Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 1 kwietnia 2025 09:24
  • Data zakończenia: 1 kwietnia 2025 09:45

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Użycie akumulatora żelowego w ekstremalnie niskich temperaturach prowadzi do

A. konieczności obniżenia napięcia ładowania
B. konieczności podwyższenia prądu ładowania
C. wzrostu pojemności akumulatora
D. obniżenia pojemności akumulatora
Zwiększenie pojemności akumulatora w niskich temperaturach to powszechny mit, który wynika z niepełnego zrozumienia mechanizmów działania akumulatorów. W rzeczywistości, niskie temperatury wpływają negatywnie na procesy elektrochemiczne wewnątrz akumulatora. Wraz z obniżeniem temperatury, ruchliwość jonów w elektrolitach maleje, co prowadzi do ograniczenia ich dostępności do reakcji chemicznych. W efekcie tego, akumulator nie jest w stanie dostarczyć pełnej ilości energii, co objawia się spadkiem pojemności. Warto również zauważyć, że konieczność zmniejszenia napięcia lub zwiększenia prądu ładowania w niskich temperaturach jest również mylnym podejściem. Zmiana napięcia ładowania może prowadzić do nadmiernego ładowania akumulatora, co w konsekwencji skutkuje uszkodzeniem ogniw. Z kolei zwiększenie prądu ładowania w niskich temperaturach może prowadzić do niebezpiecznych sytuacji, takich jak przegrzanie czy nawet eksplozja akumulatora. W praktyce, akumulatory żelowe powinny być ładowane zgodnie z zaleceniami producenta, co ma na celu zapewnienie ich długowieczności i efektywności działania. Dlatego kluczowe jest unikanie błędnych założeń dotyczących działania akumulatorów w ekstremalnych warunkach temperaturowych oraz stosowanie się do najlepszych praktyk branżowych.

Pytanie 3

Rezystor podciągający, który jest połączony z wyjściem bramki TTL w cyfrowych układach, stosuje się w celu

A. sprzęgania układów CMOS→TTL
B. sprzęgania układów TTL→CMOS
C. eliminacji hazardu statycznego w układach TTL
D. dopasowania impedancji w układach TTL
Stwierdzenia zawarte w odpowiedziach, które nie odnoszą się do pytania, wskazują na pewne nieporozumienia dotyczące funkcji rezystora podciągającego w kontekście układów cyfrowych. Odpowiedź dotycząca dopasowania impedancyjnego w układach TTL jest nieprawidłowa, ponieważ rezystor podciągający nie ma na celu optymalizacji impedancji, lecz stabilizacji stanu logicznego. Likwidacja hazardu statycznego w układach TTL to również błędne podejście, ponieważ hazard statyczny dotyczy głównie niepewnych stanów na wyjściu w skomplikowanych układach logicznych, a nie jest bezpośrednio związany z podciąganiem napięcia. Sprzęganie układów TTL do CMOS poprzez rezystor podciągający również nie jest trafne, ponieważ ta koncepcja odnosi się do interakcji pomiędzy różnymi technologiami logicznymi a nie do ich podciągania. W rzeczywistości, aby uniknąć takich nieporozumień, inżynierowie powinni zrozumieć, że rezystory podciągające są fundamentalnym elementem w zapewnieniu stabilności sygnałów w systemach cyfrowych, minimalizując ryzyko wystąpienia stanów pośrednich, co mogłoby prowadzić do nieprzewidywalnych zachowań w systemie. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania układów cyfrowych oraz ich integracji.

Pytanie 4

W telewizji używa się kabli o impedancji falowej wynoszącej

A. 50 Ω
B. 120 Ω
C. 75 Ω
D. 100 Ω
Kabel 75 Ω to taki standard w telewizji, zwłaszcza do przesyłania wideo. Dzięki wysokiej impedancji te kable mają mniejsze straty sygnału i lepiej się dopasowują, co jest istotne, gdy obraz leci na dużą odległość. Używa się ich w praktycznie każdym systemie telewizyjnym – od anten po różne urządzenia, nawet w instalacjach satelitarnych. Generalnie, jeśli chodzi o wysoka jakość sygnału, to kabli 75 Ω powinniśmy używać do przesyłania sygnałów wideo, aby zmniejszyć zakłócenia. Warto też pamiętać, że odpowiedni kabel ma ogromne znaczenie w telewizji, a normy międzynarodowe, jak IEC 61169, potwierdzają, że trzeba ich przestrzegać.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Opady śniegu mogą prowadzić do znacznego obniżenia jakości odbioru sygnału

