Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 26 marca 2025 11:48
  • Data zakończenia: 26 marca 2025 12:11

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z wymienionych programów nie nadaje się do tworzenia mapy zasadniczej?

A. C-Geo
B. Mikro-Map
C. Winkalk
D. Microstation
Winkalk to program, który nie jest przeznaczony do wykreślania mapy zasadniczej, ponieważ jego funkcjonalność jest ukierunkowana głównie na obliczenia inżynieryjne i kosztorysowanie, a nie na tworzenie map. Mapy zasadnicze są opracowywane na podstawie danych geodezyjnych, a ich tworzenie wymaga specjalistycznych narzędzi do analizy i wizualizacji tych danych. Programy takie jak C-Geo, Mikro-Map i Microstation są odpowiednie do takich zadań, ponieważ oferują zaawansowane funkcje geodezyjne, w tym integrację z systemami GPS, obsługę plików CAD oraz możliwość generowania map w standardach obowiązujących w geodezji. Przykładowo, C-Geo jest często stosowany przez geodetów do przygotowywania map do celów prawnych i budowlanych, co czyni go odpowiednim wyborem do wykreślania mapy zasadniczej.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Zadania związane z analizą wyników pomiarów nie obejmują sporządzania

A. sprawozdań technicznych
B. wywiadów terenowych
C. obliczeń
D. szkiców polowych
Obliczenia, szkice polowe i sprawozdania techniczne są integralnymi elementami procesu przetwarzania wyników pomiarów i każda z tych czynności ma swoje specyficzne zastosowanie w kontekście analizy danych. Obliczenia są kluczowe, ponieważ pozwalają na przetworzenie surowych danych w użyteczne informacje, które mogą być interpretowane w kontekście badanego zjawiska. Na przykład, w badaniach hydrologicznych obliczenia mogą obejmować analizy przepływu wód gruntowych, co jest niezbędne do oceny dostępności wody i zarządzania zasobami wodnymi. Szkice polowe służą zaś do wizualizacji terenu oraz lokalizacji punktów pomiarowych, co jest istotne w kontekście dokładności i powtarzalności wyników. Sprawozdania techniczne natomiast stanowią formalne podsumowanie prac badawczych, prezentując wyniki oraz wnioski w sposób zrozumiały dla szerszego grona odbiorców. Często zapomina się, że te elementy są ze sobą ściśle powiązane, a ich prawidłowe wykonanie jest kluczowe dla uzyskania i interpretacji rzetelnych wyników. Właściwe zrozumienie różnicy między zbieraniem danych a ich przetwarzaniem jest istotne, aby uniknąć pomyłek w metodologii badań, co może prowadzić do błędnych wniosków i nieprawidłowego zarządzania danymi.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jeśli odcinkowi na mapie o długości 1 cm odpowiada odległość 50 m w rzeczywistości, to oznacza, że mapa została stworzona w skali

A. 1:5 000
B. 1:500
C. 1:10 000
D. 1:1 000
Odpowiedź 1:5 000 jest całkiem spoko, bo oznacza, że każdy 1 cm na mapie to 5 000 cm w rzeczywistości, a to przekłada się na 50 m. Jak chcesz obliczyć skalę mapy, to musisz przeliczyć długość terenu na długość na mapie. Więc, jak 1 cm na mapie to 50 m w terenie, to przeliczamy to na centymetry i mamy 50 m, co daje nam 5 000 cm. I stąd mamy ten stosunek 1 cm na mapie do 5 000 cm w terenie, zapisany jako 1:5 000. To jest klasyczna skala, której używa się w kartografii, zwłaszcza w geodezji i planach zagospodarowania. Na przykład w mapach topograficznych skala 1:5 000 świetnie oddaje szczegóły terenu i ułatwia orientację. W praktyce, znajomość skali mapy to kluczowa rzecz, która naprawdę się przydaje w nawigacji i analizie przestrzennej, a dla geodetów i architektów to wręcz niezbędne.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Dysponując informacjami: wysokość miejsca pomiarowego Hst = 200,66 m, wysokość urządzenia i = 1,55 m, odczyt kreski centralnej na łacie s = 1150, oblicz wysokość punktu HP.

