Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 15 maja 2025 09:48
  • Data zakończenia: 15 maja 2025 10:26

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Znaki geodezyjne, które nie są objęte ochroną, to

A. kamienie graniczne
B. repety robocze
C. budowle triangulacyjne
D. punkty osnowy geodezyjnej
Kamienie graniczne są stałymi elementami, które pełnią kluczową rolę w geodezji, szczególnie w kontekście wyznaczania granic działek i nieruchomości. Ich ochrona ma na celu zapobieganie przypadkowemu usunięciu lub zniszczeniu, co mogłoby prowadzić do niejasności prawnych dotyczących własności. Punkty osnowy geodezyjnej stanowią fundament dla wszystkich działań geodezyjnych. Są to precyzyjnie zlokalizowane punkty, które są używane jako odniesienia do pomiarów, co czyni je niezbędnymi dla zachowania integralności danych geodezyjnych. Budowle triangulacyjne, takie jak wieże triangulacyjne, również podlegają szczególnej ochronie, ponieważ ich obecność jest kluczowa dla realizacji pomiarów geodezyjnych na szeroką skalę. Ochrona tych elementów jest zgodna z obowiązującymi normami geodezyjnymi i standardami pracy w tej dziedzinie. Typowe błędy myślowe, które prowadzą do niepoprawnych wniosków, obejmują mylenie repety roboczych z punktami osnowy oraz niezrozumienie znaczenia ochrony znaków geodezyjnych dla prawidłowego funkcjonowania systemu geodezyjnego. Ochrona znaków geodezyjnych jest niezbędna do zapewnienia spójności i dokładności pomiarów, co jest kluczowe dla rozwoju infrastruktury i zarządzania przestrzenią. Dlatego ważne jest, aby mieć świadomość, które elementy podlegają ochronie, a które są tymczasowe i zasługują na inny status w kontekście prac geodezyjnych.

Pytanie 2

Wyznacz przyrost Ayi_2 w osi Y, jeśli zmierzona odległość między punktami 1 i 2 d1-2 = 100,00 m, sinAz1-2 = 0,760400, cosAz1-2 = 0,649455.

A. 6,49 m
B. 76,04 m
C. 64,94 m
D. 7,60 m
Aby obliczyć przyrost Ayi_2 współrzędnych Y, należy skorzystać z długości pomierzonej między punktami 1 i 2 oraz wartości sinus i cosinus kąta azymutalnego. Obliczenia sprowadzają się do zastosowania wzoru: Ayi_2 = d_1-2 * sin(Az_1-2). Wstawiając wartości: Ayi_2 = 100,00 m * 0,760400 = 76,04 m. Otrzymany wynik jest zgodny z praktycznymi standardami pomiarowymi, które nakazują stosowanie funkcji trygonometrycznych do określenia przyrostów współrzędnych w geodezji. Tego typu obliczenia są kluczowe w pracach inżynieryjnych oraz w geodezyjnych, gdzie precyzyjne określenie pozycji jest niezbędne. Wiedza ta jest również istotna w kontekście wykonywania map, które wymagają dokładnych danych o lokalizacji obiektów. Użycie sinusa kąta azymutalnego wskazuje na orientację w przestrzeni, co pozwala na odpowiednie planowanie i wykonywanie działań terenowych.

Pytanie 3

Mapy związane z regulacją stanu prawnego nieruchomości to opracowania kartograficzne określane mianem

A. uzupełniających
B. do celów projektowych
C. katastralnych
D. do celów prawnych
Odpowiedź "do celów prawnych" jest poprawna, ponieważ mapy te mają kluczowe znaczenie w regulacji stanu prawnego nieruchomości. Służą one do przedstawiania granic działek, ich powierzchni oraz wszelkich obciążeń prawnych, takich jak hipoteki czy służebności. Mapy do celów prawnych są wykorzystywane w procesach notarialnych, a także w postępowaniach sądowych, gdzie ważne jest dokładne określenie stanu prawnego nieruchomości. Przykładem zastosowania takich map może być procedura podziału działki, gdzie precyzyjne ustalenie granic jest niezbędne do prawidłowego podziału. W praktyce wykorzystuje się je w dokumentacji związanej z obrotem nieruchomościami, co jest zgodne z normami i standardami, takimi jak Ustawa o geodezji i kartografii, która reguluje kwestie związane z tworzeniem i wykorzystywaniem map w obrocie nieruchomościami.

Pytanie 4

Zmierzoną odległość 120 m określono z błędem średnim ±3 cm. Jaki jest błąd względny tej pomierzonej odległości?

A. 1/2000
B. 1/4000
C. 1/5000
D. 1/1000
Aby zrozumieć, dlaczego inne odpowiedzi są nieprawidłowe, warto przyjrzeć się, jak oblicza się błąd względny i jakie są typowe błędy w jego interpretacji. Niektórzy mogą mylnie uznawać, że błąd względny można obliczyć w inny sposób, na przykład poprzez dodanie lub pomnożenie błędu do wartości pomiarowej, co prowadzi do błędnych wyników. Inna powszechna mylna koncepcja dotyczy pomijania przeliczeń jednostek. Przykładowo, odpowiedzi, które sugerują błędne wartości, mogą wynikać z nieprawidłowego przeliczenia błędu z centymetrów na metry lub z błędnych założeń dotyczących wartości bazowej. Podczas obliczania błędu względnego kluczowe jest, aby błąd zawsze odnosił się do wartości, która jest analizowana, w tym przypadku 120 m. Każdy błąd w tym podejściu prowadzi do niepoprawnych wyników, co może mieć istotne konsekwencje w praktyce inżynieryjnej, gdzie precyzja jest kluczowa. Przykładowo, w budownictwie lub geodezji, nieprawidłowe obliczenia mogą skutkować błędnymi pomiarami, co z kolei może prowadzić do poważnych problemów w realizacji projektów.

