Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 2 kwietnia 2025 12:22
  • Data zakończenia: 2 kwietnia 2025 13:22

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby sprawdzić, czy w instalacji solarnej przepływa glikol o odpowiednim natężeniu, instaluje się

A. rotametr
B. odpowietrznik
C. termometr
D. manometr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rotametr to urządzenie, które odgrywa kluczową rolę w monitorowaniu natężenia przepływu cieczy, w tym glikolu w systemach solarnych. Jego zasada działania opiera się na pomiarze objętości płynu przepływającego przez rurkę, co pozwala na precyzyjne określenie wydajności instalacji. Użycie rotametru jest zgodne z najlepszymi praktykami w branży, ponieważ umożliwia operatorom dostosowywanie parametrów systemu w celu optymalizacji wydajności cieplnej. Przykładem praktycznego zastosowania rotametru może być instalacja solarna, w której monitorowanie natężenia przepływu glikolu pozwala na utrzymanie odpowiednich warunków pracy systemu, co jest niezbędne do maksymalizacji efektywności energetycznej. W przypadkach, gdy natężenie przepływu jest zbyt niskie, może to prowadzić do przegrzania kolektorów słonecznych, co z kolei może powodować uszkodzenia systemu. Dlatego rotametr jest nie tylko narzędziem pomiarowym, ale również elementem bezpieczeństwa w takich systemach.

Pytanie 2

Masa jednego opakowania rur miedzianych, które są przeznaczone do budowy instalacji i składowane w kręgach bez wewnętrznego rdzenia (szpuli), nie powinna być większa niż

A. 40 kg
B. 50 kg
C. 30 kg
D. 25 kg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 50 kg jest prawidłowa, ponieważ zgodnie z normami branżowymi dotyczącymi przechowywania i transportu rur miedzianych, masa jednego opakowania nie powinna przekraczać tej wartości. Rury miedziane, stosowane w instalacjach wodociągowych i grzewczych, są produktem, który wymaga odpowiedniego zabezpieczenia podczas transportu, aby uniknąć uszkodzeń mechanicznych. Standardowe praktyki w branży budowlanej oraz regulacje dotyczące materiałów budowlanych nakładają ograniczenia na maksymalną masę opakowania, co ma na celu zwiększenie bezpieczeństwa w transporcie oraz ułatwienie manipulacji przez pracowników. Przykładowo, przekroczenie masy 50 kg może prowadzić do trudności w przenoszeniu rur, co zwiększa ryzyko kontuzji. Stosowanie standardowych opakowań o masie 50 kg jest powszechną praktyką wśród producentów rur, co również podkreśla ich dbałość o ergonomię pracy oraz bezpieczeństwo. Warto również zaznaczyć, że w przypadku większych opakowań, transport i składowanie rur wiąże się z dodatkowymi obciążeniami technicznymi dla pojazdów transportowych, co może naruszać przepisy dotyczące transportu drogowego.

Pytanie 3

Jakie metody powinny być użyte do łączenia rur PEX w instalacji basenowej z wymiennikiem ciepła?

A. zaciskanie
B. lutowanie
C. klejenie
D. zgrzewanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zaciskanie rur PEX to naprawdę najlepszy sposób, żeby je ze sobą łączyć. Jest to proste i skuteczne. W tej metodzie używa się specjalnych zacisków, które zakłada się na końce rur, a później się je zaciska narzędziem. Dzięki temu, połączenie jest solidne i wytrzymuje wysokie temperatury oraz ciśnienia, co jest mega ważne, zwłaszcza w instalacjach basenowych, gdzie niezawodność to klucz. Co ważne, nie potrzeba żadnych dodatkowych materiałów, jak kleje czy coś w tym stylu, więc ryzyko błędów podczas montażu jest mniejsze. W praktyce, takie zaciskane połączenia PEX są powszechnie używane w systemach ogrzewania podłogowego oraz instalacjach wodociągowych, co pokazuje, że są naprawdę uniwersalne i zgodne z normami, takimi jak PN-EN 12201. Ogólnie rzecz biorąc, ta technika jest zgodna z zasadami dobrego wykonania instalacji, co pozwala na długotrwałe użytkowanie bez konieczności serwisowania.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Do pomiaru mocy wyjściowej baterii słonecznej, o parametrach podanych w przedstawionej tabeli, należy zastosować

Parametry baterii słonecznej
Moc maksymalna, P max1951 V
Napięcie maksymalne (jałowe), Uoc45,5 V
Napięcie w punkcie mocy maksymalnej, Um36,9 V
Prąd zwarcia, Isc5,63 A
Prąd w punkcie mocy maksymalnej, Im5,37 A
A. mostek Graetza.
B. amperomierz i woltomierz.
C. miernik mocy promieniowania słonecznego.
D. miernik natężenia oświetlenia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "amperomierz i woltomierz" jest poprawna, ponieważ do pomiaru mocy wyjściowej baterii słonecznej kluczowe jest zmierzenie zarówno prądu, jak i napięcia w punkcie pracy systemu. Moc elektryczna jest definiowana jako iloczyn prądu (I) i napięcia (V), zgodnie ze wzorem P = I * V. Amperomierz, stosowany do pomiaru natężenia prądu, dostarcza informacji na temat ilości elektronów przepływających przez obwód, co jest kluczowe w kontekście wydajności baterii słonecznych. Z kolei woltomierz mierzy napięcie, które jest istotne dla określenia potencjału elektrycznego w obwodzie. Poprawne korzystanie z tych narzędzi pozwala nie tylko na określenie mocy wyjściowej, ale również na optymalizację pracy systemu fotowoltaicznego, co jest zgodne z najlepszymi praktykami w branży energetycznej. Użycie amperomierza i woltomierza umożliwia także monitorowanie parametrów pracy baterii w czasie rzeczywistym, co jest istotne dla zapewnienia ich długotrwałej efektywności.