A. telewizji satelitarnej
B. telewizyjnego naziemnego
C. telewizji kablowej
D. radiowego naziemnego
Opady śniegu mogą znacząco wpłynąć na jakość odbioru sygnału telewizji satelitarnej ze względu na charakterystykę transmisji satelitarnej, która opiera się na sygnałach radiowych wysyłanych z satelitów krążących na wysokich orbitach. Sygnały te są podatne na zjawiska atmosferyczne, takie jak opady deszczu czy śniegu, które mogą powodować tłumienie sygnału. W przypadku opadów śniegu, cząsteczki wody i kryształki lodu mogą powodować znaczące straty sygnału, co skutkuje zakłóceniami lub całkowitym brakiem odbioru. Dla przykładu, w sytuacji intensywnych opadów śniegu, użytkownicy telewizji satelitarnej mogą doświadczać problemów z sygnałem, co może objawiać się w postaci zniekształceń obrazu, zacinania się transmisji lub brakiem sygnału. Standardy dotyczące instalacji anten satelitarnych oraz dobre praktyki wskazują, że odpowiednie umiejscowienie anteny oraz jej właściwe zabezpieczenie przed opadami mogą minimalizować te problemy, jednak całkowite ich wyeliminowanie może być trudne. Z tego powodu w regionach o dużych opadach śniegu, użytkownicy powinni rozważyć systemy, które potrafią zredukować wpływ warunków atmosferycznych na jakość sygnału.

Pytanie 7

Które z podanych elementów układów elektrycznych mogą być sprzęgnięte magnetycznie?

A. Tranzystory
B. Cewki
C. Diody
D. Rezystory
Cewki są elementami obwodów elektrycznych, które mogą być sprzężone magnetycznie dzięki zjawisku indukcji elektromagnetycznej. Gdy przez cewkę przepływa prąd, wytwarza ona pole magnetyczne. Jeśli w pobliżu znajduje się druga cewka, to zmiana prądu w pierwszej cewce może indukować prąd w drugiej. To zjawisko jest szeroko wykorzystywane w transformatorach, które są kluczowymi urządzeniami w systemach zasilania. Transformator składa się z dwóch cewek na wspólnym rdzeniu magnetycznym i umożliwia zmianę napięcia prądu przemiennego. Ponadto, sprzężenie magnetyczne jest podstawą działania silników elektrycznych, które przekształcają energię elektryczną w mechaniczną, a także w indukcyjnych elementach elektronicznych wykorzystywanych w różnych aplikacjach, takich jak filtry czy oscylatory. Dobre praktyki w projektowaniu obwodów elektrycznych uwzględniają odpowiednią separację i proporcje cewek, aby zminimalizować straty energii oraz zapewnić optymalne działanie systemu.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Brak obrazu na ekranie wideodomofonu może być spowodowany

A. usterką podświetlaczy IRED kamery
B. zwarciem przewodu sygnałowego
C. polem elektromagnetycznym w okolicy sprzętu
D. awarią elektrozaczepu
Usterka elektrozaczepu nie ma bezpośredniego wpływu na przesyłanie sygnału wideo. Elektrozaczep odpowiada za otwieranie zamków i nie wpływa na działanie kamery ani monitorów wideodomofonu. Dlatego myślenie, że problemy z obrazem mogą wynikać z awarii elektrozaczepu, jest błędne i pokazuje brak zrozumienia prawidłowych funkcji poszczególnych komponentów systemu wideodomofonu. Jeśli chodzi o podświetlacze IRED kamery, ich usterka może spowodować gorszą widoczność w nocy, ale nie spowoduje całkowitego braku obrazu. W przypadku, gdy kamera nie jest w stanie przechwycić obrazu z powodu defektu podświetlaczy, zazwyczaj obraz będzie ciemny lub nieczytelny, a nie całkowicie nieobecny. Pole elektromagnetyczne w pobliżu urządzenia może wpływać na działanie niektórych elementów elektronicznych, jednak nie jest to typowa przyczyna braku obrazu na monitorze. W praktyce, zakłócenia elektromagnetyczne mogą powodować jedynie problemy z jakością sygnału, podczas gdy całkowite zablokowanie sygnału jest bardziej związane z uszkodzeniami w obwodach przesyłowych, jak w przypadku zwarcia kabla sygnałowego. Dlatego ważne jest, aby rozumieć, że różne elementy systemu wideodomofonu pełnią określone funkcje i ich awarie mają różne skutki.

