Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 22 maja 2025 12:03
  • Data zakończenia: 22 maja 2025 12:19

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przed długotrwałym magazynowaniem, wszystkie chromowane i niklowane elementy pojazdu powinny zostać pokryte

A. smarem litowym
B. preparatem silikonowym
C. wazeliną techniczną
D. smarem miedziowym
Smar litowy, smar miedziowy oraz preparaty silikonowe to środki, które są powszechnie stosowane w różnych dziedzinach mechaniki, jednak nie są odpowiednie do ochrony chromowanych i niklowanych części pojazdu w kontekście długotrwałego przechowywania. Smar litowy, będący popularnym smarem w mechanice, nie jest wystarczająco skuteczny w ochronie przed korozją. Choć doskonale sprawdza się w zastosowaniach wymagających smarowania ruchomych części, nie tworzy trwałej warstwy ochronnej, która mogłaby zabezpieczyć elementy przed działaniem wilgoci czy osadów. Smar miedziowy, często używany do smarowania połączeń śrubowych i elementów narażonych na wysokie temperatury, również nie jest odpowiedni do długoterminowej ochrony chromowanych powierzchni. Zawiera cząsteczki miedzi, które mogą wchodzić w reakcje chemiczne z pewnymi metalami, co w dłuższym czasie może prowadzić do uszkodzeń. Preparaty silikonowe, choć oferują pewną ochronę przed wilgocią, nie wytwarzają odpowiednio gęstej warstwy, aby skutecznie chronić powierzchnie przed korozją. Używanie tych środków może prowadzić do mylnego przekonania o ich skuteczności, co w rzeczywistości może przyczynić się do szybszej degradacji elementów metalowych. Zrozumienie właściwości i przeznaczenia różnych środków ochronnych jest kluczowe dla skutecznej konserwacji pojazdów oraz zapewnienia ich długowieczności.

Pytanie 2

Jakie zużycie określa wskaźnik TWI?

A. płynu hamulcowego
B. oleju silnikowego
C. opony
D. paliwa
Wskaźnik TWI (Tread Wear Indicator) jest kluczowym elementem bezpieczeństwa w oponach, który informuje kierowcę o stopniu zużycia bieżnika. Właściwe funkcjonowanie wskaźnika TWI jest niezbędne dla zachowania optymalnej przyczepności i stabilności pojazdu. W miarę eksploatacji opon, głębokość bieżnika zmniejsza się, co wpływa na zdolność do skutecznego odprowadzania wody i minimalizowania ryzyka aquaplaningu. Wskaźniki TWI są zazwyczaj umieszczone w rowkach bieżnika opon i stają się widoczne, gdy głębokość bieżnika spadnie do minimalnego poziomu, zazwyczaj 1,6 mm, co jest zgodne z przepisami prawa w wielu krajach. Regularne monitorowanie wskaźników TWI pozwala na wczesne wykrywanie konieczności wymiany opon, co nie tylko poprawia bezpieczeństwo, ale także wpływa na efektywność paliwową pojazdu. Dobre praktyki wskazują na konieczność wymiany opon w momencie, gdy TWI wskazuje na ich zużycie, co zapobiega dalszym uszkodzeniom i zapewnia lepsze osiągi pojazdu.

Pytanie 3

Do rozmontowania kolumny Mc Phersona potrzebny jest ściągacz

A. sprężyn układu zawieszenia.
B. łożysk.
C. sprężyn zaworowych.
D. sprężyn szczęk hamulcowych.
Odpowiedź "sprężyn układu zawieszenia" jest poprawna, ponieważ demontaż kolumny McPhersona wiąże się z koniecznością usunięcia sprężyn, które są kluczowym elementem tego typu zawieszenia. Kolumna McPhersona jest popularnym rozwiązaniem w nowoczesnych pojazdach, wykorzystującym połączenie amortyzatora i sprężyny w jednej konstrukcji. Do demontażu sprężyn układu zawieszenia niezbędne jest zastosowanie odpowiedniego ściągacza sprężyn, który umożliwia bezpieczne i skuteczne usunięcie sprężyny z kolumny. W praktyce, przed przystąpieniem do demontażu, należy podnieść pojazd, zabezpieczyć go stabilnie, a następnie zdemontować koło, aby uzyskać dostęp do kolumny. Użycie ściągacza sprężyn jest niezbędne, aby uniknąć ryzyka uszkodzenia elementów zawieszenia, a także zapewnić bezpieczeństwo podczas pracy. Warto również pamiętać o dokładnym sprawdzeniu stanu pozostałych elementów zawieszenia oraz ich wymianie, jeśli tego wymaga sytuacja. Zgodność z zaleceniami producenta oraz odpowiednie narzędzia są kluczowe w prawidłowym przeprowadzeniu tej operacji.

Pytanie 4

Jakie są metody weryfikacji efektywności działania hamulca roboczego po dokonaniu naprawy?

A. na stanowisku do badania podwozi
B. przeprowadzając symulację
C. podczas próby na drodze
D. na płycie testowej
Symulacja nie może zastąpić rzeczywistych warunków testowych, ponieważ nie uwzględnia zmienności warunków zewnętrznych, takich jak zmienna przyczepność nawierzchni, różne obciążenia pojazdu czy warunki atmosferyczne. Wykonywanie testów na hamowni podwoziowej, chociaż przydatne do oceny ogólnej wydajności pojazdu, nie oddaje rzeczywistego zachowania układu hamulcowego w dynamicznych warunkach drogowych. Hamownia może dostarczać danych dotyczących siły hamowania w kontrolowanych warunkach, ale brakuje jej aspektów praktycznych, które ujawniają się wyłącznie podczas jazdy. Testy na płycie przejazdowej, chociaż mogą być użyteczne do wstępnej weryfikacji działania hamulców, nie zastąpią pełnego testu drogowego, gdyż płyta nie pozwala na symulację zmienności warunków drogowych oraz interakcji z innymi pojazdami. Wiele osób popełnia błąd, myśląc, że wyniki uzyskane w warunkach laboratoryjnych są wystarczające do oceny rzeczywistej efektywności hamulców, co może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa. Dlatego kluczowe jest przeprowadzanie testów drogowych jako etapu końcowego oceny systemu hamulcowego po naprawie.