Pytanie 5

Aktualną miarę na linii pomiarowej, podczas pomiaru szczegółów metodą ortogonalną, określamy mianem

A. odciętą
B. podpórką
C. rzędnej
D. czołówką
Wybór odpowiedzi takich jak 'rzędna', 'czołówka' czy 'podpórka' może wynikać z nieporozumienia w terminologii stosowanej w geodezji. Rzędna odnosi się do wysokości punktu względem umownej płaszczyzny odniesienia, co oznacza, że nie jest bezpośrednio związana z pomiarami ortogonalnymi, lecz dotyczy pomiarów w pionie. Czołówka, z kolei, często używana jest w kontekście geodezyjnego osprzętu pomiarowego, a nie jako miara bieżąca, co prowadzi do mylnego zastosowania tego terminu w kontekście pytania. Podpórka natomiast jest terminem, który nie odnosi się do pomiarów, ale do wsparcia konstrukcyjnego. Typowym błędem myślowym jest przenoszenie terminologii z jednego obszaru zastosowań na drugi, co powoduje zamieszanie i niewłaściwe interpretacje. Kluczowe jest zrozumienie, że w geodezji precyzyjne definiowanie terminów ma fundamentalne znaczenie dla prawidłowego przeprowadzania pomiarów i ich interpretacji. Dlatego warto zwrócić uwagę na właściwe zrozumienie terminów, aby unikać błędów w analizie danych pomiarowych.

Pytanie 6

Nie można użyć do trwałego oznaczania punktów osnowy poziomej

A. znaków z kamienia.
B. trzpieni.
C. palików drewnianych.
D. bolców.
Paliki drewniane, mimo że są popularnym materiałem w budownictwie oraz w transporcie geodezyjnym, nie są zalecane do trwałego zaznaczania punktów osnowy poziomej z powodu ich niskiej odporności na warunki atmosferyczne oraz degradację. W praktyce, takie paliki mogą ulegać rozkładowi, co prowadzi do zniekształcenia lub zniknięcia punktów pomiarowych. Z tego powodu, w geodezji, preferuje się stosowanie bardziej trwałych materiałów, takich jak trzpienie, znaki z kamienia czy bolce, które wykazują znacznie większą odporność na czynniki zewnętrzne. Trzpienie, na przykład, są osadzane na stałe w gruncie, a ich metalowa konstrukcja zapewnia długotrwałość i stabilność. Z kolei znaki z kamienia stanowią naturalne punkty odniesienia, które mogą przetrwać wiele lat, przy minimalnym ryzyku uszkodzenia. Zastosowanie odpowiednich materiałów do trwałego zaznaczania punktów osnowy poziomej jest kluczowe dla zapewnienia precyzji i wiarygodności pomiarów geodezyjnych, co jest zgodne z obowiązującymi normami w tej dziedzinie.

Pytanie 7

Jakie jest odchylenie zamkniętego ciągu niwelacyjnego, jeśli wysokości reperu początkowego i końcowego są równe, a suma różnic zmierzonych przewyższeń na tym samym odcinku wynosi [∆h]p= -8 mm?

A. f∆h = 0 mm
B. f∆h = 8 mm
C. f∆h = -16 mm
D. f∆h = -8 mm
W przypadku pozostałych odpowiedzi występują różne nieporozumienia dotyczące zasad obliczania odchyłek w niwelacji. Odpowiedź f∆h = -16 mm sugeruje, że pomiar przewyższeń zostały podwojone, co jest błędnym podejściem, ponieważ odchyłka powinna być bezpośrednio związana z różnicą pomiędzy pomiarami a rzeczywistymi wartościami wysokości. Odpowiedź f∆h = 8 mm również nie ma sensu, ponieważ pomiar przewyższeń był ujemny, co powinno prowadzić do zrozumienia, że wynik powinien być oznaczony jako ujemny, nie dodatni. Warto zauważyć, że pomiar przewyżek w geodezji wymaga precyzyjnego podejścia do interpretacji danych i uwzględnienia wszelkich potencjalnych źródeł błędów. Wybór odpowiedzi f∆h = 0 mm nie uwzględnia faktu, że mamy do czynienia z rzeczywistą różnicą wynoszącą -8 mm, co oznacza, że istnieje wyraźna odchyłka, a nie brak jakiejkolwiek odchyłki. Kluczowym błędem w rozumieniu tych odpowiedzi jest nieuwzględnienie rzeczywistych pomiarów i ich interpretacji, co prowadzi do nieprawidłowych wniosków o istniejących błędach pomiarowych. W geodezji, zwłaszcza podczas niwelacji, istotne jest, aby lokalizować i rozumieć te odchylenia, aby poprawić dokładność i wiarygodność danych.

Pytanie 8

Nieosiągnięcie warunku, który mówi o prostopadłości osi obrotu lunety "h" do pionowej osi obrotu instrumentu "v", określane jest jako błąd

A. kolimacji
B. libeli pudełkowej
C. libeli rurkowej
D. inklinacji
Wybór błędnych odpowiedzi wynika z nieporozumienia dotyczącego pojęć związanych z błędami pomiarowymi. Libela pudełkowa oraz libela rurkowa to narzędzia służące do poziomowania, jednak nie są one związane z błędem inklinacji. Libela pudełkowa jest narzędziem wykorzystywanym do sprawdzania poziomości powierzchni, polegającym na umieszczeniu poziomnicy w płaszczyźnie poziomej, podczas gdy libela rurkowa, zawierająca ciecz, służy do oceny poziomu w dłuższych odcinkach. Żadne z tych narzędzi nie odnoszą się do konkretnego błędu pomiarowego dotyczącego prostopadłości osi obrotu lunety do osi obrotu instrumentu. Z kolei kolimacja to termin odnoszący się do ustawienia optyki w taki sposób, aby oś optyczna instrumentu była zgodna z osią mechaniczną. To pojęcie może prowadzić do błędnej interpretacji, gdyż choć kolimacja jest kluczowym elementem precyzyjnych pomiarów, nie obejmuje problemu inklinacji. Użycie niewłaściwych terminów może prowadzić do nieścisłości w analizach oraz wnioskach, dlatego istotne jest, aby stosować precyzyjne definicje i zrozumienie różnych typów błędów pomiarowych.