Pytanie 10

Podczas montażu komponentów elektronicznych metodą lutu miękkiego nie powinno się

A. przenosić lutowia na końcówce grota
B. ustalać czasu lutowania do poszczególnych miejsc na płytce
C. dostosowywać temperatury lutowania do konkretnej lokalizacji na płytce
D. zajmować się czystością grota
Przenoszenie lutowia na grocie lutownicy jest praktyką, której należy unikać, ponieważ może prowadzić do wielu problemów związanych z jakością lutowania. Grota lutownicy powinna być czysta i odpowiednio nagrzana, aby zapewnić skuteczne i trwałe połączenie. Przenoszenie lutowia na grocie zwiększa ryzyko powstawania zanieczyszczeń, co może negatywnie wpłynąć na jakość lutowia i prowadzić do wadliwych połączeń. Zgodnie z najlepszymi praktykami, lutowie powinno być aplikowane bezpośrednio na złącze, a nie na grot. Przykładem dobrego zachowania w tym zakresie jest technika tzw. 'wstępnego podgrzewania' elementów, co zwiększa efektywność procesu lutowania oraz redukuje ryzyko przegrzania. Kolejnym aspektem jest używanie lutowia o odpowiednim składzie, które dobrze wtopi się w materiały bez tworzenia nadmiernych osadów, co z kolei pomoże w uzyskaniu czystego i mocnego połączenia.

Pytanie 11

Jakie dodatkowe środki ochrony przeciwporażeniowej nie są wymagane podczas serwisowania urządzeń elektronicznych?

A. Zerowanie ochronne
B. Uziemienie ochronne
C. Wyłączniki różnicowoprądowe
D. Ekranowanie elektromagnetyczne
Ekranowanie elektromagnetyczne jest techniką stosowaną w celu ograniczenia wpływu pola elektromagnetycznego na urządzenia elektroniczne, jednak nie jest uznawane za środek ochrony przeciwporażeniowej, co czyni tę odpowiedź poprawną. W kontekście serwisowania urządzeń elektronicznych, kluczowymi środkami ochrony są uziemienie ochronne, wyłączniki różnicowoprądowe oraz zerowanie ochronne, które mają na celu ochronę przed porażeniem prądem elektrycznym. Uziemienie ochronne zapewnia bezpieczne odprowadzenie prądu do ziemi w przypadku uszkodzenia izolacji, co jest istotne w przypadku pracy z urządzeniami pod napięciem. Wyłączniki różnicowoprądowe wykrywają różnicę w prądzie między przewodami fazowym a neutralnym, co pozwala na szybkie odcięcie zasilania w przypadku wystąpienia nieprawidłowości. Zerowanie ochronne polega na podłączeniu obudowy urządzenia do uziemienia, co zwiększa bezpieczeństwo użytkowników. Ekranowanie elektromagnetyczne, mimo że jest ważne w kontekście minimalizacji zakłóceń w sygnałach, nie jest niezbędne dla ochrony przed porażeniem.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

W jaki sposób można usunąć dane z pamięci EPROM, aby ponownie ją zaprogramować?

A. Podając odpowiedni sygnał logiczny na wejście CLR
B. Umieszczając układ pamięci w promieniowaniu ultrafioletowym
C. Podając odpowiedni sygnał logiczny na wejście Write Enable
D. Umieszczając układ pamięci w promieniowaniu podczerwonym
Odpowiedź 'Umieszczając układ pamięci w świetle ultrafioletowym' jest prawidłowa, ponieważ EPROM (Erasable Programmable Read-Only Memory) jest specjalnym rodzajem pamięci, która może być wielokrotnie programowana i kasowana. Proces kasowania EPROM polega na naświetlaniu go światłem ultrafioletowym, które powoduje, że zera logiczne, czyli zapamiętane wartości, są przywracane do stanu nieustalonego. W praktyce, układ EPROM umieszczany jest w dedykowanej lampie UV, która emituje promieniowanie o odpowiedniej długości fali, zazwyczaj około 254 nm. Po naświetleniu, cała zawartość pamięci jest usuwana, co umożliwia ponowne zaprogramowanie układu. Zastosowania EPROM są szerokie, obejmują między innymi pamięć w urządzeniach elektronicznych, sprzęcie pomiarowym oraz w systemach wbudowanych, gdzie konieczne jest czasowe przechowywanie danych, które mogą być później zmieniane. Standardowe praktyki branżowe nakazują stosowanie odpowiednich osłon podczas obsługi lamp UV oraz przestrzeganie procedur bezpieczeństwa, aby zminimalizować ryzyko uszkodzenia układu lub zranienia operatora.

Pytanie 14

Co należy zrobić, gdy pracownik omdleje w źle wentylowanej pracowni elektronicznej?