Pytanie 5

Kierowca ma problem z uruchomieniem pojazdu. Wał korbowy się obraca, jednak silnik nie startuje. Zanim przeprowadzisz diagnozę układu zapłonowego, powinieneś najpierw zbadać układ

A. wydechowy
B. elektryczny alternatora
C. napędowy
D. zasilania paliwem
Zdiagnozowanie układu zasilania paliwem jest kluczowym krokiem w procesie diagnostycznym silnika, szczególnie gdy wał korbowy się obraca, ale silnik nie zapala. Oznacza to, że mechanika silnika funkcjonuje, jednak brak odpowiedniego paliwa lub jego niewłaściwe dostarczenie do cylindrów uniemożliwia zapłon. W pierwszej kolejności należy sprawdzić, czy paliwo dociera do silnika w odpowiednich ilościach i ciśnieniu. Może to obejmować kontrolę pompy paliwowej, filtrów, a także wtryskiwaczy. Przykładowo, zablokowany filtr paliwa może ograniczać przepływ, a uszkodzona pompa paliwowa nie będzie w stanie dostarczyć odpowiedniego ciśnienia. Standardy diagnostyczne, takie jak te określone przez ASE (Automotive Service Excellence), podkreślają znaczenie systematycznego podejścia do diagnostyki, w którym układ zasilania paliwem jest diagnozowany przed układem zapłonowym, aby wykluczyć najczęstsze przyczyny problemów z uruchamianiem silnika.

Pytanie 6

Ile kresek znajduje się na noniuszu suwmiarki, która ma dokładność 0,05 mm?

A. 10 kresek
B. 20 kresek
C. 40 kresek
D. 50 kresek
Wybór odpowiedzi 40, 10 lub 50 kresek jest błędny z kilku powodów. Po pierwsze, suwmiarka o dokładności pomiaru 0,05 mm jest standardowo wyposażona w noniusz z 20 kreskami, co oznacza, że każda kreska odpowiada 0,05 mm, a całość skali noniusza pokrywa 1 mm. Wybór 10 kresek sugeruje, że jedna kreska odpowiadałaby 0,1 mm, co nie pozwalałoby na osiągnięcie wymagań dotyczących precyzyjnych pomiarów. Z kolei 40 kresek na noniuszu oznaczałoby, że każda kreska miałaby wartość 0,025 mm, co jest również niezgodne z przyjętymi standardami w przypadku suwmiarki o 0,05 mm dokładności. Podobnie, 50 kresek sugerowałoby jeszcze mniejsze wartości, co jest niepraktyczne w kontekście tej konkretnej suwmiarki. Typowym błędem myślowym jest przyjęcie, że więcej kresek oznacza zawsze większą dokładność, co nie jest prawdą. Kluczowe jest zrozumienie, że wartość jednostkowa kreski jest dostosowywana do skali suwmiarki i muszą być zachowane odpowiednie proporcje, aby narzędzie mogło sprostać wymaganiom technicznym. W inżynierii i mechanice precyzyjnej, stosowanie odpowiednich narzędzi pomiarowych i ich poprawna interpretacja jest istotna dla zapewnienia wysokiej jakości i dokładności produkcji.

Pytanie 7

Jaką częstotliwość powinny mieć błyski świateł kierunkowskazów?

A. 100 ± 30 błysków w ciągu minuty
B. 120 ± 30 błysków w ciągu minuty
C. 90 ± 30 błysków w ciągu minuty
D. 60 ± 30 błysków w ciągu minuty
Wybór częstotliwości błysków kierunkowskazów różniący się od 90 ± 30 błysków na minutę może prowadzić do wielu problemów związanych z komunikacją na drodze. Na przykład, wybór wartości 60 ± 30 błysków na minutę oznacza, że kierunkowskazy będą świecić znacznie wolniej, co może być mylące dla innych uczestników ruchu. Taki wolny rytm może nie zapewniać wystarczającej widoczności sygnału, zwłaszcza w sytuacjach o dużym natężeniu ruchu, gdzie czas reakcji jest kluczowy. Z drugiej strony, częstotliwość 100 ± 30 błysków na minutę może być zbyt szybka, przez co inne pojazdy mogą mieć problemy z zauważeniem sygnału, co zwiększa ryzyko wypadków. Częstość 120 ± 30 błysków na minutę nie tylko narusza zasady dotyczące ergonomii, ale także może być postrzegana jako niepokojąca przez innych kierowców. Często, wybór nieodpowiedniej częstotliwości wynika z błędnych założeń, które prowadzą do niskiego poziomu bezpieczeństwa na drogach. Dlatego ważne jest, aby stosować się do uznawanych standardów branżowych, które zapewniają optymalną widoczność i łatwość w interpretacji sygnałów kierunkowskazów.

Pytanie 8

Na szczelność przestrzeni roboczej cylindrów nie oddziałuje

A. luz tłok-pierścienie-cylinder
B. szczelność połączenia bloku cylindra z głowicą
C. szczelność przylegania zaworów
D. szczelność układu wylotowego
Szczelność układu wylotowego rzeczywiście nie ma wpływu na szczelność przestrzeni roboczej cylindrów. Układ wylotowy odpowiada za odprowadzanie spalin z silnika, a jego szczelność dotyczy jedynie utrzymania ciśnienia i kontroli emisji. Z punktu widzenia pracy silnika, szczelność cylindrów jest bezpośrednio związana z zjawiskami zachodzącymi wewnątrz samego cylindra, takimi jak luz tłok-pierścienie-cylinder czy szczelność zaworów. Dobre praktyki w zakresie konserwacji silnika wymagają regularnego sprawdzania stanu pierścieni tłokowych, co pozwala na utrzymanie odpowiedniego ciśnienia sprężania. Przykładem zastosowania tej wiedzy jest wymiana uszkodzonych pierścieni tłokowych w silniku, co znacznie poprawia jego osiągi i efektywność paliwową. W sytuacji, gdy układ wylotowy jest nieszczelny, może to prowadzić do zwiększenia emisji spalin, ale nie wpłynie to bezpośrednio na ciśnienie robocze w cylindrze.