A. HP = 197,96 m
B. HP = 200,26 m
C. HP = 201,06 m
D. HP = 203,36 m
Wszystkie niepoprawne odpowiedzi wynikają z błędów w interpretacji przepisów dotyczących obliczania wysokości punktu pomiarowego. Często spotykanym błędem jest pomijanie konwersji jednostek lub nieprawidłowe uwzględnianie wartości w wzorze. Na przykład, niektóre osoby mogą zignorować fakt, że odczyt kreski środkowej na łacie s powinien być przeliczony na metry, co prowadzi do błędnych obliczeń. W przypadku takiego pytania, kluczowe jest, aby pamiętać, że odczyt na łacie jest wartością, którą należy odjąć od sumy wysokości instrumentu i wysokości stanowiska. Ponadto, wiele osób myli wysokość instrumentu z wysokością punktu pomiarowego, co prowadzi do obliczeń, które nie mają sensu w kontekście geodezji. Często, w procesie nauczania, pojawiają się upraszczające założenia, które mogą wprowadzać w błąd. W rzeczywistości, każdy z tych elementów jest istotny dla uzyskania dokładności pomiarów, co jest kluczowe w zastosowaniach geodezyjnych, takich jak skanowanie terenu czy projektowanie infrastruktury. Dlatego, aby skutecznie przeprowadzić obliczenia, należy przestrzegać standardów metodycznych oraz praktyk obowiązujących w branży, co pozwala na uniknięcie typowych pułapek podczas realizacji pomiarów.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

W przypadku wykonania pomiaru niwelacyjnego, jeżeli wartość odczytu z łaty niwelacyjnej kreską górną wynosi g = 2000 mm, a kreską dolną d = 1500 mm, to odczyt z łaty kreską środkową powinien być równy

A. s = 2000 mm
B. s = 1500 mm
C. s = 1750 mm
D. s = 1250 mm
Aby obliczyć wartość odczytu z łaty niwelacyjnej kreską środkową, należy skorzystać z zasady, że odczyt kreską środkową jest średnią arytmetyczną odczytów kreską górną i dolną. W tym przypadku mamy odczyt górny g = 2000 mm oraz odczyt dolny d = 1500 mm. Możemy zatem obliczyć s jako: s = (g + d) / 2 = (2000 mm + 1500 mm) / 2 = 1750 mm. Taki sposób obliczania odczytów jest standardową praktyką w pomiarach niwelacyjnych, ponieważ pozwala na uzyskanie precyzyjnych wyników poprzez eliminację błędów związanych z odczytem z jednego punktu. W praktyce stosowane są różne metody niwelacji, a dobrym przykładem są pomiary geodezyjne, w których precyzja i dokładność są kluczowe. Dzięki temu można zapewnić rzetelność danych, co jest istotne w inżynierii budowlanej czy topografii. Poprawne interpretowanie odczytów z łaty jest więc nie tylko zadaniem teoretycznym, ale także praktycznym, wymagającym znajomości zasad niwelacji i umiejętności ich zastosowania w rzeczywistych pomiarach.

Pytanie 15

Na precyzję pomiarów niwelacyjnych nie wpływa

A. wyważenie łat niwelacyjnych
B. kolejność dokonywanych pomiarów
C. poziomowanie libelli niwelacyjnej
D. odległość między niwelatorem a łatami
Kolejność wykonywanych odczytów w niwelacji nie ma wpływu na dokładność pomiarów, ponieważ kluczowe są inne aspekty techniczne, takie jak poziomowanie i spionizowanie instrumentu oraz prawidłowe ustawienie łat. W praktyce niwelacyjnym, jeżeli wszystkie pomiary są wykonywane zgodnie z wymaganiami i standardami, to niezależnie od kolejności odczytów wynik końcowy będzie taki sam, pod warunkiem, że nie popełniono błędów w innych etapach procesu. Standardy takie jak PN-EN 17123-1:2018 określają procedury, które minimalizują błędy pomiarowe. Przykładowo, jeżeli niwelator jest starannie spoziomowany, a łatka jest poprawnie ustawiona w pionie, uzyskane wyniki będą wiarygodne niezależnie od tego, w jakiej kolejności zrealizujemy pomiary. To podejście może być stosowane w różnych projektach budowlanych i inżynieryjnych, co podkreśla znaczenie rzetelności technicznej nad subiektywną interpretacją kolejności działań.