A. ustawić poszkodowanego w pozycji siedzącej i dać mu wodę do picia
B. wynieść poszkodowanego na świeże powietrze, położyć na plecach i unieść kończyny w górę
C. wynieść poszkodowanego na świeże powietrze i ułożyć go na brzuchu
D. położyć poszkodowanego na plecach, umieścić zimny kompres na czole i monitorować tętno
Odpowiedź sugerująca wyniesienie poszkodowanego na świeże powietrze, ułożenie go na plecach oraz uniesienie kończyn jest poprawna z kilku powodów. Omdlenie często jest wynikiem obniżonego ciśnienia krwi, co prowadzi do niedotlenienia mózgu. Dlatego kluczowe jest jak najszybsze zapewnienie dostępu świeżego powietrza, co zwiększa ilość tlenu dostarczanego do organizmu. Ułożenie poszkodowanego na plecach z uniesionymi nogami wspomaga krążenie krwi i przywraca prawidłowe ciśnienie w organizmie. W praktyce, tak postępowanie jest zgodne z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie pozycji leżącej w przypadku omdlenia. Ważne jest również monitorowanie stanu poszkodowanego, aby w razie potrzeby móc szybko zareagować. Przykładem może być sytuacja, w której pracownik w warsztacie elektronicznym doświadcza omdlenia z powodu wysokiej temperatury oraz braku wentylacji. W takich okolicznościach szybkie działanie może uratować życie.

Pytanie 15

Który z czynników wpływa na zasięg sieci WLAN w obrębie budynku?

A. Grubość ścian oraz stropów
B. Poziom wilgotności powietrza
C. Temperatura otoczenia
D. Liczba użytkowników
Grubość ścian i stropów jest kluczowym czynnikiem wpływającym na zasięg sieci WLAN w budynkach. Materiały budowlane, z których wykonane są ściany i stropy, mogą znacząco tłumić sygnał radiowy. Na przykład, ściany z betonu, cegły czy metalu posiadają większą gęstość, co powoduje, że sygnał radiowy ma trudności z ich przenikaniem. W praktyce oznacza to, że sieć bezprzewodowa może mieć ograniczony zasięg w obszarach oddzielonych grubymi ścianami. Standardy takie jak IEEE 802.11 określają parametry wydajności sieci WLAN, które powinny być brane pod uwagę przy projektowaniu instalacji. Warto również pamiętać o zastosowaniach praktycznych, takich jak użycie wzmacniaczy sygnału (repeaters) lub punktów dostępowych (access points) w celu zwiększenia zasięgu w trudnych warunkach. Dobrze zaprojektowana sieć WLAN powinna uwzględniać układ budynku oraz zastosowane materiały, aby zapewnić optymalne pokrycie sygnałem.

Pytanie 16

Telewizor nie odbiera żadnego sygnału z zewnętrznej anteny w transmisji naziemnej, natomiast prawidłowo wyświetla obraz z tunera satelitarnego połączonego z telewizorem kablem EURO SCART oraz z kamery VHS-C. Wskazane symptomy sugerują, że uszkodzony jest moduł

A. wielkiej i pośredniej częstotliwości
B. wzmacniacza obrazu
C. separatora sygnałów
D. odchylania poziomego i pionowego
Wybór odpowiedzi dotyczących wzmacniacza wizji jest nieprawidłowy, ponieważ wzmacniacz wizji odpowiada za wzmocnienie sygnału wizyjnego po demodulacji, co nie ma bezpośredniego wpływu na odbiór sygnału z anteny. W przypadku braku sygnału z anteny, wzmacniacz wizji nie jest przyczyną problemu, lecz skutkiem złego odbioru. Separator impulsów jest układem używanym w niektórych telewizorach do oddzielania sygnałów synchronizacji od sygnałów wideo, jednak w omawianym przypadku brak obrazu z anteny wskazuje na problem na poziomie sygnałów RF i IF, a nie na poziomie przetwarzania wizyjnego. Uszkodzenie odchylania poziomego i pionowego również nie tłumaczy braku odbioru z anteny, ponieważ te moduły odpowiadają za poprawne wyświetlanie obrazu na ekranie, a nie za jego odbiór. Typowe błędy myślowe prowadzące do takich wniosków to skupienie się na symptomach, a nie na źródłach problemu. Przy diagnozowaniu usterek w odbiornikach telewizyjnych istotne jest przeprowadzenie analizy sygnału na różnych etapach przetwarzania, co pozwala na szybkie zidentyfikowanie rzeczywistych przyczyn problemów z odbiorem sygnału.