Pytanie 7

W systemie, gdzie występuje grawitacyjny obieg czynnika grzewczego, nie spotka się

A. zawór odcinający
B. zawór bezpieczeństwa
C. pompa obiegowa
D. zawór zwrotny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pompa obiegowa nie jest elementem instalacji grzewczej o grawitacyjnym obiegu czynnika grzewczego, ponieważ jej funkcją jest wymuszanie cyrkulacji wody w systemie. W instalacjach grawitacyjnych obieg czynnika grzewczego opiera się na różnicy gęstości pomiędzy ciepłą i zimną wodą. Gdy woda się nagrzewa, jej gęstość maleje, co powoduje, że unosi się ku górze, a zimniejsza woda, mająca większą gęstość, opada. Taki naturalny proces tworzy krąg obiegu wody, który nie wymaga wsparcia mechanicznego. W praktyce systemy grawitacyjne są stosowane w budynkach o prostych układach instalacyjnych, gdzie nie ma potrzeby stosowania pompy, co łączy się z niższymi kosztami eksploatacji i mniejszą awaryjnością. Zawory odcinające, zwrotne i bezpieczeństwa są natomiast istotnymi elementami tych instalacji, zapewniającymi kontrolę przepływu, ochronę przed cofaniem się wody oraz bezpieczeństwo całego systemu grzewczego.

Pytanie 8

Stacja napełniająca zasilana energią słoneczną działa z prędkością 3 dm³/s. Jaką maksymalną objętość może napełnić w przeciągu dwóch godzin?

A. 21,60 m³
B. 32,40 m³
C. 10,80 m³
D. 6,00 m³

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stacja napełniająca o wydajności 3 dm³/s oznacza, że jest w stanie napełnić 3 decymetry sześcienne w każdą sekundę. Przez dwie godziny, co równa się 7200 sekund, całkowita objętość napełniona wynosi 3 dm³/s × 7200 s = 21600 dm³, co po przeliczeniu na metry sześcienne daje 21,6 m³. Zrozumienie przeliczeń jednostek objętości jest kluczowe w inżynierii i zarządzaniu projektami, gdzie precyzyjne obliczenia są niezbędne do efektywnego planowania. W praktyce, obliczenie przepływu cieczy i wydajności urządzeń jest stosowane w systemach hydraulicznych, instalacjach wodociągowych oraz wielu innych branżach, gdzie zarządzanie zasobami wodnymi jest priorytetem. Dobre praktyki inżynieryjne zalecają regularne monitorowanie wydajności systemów napełniających, aby zapewnić ich optymalną efektywność oraz zminimalizować straty. Warto również znać normy dotyczące zużycia wody i energii, co jest istotne w kontekście zrównoważonego rozwoju.

Pytanie 9

Kolor izolacji przewodu łączącego regulator ładowania z dodatnim biegunem akumulatora powinien być

A. brązowy
B. czerwony
C. niebieski
D. czarny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolacja przewodu łączącego regulator ładowania z dodatnim zaciskiem akumulatora powinna być w kolorze czerwonym, co jest zgodne z szeroko przyjętymi standardami w branży motoryzacyjnej oraz elektroinstalacyjnej. Kolor czerwony zazwyczaj oznacza przewody zasilające lub dodatnie, co ma na celu ułatwienie identyfikacji i eliminację błędów podczas instalacji. Przykładem dobrych praktyk może być instalacja w systemach fotowoltaicznych, gdzie przewody dodatnie są również oznaczone kolorem czerwonym, co ułatwia ich odróżnienie od przewodów ujemnych, zazwyczaj czarnych. W ten sposób zwiększa się bezpieczeństwo użytkowania, minimalizując ryzyko zwarcia czy błędnego podłączenia. Warto również pamiętać, że zgodnie z normami IEC (International Electrotechnical Commission), stosowanie odpowiednich kolorów dla przewodów zasilających jest istotnym elementem nie tylko dla bezpieczeństwa, ale także dla ułatwienia diagnostyki i serwisowania systemów elektrycznych.

Pytanie 10

Przy planowaniu układu rury poziomego gruntowego wymiennika ciepła, jakie czynności należy wykonać w odpowiedniej kolejności?

A. uwzględnić techniczne możliwości wykonania wykopu, wykonać wykop, sprawdzić lokalizację innego uzbrojenia podziemnego terenu, ułożyć rurę wymiennika, wykonać podsypkę piaskową (brak kamieni), wykonać próbę szczelności, wykonać obsypkę, wykonać zasypkę gruntem rodzimym, podłączenie wymiennika gruntowego do modułu pompy
B. uwzględnić techniczne możliwości wykonania wykopu, wykonać próbę szczelności, wykonać wykop, ułożyć rurę wymiennika, sprawdzić lokalizację innego uzbrojenia podziemnego terenu, wykonać podsypkę piaskową (brak kamieni), wykonać zasypkę gruntem rodzimym, wykonać obsypkę, podłączenie wymiennika gruntowego do modułu pompy
C. uwzględnić techniczne możliwości wykonania wykopu, sprawdzić lokalizację innego uzbrojenia podziemnego terenu, wykonać wykop, wykonać podsypkę piaskową (brak kamieni), ułożyć rurę wymiennika, wykonać próbę szczelności, wykonać obsypkę, wykonać zasypkę gruntem rodzimym, podłączenie wymiennika gruntowego do modułu pompy
D. uwzględnić techniczne możliwości wykonania wykopu, wykonać wykop, wykonać próbę szczelności, ułożyć rurę wymiennika, sprawdzić lokalizację innego uzbrojenia podziemnego terenu, wykonać podsypkę piaskową (brak kamieni) gruntem rodzimym, wykonać obsypkę, podłączenie wymiennika gruntowego do modułu pompy, wykonać zasypkę