Pytanie 16

Niwelator to narzędzie służące do dokonania pomiaru

A. wysokości punktów
B. różnic wysokości
C. kątów nachylenia
D. kątów zenitalnych
Niwelator to dosyć specyficzne urządzenie, które służy głównie do mierzenia różnic wysokości pomiędzy punktami w terenie. Jak to działa? Wykorzystuje coś w rodzaju poziomicy, by dokładnie określić te różnice. To bardzo ważne w różnych dziedzinach, takich jak budownictwo czy geodezja, bo dobrze wykonane pomiary wysokości są kluczowe. Na przykład, kiedy budujemy fundamenty, musimy być pewni, że wszystko jest na właściwej wysokości, żeby budowla była stabilna. Niwelatory są też wykorzystywane do tworzenia map topograficznych, gdzie precyzyjne różnice w wysokościach terenu mają ogromne znaczenie. W branży mamy różne normy, jak ISO, które przypominają, jak ważne są dokładne pomiary. A co ciekawe, teraz mamy również niwelatory elektroniczne, które jeszcze bardziej podnoszą jakość pomiarów, co naprawdę ma znaczenie w dzisiejszych projektach budowlanych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

W jakiej skali sporządza się mapy zasadnicze dla niewielkich miejscowości, obszarów metropolitalnych i stref przemysłowych?

A. 1 : 1000
B. 1 : 500
C. 1 : 5000
D. 1 : 2000
Odpowiedź 1 : 1000 jest poprawna, ponieważ mapy zasadnicze małych miast, aglomeracji miejskich i obszarów przemysłowych sporządzane są w skali 1 : 1000, co oznacza, że 1 jednostka na mapie odpowiada 1000 jednostkom w rzeczywistości. Przykładowo, jeśli na mapie widoczna jest odległość 1 cm, w rzeczywistości jest to 1000 cm, czyli 10 m. Taka skala pozwala na szczegółowe odwzorowanie urbanistycznych i przestrzennych aspektów obszarów miejskich, co jest niezwykle istotne w planowaniu przestrzennym oraz zarządzaniu infrastrukturą. Przykłady zastosowania obejmują analizy gęstości zabudowy, lokalizację nowych inwestycji, a także ochronę środowiska. Zgodnie z obowiązującymi standardami, mapy zasadnicze powinny być aktualizowane regularnie, aby odzwierciedlały zmiany w zagospodarowaniu przestrzennym, co zwiększa ich użyteczność w praktyce.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Nie można użyć do trwałego oznaczania punktów osnowy poziomej

A. palików drewnianych.
B. bolców.
C. trzpieni.
D. znaków z kamienia.
Paliki drewniane, mimo że są popularnym materiałem w budownictwie oraz w transporcie geodezyjnym, nie są zalecane do trwałego zaznaczania punktów osnowy poziomej z powodu ich niskiej odporności na warunki atmosferyczne oraz degradację. W praktyce, takie paliki mogą ulegać rozkładowi, co prowadzi do zniekształcenia lub zniknięcia punktów pomiarowych. Z tego powodu, w geodezji, preferuje się stosowanie bardziej trwałych materiałów, takich jak trzpienie, znaki z kamienia czy bolce, które wykazują znacznie większą odporność na czynniki zewnętrzne. Trzpienie, na przykład, są osadzane na stałe w gruncie, a ich metalowa konstrukcja zapewnia długotrwałość i stabilność. Z kolei znaki z kamienia stanowią naturalne punkty odniesienia, które mogą przetrwać wiele lat, przy minimalnym ryzyku uszkodzenia. Zastosowanie odpowiednich materiałów do trwałego zaznaczania punktów osnowy poziomej jest kluczowe dla zapewnienia precyzji i wiarygodności pomiarów geodezyjnych, co jest zgodne z obowiązującymi normami w tej dziedzinie.

Pytanie 23

Nieosiągnięcie warunku, który mówi o prostopadłości osi obrotu lunety "h" do pionowej osi obrotu instrumentu "v", określane jest jako błąd