Pytanie 9

Który z poniższych dokumentów jest wymagany przy wykonywaniu inwentaryzacji powykonawczej budowli?

A. Projekt budowlany
B. Mapa zasadnicza
C. Mapa topograficzna
D. Instrukcja obsługi tachimetru
Pozostałe dokumenty wymienione w pytaniu, choć mogą być przydatne w różnych etapach pracy geodezyjnej, nie są kluczowe dla samej inwentaryzacji powykonawczej budowli. Mapa zasadnicza jest używana przede wszystkim do celów ogólnego planowania przestrzennego oraz jako podstawa do tworzenia różnego rodzaju planów miejscowych. Zawiera ona informacje o sieciach uzbrojenia terenu, granicach działek czy ukształtowaniu terenu, ale nie dostarcza szczegółowych danych na temat samej budowli, które są niezbędne do przeprowadzenia inwentaryzacji powykonawczej. Mapa topograficzna natomiast, jest bardziej szczegółowa i obejmuje większe obszary, ale jej głównym celem jest odwzorowanie ukształtowania terenu oraz elementów krajobrazu, co nie jest bezpośrednio związane z dokumentacją budowlaną konkretnej budowli. Instrukcja obsługi tachimetru, choć istotna z punktu widzenia samego procesu pomiarowego, nie odnosi się do dokumentacji budowlanej ani do wymogów formalnych związanych z inwentaryzacją powykonawczą. Jest to raczej techniczny dokument pomocniczy, który zapewnia poprawne użytkowanie sprzętu pomiarowego, ale nie wpływa bezpośrednio na zgodność budowli z projektem budowlanym. W kontekście inwentaryzacji powykonawczej, kluczowe jest porównanie rzeczywistego stanu budowli z zapisami w projekcie budowlanym, co czyni ten dokument niezbędnym, podczas gdy inne mogą być jedynie wspomagające.

Pytanie 10

Jak wielki jest maksymalny dopuszczalny średni błąd lokalizacji punktu w pomiarowej osnowie wysokościowej w odniesieniu do najbliższych punktów wysokościowej osnowy geodezyjnej?

A. 0,03 m
B. 0,07 m
C. 0,05 m
D. 0,01 m
Odpowiedzi sugerujące błędne wartości, takie jak 0,07 m, 0,03 m czy 0,01 m, wynikają z niepełnego zrozumienia wymagań dotyczących precyzji pomiarów w geodezji. Wartość 0,07 m jest zbyt duża, co wskazuje na lekceważenie standardów dokładności wymaganych w procesie budowy osnowy geodezyjnej. Tego rodzaju błąd może prowadzić do poważnych nieścisłości w pomiarach, co w praktyce skutkuje błędnymi danymi wysokościowymi, a w konsekwencji problemami w projektach budowlanych. W przypadku wartości 0,03 m i 0,01 m, można zauważyć, że są one zbyt restrykcyjne w kontekście dopuszczalnych błędów w osnowie wysokościowej. Osiągnięcie takiej dokładności w codziennych pomiarach wymagałoby skomplikowanych procedur oraz kosztownego sprzętu, co może być niepraktyczne w wielu zastosowaniach. Dlatego kluczowe jest, aby geodeci rozumieli, jakie są rzeczywiste wymagania dotyczące dokładności oraz jakie wartości są realistyczne i akceptowalne w kontekście wykonywanych prac. Zbyt niska tolerancja na błąd może prowadzić do niepotrzebnego zwiększenia kosztów oraz wydłużenia czasu realizacji projektu bez proporcjonalnych korzyści w dokładności pomiarów.

Pytanie 11

W której ćwiartce geodezyjnego układu współrzędnych prostokątnych ma miejsce azymut o wartości 375g55c60cc?

A. IV
B. I
C. II
D. III
Azymut o wartości 375°55'60'' oznacza kąt mierzony w kierunku zgodnym z ruchem wskazówek zegara od północy. Aby określić, w której ćwiartce geodezyjnego układu współrzędnych prostokątnych znajduje się ten azymut, należy zauważyć, że wartości azymutu powyżej 360° są często interpretowane poprzez odjęcie 360°. W naszym przypadku 375°55'60'' - 360° = 15°55'60''. Kąt ten jest zatem mierzony w kierunku wschodnim, co wskazuje na to, że znajduje się w pierwszej ćwiartce. Jednakże, z uwagi, że oszacowaliśmy to już na podstawie wartości kątowej i zrozumienia ćwiartek, 375°57'60'' przywraca nas do wartości, która jest w IV ćwiartce. Dlatego prawidłowa odpowiedź to IV. W praktyce azymut jest kluczowym elementem w nawigacji, geodezji oraz kartografii, gdzie precyzyjne określenie kierunku ma fundamentalne znaczenie dla dokładności pomiarów i analiz przestrzennych. Standardy takie jak ISO 19111 definiują metody pomiaru i reprezentacji azymutów w kontekście systemów informacji geograficznej.

Pytanie 12

Zrealizowano pomiar sytuacyjny dla budynku jednorodzinnego, parterowego z poddaszem, które nie jest przeznaczone do użytku. Jakim symbolem powinno się oznaczyć ten obiekt na mapie?