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje na właściwą kolejność czynności niezbędnych do efektywnego i bezpiecznego ułożenia rury poziomego gruntowego wymiennika ciepła. Pierwszym krokiem jest uwzględnienie technicznych możliwości wykonania wykopu, co oznacza zrozumienie warunków gruntowych, dostępności terenu oraz potencjalnych przeszkód, takich jak inne instalacje podziemne. Następnie, sprawdzenie lokalizacji innego uzbrojenia podziemnego jest kluczowe dla uniknięcia uszkodzeń istniejących instalacji, co może prowadzić do kosztownych napraw oraz zagrożenia dla bezpieczeństwa. Kolejną czynnością jest wykonanie wykopu, a potem podsypki piaskowej, która ma za zadanie zapewnienie odpowiedniej stabilności i ochrony dla ułożonej rury. Ułożenie rury wymiennika powinno być następne, po którym następuje próba szczelności, aby upewnić się, że nie ma przecieków. Obsadzenie rury piaskiem oraz zasypanie wykopu gruntem rodzimym jest ostatnim krokiem przed podłączeniem wymiennika do modułu pompy, co jest kluczowe dla prawidłowego funkcjonowania całego systemu. Taka kolejność czynności zapewnia nie tylko efektywność, ale również bezpieczeństwo realizacji projektu.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakim symbolem oznaczane są złączki fotowoltaiczne?

A. IP54
B. ZF1
C. MC4
D. PV3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Złączki fotowoltaiczne typu MC4 są powszechnie stosowane w instalacjach systemów energii odnawialnej, szczególnie w panelach słonecznych. Symbol MC4 oznacza 'Multi-Contact 4 mm', co odnosi się do konstrukcji złączki, która jest zaprojektowana do bezpiecznego i niezawodnego połączenia przewodów o średnicy 4 mm. Złącza te charakteryzują się wysoką odpornością na warunki atmosferyczne, co czyni je idealnym wyborem do zastosowań zewnętrznych, takich jak instalacje na dachach. Dzięki swojej budowie, złączki MC4 zapewniają wyjątkową szczelność i są w stanie wytrzymać wysokie napięcia oraz prądy, co jest kluczowe w systemach PV. Przykładowo, podczas montażu instalacji fotowoltaicznej, złącza te umożliwiają prostą i szybką konfigurację układów szeregowych oraz równoległych paneli, co znacząco przyspiesza czas pracy. Standardy branżowe, takie jak IEC 62852, dotyczące złączy w systemach fotowoltaicznych, podkreślają znaczenie MC4 jako normy dla efektywności i bezpieczeństwa. W praktyce, stosowanie złączek MC4 w instalacjach solarnych nie tylko maksymalizuje efektywność energetyczną, ale także zapewnia długoterminową niezawodność systemu.

Pytanie 13

W Katalogach Nakładów Rzeczowych (KNR) jednostką miary nakładów pracy sprzętu jest

A. m-g
B. r-g
C. robocizna
D. godzina

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
M-g, czyli miesiąc roboczy, jest standardową jednostką nakładów pracy sprzętu w Katalogach Nakładów Rzeczowych (KNR). Umożliwia ona precyzyjne określenie czasu, jaki sprzęt powinien być wykorzystywany w danym projekcie. Przy obliczaniu kosztów inwestycji budowlanych, m-g staje się kluczowym elementem, gdyż pozwala na efektywne planowanie zasobów i harmonogramów. Przykładowo, jeśli w projekcie budowy drogi oszacowano wykorzystanie koparki na 3 m-g, oznacza to, że sprzęt powinien być cały czas dostępny przez trzy miesiące robocze. W praktyce, takie oszacowania są niezwykle ważne, aby uniknąć opóźnień i nadmiernych kosztów związanych z wynajmem lub obsługą sprzętu. Stosowanie m-g jako jednostki nakładów pracy pozwala również na lepsze porównanie efektywności różnych sprzętów oraz optymalizację ich wykorzystania w różnych projektach budowlanych, co jest zgodne z najlepszymi praktykami zarządzania projektami.

Pytanie 14

Współczynnik wydajności pompy ciepła COP określa się jako

A. różnica między pobraną mocą elektryczną a mocą grzewczą
B. iloczyn uzyskanej mocy grzewczej i mocy elektrycznej pobranej
C. iloraz mocy grzewczej uzyskanej do mocy elektrycznej pobranej
D. suma mocy elektrycznej oraz grzewczej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Współczynnik efektywności pompy ciepła, znany jako COP (Coefficient of Performance), jest kluczowym wskaźnikiem efektywności systemów grzewczych i chłodniczych. Definiuje się go jako iloraz uzyskanej mocy grzewczej do pobranej mocy elektrycznej. Taka definicja jest istotna, ponieważ pozwala ocenić, jak efektywnie urządzenie przekształca energię elektryczną w ciepło. Na przykład, jeśli pompa ciepła pobiera 1 kWh energii elektrycznej i wytwarza 4 kWh energii cieplnej, jej COP wynosi 4. Dzięki temu wskaźnikowi można porównywać różne modele pomp ciepła oraz oceniać, które z nich są najbardziej efektywne w danym zastosowaniu. Wysoki współczynnik COP jest korzystny nie tylko z perspektywy finansowej, ale także ekologicznej, gdyż wskazuje na mniejsze zużycie energii i niższe emisje CO2. W odniesieniu do dobrych praktyk branżowych, zaleca się regularne monitorowanie COP, co pozwala na optymalizację pracy systemów oraz ich właściwe serwisowanie.