Pytanie 9

Podczas demontażu świec zapłonowych, mechanik zauważył na jednej z nich suchy czarny osad oraz występujący nagar. Opisane symptomy mogą wskazywać na

A. zbyt ubogą mieszankę paliwową
B. zbyt bogatą mieszankę paliwową
C. uszkodzenie zaworów silnikowych
D. zbyt wysoki poziom oleju
Zbyt bogata mieszanka paliwowa to sytuacja, w której proporcja paliwa do powietrza jest zbyt duża, co prowadzi do niedostatecznego spalania mieszanki w komorze spalania. Objawy, które zaobserwował mechanik, takie jak czarny, suchy osad oraz nagar, są typowe dla zbyt dużej ilości paliwa, które nie ulega pełnemu spaleniu. W takich warunkach paliwo osadza się na świecach zapłonowych, co może prowadzić do ich uszkodzenia oraz problemów z uruchomieniem silnika. Przykładami skutków zbyt bogatej mieszanki są zwiększone zużycie paliwa, emisja szkodliwych substancji, a także zmniejszenie mocy silnika. W praktyce, mechanicy często zalecają sprawdzenie ustawień wtrysku paliwa oraz stanu układu dolotowego powietrza, aby zdiagnozować przyczyny takiej sytuacji. Zgodnie z dobrą praktyką, regularna konserwacja oraz przeglądy instalacji paliwowej mogą pomóc w uniknięciu tego typu problemów, co prowadzi do lepszej efektywności silnika oraz obniżenia kosztów eksploatacji.

Pytanie 10

Gdzie instaluje się świece żarowe w silnikach diesla?

A. w bloku chłodnicy
B. w misce olejowej
C. w głowicy silnika
D. w układzie wydechowym
Świece żarowe w silnikach wysokoprężnych pełnią kluczową rolę w procesie rozruchu silnika, zwłaszcza w niskotemperaturowych warunkach. Montowane są w głowicy silnika, gdzie mają za zadanie podgrzewać mieszankę powietrzno-paliwową, co ułatwia jej zapłon. Dzięki temu silniki diesla mogą osiągnąć stabilną pracę nawet w trudnych warunkach atmosferycznych. Użycie świec żarowych znacząco poprawia wydajność silnika, redukuje emisję spalin i zmniejsza zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie jakości komponentów w silnikach, co czyni świece żarowe kluczowym elementem konstrukcji silnika wysokoprężnego. Dla przykładu, w wielu nowoczesnych pojazdach stosuje się świece żarowe z systemem automatycznego wyłączania po osiągnięciu optymalnej temperatury, co zwiększa ich żywotność i efektywność.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakim typem połączenia łączy się przegub napędowy z piastą koła?

A. Wielowypustowe
B. Kołkowe
C. Wpustowe
D. Klinowe
Odpowiedź "wielowypustowe" jest prawidłowa, ponieważ przegub napędowy w połączeniu z piastą koła najczęściej wykorzystuje połączenia wielowypustowe, które zapewniają wysoką odporność na moment obrotowy oraz stabilność. Tego rodzaju połączenie składa się z wielu wypustów, które wchodzą w odpowiednie gniazda, co minimalizuje ryzyko ślizgania się elementów i umożliwia przenoszenie dużych obciążeń. W praktyce zastosowanie połączeń wielowypustowych sprawdza się w układach napędowych samochodów osobowych oraz pojazdów użytkowych, gdzie wymagane jest precyzyjne przenoszenie mocy. W standardach branżowych, takich jak ISO 7648, określono wymagania dotyczące wymiarów i tolerancji dla połączeń wielowypustowych, co zapewnia ich trwałość i niezawodność. Dzięki temu, konstrukcje te są powszechnie stosowane w przemyśle motoryzacyjnym oraz w mechanice precyzyjnej, gdzie kluczowe znaczenie ma stabilne i bezpieczne połączenie elementów mechanicznych.

Pytanie 13

Aby zweryfikować prawidłowość wykonanego serwisu układu przeniesienia napędu, mechanik powinien zrealizować

A. jazdę próbną
B. pomiar zbieżności kół
C. test na stanowisku rolkowym
D. kontrolę luzu elementów układu zawieszenia
Przeprowadzenie próby na stanowisku rolkowym, pomiaru zbieżności kół lub kontrola luzu elementów układu zawieszenia, choć istotne, nie zastępują jazdy próbnej jako metody weryfikacji naprawy układu przeniesienia napędu. Stanowisko rolkowe jest użyteczne do diagnostyki, jednak nie oddaje rzeczywistych warunków jazdy. Może pokazać pewne parametry, ale nie dostarczy informacji o zachowaniu pojazdu podczas jazdy w terenie, w zakrętach czy w reakcjach na zmiany prędkości. Zbieżność kół jest kluczowym parametrem, który wpływa na stabilność i kierowanie pojazdem, ale jej pomiar nie jest bezpośrednio związany z oceną naprawy układu napędowego. Kontrola luzów w zawieszeniu również ma znaczenie, ale koncentruje się na innym aspekcie pojazdu, a nie na samym układzie przeniesienia napędu. Te błędne podejścia pojawiają się często z braku zrozumienia, że naprawy wymuszają szeroką analizę całego systemu pojazdu w kontekście jego rzeczywistego użytkowania. Jazda próbna jest jedyną metodą, która pozwala na kompleksową ocenę działania układu przeniesienia napędu w rzeczywistych warunkach drogowych, co czyni ją niezbędnym etapem w procesie naprawczym.