A. libeli pudełkowej
B. inklinacji
C. libeli rurkowej
D. kolimacji
Wybór błędnych odpowiedzi wynika z nieporozumienia dotyczącego pojęć związanych z błędami pomiarowymi. Libela pudełkowa oraz libela rurkowa to narzędzia służące do poziomowania, jednak nie są one związane z błędem inklinacji. Libela pudełkowa jest narzędziem wykorzystywanym do sprawdzania poziomości powierzchni, polegającym na umieszczeniu poziomnicy w płaszczyźnie poziomej, podczas gdy libela rurkowa, zawierająca ciecz, służy do oceny poziomu w dłuższych odcinkach. Żadne z tych narzędzi nie odnoszą się do konkretnego błędu pomiarowego dotyczącego prostopadłości osi obrotu lunety do osi obrotu instrumentu. Z kolei kolimacja to termin odnoszący się do ustawienia optyki w taki sposób, aby oś optyczna instrumentu była zgodna z osią mechaniczną. To pojęcie może prowadzić do błędnej interpretacji, gdyż choć kolimacja jest kluczowym elementem precyzyjnych pomiarów, nie obejmuje problemu inklinacji. Użycie niewłaściwych terminów może prowadzić do nieścisłości w analizach oraz wnioskach, dlatego istotne jest, aby stosować precyzyjne definicje i zrozumienie różnych typów błędów pomiarowych.

Pytanie 24

Jakim kolorem na mapie zasadniczej przedstawia się przewód elektroenergetyczny?

A. żółtym
B. czerwonym
C. pomarańczowym
D. niebieskim
Przewód elektroenergetyczny na mapie zasadniczej rysuje się kolorem czerwonym, co jest zgodne z obowiązującymi normami oraz standardami w branży elektroenergetycznej. Kolor ten został przyjęty jako uniwersalny sposób oznaczania wszelkiego rodzaju linii energetycznych, aby zminimalizować ryzyko pomyłek i zwiększyć bezpieczeństwo użytkowników map. Praktyczne zastosowanie tej konwencji jest nieocenione, zwłaszcza w kontekście planowania i zarządzania infrastrukturą energetyczną. Na przykład, inżynierowie i technicy często korzystają z map zasadniczych podczas lokalizacji przewodów, co ułatwia im wykonywanie prac konserwacyjnych, inspekcji oraz modernizacji. Dodatkowo, zgodność z ogólnokrajowymi i międzynarodowymi standardami, takimi jak normy ISO oraz regulacje dotyczące bezpieczeństwa, potwierdza zasadność przyjęcia koloru czerwonego do oznaczania przewodów elektroenergetycznych. Warto również zauważyć, że kolor czerwony jest powszechnie kojarzony z zagrożeniem, co dodatkowo zwiększa ostrożność podczas pracy w pobliżu instalacji energetycznych.

Pytanie 25

Kiedy oznaczenia geodezyjne uległy zniszczeniu, rekonstruowanie punktów szczegółowej osnowy poziomej należy przeprowadzić na podstawie zarejestrowanych w opisie topograficznym zmierzonych odległości do

A. punktów określanych jako poboczniki
B. sąsiednich funkcjonujących punktów osnowy
C. najbliższych elementów terenu
D. elementów terenowych z I kategorii dokładnościowej
Odpowiedzi sugerujące korzystanie z sąsiednich istniejących punktów osnowy, najbliższych szczegółów terenowych lub szczegółów terenowych z I grupy dokładnościowej są mylące i mogą prowadzić do nieprecyzyjnych rezultatów w procesie odtwarzania zniszczonych punktów osnowy. Sąsiednie punkty osnowy, choć mogą wydawać się logicznym wyborem, często nie są dostatecznie bliskie, aby zapewnić odpowiednią dokładność geodezyjną. W przypadku, gdy punkty są usunięte lub zniszczone, opieranie się na ich sąsiedztwie może wprowadzać błędy wynikające z niepewności lokalizacji. Najbliższe szczegóły terenowe, chociaż mogą być użyteczne, nie mają często ustalonej geodezyjnej dokładności, co czyni je niewłaściwym odniesieniem. Ponadto, szczegóły terenowe z I grupy dokładnościowej mogą nie być przystosowane do precyzyjnego odtwarzania punktów osnowy, zwłaszcza jeśli nie są to punkty o stabilnej geodezyjnej charakterystyce. W praktyce, niepoprawne podejście do wyboru punktów odniesienia może prowadzić do znacznych błędów w pomiarach, co jest niezgodne z obowiązującymi standardami geodezyjnymi, które nakładają wymóg stosowania precyzyjnych i zweryfikowanych odniesień, takich jak poboczniki. Dlatego kluczowe jest zrozumienie, że odpowiednie punkty odniesienia są fundamentem dokładności w geodezji i powinny być starannie wybrane, aby zapewnić wiarygodność wyników pomiarowych.