Pytanie 15

Powietrzna pompa ciepła uzyskuje najwyższą efektywność

A. bez względu na temperaturę zewnętrzną
B. w dodatnich temperaturach
C. w ujemnych temperaturach
D. przy temperaturze 0°C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Powietrzne pompy ciepła działają na zasadzie przesyłania ciepła z jednego miejsca do drugiego, wykorzystując różnice temperatur. W dodatnich temperaturach zewnętrznych sprawność tych urządzeń osiąga optymalne wartości, ponieważ różnica temperatur między źródłem ciepła, a miejscem, do którego ciepło jest transportowane, jest stosunkowo niewielka. Dzięki temu pompy ciepła mogą pracować bardziej efektywnie, co przekłada się na niższe zużycie energii elektrycznej i niższe koszty eksploatacji. Na przykład, w instalacjach grzewczych, stosujących powietrzne pompy ciepła w sezonie wiosennym lub jesiennym, można zauważyć znaczną oszczędność kosztów ogrzewania. Dobrą praktyką jest także regularne serwisowanie urządzeń oraz dbanie o ich odpowiednie ustawienia, co pozwala utrzymać wysoką sprawność przez długi czas. Warto także zwrócić uwagę na dobór odpowiedniej pompy ciepła do specyfiki danego budynku, co może wpłynąć na dalszą optymalizację jej pracy.

Pytanie 16

Kiedy powinien być przeprowadzany przegląd techniczny kotła na biomasę?

A. przynajmniej dwa razy w roku
B. raz w roku, najlepiej przed rozpoczęciem sezonu grzewczego
C. co dwa lata
D. jeden raz w roku, najlepiej po zakończeniu sezonu grzewczego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kiedy mówimy o przeglądzie technicznym kotła na biomasę, to warto pamiętać, że najlepiej robić to raz w roku. Najlepszy moment to przed sezonem grzewczym, bo wtedy można znaleźć jakieś potencjalne usterki na czas. Takie przeglądy to nie tylko kwestia bezpieczeństwa, ale też efektywności kotła. Regularne sprawdzanie stanu technicznego kotła pomaga uniknąć problemów i wydatków w przyszłości. Przykładowo, ważne jest, żeby sprawdzić palnik, wymiennik ciepła czy systemy bezpieczeństwa. Jak wiadomo, normy, takie jak PN-EN 303-5, mówią, że te kontrole są ważne dla ochrony środowiska i bezpieczeństwa użytkowników. Nie bez znaczenia jest, żeby przeglądów dokonywali fachowcy, bo tylko oni będą w stanie zauważyć wszelkie nieprawidłowości i zasugerować, co należy poprawić.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakie elementy należy wykorzystać do zamocowania ogniwa fotowoltaicznego na dachu o konstrukcji dwuspadowej?

A. kołki rozporowe
B. nity aluminiowe
C. kotwy krokwiowe
D. śruby rzymskie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kotwy krokwiowe to takie specjalne elementy, które przydają się, kiedy mocujemy różne konstrukcje do dachu, szczególnie w przypadku instalacji ogniw fotowoltaicznych na dachach dwuspadowych. Ich zadaniem jest zapewnienie, że panele słoneczne są dobrze przymocowane, co jest mega ważne dla ich efektywności i bezpieczeństwa, zwłaszcza podczas niekorzystnej pogody. Te kotwy są zaprojektowane tak, żeby znosiły mocne wiatry i ciężar związany z opadami śniegu. W praktyce montuje się je bezpośrednio do krokwi, co pomaga równomiernie rozłożyć ciężar. Wg norm budowlanych, ważne jest, żeby wybierać odpowiednie kotwy, które pasują do konkretnej specyfiki dachu i materiałów, z jakich jest zbudowany. Użycie tych kotw nie tylko zwiększa bezpieczeństwo, ale też wydłuża żywotność całej instalacji. Wiele firm zajmujących się fotowoltaiką również poleca takie rozwiązania, co pokazuje, jak istotne są w tej branży.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Producent zapewnia, że wyrób spełnia normy unijne poprzez umieszczenie na nim symbolu

A. EMC
B. TM
C. CE
D. ISO

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Znak CE jest oznaczeniem, które świadczy o zgodności wyrobu z przepisami Unii Europejskiej, co oznacza, że produkt spełnia określone wymagania dotyczące zdrowia, bezpieczeństwa oraz ochrony środowiska. Oznaczenie to jest wymagane dla wielu grup produktów, takich jak urządzenia elektroniczne, zabawki, czy maszyny, i jest kluczowe dla zapewnienia, że wyroby te mogą być swobodnie wprowadzane na rynek krajów członkowskich UE. Przykładem zastosowania znaku CE jest wprowadzenie na rynek nowych sprzętów elektrycznych, które muszą przejść odpowiednie testy oraz certyfikacje, aby upewnić się, że nie emitują nadmiernych zakłóceń elektromagnetycznych oraz są bezpieczne w użytkowaniu. Znak CE jest również istotnym elementem, który zwiększa konkurencyjność produktów, ponieważ świadczy o przestrzeganiu europejskich norm i standardów. Właściwe oznakowanie CE jest zatem nie tylko regulacją prawną, ale także elementem budowania zaufania konsumentów do produktów pochodzących z UE, co przekłada się na ich lepszą sprzedaż i akceptację na rynku.

Pytanie 21

Aby oszacować koszty realizacji instalacji fotowoltaicznej na etapie planowania, właściciel nieruchomości powinien otrzymać kosztorys

A. powykonawczy
B. ofertowy
C. inwestorski
D. końcowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kosztorys ofertowy jest kluczowym dokumentem w procesie planowania inwestycji, takiej jak instalacja fotowoltaiczna. Obejmuje on szczegółowe zestawienie kosztów poszczególnych elementów projektu, co pozwala właścicielowi domu na dokonanie świadomego wyboru. Kosztorys ofertowy przedstawia zarówno koszty materiałów, jak i robocizny, co jest niezbędne do oceny opłacalności inwestycji. W praktyce, kosztorys ten jest podstawą do negocjacji z wykonawcą i może być użyty w celu uzyskania finansowania zewnętrznego, na przykład kredytu na instalację OZE. Warto również zauważyć, że standardy branżowe, takie jak normy PN-ISO 9001, zalecają prowadzenie kosztorysów na etapie planowania jako elementu zapewnienia jakości. Dzięki temu właściciele domów mogą lepiej przygotować się do potencjalnych wydatków i uniknąć nieprzewidzianych kosztów podczas realizacji projektu. Przygotowując kosztorys ofertowy, warto współpracować z doświadczonymi specjalistami, co zwiększa szanse na uzyskanie rzetelnych i konkurencyjnych ofert.