Pytanie 14

Frekfencja migania świateł kierunkowskazów powinna wynosić

A. 120 do 30 błysków na minutę
B. 90 do 30 błysków na minutę
C. 100 do 30 błysków na minutę
D. 60 do 30 błysków na minutę
Odpowiedzi wskazujące na częstotliwości 60, 100 lub 120 błysków na minutę zawierają różne niedociągnięcia, które mogą prowadzić do nieprawidłowych postrzegań i działań w ruchu drogowym. Częstotliwość 60 błysków na minutę jest zbyt niska, co może sprawić, że kierunkowskazy będą mniej widoczne dla innych użytkowników drogi. Zbyt wolne błyski mogą być interpretowane jako sygnał o braku działania, co w sytuacjach krytycznych może prowadzić do nieporozumień i potencjalnych kolizji. Natomiast częstotliwość 100 błysków na minutę może być postrzegana jako zbyt szybka, co może utrudnić innym kierowcom zauważenie sygnału. Takie podejście prowadzi do dezorientacji i może skutkować błędnymi decyzjami w ruchu drogowym. W skrajnych przypadkach, jeśli kierunkowskazy będą błyskały zbyt szybko, mogą być pomyłkowo zinterpretowane jako awaryjne sygnały świetlne, co dodatkowo zaogni sytuację na drodze. Z kolei odpowiedź sugerująca 120 błysków na minutę jest skrajnością, która nie tylko nie spełnia wymogów regulacyjnych, ale również stwarza realne zagrożenie. Zbyt szybkie miganie może prowadzić do sytuacji, w których kierowcy nie są w stanie właściwie zareagować na zmieniające się warunki, co jest niezgodne z zasadami bezpiecznej jazdy. Wszystkie te błędne koncepcje opierają się na podstawowym założeniu, że liczba błysków powinna być postrzegana jako wyłącznie techniczny aspekt, a nie jako element skomplikowanej interakcji między kierowcami, co jest kluczowe dla efektywnego funkcjonowania systemu ruchu drogowego.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Co należy zrobić w przypadku wykrycia nieszczelności w układzie wydechowym?

A. Wymienić uszkodzone elementy układu
B. Zwiększyć ciśnienie w układzie
C. Zmniejszyć obroty silnika
D. Zastosować taśmę uszczelniającą
W przypadku wykrycia nieszczelności w układzie wydechowym, najlepszym rozwiązaniem jest wymiana uszkodzonych elementów układu. Układ wydechowy odgrywa kluczową rolę w odprowadzaniu spalin z silnika, a nieszczelności mogą prowadzić do wycieku spalin, zwiększonego hałasu i nieprawidłowej pracy silnika. Wymiana uszkodzonych elementów, takich jak tłumik, rury czy uszczelki, zapewnia, że układ będzie funkcjonował prawidłowo i efektywnie. Praktyczne przykłady pokazują, że ignorowanie nieszczelności może prowadzić do poważniejszych problemów, takich jak uszkodzenie katalizatora czy pogorszenie osiągów silnika. Zgodnie z dobrymi praktykami branżowymi, regularna kontrola i konserwacja układu wydechowego jest kluczowa dla utrzymania samochodu w dobrym stanie technicznym. Wymiana niesprawnych części na nowe, zgodne ze specyfikacją producenta, jest najlepszym sposobem na zapewnienie bezpieczeństwa i długowieczności pojazdu.

Pytanie 17

Jeśli przełożenie w skrzyni biegów wynosi ib=1,0, a przełożenie tylnego mostu to it=4,1, to całkowite przełożenie układu napędowego jest równe

A. 1,0
B. 4,1
C. 5,1
D. 3,1
Wybór niepoprawnej odpowiedzi wynika zazwyczaj z nieporozumienia dotyczącego sposobu obliczania przełożenia całkowitego. Niektórzy mogą mylić pojedyncze wartości przełożeń z ich kombinacją, co prowadzi do błędnych wniosków. Przełożenie 4,1 jest wynikiem pomnożenia przełożenia skrzyni biegów i tylnego mostu, a nie prostym odczytem jednego z tych przełożeń. Na przykład, wybierając 3,1, można pomyśleć, że to tylko wartość z przełożenia tylnego mostu, jednak całkowite przełożenie nigdy nie może być mniejsze niż największe z indywidualnych przełożeń, gdyż obie wartości są ze sobą powiązane działania na jeden układ napędowy. Z kolei wybór 1,0 może sugerować, że nie uwzględniono przełożenia tylnego mostu, co również jest błędne, ponieważ pomija kluczowy element układu napędowego. Aby uniknąć takich pomyłek, warto pamiętać, że w każdym układzie napędowym przełożenia powinny być zawsze analizowane w kontekście ich współdziałania i wpływu na osiągi pojazdu. Analiza przełożeń jest szczególnie istotna w projektowaniu skrzyń biegów oraz układów napędowych, gdzie zrozumienie podstawowych zasad inżynierii mechanicznej i dynamiki pojazdów ma kluczowe znaczenie dla uzyskania pożądanych parametrów jazdy.

Pytanie 18

Jakiego rodzaju łożysko toczne wymaga dostosowania luzu montażowego?

A. Promieniowe
B. Stożkowe
C. Oporowe
D. Skośne
Łożyska promieniowe, skośne i oporowe nie muszą być regulowane tak jak te stożkowe. Generalnie, łożyska promieniowe mają prostszą konstrukcję i przenoszą obciążenia radialne, przez co zazwyczaj montuje się je bez dalszej regulacji. Ich elementy są dokładnie dopasowane, więc działają bez dodatkowych kroków. Z kolei łożyska skośne, które mogą przenosić obciążenia osiowe i radialne, czasami potrzebują trochę regulacji, ale to nie jest w takim stopniu jak te stożkowe. W mechanicznym świecie używa się ich, gdzie obciążenia są inne, ale luz montażowy ustala się na etapie produkcji. A łożyska oporowe, które zwykle przenoszą obciążenia wzdłużne, też nie wymagają regulacji luzu, bo tak są skonstruowane. Często pojawia się błędne myślenie o regulacji luzu w tych typach, bo porównuje się je z łożyskami stożkowymi, które działają na innych zasadach. Ważne, żeby zapamiętać, że każdy typ łożyska ma swoje specyficzne zastosowanie i wymagania, co jest istotne przy projektowaniu układów mechanicznych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

EGR to skrót oznaczający system

A. wspomagania układu kierowniczego
B. recyrkulacji spalin
C. zmiennych faz rozrządu
D. wspomagania układu hamulcowego
EGR, czyli układ recyrkulacji spalin, odgrywa kluczową rolę w redukcji emisji szkodliwych gazów w silnikach spalinowych. Działa na zasadzie wprowadzania części spalin z powrotem do komory spalania, co obniża temperaturę spalania i zmniejsza powstawanie tlenków azotu (NOx). Zastosowanie EGR jest zgodne z normami emisji, takimi jak Euro 6, które wymagają od producentów samochodów wdrażania technologii redukujących emisję zanieczyszczeń. Przykładowo, w silnikach diesel'owych, efektywność układu EGR może zmniejszyć emisję NOx nawet o 30-50%, co znacząco wpływa na jakość powietrza. W praktyce, system EGR może być realizowany na różne sposoby, w tym poprzez EGR chłodzony, który dodatkowo obniża temperaturę spalin przed ich ponownym wprowadzeniem do silnika, co zwiększa wydajność. Z tego względu, zrozumienie działania EGR jest niezbędne dla inżynierów zajmujących się projektowaniem i optymalizacją silników spalinowych oraz w kontekście przepisów dotyczących ochrony środowiska.