Pytanie 17

Uszkodzony przewód koncentryczny w systemie monitoringu można zastąpić stosując połączenie

A. kablem antenowym o impedancji 300 Ω
B. skrętką komputerową z transformatorami pasywnymi
C. linką miedzianą o dużej średnicy
D. skrętką komputerową i symetryzatorem
Zastosowanie kabla antenowego o impedancji 300 Ω w systemie dozorowym jest nieodpowiednie, ponieważ przewody te zostały zaprojektowane głównie do aplikacji radiowych i telewizyjnych, gdzie impedancja 300 Ω jest standardem. W systemach dozorowych najczęściej stosuje się przewody koncentryczne z impedancją 75 Ω, co oznacza, że użycie przewodu antenowego w tym kontekście prowadziłoby do znacznych strat sygnału i degradacji jakości obrazu. Alternatywnie, propozycja użycia skrętki komputerowej bez transformatorów pasywnych również jest błędna. Skrętka komputerowa sama w sobie nie jest wystarczająca do przesyłania sygnału wideo bez odpowiedniej konwersji, co może skutkować zakłóceniami i zniekształceniami sygnału. Takie podejście jest rezultatem nieprawidłowego zrozumienia zależności między typami kabli a ich zastosowaniami. Linka miedziana o dużej średnicy również nie jest właściwym rozwiązaniem, ponieważ nie odpowiada standardom przesyłu sygnałów w systemach dozorowych. Właściwe dobieranie materiałów w takich systemach wymaga głębszej wiedzy na temat impedancji, charakterystyk sygnału oraz norm branżowych, a ignorowanie tych aspektów prowadzi do błędnych wniosków i, w konsekwencji, do awarii systemu.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jakie czynności należy wykonać, aby udzielić pierwszej pomocy osobie, która została porażona prądem elektrycznym i jest nieprzytomna?

A. Położenie jej na plecach i poluzowanie odzieży na szyi
B. Położenie jej w pozycji na boku przy równoczesnym poluzowaniu ubrania
C. Położenie jej na brzuchu i odchylenie głowy w bok
D. Przeniesienie jej na świeżym powietrzu i częściowe rozebranie
Ułożenie osoby porażonej prądem elektrycznym na brzuchu jest niebezpieczne, ponieważ może prowadzić do zablokowania dróg oddechowych i uniemożliwić swobodne oddychanie. Pozycja na plecach, choć teoretycznie bezpieczna, może również skutkować aspiracją, jeśli poszkodowany wymiotuje. Wyniesienie na świeże powietrze jest zasadne tylko w sytuacji, gdy istnieje ryzyko dalszego porażenia prądem lub innych zagrożeń, jednak nie powinno się tego robić samodzielnie, jeśli nie ma pewności, że nie zagraża to ratownikowi. Częściowe rozebranie osoby może być konieczne w celu schłodzenia jej, ale tylko w odpowiednich warunkach, a nie w przypadku porażenia prądem, gdzie kluczowe jest zapewnienie stabilności i bezpieczeństwa. Pomoc przedlekarska powinna być zawsze zgodna z wytycznymi, które podkreślają znaczenie odpowiednich pozycji oraz metod zapewnienia bezpieczeństwa. Typowym błędem jest zakładanie, że każda sytuacja wymaga natychmiastowego przenoszenia poszkodowanego, co w wielu przypadkach prowadzi do pogorszenia jego stanu zdrowia. Prawidłowe postępowanie w sytuacjach kryzysowych wymaga nie tylko znajomości procedur, ale także umiejętności ich dostosowania do konkretnej sytuacji, co jest niezbędne dla efektywnego udzielania pomocy.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Którego koloru nie powinien mieć przewód fazowy w kablu zasilającym, który dostarcza napięcie z sieci energetycznej do sprzętu elektronicznego?

A. Brązowego
B. Niebieskiego
C. Czarnego
D. Szarego
Odpowiedź 'niebieskiego' jest poprawna, ponieważ w standardach oznaczania przewodów elektrycznych w Europie, kolor niebieski jest zarezerwowany dla przewodu neutralnego, a nie dla przewodu fazowego. Przewód fazowy powinien być w kolorze brązowym, czarnym lub szarym. W przypadku instalacji elektrycznych, prawidłowe oznaczenie przewodów jest kluczowe dla zapewnienia bezpieczeństwa i funkcjonalności systemów zasilania. Na przykład, w domowych instalacjach elektrycznych, każdy przewód powinien być właściwie oznaczony, aby uniknąć pomyłek przy podłączaniu urządzeń, co może prowadzić do uszkodzeń sprzętu lub zagrożenia porażeniem prądem. Zgodnie z normą PN-EN 60446, separacja kolorów przewodów elektrycznych jest niezbędna dla identyfikacji ich funkcji. Wiedza na temat oznaczeń kolorów przewodów jest istotna nie tylko dla elektryków, ale także dla każdego, kto zajmuje się instalacją lub naprawą urządzeń elektrycznych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Konwerter satelitarny typu Twin to urządzenie, które pozwala na przesyłanie