A. m1
B. mj
C. mj2
D. m
Wybór symboli 'm1', 'm' czy 'mj2' jest niepoprawny z kilku powodów. Symbol 'm1' odnosi się do różnego typu budynków mieszkalnych, ale nie precyzuje, że chodzi o obiekty jednorodzinne, co może prowadzić do niejednoznaczności w dokumentacji urbanistycznej. Z kolei symbol 'm' jest zbyt ogólny, ponieważ nie wskazuje na specyfikę budynku jednorodzinnego, a jedynie na budynki mieszkalne w ogóle. Dodatkowo, 'mj2' nie jest standardowym symbolem w systemie klasyfikacji obiektów budowlanych, co powoduje, że jego zastosowanie mogłoby wprowadzać chaos w interpretacji mapy. Mylące jest również podejście, które de facto ignoruje wytyczne określające różnice w klasyfikacji budynków zależnie od ich przeznaczenia i charakterystyki. W praktyce, stosowanie niewłaściwych symboli prowadzi do trudności w identyfikacji obiektów, co może mieć negatywne konsekwencje w zakresie planowania przestrzennego oraz zarządzania infrastrukturą. Przykładem negatywnego skutku może być błędne zaplanowanie usług komunalnych w okolicy, gdzie nieodpowiednie oznaczenie budynku może wpłynąć na dostępność wody czy energii. Dlatego kluczowe jest stosowanie odpowiednich symboli zgodnie z ich przeznaczeniem i standardami branżowymi.

Pytanie 13

W skład dokumentacji technicznej, która jest przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego po zakończeniu pracy geodezyjnej, między innymi wchodzi

A. sprawozdanie techniczne
B. kopia zawodowych uprawnień geodety
C. oświadczenie o przeprowadzeniu pracy zgodnie z obowiązującymi normami
D. faktura za zrealizowane zlecenie
Sprawozdanie techniczne jest kluczowym elementem dokumentacji przekazywanej do Państwowego Zasobu Geodezyjnego i Kartograficznego po wykonaniu prac geodezyjnych. Dokument ten ma na celu szczegółowe przedstawienie wykonanej pracy, jej metod, zastosowanych narzędzi oraz wyników pomiarów. Sprawozdanie powinno zawierać informacje o lokalizacji terenów, charakterystyce wykonanych pomiarów oraz wszelkich odchyleniach od przyjętych norm i standardów. Przykładem praktycznego zastosowania sprawozdania technicznego jest jego wykorzystanie przy weryfikacji dokładności wykonanych pomiarów przez instytucje kontrolujące, co jest niezbędne w kontekście realizacji projektów budowlanych czy infrastrukturalnych. Dodatkowo, zgodnie z ustawą o geodezji i kartografii, sprawozdanie powinno być sporządzone zgodnie z określonymi wytycznymi, co zapewnia wysoką jakość i zaufanie do danych geodezyjnych. Takie dokumenty stanowią również istotne źródło informacji dla dalszych prac planistycznych oraz rozwoju lokalnych baz danych geodezyjnych.

Pytanie 14

Jaką precyzję terenową ma punkt sytuacyjny na mapie o skali 1:5000, jeżeli precyzja graficzna jego umiejscowienia wynosi 0,1 mm?

A. ±50,00 m
B. ±0,50 m
C. ±5,00 m
D. ±0,05 m
Wybór innych odpowiedzi może wynikać z niepełnego zrozumienia przeliczeń związanych z różnymi skalami map. Odpowiedzi ±5,00 m oraz ±50,00 m są znacznie przeszacowane w kontekście skali 1:5000, co wskazuje na fundamentalny błąd w przeliczeniach. Przykładowo, ±5,00 m oznaczałoby, że punkt mógłby znajdować się w odległości 5 metrów od rzeczywistej lokalizacji, co jest nieakceptowalne w kontekście precyzyjnych pomiarów terenowych. Z kolei odpowiedź ±0,05 m mogłaby sugerować nadmierną dokładność, która jest niemożliwa do osiągnięcia przy podanej dokładności graficznej. Błąd ten wynika często z nieznajomości zasad przeliczeń w różnych skalach oraz z niedostatecznej wiedzy na temat wpływu skali na dokładność pomiarów. Kluczowe jest więc, aby uwzględniać zarówno skalę mapy, jak i metodykę pomiaru, aby poprawnie zinterpretować dane sytuacyjne. Prawidłowe zrozumienie tych zależności jest niezbędne dla każdego specjalisty w dziedzinach związanych z geodezją, kartografią czy inżynierią lądową.

Pytanie 15

W jakim zakresie znajduje się wartość azymutu boku AB, gdy różnice współrzędnych między punktem początkowym a końcowym boku AB wynoszą ΔXAB < 0 oraz ΔYAB < 0?

A. 200÷300g
B. 100÷200g
C. 300÷400g
D. 0÷100g
Wartość azymutu boku AB wyznacza kierunek, w którym leży ten bok w układzie współrzędnych. Różnice współrzędnych ΔXAB < 0 oraz ΔYAB < 0 oznaczają, że zarówno współrzędna X, jak i Y punktu końcowego boku AB są mniejsze niż współrzędne punktu początkowego. W takim przypadku, punkt końcowy znajduje się w lewym dolnym ćwiartce układu współrzędnych, co sugeruje, że azymut boku AB powinien wynosić między 180 a 270 stopni. Wartość azymutu 200÷300g odpowiada właśnie temu przedziałowi, co oznacza, że boki skierowane w tym kierunku mają większy kąt od poziomu. Przykładem zastosowania azymutu w praktyce jest nawigacja, gdzie precyzyjne określenie kierunku może być kluczowe dla wytyczenia trasy w terenie. W inżynierii lądowej czy geodezji, prawidłowe obliczenie azymutu ma fundamentalne znaczenie dla dokładności pomiarów oraz w późniejszym projektowaniu i realizacji budowli.

Pytanie 16

Jaką maksymalną długość mogą mieć linie pomiarowe na obszarach rolnych i leśnych?

A. 300 m
B. 600 m
C. 500 m
D. 400 m
Maksymalna długość linii pomiarowych na terenach rolnych i leśnych wynosi 400 m. Ta wartość jest zgodna z wytycznymi określonymi w przepisach dotyczących pomiarów geodezyjnych i topograficznych. Długość linii pomiarowej ma kluczowe znaczenie w kontekście dokładności pomiarów. W praktyce, dla zapewnienia odpowiedniej precyzji, linie pomiarowe nie powinny przekraczać tej długości, ponieważ dłuższe linie są bardziej podatne na błędy związane z warunkami atmosferycznymi, ukształtowaniem terenu oraz innymi czynnikami zewnętrznymi. W przypadku pomiarów na terenach rolnych stosowanie linii o maksymalnej długości 400 m pozwala na efektywne zarządzanie powierzchnią, jak również na precyzyjne określenie granic działek. Przykładowo, podczas pomiarów do celów projektowania dróg czy systemów nawadniających, zachowanie tej normy przyczynia się do uzyskania wiarygodnych danych, które są niezbędne dla efektywnego planowania. Dodatkowo, przestrzeganie tych standardów jest często wymagane przez organy regulacyjne oraz instytucje zajmujące się ochroną środowiska.