Pytanie 21

Jakie będą łączne koszty części potrzebnych do wymiany szczęk hamulcowych w samochodzie osobowym z bębnowym układem hamulcowym, jeśli cena za komplet szczęk na przód wynosi 80 zł (jedna oś), a na tył 120 zł (jedna oś)?

A. 240,00 zł
B. 180,00 zł
C. 200,00 zł
D. 400,00 zł
Poprawna odpowiedź to 200,00 zł, co jest wynikiem prawidłowego obliczenia kosztów części do wymiany szczęk hamulcowych w samochodzie z bębnowym układem hamulcowym. Koszt szczęk hamulcowych na jedną oś z przodu wynosi 80 zł, natomiast na jedną oś z tyłu to 120 zł. Całkowity koszt wymiany szczęk hamulcowych można obliczyć, dodając te wartości do siebie: 80 zł (przód) + 120 zł (tył) = 200 zł. Takie kalkulacje są istotne nie tylko dla ustalenia budżetu na naprawy, ale również dla zrozumienia struktury kosztów związanych z konserwacją pojazdów. W praktyce, umiejętność dokładnego obliczania kosztów części zamiennych jest niezbędna dla mechaników i właścicieli warsztatów, co pozwala na bardziej przejrzyste zarządzanie finansami i efektywne planowanie przeglądów technicznych zgodnie z wytycznymi branżowymi.

Pytanie 22

Jaki jest główny cel stosowania układu ABS w pojazdach?

A. Zmniejszenie zużycia paliwa
B. Poprawa komfortu jazdy
C. Zwiększenie prędkości maksymalnej pojazdu
D. Zwiększenie kontroli nad pojazdem podczas hamowania
Układ ABS, czyli Anti-lock Braking System, jest jednym z najważniejszych systemów bezpieczeństwa w pojazdach samochodowych. Jego głównym celem jest zapobieganie blokowaniu się kół podczas gwałtownego hamowania, co pozwala na utrzymanie kontroli nad pojazdem. Dzięki ABS kierowca ma możliwość jednoczesnego hamowania i manewrowania, co jest kluczowe w sytuacjach awaryjnych. System ten działa poprzez monitorowanie prędkości obrotowej kół i, w przypadku wykrycia ryzyka blokady, modulowanie ciśnienia hamulcowego. To pozwala na utrzymanie optymalnego kontaktu opon z nawierzchnią, co jest szczególnie ważne na śliskich lub mokrych drogach. W praktyce ABS znacznie skraca drogę hamowania na większości nawierzchni, co może dosłownie uratować życie. Wprowadzenie ABS stało się standardem w przemyśle motoryzacyjnym i jest zgodne z międzynarodowymi normami bezpieczeństwa. Układ ten jest również wsparciem dla innych systemów, jak ESP czy TCS, zwiększając ogólne bezpieczeństwo jazdy.

Pytanie 23

Regulacja silnika spalinowego na stanowisku serwisowym w czasie pracy silnika może być przeprowadzona po

A. ustawieniu znaków ostrzegawczych
B. podłączeniu odciągu spalin do rury wydechowej
C. zakładaniu okularów ochronnych
D. zakładaniu rękawic roboczych
Podłączenie odciągu spalin do rury wydechowej jest kluczowym krokiem w procesie regulacji silnika spalinowego, ponieważ minimalizuje ryzyko narażenia personelu na szkodliwe opary i substancje chemiczne. Spaliny emitowane przez silnik zawierają wiele toksycznych związków, dlatego ich odprowadzanie do atmosfery w sposób kontrolowany jest niezbędne dla zapewnienia bezpieczeństwa. Praktyka ta jest zgodna z normami BHP i ochrony środowiska, które wymagają stosowania odpowiednich systemów wentylacyjnych w miejscach pracy. Ważne jest, aby przed rozpoczęciem jakichkolwiek czynności regulacyjnych upewnić się, że układ odprowadzania spalin jest sprawny, a jego podłączenie nie stwarza dodatkowych zagrożeń. Przykładem dobrych praktyk jest przeprowadzanie regularnych inspekcji systemów wentylacyjnych oraz szkolenie pracowników w zakresie obsługi tych urządzeń, co pozwala na bezpieczne i efektywne wykonywanie prac na silnikach spalinowych.

Pytanie 24

Obecność kropel płynu chłodzącego w misce olejowej może wskazywać

A. na użycie niewłaściwego oleju
B. na uszkodzenie uszczelki głowicy
C. na uszkodzenie termostatu
D. na uszkodzenie pompy oleju
Występowanie kropel płynu chłodzącego w misce olejowej jest istotnym wskaźnikiem, który może sugerować uszkodzenie uszczelki głowicy. Uszczelka głowicy jest kluczowym elementem silnika, odpowiedzialnym za szczelne połączenie pomiędzy głowicą a blokiem silnika. Jej uszkodzenie może prowadzić do mieszania się płynów – oleju silnikowego i płynu chłodzącego. W praktyce, jeśli zauważysz płyn chłodzący w oleju, jest to znak, że należy niezwłocznie przeprowadzić diagnostykę silnika, aby uniknąć poważniejszych uszkodzeń. Konsekwencje zignorowania tego problemu mogą obejmować przegrzewanie się silnika, a w skrajnych przypadkach nawet jego zatarcie. W standardach motoryzacyjnych kładzie się duży nacisk na regularne kontrole uszczelki głowicy oraz monitorowanie jakości płynów eksploatacyjnych, co jest niezbędne dla utrzymania silnika w dobrym stanie.