Pytanie 22

Jakim symbolem określa się przetwornicę, która zmienia napięcie stałe na zmienne?

A. DC/AC
B. DC/DC
C. AC/DC
D. AC/AC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź DC/AC jest poprawna, ponieważ przetwornice DC/AC, znane również jako inwertery, są urządzeniami elektronicznymi, które konwertują napięcie stałe (DC) na napięcie zmienne (AC). Takie przetwornice są kluczowe w systemach, gdzie napięcie stałe, na przykład z baterii, musi być przekształcone do formy zmiennej do zasilania urządzeń elektrycznych, które wymagają AC. Przykładem zastosowania inwerterów są systemy fotowoltaiczne, gdzie energia słoneczna, przetwarzana na energię elektryczną w postaci DC, jest następnie konwertowana na AC, aby mogła być używana w domowych instalacjach elektrycznych lub wprowadzana do sieci energetycznej. Dobre praktyki w projektowaniu systemów z inwerterami obejmują wybór odpowiednich komponentów, takich jak tranzystory i układy scalone, które zapewniają wysoką sprawność konwersji oraz minimalizację zakłóceń w sieci elektrycznej. Zrozumienie zasady działania przetwornic DC/AC jest istotne dla inżynierów zajmujących się energią odnawialną oraz automatyzacją przemysłową.

Pytanie 23

Gdzie powinien być umiejscowiony odpowietrznik w instalacji grzewczej zasilanej energią słoneczną?

A. bezpośrednio za pompą
B. w najwyższym punkcie instalacji
C. w najniższym punkcie instalacji
D. za zaworem bezpieczeństwa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowietrznik w słonecznej instalacji grzewczej powinien być umieszczony w najwyższym punkcie instalacji, co jest zgodne z ogólnymi zasadami projektowania systemów grzewczych. Umieszczenie odpowietrznika w najwyższym miejscu umożliwia skuteczne usuwanie powietrza z systemu, które gromadzi się na skutek nagrzewania wody oraz zmieniających się ciśnień. W praktyce, powietrze w instalacji może prowadzić do zakłóceń w obiegu wody, co z kolei może obniżać efektywność systemu grzewczego oraz powodować hałasy. Dlatego w dobrych praktykach branżowych wskazuje się na konieczność umieszczania odpowietrzników w punktach, gdzie gromadzi się powietrze, co najczęściej jest właśnie najwyższy punkt instalacji. Zgodnie z normami, takie rozwiązanie nie tylko zwiększa wydajność, ale również wydłuża żywotność całego systemu. Przykładem mogą być instalacje, w których zastosowano automatyczne odpowietrzniki, które w sposób samoczynny usuwają nadmiar powietrza, co jest korzystne zwłaszcza w większych układach.

Pytanie 24

Jakie narzędzia są potrzebne do montażu instalacji w systemie PEX skręcanym?

A. kalibrator do rur z fazownikiem, obcinak do rur oraz zaciskarka
B. kalibrator do rur z fazownikiem, obcinak do rur oraz zestaw kluczy płaskich
C. obcinak do rur, gratownik i zestaw kluczy płaskich
D. obcinak do rur, gratownik oraz zaciskarka

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
No więc, wybierając kalibrator do rur z fazownikiem, obcinak do rur oraz zestaw kluczy płaskich, robisz naprawdę dobry krok w stronę prawidłowego montażu instalacji w systemie PEX. Kalibrator pomoże Ci super dopasować końcówkę rury PVC do złączek, co jest mega ważne, żeby wszystko było szczelne. Obcinak pozwala na precyzyjne cięcie rur PEX, więc nie musisz się martwić, że coś będzie krzywo, co mogłoby wprowadzić jakieś niepożądane zanieczyszczenia do systemu. A klucze płaskie? Bez nich ani rusz, bo dokręcanie połączeń to podstawa, żeby nic nie przeciekało. Jak dobrze to wszystko zrobisz, to unikniesz wycieków i problemów z instalacją, co w sumie jest najważniejsze dla bezpiecznego i sprawnego działania systemów wodno-kanalizacyjnych. Zresztą, dobrze wykonane połączenia na pewno przyczynią się do dłuższej żywotności całej instalacji, co jest zgodne z tym, co mówi się w branży.

Pytanie 25

Jakie jest zadanie krat wlotowych w hydroelektrowni?