A. sygnału z dwóch anten satelitarnych do jednego odbiornika za pomocą światłowodu
B. sygnału z jednaj anteny satelitarnej do dwóch odbiorników za pośrednictwem kabli koncentrycznych
C. sygnału z dwóch anten satelitarnych do jednego odbiornika przy zastosowaniu kabli koncentrycznych
D. sygnału z jednej anteny satelitarnej do dwóch odbiorników przy wykorzystaniu światłowodu
Konwerter satelitarny typu Twin jest specjalistycznym urządzeniem stosowanym w systemach telekomunikacyjnych, które umożliwia jednoczesne odbieranie sygnału z jednej anteny satelitarnej i przesyłanie go do dwóch odbiorników. To rozwiązanie jest szczególnie przydatne w domach lub biurach, gdzie więcej niż jeden odbiornik telewizyjny jest używany. Dzięki zastosowaniu kabli koncentrycznych, sygnał jest przekazywany w sposób efektywny i stabilny, co zapewnia wysoką jakość obrazu i dźwięku. W praktyce oznacza to, że użytkownicy mogą korzystać z różnych kanałów telewizyjnych na dwóch odbiornikach jednocześnie, co zwiększa komfort oglądania. Zastosowanie konwertera Twin jest zgodne z obowiązującymi standardami branżowymi, co zapewnia jego niezawodność i efektywność. Ponadto, takie rozwiązanie eliminuje potrzebę instalacji dodatkowej anteny, co jest korzystne z punktu widzenia kosztów oraz estetyki. W nowoczesnych instalacjach satelitarnych konwertery Twin stanowią standard, a ich wdrożenie znacząco podnosi funkcjonalność systemów odbiorczych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Zawartość pamięci EPROM może zostać utracona w wyniku

A. bezpośredniego wpływu promieni słonecznych
B. obniżenia napięcia zasilającego poniżej 2,5 V
C. niesprawnego układu odświeżającego
D. braku napięcia zasilającego
Zanik napięcia zasilającego nie prowadzi do bezpośredniej utraty danych w pamięci EPROM, ponieważ pamięci te zachowują swoje dane w sposób trwały, nawet w przypadku braku zasilania. EPROM jest zaprojektowany tak, aby przechowywać dane w stanie stabilnym, co oznacza, że nawet po odłączeniu zasilania, informacje zapisane w pamięci pozostaną nienaruszone. Błąd myślowy, który może prowadzić do takiego wniosku, to mylenie EPROM z pamięciami typu RAM, które wymagają ciągłego zasilania do zachowania danych. Z kolei spadek napięcia poniżej 2,5 V również nie wpływa bezpośrednio na EPROM, ponieważ te układy nie tracą danych w wyniku chwilowych wahań napięcia zasilającego. W przypadku wadliwego układu odświeżającego, problem ten dotyczy głównie pamięci dynamicznych (DRAM), które wymagają regularnego odświeżania, aby utrzymać dane. Warto zwrócić uwagę na to, że EPROM jest pamięcią statyczną, a nie dynamiczną, co oznacza, że nie wymaga odświeżania i jest bardziej odporna na takie problemy. Takie nieporozumienia mogą wynikać z braku zrozumienia różnic pomiędzy różnymi typami pamięci, co jest kluczowe dla właściwego projektowania systemów elektronicznych. Właściwa wiedza w tym zakresie jest niezbędna przy wyborze odpowiednich rozwiązań pamięciowych do określonych zastosowań.

Pytanie 27

Jakim objawem może być zużycie głowicy laserowej w odtwarzaczu CD?

A. zwiększenie prędkości silnika
B. zmniejszenie prędkości silnika
C. wzrost prądu lasera
D. spadek prądu lasera
Zarówno zmniejszenie prądu lasera, jak i zmniejszenie obrotów silnika są konsekwencjami błędnych założeń dotyczących pracy odtwarzacza CD. Zmniejszenie prądu lasera nie jest objawem zużycia głowicy, lecz raczej może wskazywać na poprawne funkcjonowanie. Wysoka jakość odczytu danych przy niskim prądzie lasera jest pożądana, ponieważ zapobiega to przegrzewaniu się komponentów. W przypadku silnika, obroty jego nie powinny być zmniejszane w kontekście zużycia lasera, ponieważ są one z nim ściśle związane. Zwiększenie obrotów silnika jest zazwyczaj oznaką próby odczytu danych z płyty w trudniejszych warunkach, na przykład, gdy płyta jest porysowana lub brudna. W takiej sytuacji, silnik jest w stanie dostarczyć więcej energii, aby skompensować trudności w odczycie. Zmniejszenie obrotów silnika mogłoby spowodować, że napęd nie będzie w stanie poprawnie odczytać danych, co prowadziłoby do błędów. Często przyczyną takich nieporozumień jest brak wiedzy na temat mechanizmów działania urządzeń optycznych. Warto zrozumieć, że prawidłowe działanie układów optycznych, w tym głowicy laserowej i silnika, jest kluczowe dla utrzymania jakości odczytu, co z kolei jest kluczowe w kontekście długotrwałego użytkowania odtwarzacza CD.