Pytanie 26

Na mapach naturalne formy rzeźby terenu zaznacza się kolorem

A. czarnym
B. brązowym
C. żółtym
D. szarym
Naturalne formy rzeźby terenu, takie jak góry, doliny, wzgórza czy inne ukształtowania, są na mapach topograficznych zazwyczaj przedstawiane kolorem brązowym. To ustalenie wynika z międzynarodowych standardów kartograficznych, które wskazują, że brąz jest najbardziej adekwatnym kolorem do reprezentacji ukształtowania terenu, ponieważ kojarzy się z ziemią oraz jest najlepiej widoczny na tle innych kolorów używanych do oznaczania wód (niebieski) oraz terenów zabudowanych (czarny). Przykładowo, w przypadku analiz geograficznych i ekologicznych, używanie brązowych odcieni na mapach pozwala nie tylko na łatwiejszą interpretację rzeźby terenu, ale również na identyfikację obszarów potencjalnego zagrożenia erozją czy osuwiskami. Dodatkowo, w kontekście planowania przestrzennego, zrozumienie ukształtowania terenu jest kluczowe dla podejmowania decyzji o lokalizacji infrastruktury, co czyni znajomość zasad przedstawiania rzeźby terenu niezbędną umiejętnością w wielu dziedzinach związanych z geografią i urbanistyką.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Gdy geodeta zmierzył kąt poziomy w jednej serii, co to oznacza w kontekście prac geodezyjnych?

A. zmierzył kąt w jednym ustawieniu lunety.
B. wykonał średnią arytmetyczną z dwóch odczytów.
C. wykonał średnią arytmetyczną z dwóch pomiarów.
D. zmierzył kąt w dwóch ustawieniach lunety.
Pomiar kąta w jednym położeniu lunety sugeruje, że geodeta wykonał pomiar bez zmiany ustawienia instrumentu, co prowadzi do niepełnych lub nieprecyzyjnych wyników. Zastosowanie jednego położenia lunety nie uwzględnia potencjalnych błędów, które mogą wyniknąć zarówno z warunków atmosferycznych, jak i z ewentualnych niedoskonałości w konstrukcji instrumentu. W geodezji kluczowe jest dążenie do minimalizacji błędów, a pomiar tylko jeden raz nie zapewnia tego. Ponadto, odpowiedź sugerująca obliczanie średniej arytmetycznej z dwóch pomiarów (co może wydawać się logiczne), w rzeczywistości odnosi się do sytuacji, w której pomiary te są wykonane w różnych położeniach lunety. Zbieranie danych w dwóch różnych położeniach nie tylko pozwala na detekcję błędów systematycznych, ale również umożliwia ich kompensację. Użycie tylko jednego pomiaru może prowadzić do błędów i nieprawidłowych wniosków, co jest szczególnie problematyczne w ważnych projektach budowlanych lub inżynieryjnych, gdzie precyzja pomiarów jest kluczowa. Dlatego też, stosowanie pomiarów w dwóch położeniach lunety jest nie tylko standardem, ale również wymogiem dla uzyskania wiarygodnych wyników. Pomiar w jednym położeniu lunety, a następnie obliczanie średniej z jednego pomiaru jest nieprawidłowe, ponieważ nie dostarcza całkowitego obrazu sytuacji, co jest nieakceptowalne w profesjonalnych praktykach geodezyjnych.

Pytanie 31

Jeśli odcinek o długości 1 cm na mapie odpowiada rzeczywistej odległości 50 m w terenie, to w jakiej skali została stworzona ta mapa?

A. 1:1000
B. 1:10 000
C. 1:5000
D. 1:500
Odpowiedź 1:5000 jest jak najbardziej trafna. Skala mapy to taki ważny temat, bo mówi nam, jak długości na mapie mają się do tych prawdziwych w terenie. Tu mamy 1 cm na mapie, co odpowiada 50 m w rzeczywistości. Jak to przeliczymy, to 50 m to 5000 cm. To znaczy, że 1 cm na mapie to 5000 cm w terenie, co zapisujemy jako 1:5000. Taka informacja jest super ważna przy robieniu map, bo pozwala dobrze oddać to, co mamy w realu. Kiedy korzystasz z mapy w skali 1:5000, łatwo możesz planować różne rzeczy, na przykład budowę czy nawigację. Tego typu mapy są często wykorzystywane w sprawach takich jak urbanistyka czy geodezja, gdzie potrzebujemy przedstawienia terenu w szczegółowy sposób. Rozumienie skali mapy pozwala lepiej czytać dane przestrzenne i podejmować mądrzejsze decyzje na bazie tego, co widzimy na mapie.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakich instrumentów oraz narzędzi geodezyjnych należy użyć do pomiaru terenu metodą niwelacji w przypadku punktów rozproszonych?