Pytanie 17

Jak geodeta oznaczy na szkicu przyłącze energetyczne niskiego napięcia do budynku mieszkalnego, jeśli wykonał inwentaryzację powykonawczą za pomocą lokalizatora?

A. eA
B. e
C. eN
D. eNA
Odpowiedzi eA, eN oraz e są nieprawidłowe w kontekście oznaczania przyłącza energetycznego niskiego napięcia do budynku mieszkalnego. Oznaczenie eA sugeruje, że mamy do czynienia z przyłączeniem, które nie jest bezpośrednio związane z niskim napięciem, co jest mylące, ponieważ 'A' w tym kontekście może odnosić się do prądów, które nie są typowe dla budynków mieszkalnych. Oznaczenie eN z kolei jest zbyt ogólne, aby mogło jednoznacznie wskazywać na przyłącze niskiego napięcia, co może prowadzić do błędnej interpretacji w dokumentacji projektowej lub w trakcie inspekcji. Zastosowanie skrótu e bez dodatkowych liter w ogóle nie wskazuje na rodzaj napięcia ani na specyfikę instalacji, co czyni je nieodpowiednim w kontekście inwentaryzacji. Typowym błędem myślowym jest niedostateczne zrozumienie kontekstu norm przyłączeniowych oraz niewłaściwe przypisanie oznaczeń do ich rzeczywistego znaczenia. W praktyce, brak jednolitości w oznaczeniach może prowadzić do nieporozumień, które mogą mieć poważne konsekwencje, zwłaszcza w przypadku awarii lub modernizacji instalacji. W związku z tym kluczowe jest, aby geodeci oraz inżynierowie stosowali się do ustalonych standardów, aby zapewnić spójność i jasność w dokumentacji technicznej.

Pytanie 18

Jaka jest odległość od początku drogi do punktu, który na tej trasie ma oznaczenie 0/3+57,00 m?

A. 3057,00 m
B. 3557,00 m
C. 357,00 m
D. 557,00 m
Odpowiedź 357,00 m jest poprawna, ponieważ oznaczenie 0/3+57,00 m wskazuje na dokładne miejsce na trasie. W tym systemie oznaczeń, pierwsza część (0) zazwyczaj odnosi się do kilometrażu, a druga część (3+57,00) do metrażu w obrębie tego kilometra. Zatem '3+57,00' oznacza, że punkt znajduje się 3 km i 57 m od punktu odniesienia. Przekształcając to na metry, mamy 3000 m + 57 m, co daje 3057 m. Jednakże, jeżeli punkt 0/3+57,00 m jest odniesiony do '0', oznacza to, że odległość od początku trasy wynosi 357,00 m. Użycie takiego systemu oznaczeń jest powszechne w geodezji, budownictwie i planowaniu infrastruktury, co umożliwia precyzyjne określenie lokalizacji punktów na trasie. Przykładowo, w projektach drogowych lub kolejowych, takie oznaczenia są kluczowe dla właściwego zarządzania i kontroli budowy.

Pytanie 19

Geodezyjne pomiary sytuacyjne w terenie nie mogą być realizowane za pomocą metod

A. wcięć kątowych, liniowych i kątowo-liniowych.
B. ortogonalną (domiarów prostokątnych).
C. skaningu laserowego.
D. biegunowej.
Skaning laserowy to naprawdę fajna technika pomiarowa. Działa na zasadzie zbierania danych za pomocą skanera laserowego, co sprawia, że jest bardzo efektywna, zwłaszcza w geodezyjnych pomiarach terenowych. Choć nie jest to typowa metoda, to pozwala na zbieranie ogromnej ilości punktów danych w krótkim czasie. Dzięki temu możemy stworzyć bardzo szczegółowy model 3D terenu. W projektach budowlanych to może być super przydatne, bo pozwala szybko i dokładnie dokumentować istniejące budynki czy inne obiekty. To jest mega ważne, gdy planujemy coś nowego. Ważne jest, aby pamiętać, że skanowanie laserowe powinno być robione w odpowiednich warunkach, a wyniki warto sprawdzić tradycyjnymi metodami, żeby mieć pewność co do jakości tych danych.

Pytanie 20

W kluczowej części państwowego zbioru danych geodezyjnych i kartograficznych zgromadzone są bazy danych, które dotyczą

A. rejestru cen oraz wartości nieruchomości
B. geodezyjnej ewidencji infrastruktury terenowej
C. ewidencji gruntów i budynków (katastru nieruchomości)
D. państwowego rejestru podstawowych osnów geodezyjnych, grawimetrycznych i magnetycznych
Poprawna odpowiedź odnosi się do państwowego rejestru podstawowych osnów geodezyjnych, grawimetrycznych i magnetycznych, który stanowi kluczowy element centralnego zasobu geodezyjnego i kartograficznego. Rejestr ten gromadzi dane dotyczące punktów odniesienia, które są fundamentem dla wszelkich prac geodezyjnych i projektowych. Dzięki niemu możliwe jest precyzyjne określenie położenia obiektów na powierzchni Ziemi oraz ich relacji przestrzennych. Przykłady zastosowania obejmują inżynierię lądową, urbanistykę oraz planowanie przestrzenne, gdzie dokładność danych geodezyjnych jest niezbędna. Organizacje zajmujące się geodezją powinny stosować wytyczne zgodne z normami ISO, aby zapewnić najwyższą jakość zbieranych danych. Warto także zauważyć, że utrzymanie i aktualizacja tego rejestru jest kluczowe dla rozwoju infrastruktury i ochrony środowiska, co czyni go niezbędnym narzędziem w procesach decyzyjnych związanych z zagospodarowaniem terenu.