Pytanie 28

Którego koloru nie powinien mieć przewód fazowy w instalacji zasilającej sprzęt elektroniczny?

A. Niebieskiego
B. Szarego
C. Brązowego
D. Czarnego
Przewód fazowy w instalacji zasilającej urządzenia elektroniczne powinien być oznaczony kolorem innym niż niebieski, ponieważ ten kolor jest zarezerwowany dla przewodu neutralnego zgodnie z normą PN-IEC 60446. W praktyce oznacza to, że przewód fazowy, który może przenosić napięcie, powinien być czarny, brązowy lub szary, co pozwala na jednoznaczną identyfikację przewodów w instalacji oraz na uniknięcie pomyłek podczas prac serwisowych i montażowych. Przykładowo, podczas wykonywania instalacji elektrycznej w budynku mieszkalnym, technicy muszą upewnić się, że stosują właściwe kolory przewodów, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z przepisami. Ponadto, odpowiednie oznaczenie przewodów jest kluczowe w przypadku diagnostyki i konserwacji instalacji, co może zapobiec wypadkom związanym z niewłaściwym podłączeniem przewodów. Wiedza na temat kolorów przewodów jest niezbędna dla elektryków, instalatorów i każdej osoby zajmującej się pracami związanymi z instalacjami elektrycznymi.

Pytanie 29

Luty miękkie obejmują luty

A. mosiężne
B. srebrne
C. miedziano-fosforowe
D. cynowo-ołowiowe i bezołowiowe
Odpowiedź dotycząca lutów cynowo-ołowiowych i bezołowiowych jako luty miękkie jest prawidłowa, ponieważ te materiały są powszechnie stosowane w procesach lutowania ze względu na swoje właściwości. Luty cynowo-ołowiowe zawierają stop cynku i ołowiu, co sprawia, że mają niską temperaturę topnienia, co czyni je łatwymi w użyciu w elektronice, gdzie precyzyjne połączenia są kluczowe. Luty bezołowiowe, stosowane w odpowiedzi na regulacje dotyczące ograniczenia użycia ołowiu, zyskały popularność w branży elektronicznej, a ich zastosowanie jest zgodne z normami RoHS. W praktyce, proces lutowania tymi materiałami wymaga odpowiednich technik, aby zapewnić trwałość i elektryczną ciągłość połączeń. Dodatkowo, w ramach standardów IPC, określono wytyczne dotyczące stosowania lutów, co zabezpiecza jakość komponentów elektronicznych oraz ich odporność na czynniki zewnętrzne. Zrozumienie typów lutów i ich zastosowania jest kluczowe dla inżynierów i techników pracujących w obszarze elektroniki.

Pytanie 30

Metalowa obudowa urządzenia elektronicznego powinna być połączona z przewodem ochronnym instalacji zasilającej poprzez przewód o izolacji w odcieniu

A. czerwonym
B. czarno-białym
C. żółto-zielonym
D. niebieskim
Metalowa obudowa urządzeń elektronicznych powinna być połączona z żyłą ochronną instalacji elektrycznej za pomocą przewodu o izolacji w kolorze żółto-zielonym, co wynika z europejskich norm dotyczących instalacji elektrycznych, takich jak norma PN-EN 60446. Kolor żółto-zielony jednoznacznie identyfikuje przewody ochronne, które mają na celu zabezpieczenie przed porażeniem prądem elektrycznym poprzez odprowadzenie ewentualnego prądu upływowego do ziemi. W praktyce, połączenie metalowej obudowy z żyłą ochronną minimalizuje ryzyko uszkodzenia ciała ludzkiego w przypadku awarii urządzenia. W kontekście praktycznym, stosowanie odpowiednich kolorów przewodów ułatwia identyfikację ich funkcji, co jest kluczowe przy konserwacji i naprawach. Przykładowo, w przypadku modernizacji instalacji w budynku, stosowanie przewodów o standardowej kolorystyce zapewnia bezpieczeństwo techniczne i zgodność z przepisami, co jest niezbędne do przeprowadzenia skutecznych prac instalacyjnych. Zrozumienie tej zasady jest kluczowe dla każdego elektryka, ponieważ nieprzestrzeganie norm może prowadzić do poważnych konsekwencji prawnych oraz zagrożeń zdrowotnych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Aby zidentyfikować miejsce uszkodzenia w 100-metrowym kablu telekomunikacyjnym umieszczonym w ziemi, należy zastosować