A. obniżenie poziomu wody w turbinie
B. zabezpieczenie turbiny przed zanieczyszczeniami
C. kontrola strumienia wody wpływającego do turbiny
D. zatrzymanie przepływu wody do turbiny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kraty wlotowe w elektrowni wodnej pełnią kluczową rolę w ochronie turbiny przed zanieczyszczeniami, które mogą wpływać na jej wydajność i trwałość. Te urządzenia filtracyjne zatrzymują różnego rodzaju zanieczyszczenia, takie jak piasek, liście czy inne obiekty, które mogłyby uszkodzić wirnik turbiny lub obniżyć jej efektywność. Ochrona turbiny przed zanieczyszczeniami jest zgodna z najlepszymi praktykami w branży hydroenergetycznej, gdzie dbałość o komponenty systemów energetycznych ma kluczowe znaczenie dla ich długowieczności. W praktyce, skuteczna filtracja wlotowa pozwala na minimalizację kosztów konserwacji oraz zwiększenie niezawodności operacyjnej elektrowni. Warto zauważyć, że stosowanie krat wlotowych jest standardem w projektowaniu elektrowni, co jest podkreślone w dokumentach technicznych i normach branżowych, takich jak normy ISO dotyczące efektywności energetycznej oraz ochrony środowiska. Dzięki odpowiednim kratkom wlotowym, elektrownie są w stanie działać z maksymalną wydajnością, co przekłada się na wyższą produkcję energii oraz mniejsze straty eksploatacyjne.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Część, której nie ma w elektrowni wiatrowej, to

A. zawór bezpieczeństwa
B. generator
C. turbina
D. prostownik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór bezpieczeństwa nie jest elementem charakterystycznym dla elektrowni wiatrowej. W elektrowni tej kluczowymi komponentami są turbina wiatrowa, która przekształca energię kinetyczną wiatru na energię mechaniczną, oraz generator, który zamienia tę energię mechaniczną na energię elektryczną. Prostownik, z kolei, jest niezbędny do przekształcania prądu przemiennego wytwarzanego przez generator na prąd stały, co jest istotne dla integracji z systemami zasilania. Zawory bezpieczeństwa są typowo stosowane w systemach hydraulicznych i pneumatycznych, a ich główną funkcją jest ochrona przed nadmiernym ciśnieniem. W kontekście elektrowni wiatrowej, elementy te nie mają zastosowania, ponieważ instalacje te operują na zasadzie transformacji energii mechanicznej na elektryczną bez potrzeby zarządzania ciśnieniem w cieczy lub gazie. Dlatego odpowiedź 'zawór bezpieczeństwa' jest prawidłowa.

Pytanie 28

Gdzie należy zamontować zewnętrzną jednostkę powietrznej pompy ciepła?

A. w odległości co najmniej 0,5 m od zewnętrznej ściany z wyrzutnią powietrza skierowaną poza ścianę
B. w odległości co najmniej 0,5 m od zewnętrznej ściany z wyrzutnią powietrza skierowaną w stronę ściany
C. bezpośrednio przy zewnętrznej ścianie budynku z czerpnią powietrza zwróconą w stronę ściany
D. bezpośrednio przy zewnętrznej ścianie budynku z wyrzutnią powietrza kierującą się w stronę ściany

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybierając tę odpowiedź, dobrze trafiłeś. Montaż zewnętrznego zespołu powietrznej pompy ciepła przynajmniej 0,5 m od ściany z wyrzutnią powietrza skierowaną na zewnątrz jest naprawdę dobrym rozwiązaniem. Dzięki temu powietrze swobodnie krąży i nie ma ryzyka zastoju, co jest kluczowe dla efektywnego działania urządzenia. Z mojego doświadczenia, jeśli zachowasz odpowiednią odległość, to ciepłe powietrze łatwiej się rozprasza i nie wraca znów do wlotu, co mogłoby obniżyć wydajność. Dobrze jest też unikać miejsc z przeszkodami, bo to może zablokować przepływ powietrza. Pamiętaj też, aby mieć na uwadze, jak blisko są inne obiekty – hałas generowany przez pompę może być ważny, szczególnie w otoczeniu mieszkalnym. Trzymanie się tych zasad pomoże wydłużyć żywotność urządzenia i zyskać lepszą efektywność energetyczną.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Na podstawie danych zawartych w tabeli określ roczny uzysk energii z elektrowni wiatrowej w instalacji o mocy 1500 kW i średniej prędkości wiatru 7 m/s.

Wielkość instalacjiRoczny uzysk energii w MWh
wirnikmocV = 5 m/s6 m/s7 m/s8 m/s9 m/s
30 m200 kW320500670820950
40 m500 kW610970136017302050
55 m1000 kW11501840257032803920
65 m1500 kW15202600375048605860
80 m2500 kW23804030583077009220
120 m5000 kW53009000130001700020000
A. 4 830 MWh
B. 2 600 MWh
C. 1 520 MWh
D. 3 750 MWh

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Roczny uzysk energii z elektrowni wiatrowej można obliczyć, uwzględniając moc instalacji oraz średnią prędkość wiatru. W przypadku instalacji o mocy 1500 kW i średniej prędkości wiatru wynoszącej 7 m/s, roczny uzysk energii wynosi 3750 MWh. Obliczenia bazują na standardzie IEC 61400, który określa metody oceny wydajności turbin wiatrowych. Przykładowo, przy takiej prędkości wiatru, turbiny wiatrowe generują znaczną ilość energii, co czyni je efektywnym rozwiązaniem w zakresie odnawialnych źródeł energii. W praktyce, elektrownie wiatrowe są kluczowe w realizacji celów związanych z ograniczeniem emisji CO2 i przejściem na zrównoważone źródła energii. Warto również wspomnieć o roli analizy zasobów wiatrowych, która jest niezbędna do optymalizacji lokalizacji elektrowni oraz ich wydajności.