Pytanie 21

Jakiego zestawu sprzętu należy użyć do przeprowadzenia pomiaru różnic wysokości metodą niwelacji geometrycznej?

A. Tachimetr elektroniczny, statyw, tyczka z lustrem
B. Niwelator techniczny, statyw, łata niwelacyjna
C. Niwelator precyzyjny, statyw, tyczka z lustrem
D. Teodolit optyczny, statyw, łata niwelacyjna
Niwelator techniczny to kluczowe narzędzie do wykonywania dokładnych pomiarów różnic wysokości, które są niezbędne w wielu dziedzinach, takich jak budownictwo, inżynieria lądowa i geodezja. Użycie niwelatora w połączeniu z odpowiednim statywem i łata niwelacyjną zapewnia wysoką precyzję i powtarzalność pomiarów. Niwelator techniczny działa na zasadzie emisji promieni świetlnych, które umożliwiają precyzyjne określenie różnicy wysokości pomiędzy punktami. W praktyce, operator ustawia niwelator na statywie w punkcie odniesienia, a następnie korzysta z łaty niwelacyjnej umieszczonej na punkcie, którego wysokość chcemy zmierzyć. Różnice wysokości odczytuje się z podziałki na łacie, co pozwala na uzyskanie dokładnych wartości. Stosowanie takich narzędzi nie tylko spełnia normy branżowe, ale również zapewnia zgodność z wymaganiami projektów budowlanych, gdzie precyzja jest kluczowa dla sukcesu realizacji. Warto również zaznaczyć, że metody niwelacji geometrycznej są powszechnie stosowane w praktyce do różnorodnych zastosowań, w tym do projektowania i budowy infrastruktury, co czyni je istotnym elementem edukacji technicznej.

Pytanie 22

Wszystkie dokumenty zawierające wyniki pomiarów geodezyjnych dotyczących sytuacji i wysokości oraz efekty ich analizy powinny być przekazane do

A. Pracowni Baz Danych Zasobu Geodezyjnego i Kartograficznego
B. Archiwum Geodezyjnego
C. Państwowego Zasobu Geodezyjnego i Kartograficznego
D. Banku Danych Lokalnych
Państwowy Zasób Geodezyjny i Kartograficzny (PZGiK) jest centralnym organem odpowiedzialnym za gromadzenie, przetwarzanie i udostępnianie danych geodezyjnych oraz kartograficznych w Polsce. Wszystkie wyniki pomiarów geodezyjnych, zarówno sytuacyjnych, jak i wysokościowych, muszą być przekazywane do PZGiK, co jest zgodne z obowiązującymi regulacjami prawnymi, w tym z ustawą o geodezji i kartografii. PZGiK pełni kluczową rolę w zapewnieniu dostępności danych dla różnych użytkowników, w tym administracji publicznej, instytucji badawczych oraz przedsiębiorstw. Przykładowo, wyniki pomiarów geodezyjnych są niezbędne do realizacji inwestycji budowlanych, planowania przestrzennego oraz ochrony środowiska. Przekazywanie danych do PZGiK zapewnia ich archiwizację, a także umożliwia ich późniejsze wykorzystanie w projektach związanych z infrastrukturą, ochroną środowiska oraz planowaniem urbanistycznym. Warto zauważyć, że przestrzeganie procedur przekazywania danych geodezyjnych jest kluczowe dla zachowania ich integralności oraz aktualności, co z kolei przyczynia się do podnoszenia standardów jakości w branży geodezyjnej.

Pytanie 23

Wysokość osi celowej to 213,100 m. Na jakim pomiarze powinna być umieszczona łatę, aby osiągnięta wysokość punktu wyniosła 212,800?

A. 1300 mm
B. 0300 mm
C. 3000 mm
D. 0030 mm
Aby obliczyć, na jakim odczycie należy ustawić łatę, aby wysokość realizowanego punktu wyniosła 212,800 m, musimy skorzystać z pojęcia różnicy wysokości. Wysokość osi celowej wynosi 213,100 m, a zatem różnica między wysokością osi celowej a wysokością punktu wynosi 213,100 m - 212,800 m = 0,300 m, co jest równoważne 300 mm. Oznacza to, że aby uzyskać żądaną wysokość, musimy ustawić łatę na odczycie 300 mm. W praktyce, przy pomiarach geodezyjnych, stosuje się ten typ obliczeń w celu precyzyjnego ustalenia poziomu obiektów budowlanych lub innych punktów odniesienia. Tego rodzaju obliczenia są kluczowe w geodezji i budownictwie, gdzie precyzyjne pomiary wysokościowe są niezbędne do zapewnienia stabilności i poprawności konstrukcji budowlanych.

Pytanie 24

W miejscowym planie zagospodarowania przestrzennego obszary przeznaczone na sport i rekreację powinny być oznaczane symbolem literowym

A. U
B. MW
C. US
D. ZP
W miejscowych planach zagospodarowania przestrzennego tereny sportu i rekreacji są oznaczane symbolem US, co oznacza "tereny usług sportowych". Jest to zgodne z przyjętymi standardami planowania przestrzennego, które mają na celu zapewnienie odpowiednich przestrzeni dla działalności sportowej i rekreacyjnej w miastach oraz na terenach wiejskich. Oznaczenie to pozwala na jednoznaczne definiowanie obszarów przeznaczonych pod różne formy działalności sportowej, takie jak stadiony, boiska, parki rekreacyjne czy obiekty sportowe. Zastosowanie symbolu US w planach zagospodarowania przestrzennego jest kluczowe dla koordynacji działań urbanistycznych i planistycznych, a także dla zapewnienia harmonijnego rozwoju infrastruktury sportowej. Przykładem praktycznego zastosowania może być projektowanie nowego kompleksu sportowego, gdzie odpowiednie oznaczenie w planie pozwala na łatwiejsze pozyskanie funduszy i wsparcia ze strony lokalnych władz oraz organizacji sportowych. Zrozumienie tego symbolu w kontekście planowania przestrzennego jest zatem istotne dla każdego specjalisty zajmującego się urbanistyką.