A. Niwelator, statyw, łaty niwelacyjne, pion sznurkowy
B. Tachimetr, statyw, pion sznurkowy, taśma geodezyjna
C. Niwelator, statyw, węgielnica, szpilki geodezyjne
D. Tachimetr, statyw, żabki geodezyjne, ruletka geodezyjna
Niwelator, statyw, łaty niwelacyjne oraz pion sznurkowy to kluczowe narzędzia wykorzystywane w geodezyjnych pomiarach terenu, szczególnie w metodzie niwelacji punktów rozproszonych. Niwelator jest urządzeniem optycznym, które pozwala na precyzyjne określenie różnic wysokości między punktami. Ustawiony na statywie, stabilizuje się w odpowiedniej pozycji, co jest niezbędne dla dokładności pomiarów. Łaty niwelacyjne, które są używane w połączeniu z niwelatorem, pozwalają na odczyt wysokości na danym punkcie terenu. Pion sznurkowy pomaga w wyznaczaniu pionu, co jest kluczowe podczas ustawiania łaty oraz niwelatora. Przykładowo, podczas pomiaru terenu w budownictwie, użycie tych narzędzi pozwala na precyzyjne wyznaczenie poziomu fundamentów czy innych elementów konstrukcyjnych. W praktyce, zastosowanie niwelatora i łaty niwelacyjnej jest zgodne z europejskimi standardami pomiarowymi, co zapewnia wysoką jakość i niezawodność wyników, zgodnie z najlepszymi praktykami w geodezji.

Pytanie 34

Jeśli pomiar na łacie niwelacyjnej w kierunku wstecznym wyniósł 3549, a na łacie w kierunku przednim 0506, jaka jest różnica wysokości na pozycji niwelatora?

A. +4,055 m
B. -4,055 m
C. -3,043 m
D. +3,043 m
Wybór błędnej odpowiedzi może wynikać z nieprawidłowego zrozumienia podstawowych zasad pomiarów niwelacyjnych. Kluczowym błędem jest nieprawidłowa interpretacja odczytów z łaty. Odczyt wstecz (3549 mm) należy odjąć od odczytu w przód (0506 mm), a nie odwrotnie. Wiele osób może mylnie sądzić, że należy dodać oba odczyty, co prowadzi do pomyłek w obliczeniach. W przypadku odpowiedzi -3,043 m, można zauważyć, że ktoś mógł spróbować wziąć różnicę, ale pomylił kierunki, co skutkuje negatywną wartością, zamiast zrozumieć, że różnica powinna być dodatnia, jeśli odczyt wstecz jest wyższy. Osoby, które wskazały opcję +4,055 m, najprawdopodobniej popełniły błąd obliczeniowy, dodając odczyty lub myląc się w przekształceniu jednostek. Również, wybór -4,055 m sugeruje mylne założenie, że odczyt w przód był wyższy, co jest sprzeczne z podanymi wartościami. W geodezji i innych dziedzinach związanych z pomiarami, kluczowe jest zrozumienie, jak poprawnie interpretować wyniki i stosować odpowiednie procedury, aby uzyskać rzetelne dane. Prawidłowe wykonanie niwelacji przed budową czy podczas pomiarów geodezyjnych ma fundamentalne znaczenie dla późniejszej jakości i trwałości budowli.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Do I grupy charakterystycznych detali terenowych, które można jednoznacznie zidentyfikować w terenie i które przejawiają długotrwałą stabilność, zalicza się między innymi