Pytanie 25

Czujnik zegarowy ma zastosowanie w pomiarze

A. grubości okładziny klocka hamulcowego
B. bicia osiowego tarczy hamulcowej
C. średnicy czopa wału korbowego
D. średnicy trzonka zaworu
Czujnik zegarowy, znany również jako wskaźnik zegarowy lub wskaźnik mikrometryczny, jest precyzyjnym narzędziem pomiarowym, które służy do mierzenia bicia osiowego tarczy hamulcowej. Ten typ czujnika wykorzystywany jest w mechanice precyzyjnej do oceny niewielkich odchyleń w poziomie lub w pionie. W przypadku tarczy hamulcowej, monitorowanie bicia osiowego jest kluczowe, ponieważ nadmierne bicie może prowadzić do nierównomiernego zużycia klocków hamulcowych oraz obniżenia efektywności hamowania. Standardy branżowe, takie jak normy SAE (Society of Automotive Engineers) oraz ISO, zalecają regularne kontrole bicia osiowego elementów układu hamulcowego, aby zapewnić maksymalne bezpieczeństwo i wydajność. Przykładem zastosowania czujnika zegarowego może być diagnostyka stanu układu hamulcowego w warsztatach samochodowych, gdzie technicy wykorzystują to narzędzie do oceny i eliminacji problemów z drganiami tarcz, co przedłuża żywotność komponentów oraz zwiększa bezpieczeństwo pojazdów.

Pytanie 26

Po wymianie końcówki drążka kierowniczego konieczne jest sprawdzenie oraz ewentualna regulacja

A. kątów pochylenia kół
B. kąta wyprzedzenia zwrotnicy
C. zbieżności kół przednich
D. równoległości osi
Zbieżność kół przednich jest kluczowym parametrem wpływającym na stabilność i kierowalność pojazdu. Po wymianie końcówki drążka kierowniczego, konieczne jest sprawdzenie i ewentualna regulacja zbieżności, ponieważ nieprawidłowe ustawienie może prowadzić do nierównomiernego zużycia opon oraz problemów z prowadzeniem. Zbieżność polega na kącie, pod jakim opony przednie są ustawione względem linii centralnej pojazdu, co wpływa na ich kontakt z nawierzchnią. Przykładowo, zbyt duża zbieżność może powodować, że pojazd będzie ściągał w jedną stronę, co jest niebezpieczne na drodze. W praktyce, regulacja zbieżności kół jest procesem, który powinien być przeprowadzany w wyspecjalizowanych warsztatach, wykorzystujących odpowiednie urządzenia pomiarowe. Zgodnie z normami producentów, nieprawidłowe ustawienia zbieżności mogą prowadzić do trwalszych uszkodzeń układu zawieszenia, co zwiększa koszty eksploatacji pojazdu. Dlatego regularne kontrole i dostosowywanie zbieżności kół są niezbędne dla zapewnienia bezpieczeństwa oraz komfortu jazdy.

Pytanie 27

Zainstalowanie wtryskiwaczy w dolotowym kolektorze silnika ma miejsce w systemie zasilania

A. gaźnikowym
B. wtryskowym jednopunktowym
C. wtryskowym z wtryskiem pośrednim
D. wtryskowym z układem bezpośrednim
Umieszczenie wtryskiwaczy w kolektorze dolotowym silnika w układzie z wtryskiem pośrednim ma kluczowe znaczenie dla optymalizacji procesu spalania mieszanki paliwowo-powietrznej. Wtryskiwacze w tym układzie dostarczają paliwo do kolektora dolotowego, gdzie następuje jego wymieszanie z powietrzem zanim trafi do cylindrów silnika. Takie podejście umożliwia lepsze rozprężenie paliwa i zapewnia bardziej jednorodną mieszankę, co wpływa na efektywność spalania oraz redukcję emisji. Wtrysk pośredni jest często stosowany w silnikach benzynowych, gdzie kluczowe jest uzyskanie optymalnej mieszanki w różnych warunkach pracy silnika. Praktycznym przykładem zastosowania tego rozwiązania są silniki samochodowe, które wykorzystują technologię wielopunktowego wtrysku, co pozwala na lepsze dostosowanie parametrów pracy silnika do zmieniających się warunków, co przekłada się na większą moc oraz oszczędność paliwa. W branży motoryzacyjnej standardy emisji spalin, takie jak Euro 6, wymuszają na producentach stosowanie bardziej zaawansowanych układów wtryskowych, co sprawia, że wtryskiwanie pośrednie staje się coraz bardziej popularne jako efektywne rozwiązanie.

Pytanie 28

Lampa służąca do sprawdzania kąta wyprzedzenia zapłonu wykorzystuje

A. efekt stroboskopowy
B. zjawisko dyfrakcji
C. efekt absorpcji światła
D. zjawisko interferencji
Efekt stroboskopowy to naprawdę ważne zjawisko, które wykorzystuje się w lampach do ustawiania kąta wyprzedzania zapłonu. Działa to tak, że lampa emituje błyski światła w regularnych odstępach, co ułatwia obserwację ruchu różnych obiektów. W silnikach spalinowych lampa stroboskopowa pomaga precyzyjnie ustalić, kiedy zapłon powinien się odbyć. To jest kluczowe, żeby silnik działał dobrze i był wydajny. Dzięki temu mechanicy mogą dokładnie ustawić kąt wyprzedzenia zapłonu, co ma wpływ na moc, oszczędność paliwa i emisję spalin. Ważne jest, żeby korzystać z tych lamp zgodnie z instrukcjami producenta, bo to zapewnia bezpieczeństwo i skuteczność regulacji. Warto też przeszkolić personel, żeby umiał używać tego narzędzia, bo to na pewno poprawi jakość usług w warsztatach samochodowych.