Pytanie 25

Pierwszy rysunek mapy zasadniczej wykonuje się w kolorze

A. niebieskim
B. czarnym
C. żółtym
D. brązowym
Wykreślanie pierworysu mapy zasadniczej kolorem czarnym jest zgodne z ustalonymi standardami kartograficznymi. Kolor czarny jest używany do przedstawiania elementów trwałych, takich jak granice działek, budynki oraz drogi. Użycie czerni w tym kontekście zapewnia klarowność i czytelność mapy, co jest kluczowe dla jej użytkowników. Przykładem zastosowania tej zasady może być przygotowanie mapy do celów planowania przestrzennego, gdzie precyzyjne oznaczenie granic działek jest niezbędne do podejmowania decyzji inwestycyjnych. W praktyce oznacza to, że podczas tworzenia mapy zasadniczej należy stosować się do wytycznych zawartych w normach PN-EN ISO 19115 dotyczących metadanych i PN-EN ISO 19117 dotyczących wizualizacji geografii. Zastosowanie odpowiednich kolorów oraz symboli ma kluczowe znaczenie w kontekście komunikacji przestrzennej oraz interpretacji danych geograficznych przez różne grupy odbiorców.

Pytanie 26

Zmiany wynikające z wywiadu terenowego powinny być oznaczone kolorem

A. czerwonym
B. żółtym
C. czarnym
D. brązowym
Zaznaczanie zmian na mapie wywiadu terenowego czerwonym kolorem to naprawdę dobra praktyka w kartografii. Czerwony często używa się do oznaczania rzeczy, które są ważne, jak zmiany w infrastrukturze czy jakieś zagrożenia środowiskowe. Używając czerwieni, w szybki sposób możemy pokazać najistotniejsze info, co jest mega ważne, gdy podejmujemy decyzje. Na przykład, jak obserwujemy zmiany w gruntach, to obszary na czerwono mogą wskazywać miejsca, gdzie coś się mocno zmieniło, jak urbanizacja czy degradacja. Fajnie jest także mieć legendę na mapie, która wyjaśnia, co oznaczają kolory, bo to ułatwia zrozumienie danych. W kontekście GIS kolorowanie jest kluczowe dla wizualizacji, a dobre dobranie kolorów poprawia jakość analizy i interpretacji wyników.

Pytanie 27

Na łatach niwelacyjnych umiejscowionych w punktach 100 oraz 101 dokonano pomiarów l100 = 1 555, l101 = 2 225. Jaka jest różnica wysokości Δh100-101 między punktami 100 a 101?

A. -0,670 m
B. 0,670 m
C. 6,700 m
D. -0,670 cm
Odpowiedź -0,670 m jest prawidłowa, ponieważ różnica wysokości między punktami niwelacyjnymi oblicza się jako różnicę odczytów poziomych na łatach. W tym przypadku, aby obliczyć różnicę wysokości Δh100-101, należy wykorzystać wzór Δh = l101 - l100. Podstawiając wartości: Δh = 2 225 - 1 555 = 670. Ponieważ punkt 101 jest wyżej od punktu 100, różnica wysokości powinna być ujemna, co daje -0,670 m. W praktyce proces ten jest kluczowy w geodezji, szczególnie w kontekście budowy, gdzie precyzyjne pomiary różnic wysokości są niezbędne do zapewnienia odpowiednich spadków i poziomów fundamentów. W branży stosuje się różne techniki pomiarowe, takie jak niwelacja, które pozwalają na dokładne określenie różnic wysokości między punktami. Dodatkowo, standardy geodezyjne, takie jak normy ISO i PN-EN, podkreślają znaczenie dokładności w pomiarach wysokościowych, co jest kluczowe dla bezpieczeństwa konstrukcji.

Pytanie 28

Jakie jest nachylenie linii łączącej dwa punkty, które znajdują się na sąsiednich warstwicach oddalonych o 50 m, jeśli wysokość cięcia warstwicowego wynosi 0,5 m?

A. 10%
B. 0,5%
C. 5%
D. 1%
Wiele osób może mieć trudności z poprawnym obliczeniem nachylenia, co często prowadzi do nieporozumień. Przykładowo, niektórzy mogą błędnie przyjąć, że pochylenie oblicza się jako wartość bezpośrednio proporcjonalną do zmiany wysokości, co jest niezgodne z definicją. Użycie wartości cięcia warstwicowego w mniejszym kontekście, jak na przykład 0,5 m, bez uwzględnienia stosunku do poziomej odległości 50 m, może prowadzić do mylnych wniosków. Odpowiedzi takie jak 10%, 5% czy 0,5% mogą wynikać z błędnych obliczeń lub nieporozumień w interpretacji danych. Na przykład, obliczenie 10% mogłoby powstać z błędnego założenia, że różnica wysokości jest większa lub że odległość jest krótsza, co jest typowym błędem myślowym. W inżynierii, precyzyjne obliczenia są kluczowe, dlatego ważne jest, aby rozumieć zarówno stosunek wysokości do odległości, jak i interpretację wyników jako wartości procentowej. Warto pamiętać, że takie obliczenia są podstawą w przygotowywaniu projektów budowlanych czy inżynieryjnych, gdzie prawidłowe zrozumienie i obliczenie nachyleń jest niezbędne do zapewnienia bezpieczeństwa i funkcjonalności budowli. Zastosowanie standardowych metod obliczeniowych i dokładnych pomiarów jest kluczowe w praktyce inżynieryjnej.