A. multimetr.
B. spektrometr.
C. dalmiar.
D. reflektometr.
Wybór dalmierza jako narzędzia do lokalizacji przerwy w kablu telekomunikacyjnym jest nieadekwatny, ponieważ dalmierze są przeznaczone do mierzenia odległości na podstawie pomiaru czasu, w jakim sygnał powraca do urządzenia. W kontekście kabli, nie są one w stanie zidentyfikować specyficznych problemów, takich jak przerwy czy zwarcia, przez co stają się nieefektywne w diagnostyce kabli. Multimetr, choć jest użytecznym narzędziem do pomiaru napięcia, prądu i oporu, nie jest w stanie skutecznie zlokalizować uszkodzeń w kablu, gdyż działa na zasadzie pomiarów punktowych, a nie analizy sygnału. Spektrometr, z kolei, jest to urządzenie używane głównie do analizy składu chemicznego substancji lub do analizy widmowej, co jest całkowicie nieprzydatne przy lokalizacji przerw w kablach telekomunikacyjnych. Użycie niewłaściwych narzędzi prowadzi do błędnych wniosków i opóźnień w naprawach, co z kolei wpływa na stabilność i niezawodność całej sieci telekomunikacyjnej. Warto zauważyć, że brak znajomości odpowiednich narzędzi diagnostycznych może prowadzić do frustracji techników i wydłużenia czasu reakcji na awarie.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Aby zabezpieczyć naprawiane urządzenie elektroniczne przed działaniem ESD, należy

A. otwierać urządzenie umieszczone na uziemionej macie
B. zasilać urządzenie poprzez transformator separujący
C. przy demontażu obudowy wykazać szczególną ostrożność
D. podłączyć urządzenie do źródła zasilania
Zachowanie szczególnej ostrożności przy otwieraniu obudowy urządzenia bez zastosowania odpowiednich środków ochronnych, takich jak uziemiona mata, nie zapewnia skutecznej ochrony przed ESD. Choć ostrożność jest ważnym czynnikiem w każdym procesie naprawy, sama w sobie nie eliminuje ryzyka, że ładunki elektrostatyczne zgromadzone na ciele technika przeniosą się na komponenty elektroniczne, co może prowadzić do ich uszkodzenia. Zasilanie urządzenia przez transformator separujący nie jest rozwiązaniem chroniącym przed ESD, ponieważ transformatory nie odprowadzają ładunków elektrostatycznych, a jedynie izolują obwody zasilające. Podłączanie urządzenia do zasilania przed jego otwarciem może prowadzić do poważnych uszkodzeń, zagrażając zarówno urządzeniu, jak i bezpieczeństwu osoby dokonującej naprawy. Niewłaściwe podejście do zabezpieczeń ESD może prowadzić do mylnego przekonania, że brak bezpośredniego kontaktu z elementami w urządzeniu wystarczy do zapewnienia bezpieczeństwa. W rzeczywistości, nieodpowiednie praktyki w zakresie ochrony przed ESD mogą skutkować dużymi stratami finansowymi związanymi z kosztownymi naprawami lub wymianą uszkodzonych komponentów, co czyni narażenie na ESD poważnym problemem w branży elektronicznej.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jednokanałowy oscyloskop analogowy pozwala na pomiar

A. współczynnika zniekształceń nieliniowych
B. bitowej stopy błędów
C. czasów narastania i opadania impulsów
D. przesunięcia fazy między dwoma sygnałami sinusoidalnymi
Analogowy oscyloskop jednokanałowy to naprawdę fajne narzędzie do zrozumienia, jak zachowują się sygnały elektryczne w czasie. Jednym z jego głównych zastosowań jest pomiar czasów narastania i opadania impulsów, co jest mega ważne, gdy analizujemy sygnały cyfrowe i analogowe. Te czasy mają duży wpływ na to, jak dobrze przesyłamy informacje i jakie są właściwości całych systemów elektronicznych. Moim zdaniem, ocenianie tych czasów pomaga zobaczyć, jak układy reagują na zmiany w sygnale, co jest szczególnie istotne, kiedy projektujemy systemy cyfrowe. W telekomunikacji na przykład, czas narastania jest kluczowy, bo jeśli jest za długi, to sygnał może się zniekształcić, a to może prowadzić do błędów w transmisji. Dodatkowo, normy jak IEC 61000-4-2 pokazują, jak ważne jest mierzenie tych czasów, gdy testujemy urządzenia na odporność na zakłócenia elektromagnetyczne. Dlatego warto znać i umieć te umiejętności w praktyce inżynierskiej.