Pytanie 29

Wstępna ocena organoleptyczna stanu technicznego amortyzatora, obejmuje

A. analizę stanu zużycia drążków kierowniczych
B. analizę stanu zużycia tulei wahaczy
C. analizę zużycia sprężyn zawieszenia
D. analizę wzrokową stopnia zużycia opon pojazdu
Wstępna, organoleptyczna ocena stanu technicznego amortyzatora obejmuje przede wszystkim wzrokową ocenę zużycia opon samochodu, ponieważ opony są kluczowym elementem układu zawieszenia i mają bezpośredni wpływ na bezpieczeństwo oraz komfort jazdy. Ich stan może wskazywać na problemy z amortyzacją, takie jak nierównomierne zużycie, co może być efektem niewłaściwego działania amortyzatorów. Przykładem praktycznym może być sytuacja, w której opony mają widoczne nierówności lub deformacje, co jest sygnałem, że zawieszenie i amortyzatory mogą wymagać dokładniejszej inspekcji. W branży motoryzacyjnej standardem jest regularna kontrola stanu opon oraz zawieszenia, co pozwala na wczesne wykrycie potencjalnych problemów. Technik powinien być w stanie ocenić opony pod kątem ich wieku, głębokości bieżnika oraz ewentualnych uszkodzeń. Taka ocena jest zgodna z dobrymi praktykami oraz zaleceniami producentów pojazdów, co przekłada się na bezpieczeństwo użytkowników dróg.

Pytanie 30

Instalacja "suchej" tulei cylindrowej powinna odbywać się z użyciem

A. młotka gumowego
B. prasy hydraulicznej
C. młotka ślusarskiego
D. ściągacza do łożysk
Montaż 'suchej' tulei cylindrowej przy użyciu prasy hydraulicznej jest zalecany ze względu na precyzję oraz kontrolę siły, którą można zastosować podczas tego procesu. Prasa hydrauliczna pozwala na równomierne rozłożenie sił na powierzchni tulei, co minimalizuje ryzyko jej odkształcenia lub uszkodzenia. W praktyce, użycie prasy hydraulicznej zapewnia, że tuleja zostanie wprowadzona do gniazda z odpowiednią siłą, co jest szczególnie ważne w przypadku komponentów silnikowych, gdzie tolerancje wymiarowe są krytyczne. Dobrą praktyką jest przeprowadzenie montażu w kontrolowanych warunkach, co można osiągnąć, stosując odpowiednie narzędzia. Istotne jest również, aby przed montażem sprawdzić stan tulei oraz gniazda, co pozwala na uniknięcie problemów związanych z niewłaściwym dopasowaniem. W przemyśle motoryzacyjnym i maszynowym, użycie prasy hydraulicznej jest standardem, aby zapewnić długoterminową niezawodność oraz poprawne działanie silników i innych mechanizmów.

Pytanie 31

Co oznacza oznaczenie TWI umieszczone na oponie?

A. przeznaczenie opony do pojazdu terenowego
B. graniczne zużycie bieżnika
C. typ materiału użytego do produkcji bieżnika
D. dostosowanie opony do sezonu zimowego
Oznaczenie TWI (Tread Wear Indicator) na oponie jest kluczowym wskaźnikiem informującym kierowców o granicznym zużyciu bieżnika. W momencie, gdy bieżnik opony osiągnie poziom wskazany przez TWI, oznacza to, iż opona jest zużyta do minimum dopuszczalnego poziomu, co może negatywnie wpływać na bezpieczeństwo jazdy. Praktyczne zastosowanie TWI polega na regularnym monitorowaniu stanu opon, co jest kluczowe dla zapewnienia optymalnej przyczepności, zwłaszcza w trudnych warunkach drogowych. Warto pamiętać, że minimalna głębokość bieżnika, zgodna z europejskimi normami, wynosi 1,6 mm, jednak zaleca się wymianę opon już przy głębokości 3 mm, aby uniknąć potencjalnych zagrożeń. Właściwe zarządzanie zużyciem opon nie tylko zwiększa bezpieczeństwo, ale także przyczynia się do dłuższej żywotności pojazdu i zmniejszenia kosztów eksploatacyjnych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie narzędzie wykorzystuje się do weryfikacji współosiowości czopów wałka rozrządu?

A. czujnika zegarowego z podstawą
B. sprawdzianu tłokowego
C. liniału sinusoidalnego
D. suwmiarki z wyświetlaczem elektronicznym
Liniał sinusowy, sprawdzian tłoczkowy oraz suwmiarka z odczytem elektronicznym są narzędziami, które w pewnych przypadkach mogą być używane do pomiarów, ale nie są najlepszym wyborem do oceny współosiowości czopów wałka rozrządu. Liniał sinusowy, choć przydatny w pomiarach kątowych, nie oferuje wystarczającej precyzji przy pomiarze odchyleń osiowych. Tego typu narzędzie jest bardziej odpowiednie do sprawdzania płaszczyzn i kątów, a nie do analizy układów obrotowych. Sprawdzian tłoczkowy z kolei jest stosowany głównie do oceny wymiarów wewnętrznych lub zewnętrznych elementów, ale nie dostarcza informacji o współosiowości, co jest kluczowe przy montażu wałków rozrządu. Suwmiarka z odczytem elektronicznym, chociaż jest precyzyjnym narzędziem pomiarowym, jej zastosowanie w kontekście współosiowości jest ograniczone, ponieważ nie pozwala na pomiar małych, dynamicznych odchyleń, które mogą wystąpić podczas pracy silnika. Użycie tych narzędzi do pomiarów, w sytuacjach, w których wymagane są wysokie standardy dokładności, może prowadzić do błędnych wyników i potencjalnych uszkodzeń komponentów silnika, co podkreśla znaczenie stosowania odpowiednich narzędzi i metodyki w kontekście modernizacji i naprawy pojazdów.

Pytanie 34

Jakim przyrządem wykonujemy pomiar ciśnienia powietrza w oponach?

