. Odpowiedź z 50 g jest jeszcze bardziej myląca, ponieważ sugeruje, że można uzyskać roztwór nasycony przy tak niskiej ilości cukru, co jest biologicznie i chemicznie nieuzasadnione. Typowy błąd myślowy polega na porównywaniu rozpuszczalności różnych substancji bez zrozumienia ich właściwości fizykochemicznych. Roztwory nasycone mają swoje zastosowanie w wielu dziedzinach, a ich prawidłowe przygotowanie i zrozumienie jest kluczowe dla osiągnięcia oczekiwanych rezultatów w laboratoriach badawczych oraz w przemyśle chemicznym.

Pytanie 37

Jakie jest stężenie roztworu NaOH, który zawiera 4 g wodorotlenku sodu w 1 dm3 (masa molowa NaOH = 40 g/mol)?

A. 0,01 mol/dm3
B. 0,1 mol/dm3
C. 1 mol/dm3
D. 0,001 mol/dm3
Wybór stężenia 0,01 mol/dm³ to efekt błędnego spojrzenia na obliczenia dotyczące ilości moli i objętości roztworu. Żeby dobrze określić stężenie, najpierw trzeba znać masę molową substancji i przeprowadzić odpowiednie obliczenia. Przy 4 g NaOH, wydaje mi się, że pomyliłeś się, myśląc, że stężenie wynosi 0,01 mol/dm³. To wynika z nieprzypadkowego dzielenia masy przez masę molową. Liczba moli to masa substancji podzielona przez jej masę molową, czyli 4 g / 40 g/mol to 0,1 mol. Jeszcze trzeba uważać z objętościami, bo jeżeli pomylisz decymetry sześcienne z mililitrami, to mogą wyjść naprawdę duże błędy. Stężenie 0,001 mol/dm³ też wskazuje na nieprawidłowe rozumienie związku między masą a objętością. Może to być przez złą konwersję jednostek albo popełnione błędy w obliczeniach, co w pracy z roztworami chemicznymi jest kluczowe. Dobrze jest przed obliczeniami upewnić się, że wszystkie jednostki są zrozumiane i poprawnie zastosowane. Dlatego w laboratoriach precyzja w obliczeniach i umiejętność dobrej interpretacji wyników to podstawa, żeby wyjść z wiarygodnymi i powtarzalnymi rezultatami.

Pytanie 38

Osady kłaczkowe, które powstają w wyniku prostego koagulowania, określa się mianem osadów

A. liofobowymi
B. liofilowymi
C. grubokrystalicznymi
D. drobnokrystalicznymi
Osady kłaczkowate, które powstają w wyniku łatwego koagulowania, określane są mianem osadów liofobowych. Termin ten odnosi się do systemów, w których cząstki stałe są zawieszone w cieczy, a ich tendencja do agregacji jest zmniejszona przez siły odpychające, wynikające z ich liofobowości. W praktyce, osady liofobowe są istotne w wielu procesach technologicznych, takich jak oczyszczanie ścieków czy wytwarzanie emulsji i zawiesin. Na przykład, w przemyśle chemicznym, kontrola koagulacji i flokulacji jest kluczowa do uzyskania wysokiej jakości produktów. Wykorzystanie koagulantów, które sprzyjają tworzeniu osadów liofobowych, pozwala na efektywne separowanie ciał stałych od cieczy, co jest zgodne z najlepszymi praktykami w zakresie zarządzania odpadami. Dodatkowo, znajomość właściwości fizykochemicznych systemów liofobowych jest istotna dla inżynierów chemicznych, którzy projektują procesy produkcyjne wymagające precyzyjnych kontroli nad zachowaniem cząstek w zawiesinach.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jakie zestawienie sprzętu laboratoryjnego wykorzystuje się do filtracji osadów?

A. Zlewka, lejek, trójnóg, tygiel
B. Zlewka, waga, tryskawka, bagietka
C. Zlewka, lejek, waga, bagietka
D. Zlewka, lejek, statyw, bagietka
Wybór zestawu sprzętu laboratoryjnego do sączenia osadów jest kluczowy dla efektywności procesu filtracji. W przypadku poprawnej odpowiedzi, czyli zestawu składającego się ze zlewki, lejka, statywu i bagietki, każdy z tych elementów odgrywa istotną rolę. Zlewka służy do przechowywania cieczy, która ma być filtrowana, natomiast lejek ułatwia skierowanie tej cieczy do naczynia filtracyjnego, co zwiększa wydajność procesu. Statyw zapewnia stabilność i bezpieczeństwo podczas pracy z lejkiem, co jest niezwykle ważne, aby uniknąć rozlania cieczy. Bagietka natomiast umożliwia precyzyjne dozowanie cieczy, co jest istotne w przypadku pracy z substancjami chemicznymi. Przykładem zastosowania tego zestawu może być filtracja roztworów w chemii analitycznej, gdzie osady muszą być oddzielone od cieczy w celu dalszej analizy. W kontekście standardów laboratoryjnych, korzystanie z tego zestawu jest zgodne z dobrymi praktykami, które podkreślają znaczenie precyzyjnych i bezpiecznych metod pracy.