Pytanie 31

Przechowując rury preizolowane na otwartej przestrzeni w różnych warunkach pogodowych, nie ma potrzeby chronienia ich przed

A. ekstremalnymi temperaturami
B. promieniowaniem UV
C. wilgocią
D. wiatrem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór opcji 'wiatrem' jako odpowiedzi prawidłowej opiera się na zasadach dotyczących składowania rur preizolowanych. Rury te, ze względu na swoje właściwości izolacyjne oraz konstrukcyjne, nie są wrażliwe na działanie wiatru, ponieważ ich mechaniczne właściwości nie ulegają osłabieniu pod wpływem siły wiatru. W praktyce, rury preizolowane mogą być składowane na zewnątrz w różnych warunkach atmosferycznych, a ich struktura nie wymaga specjalnych zabezpieczeń przed wiatrem. Zgodnie z normą PN-EN 253, która dotyczy rur preizolowanych, kluczowe jest jedynie zabezpieczenie przed czynnikami, które mogą wpływać na ich izolacyjność, jak wilgoć, ekstremalne temperatury oraz promieniowanie UV. W przypadku wilgoci, niewłaściwe składowanie może prowadzić do kondensacji, co z kolei wpływa na właściwości izolacyjne, a ekstremalne temperatury mogą powodować odkształcenia materiałów. Rury powinny być również chronione przed promieniowaniem UV, które może degradacja materiału polimerowego. Dlatego odpowiednie środki zabezpieczające powinny być stosowane w odniesieniu do wilgoci, ekstremalnych temperatur oraz promieniowania UV, a nie w odniesieniu do wiatru.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Kolektor solarny umieszczony na dachu obiektu powinien być skierowany w stronę

A. północną
B. południową
C. zachodnią
D. wschodnią

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'południowym' jest prawidłowa, ponieważ kolektory słoneczne powinny być zorientowane w kierunku południowym, aby maksymalizować ilość otrzymywanej energii słonecznej w ciągu dnia. W Polsce, gdzie występuje znacząca ilość dni słonecznych, orientacja południowa pozwala na optymalne wykorzystanie promieniowania słonecznego, co przekłada się na efektywność systemu grzewczego lub produkcji energii elektrycznej. Kolektory słoneczne, umieszczone na dachu w takiej orientacji, mogą zwiększyć wydajność o 15-30% w porównaniu do kierunków alternatywnych, takich jak wschód czy zachód. Dobrą praktyką jest również uwzględnienie kąta nachylenia kolektora, który w przypadku orientacji południowej powinien wynosić około 30-45 stopni. Warto także zwrócić uwagę na przeszkody, takie jak inne budynki czy drzewa, które mogą rzucać cień na kolektor, co dodatkowo wpływa na jego wydajność. Zastosowanie tej wiedzy w projektowaniu systemów solarnych jest kluczowe dla efektywności energetycznej budynków.

Pytanie 34

Do pełnego systemu fotowoltaicznego, który produkuje energię elektryczną z wykorzystaniem energii słonecznej, zaliczają się:

A. panele fotowoltaiczne, inwerter sieciowy, konstrukcja montażowa na dach, konektor
B. powietrzna pompa, elektroniczny mikroprocesorowy system sterujący, elektroniczna pompa wody, zestaw montażowy zawierający kable, rury, zawiesia
C. kolektor płaski, zasobnik dwuwężownicowy, grupa hydrauliczna, naczynie przeponowe
D. panele fotowoltaiczne, falownik, konstrukcja montażowa na dach, konektor, przewód solarny, naczynie przeponowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź zawiera kluczowe komponenty systemu fotowoltaicznego, który jest niezbędny do efektywnej konwersji promieniowania słonecznego na energię elektryczną. Panele fotowoltaiczne są sercem systemu, ponieważ to w nich zachodzi proces fotowoltaiczny, w wyniku którego energia słoneczna jest przekształcana w prąd stały. Inwerter sieciowy, z kolei, jest odpowiedzialny za konwersję prądu stałego na prąd zmienny, który jest kompatybilny z siecią energetyczną. Konstrukcja montażowa na dach zapewnia stabilność i odpowiednie ustawienie paneli, co maksymalizuje ich wydajność. Konektory służą do bezpiecznego połączenia wszystkich elementów systemu, zapewniając jednocześnie odpowiednią ochronę przed warunkami atmosferycznymi. Ważne jest, aby każdy z tych elementów był zgodny z obowiązującymi standardami branżowymi, co wpływa na trwałość i efektywność całego systemu. Na przykład stosowanie wysokiej jakości materiałów do montażu i komponentów zwiększa niezawodność i żywotność instalacji. Dobrze zaprojektowany system fotowoltaiczny nie tylko przyczynia się do oszczędności energii, ale również zmniejsza emisję CO2, wspierając działania na rzecz zrównoważonego rozwoju.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Podczas serwisowania sprężarki w pompie ciepła potwierdzono jej prawidłowe funkcjonowanie. Może to mieć miejsce jedynie, gdy czynnik chłodniczy w niej występuje w formie

A. wyłącznie ciekłej
B. 50% ciekłej, 50% gazowej
C. wyłącznie stałej
D. wyłącznie gazowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to "wyłącznie gazowym", ponieważ sprężarka w pompie ciepła działa efektywnie jedynie wtedy, gdy czynnik chłodniczy w niej obecny jest w stanie gazowym. W momencie, gdy czynnik chłodniczy trafia do sprężarki, jego zadaniem jest podniesienie ciśnienia i temperatury, co jest możliwe tylko w przypadku gazu. Sprężanie cieczy lub ciał stałych prowadzi do nieefektywności procesów oraz potencjalnych uszkodzeń urządzenia. W cyklu pracy pompy ciepła, czynnik chłodniczy przechodzi przez różne stany skupienia, jednak kluczowym momentem jest jego przekształcenie w gaz przed wejściem do sprężarki. Na przykład w standardowych systemach HVAC, zgodnie z normami ASHRAE, sprężarki są projektowane z myślą o pracy z czynnikami w stanie gazowym, aby maksymalizować efektywność energetyczną oraz minimalizować ryzyko awarii. Wiedza ta jest fundamentalna dla każdego technika zajmującego się konserwacją i serwisowaniem systemów pomp ciepła, ponieważ zapewnia długoterminowe i bezproblemowe funkcjonowanie sprzętu.

Pytanie 37

Kto tworzy plan budowy domu pasywnego?