A. jezioro o naturalnej linii brzegowej
B. wał przeciwpowodziowy
C. boisko sportowe
D. budynek szkoły
Budynek szkoły jest przykładem obiektu, który można jednoznacznie zidentyfikować w terenie i który zachowuje długookresową niezmienność. W kontekście analizy terenowej, grupy szczegółów terenowych mogą obejmować obiekty stałe, które mają znaczenie dla planowania przestrzennego i zarządzania infrastrukturą. Budynki publiczne, takie jak szkoły, są zazwyczaj zarejestrowane w systemach GIS (Geographic Information Systems) oraz w dokumentacji urbanistycznej, co pozwala na ich skuteczną lokalizację i analizę w kontekście urbanistyki. Przykładowo, w procesie planowania przestrzennego, informacje o lokalizacji szkół są kluczowe dla ustalania stref oddziaływania, dostępności usług edukacyjnych oraz analizy ruchu uczniów. Dodatkowo, budynki takie jak szkoły są często objęte normami i regulacjami dotyczącymi bezpieczeństwa oraz dostępu, co podkreśla ich znaczenie jako stabilnych elementów infrastruktury społecznej.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Przeprowadzono dwa różne pomiary długości odcinka L1 oraz L2, które charakteryzują się odmienną precyzją. Każdemu z tych pomiarów nadano inną wagę p:

L1 = 20,000 m, p1 = 3
L2 = 20,050 m, p2 = 2

Jaką długość można uznać za najbardziej prawdopodobną dla tego odcinka?

A. 20,010 m
B. 20,020 m
C. 20,000 m
D. 20,025 m
Analizując podane odpowiedzi, warto zwrócić uwagę na przyczyny, dla których inne opcje są niepoprawne. Odpowiedzi 20,010 m oraz 20,000 m ignorują wagi przypisane do pomiarów L1 i L2, co jest kluczowe w procesie wyznaczania najbardziej prawdopodobnej wartości. Przyjmowanie wartości średnich bez uwzględnienia dokładności pomiarów prowadzi do zniekształcenia wyników. Na przykład, 20,000 m to wartość jednego z pomiarów, ale nie bierze pod uwagę, że pomiar L2, mimo że mniej dokładny, jest bliższy rzeczywistej długości odcinka. Z kolei 20,010 m jest bliskie wartości średniej, jednak nie uwzględnia proporcji wag, co jeszcze bardziej oddala tę wartość od dokładnej odpowiedzi. Użytkownicy często popełniają błąd polegający na traktowaniu wszystkich pomiarów jako równoważnych, co jest błędne w kontekście metod statystycznych. Ważenie pomiarów jest fundamentalne dla uzyskania rzetelnych wyników, a w praktyce powinno się zawsze dążyć do uwzględnienia różnorodności w dokładności pomiarów. Ostatecznie, błędne podejścia do analizy danych pomiarowych mogą prowadzić do podejmowania decyzji, które opierają się na nieprzemyślanych lub zniekształconych informacjach, co w kontekście inżynieryjnym może mieć poważne skutki. Dlatego tak istotne jest, aby przy wyznaczaniu wartości średnich stosować metody, które uwzględniają wagi oraz dokładność pomiarów.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Z jaką precyzją podaje się wysokości elementów naziemnych uzbrojenia terenu na mapach zasadniczych?

A. 0,1 m
B. 0,01 m
C. 0,05 m
D. 0,5 m
Wiele osób może mieć trudności z zrozumieniem, dlaczego dokładność 0,05 m, 0,5 m czy 0,1 m jest niewystarczająca w kontekście wysokości elementów uzbrojenia terenu. Wysokości podawane z dokładnością do 0,05 m nie uwzględniają wszystkich drobnych, ale krytycznych różnic, które mogą wystąpić w terenie. W inżynierii i geodezji, zwłaszcza w przypadku projektów budowlanych, nawet małe odchylenia mogą prowadzić do znacznych problemów, jak chociażby nieodpowiednie odprowadzenie wód opadowych lub niewłaściwe osadzenie obiektów. Podobnie, dokładność 0,5 m jest zbyt ogólna, aby spełnić wymagania dzisiejszej inżynierii lądowej, gdzie standardy precyzji są znacznie wyższe w związku z rozwojem technologii pomiarowych. Nie można również zapominać, że podanie wysokości z dokładnością do 0,1 m, chociaż zbliża się do wymagań, nadal nie zapewnia wymaganego poziomu precyzji, który jest konieczny w kontekście regulacji prawnych i norm branżowych. Ważne jest, aby rozumieć, że niedoszacowanie wymaganej dokładności może prowadzić do kosztownych błędów w projektowaniu oraz realizacji inwestycji, co podkreśla rolę dbałości o szczegóły w geodezji i inżynierii.