A. areometrem
B. manometrem
C. pasametrem
D. wakuometrem
Prawidłowa odpowiedź to manometr, który jest urządzeniem pomiarowym przeznaczonym do pomiaru ciśnienia. W kontekście ogumienia pojazdów, manometr pozwala na dokładne określenie ciśnienia powietrza w oponach, co jest kluczowe dla bezpieczeństwa jazdy oraz efektywności paliwowej. Odpowiednie ciśnienie w oponach zapewnia lepszą przyczepność, zmniejsza zużycie paliwa oraz obniża ryzyko uszkodzenia opon. Standardy dotyczące ciśnienia w oponach są określone przez producentów pojazdów i mogą różnić się w zależności od modelu oraz obciążenia. Regularne sprawdzanie ciśnienia za pomocą manometru to dobra praktyka, która powinna być wykonywana co najmniej raz w miesiącu oraz przed dłuższymi podróżami. Warto także pamiętać, że ciśnienie w oponach należy sprawdzać na zimno, czyli przed rozpoczęciem jazdy, aby uzyskać najbardziej dokładny wynik pomiaru.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Termostat aktywuje przepływ płynu chłodzącego do dużego obiegu

A. gdy temperatura płynu chłodzącego jest wysoka
B. gdy temperatura płynu chłodzącego jest niska
C. tuż po uruchomieniu silnika
D. po uruchomieniu ogrzewania wnętrza
Termostat pełni kluczową rolę w zarządzaniu obiegiem cieczy chłodzącej w silniku. Otwiera przelot cieczy chłodzącej do dużego obiegu, gdy temperatura cieczy osiąga odpowiedni, wysoki poziom. Wysoka temperatura jest wskaźnikiem, że silnik osiągnął optymalną temperaturę pracy, co zapobiega jego przegrzewaniu. Dzięki temu, gdy temperatura cieczy chłodzącej wzrasta, termostat pozwala na cyrkulację cieczy przez chłodnicę, co skutkuje efektywnym odprowadzaniem ciepła. Przykładem zastosowania tego mechanizmu jest samochód osobowy, w którym termostat otwiera się przy około 90-95°C, co jest zgodne z normami branżowymi dla większości silników spalinowych. Umożliwia to utrzymanie temperatury roboczej silnika na stałym poziomie, co jest istotne dla jego wydajności i żywotności. Zrozumienie tego procesu jest kluczowe dla każdego, kto zajmuje się diagnostyką i naprawą systemów chłodzenia w pojazdach.

Pytanie 37

Zapewnienie różnicowania prędkości obrotowej kół napędowych w trakcie pokonywania zakrętu przez pojazd realizowane jest dzięki

A. przekładni głównej
B. mechanizmowi różnicowemu
C. odpowiedniemu kątowi nachylenia sworznia zwrotnicy
D. odpowiedniemu kątowi nachylenia kół
Mechanizm różnicowy jest kluczowym elementem w układzie napędowym pojazdów, którego główną funkcją jest umożliwienie różnicowania prędkości obrotowej kół napędzanych podczas pokonywania zakrętów. W sytuacji, gdy pojazd skręca, koło znajdujące się po zewnętrznej stronie zakrętu przebywa dłuższą drogę niż koło wewnętrzne, co wymaga od nich różnej prędkości obrotowej. Mechanizm różnicowy rozwiązuje ten problem, pozwalając na swobodny ruch kół w osi poziomej, co zapobiega poślizgom i zapewnia lepszą przyczepność do drogi. W praktyce, zastosowanie mechanizmów różnicowych jest standardem w większości nowoczesnych pojazdów osobowych oraz ciężarowych. Przyczyniają się one nie tylko do poprawy komfortu jazdy, ale również do bezpieczeństwa i efektywności paliwowej. Dodatkowo, mechanizmy różnicowe mogą występować w różnych konfiguracjach, takich jak otwarte, zamknięte czy z ograniczonym poślizgiem, co pozwala na dostosowanie pojazdu do różnych warunków drogowych i stylów jazdy.

Pytanie 38

Jakiej wielkości nie można określić, korzystając z metody pomiaru bezpośredniego?

A. Objętości cylindra
B. Średnicy sworznia tłokowego
C. Średnicy tłoka
D. Grubości pierścienia
Objętości cylindra nie można zmierzyć metodą pomiaru bezpośredniego, ponieważ wymaga ona zastosowania bardziej skomplikowanych technik obliczeniowych. Objętość cylindryczna zależy od jego wymiarów, takich jak średnica i wysokość, ale sama w sobie nie jest wymiarem, który można bezpośrednio zmierzyć. W praktyce pomiar objętości często przeprowadza się za pomocą metod pośrednich, takich jak wypełnienie cylindra cieczą czy gazem, a następnie obliczenie objętości na podstawie zmierzonych wartości. W branży inżynieryjnej i mechanicznej standardem jest stosowanie równań matematycznych, takich jak V = πr²h, gdzie V to objętość, r to promień podstawy, a h to wysokość. Przykłady zastosowań obejmują projektowanie silników spalinowych, gdzie precyzyjne obliczenia objętości cylindrów są kluczowe dla efektywności silnika oraz jego wydajności.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Podczas ustawiania geometrii kół w pojazdach należy zwrócić szczególną uwagę na

A. stan amortyzatorów
B. poziom płynu chłodniczego
C. napięcie pasków klinowych
D. kąty pochylenia kół i zbieżność
Podczas ustawiania geometrii kół w pojazdach, kluczowym aspektem jest poprawne ustawienie kątów pochylenia kół oraz zbieżności. Te parametry wpływają bezpośrednio na prowadzenie pojazdu, zużycie opon oraz bezpieczeństwo jazdy. Kąty pochylenia kół odnoszą się do tego, jak koła są ustawione w pionie względem nawierzchni drogi. Jeśli są one nieprawidłowe, może to prowadzić do nierównomiernego zużycia opon oraz problemów z prowadzeniem pojazdu. Zbieżność natomiast odnosi się do ustawienia kół w poziomie - czy są one skierowane ku sobie czy od siebie. Prawidłowa zbieżność jest kluczowa dla stabilności pojazdu podczas jazdy na wprost i w zakrętach. Ustawienie geometrii kół zgodnie z zaleceniami producenta pojazdu jest standardową procedurą podczas serwisowania układu kierowniczego i zawieszenia. Warto również wiedzieć, że różne pojazdy mogą mieć różne wymagania co do ustawień geometrii, dlatego zawsze należy odnosić się do specyfikacji danego modelu. Prawidłowo ustawiona geometria kół przekłada się na komfort jazdy i mniejsze zużycie paliwa.