A. Instalator systemów solarnych
B. Przedsiębiorca
C. Kierownik budowy
D. Inspektor z działu budownictwa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kierownik budowy to naprawdę kluczowa figura przy budowie domu pasywnego. Jego rolą jest nie tylko nadzorowanie wykonawców, ale też organizacja prac tak, żeby wszystko poszło zgodnie z planem. Harmonogram budowy to coś, co pomaga efektywnie zarządzać czasem i zasobami. Dzięki swojemu doświadczeniu, kierownik ustala, kiedy mają zacząć i skończyć poszczególne prace. To szczególnie ważne przy domach pasywnych, gdzie każdy szczegół ma znaczenie. Na przykład, izolacja musi być wykonana zgodnie z harmonogramem, inaczej mogą pojawić się problemy z wilgocią czy stratami ciepła. Poza tym, kierownik dba, żeby wszystkie działania były zgodne z normami budowlanymi i zasadami zrównoważonego rozwoju, co jest kluczowe dla efektywności energetycznej budynku. Umiejętności w zarządzaniu czasem i zasobami są więc niezbędne, żeby projekt budowlany zakończył się sukcesem.

Pytanie 38

Za montaż urządzeń z zakresu energetyki odnawialnej oraz realizację dostaw zgodnych z projektem odpowiada

A. kierownik budowy
B. projektant
C. inwestor
D. użytkownik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kierownik budowy odgrywa kluczową rolę w procesie montażu urządzeń energetyki odnawialnej, ponieważ to on odpowiada za koordynację wszystkich działań na placu budowy. Dobrze zorganizowane i zgodne z projektem dostawy są niezbędne do prawidłowego przebiegu robót. Kierownik budowy ma za zadanie nadzorować realizację prac montażowych, zapewniając, że wszelkie urządzenia są instalowane zgodnie z obowiązującymi normami oraz wytycznymi projektowymi. Na przykład, w przypadku instalacji paneli fotowoltaicznych, kierownik budowy musi zadbać o odpowiednie przygotowanie miejsca montażu, sprawdzenie zgodności z projektem oraz zapewnienie, że wszystkie niezbędne materiały i urządzenia dotrą na czas. Przykłady dobrych praktyk obejmują regularne spotkania z zespołem projektowym oraz dostawcami, co pozwala na bieżąco monitorować postęp prac i ewentualnie wprowadzać niezbędne korekty. Dzięki takim działaniom kierownik budowy minimalizuje ryzyko opóźnień oraz błędów, które mogą wpłynąć na efektywność instalacji.

Pytanie 39

Największa dozwolona wysokość hałd przy magazynowaniu materiału aktywnego biologicznie powinna wynosić

A. 6m
B. 5m
C. 4m
D. 3 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalna wysokość hałd materiału czynnego biologicznie, ustalona na 4 m, jest zgodna z wytycznymi dotyczącymi bezpiecznego składowania tych substancji. Wysokość hałdy wpływa na stabilność materiału, a także na ryzyko samozapłonu oraz emisję gazów. Praktyczne przykłady pokazują, że przestrzeganie tej wysokości zmniejsza ryzyko kontaminacji gleby i wód gruntowych. W przypadku składowania odpadów organicznych kluczowe jest zapewnienie odpowiedniej wentylacji, co również jest łatwiejsze do osiągnięcia przy wysokości 4 m. Zgodnie z normami ISO 14001 dotyczącymi zarządzania środowiskowego, ograniczenie wysokości składowania materiałów bioaktywnych jest niezbędne do minimalizacji negatywnego wpływu na ekosystemy. Warto zauważyć, że takie praktyki są kluczowe w kontekście regulacji dotyczących ochrony środowiska, a niewłaściwe składowanie może prowadzić do poważnych konsekwencji prawnych oraz finansowych dla przedsiębiorstw.

Pytanie 40

Na podstawie tabeli określ, z których rur należy wykonać kolektor gruntowy, jeżeli wymagana średnica wewnętrzna przewodu to 32,6 mm.

Wymiary rur polietylenowych
Średnica zewnętrznaTyposzereg SDR 7,25Typoszereg SDR 11
Grubość ściankiPojemnośćGrubość ściankiPojemność
mmmmdm3/mmmdm3/m
324,40,4152,90,531
405,50,6513,70,834
506,91,0294,61,307
A. PE – HD SDR 7,25 d x g: 50 x 6,9 mm
B. PE – HD SDR 7,25 d x g: 40 x 5,5 mm
C. PE – HD SDR 11 d x g: 50 x 4,6 mm
D. PE – HD SDR 11 d x g: 40 x 3,7 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "PE – HD SDR 11 d x g: 40 x 3,7 mm" jest poprawna, ponieważ średnica wewnętrzna tej rury wynosi dokładnie 32,6 mm, co jest zgodne z wymaganiami przedstawionymi w pytaniu. Wybór odpowiedniej rury do budowy kolektora gruntowego jest kluczowy, ponieważ ma to bezpośredni wpływ na efektywność systemu. Rury o niskim współczynniku SDR (Standard Dimension Ratio) charakteryzują się większą wytrzymałością, co jest istotne w zastosowaniach gruntowych, gdzie rury są poddawane różnym obciążeniom. W praktyce, dla efektywnego działania kolektora, należy również wziąć pod uwagę materiał rury, jej odporność na korozję oraz właściwości termiczne, które wpływają na przewodzenie ciepła. Wybór rury o odpowiedniej średnicy wewnętrznej jest zgodny z normami branżowymi, takimi jak PN-EN 12201, które określają wymogi dotyczące rur z tworzyw sztucznych przeznaczonych do instalacji wodociągowych i kanalizacyjnych. Warto również zaznaczyć, że odpowiednia średnica wewnętrzna wpływa na przepływ medium, co jest kluczowe dla optymalizacji systemu grzewczego opartego na energii geotermalnej.