Pytanie 29

Osnowę wysokościową określa się przy użyciu metody niwelacji

A. trygonometrycznej
B. punktów rozproszonych
C. hydrostatycznej
D. siatkowej
Pomiarowa osnowa wysokościowa wyznaczana metodą niwelacji trygonometrycznej to kluczowy element w geodezji, który pozwala na precyzyjne określenie różnic wysokości pomiędzy punktami w terenie. Metoda ta polega na wykorzystaniu triangulacji, gdzie pomiary kątów i odległości wykonuje się z punktów kontrolnych, aby obliczyć wysokości względne. Przykładem zastosowania tej metody jest budowa infrastruktury, gdzie niezbędne jest zapewnienie odpowiednich różnic wysokości dla dróg, mostów czy budynków. W praktyce, korzysta się z instrumentów takich jak teodolity czy tachymetry, które umożliwiają dokładnie wyznaczenie położenia punktów, a następnie, na podstawie pomiarów kątów i odległości, oblicza się różnice wysokości. Zastosowanie niwelacji trygonometrycznej jest zgodne z normami Polskiego Towarzystwa Geodezyjnego oraz międzynarodowymi standardami, co gwarantuje jej wysoką jakość oraz dokładność.

Pytanie 30

Jaką wartość ma średni błąd pomiaru graficznego odcinka o długości 10 cm, gdy błąd względny pomiaru wynosi 1:1000?

A. ±1,00 mm
B. ±10,00 mm
C. ±0,01 mm
D. ±0,10 mm
Odpowiedzi, które wskazują inne wartości błędu pomiaru, wykazują niedokładne zrozumienie zasad obliczania błędu względnego. Na przykład, wybór ±1,00 mm sugeruje, że błąd pomiaru w tym przypadku wynosi 1% długości odcinka, co jest znacznie przekroczeniem dopuszczalnych norm w kontekście podanego błędu względnego 1:1000. Tego rodzaju myślenie prowadzi do poważnych konsekwencji w praktyce inżynieryjnej, gdzie precyzyjne pomiary są niezbędne dla prawidłowego funkcjonowania mechanizmów. Z kolei wartość ±0,01 mm może sugerować zbyt optymistyczne podejście do dokładności pomiarów, które w rzeczywistości nie są osiągalne przy standardowych warunkach pomiarowych oraz wykorzystaniu typowych narzędzi pomiarowych. Takie podejście może często wynikać z niepełnego zrozumienia skali błędów pomiarowych i ich wpływu na końcowy wynik. W praktyce, aby zminimalizować błędy pomiarowe, istotne jest stosowanie odpowiednich technik oraz narzędzi, takich jak mikrometry czy suwmiarki, które są w stanie dostarczyć precyzyjniejszych wyników w granicach określonych przez normy. Prawidłowa interpretacja błędów pomiarowych oraz umiejętność ich obliczania jest kluczowa dla skutecznego projektowania i wytwarzania produktów inżynieryjnych.

Pytanie 31

Jakich instrumentów oraz narzędzi geodezyjnych należy użyć do pomiaru terenu metodą niwelacji w przypadku punktów rozproszonych?

A. Niwelator, statyw, węgielnica, szpilki geodezyjne
B. Tachimetr, statyw, pion sznurkowy, taśma geodezyjna
C. Niwelator, statyw, łaty niwelacyjne, pion sznurkowy
D. Tachimetr, statyw, żabki geodezyjne, ruletka geodezyjna
W analizie dostępnych odpowiedzi na pytanie dotyczące pomiaru terenu metodą niwelacji, istnieje kilka nieprawidłowych koncepcji. Odpowiedzi odwołujące się do tachimetrów nie są adekwatne w kontekście niwelacji, ponieważ tachimetr służy do pomiarów kątów i odległości w trójwymiarowej przestrzeni, a nie do precyzyjnego określania różnic wysokości w sposób, który jest wymagany w niwelacji. W przypadkach, gdzie podano użycie statywu, węgielnicy czy szpilek geodezyjnych, należy zaznaczyć, że węgielnica jest narzędziem wykorzystywanym głównie do określenia kąta prostego, a nie do pomiarów wysokości, co czyni ją nieodpowiednią dla metody niwelacji. Szpilki geodezyjne mogą być używane do oznaczania punktów, ale nie są kluczowe w samym procesie niwelacji. Odpowiedzi te sugerują, że projektant pomiarów nie dostrzega różnicy pomiędzy różnymi technikami i narzędziami geodezyjnymi, co może prowadzić do nieprecyzyjnych wyników oraz zafałszowania danych. Zastosowanie niewłaściwych narzędzi do określania wysokości skutkuje nieefektywnymi pomiarami, co w konsekwencji wpływa na jakość całego projektu budowlanego. Dlatego kluczowe jest, aby posiadać odpowiednią wiedzę na temat zastosowania konkretnych narzędzi w określonych metodach pomiarowych oraz być świadomym standardów branżowych, które kierują tymi wyborami.

Pytanie 32

Jeśli odcinek o długości 1 cm na mapie odpowiada rzeczywistej odległości 50 m w terenie, to w jakiej skali została stworzona ta mapa?

A. 1:5000
B. 1:1000
C. 1:10 000
D. 1:500
Odpowiedź 1:5000 jest jak najbardziej trafna. Skala mapy to taki ważny temat, bo mówi nam, jak długości na mapie mają się do tych prawdziwych w terenie. Tu mamy 1 cm na mapie, co odpowiada 50 m w rzeczywistości. Jak to przeliczymy, to 50 m to 5000 cm. To znaczy, że 1 cm na mapie to 5000 cm w terenie, co zapisujemy jako 1:5000. Taka informacja jest super ważna przy robieniu map, bo pozwala dobrze oddać to, co mamy w realu. Kiedy korzystasz z mapy w skali 1:5000, łatwo możesz planować różne rzeczy, na przykład budowę czy nawigację. Tego typu mapy są często wykorzystywane w sprawach takich jak urbanistyka czy geodezja, gdzie potrzebujemy przedstawienia terenu w szczegółowy sposób. Rozumienie skali mapy pozwala lepiej czytać dane przestrzenne i podejmować mądrzejsze decyzje na bazie tego, co widzimy na mapie.

Pytanie 33

Jaką wartość ma rzędna Hp dla pokrywy studzienki kanalizacyjnej, gdy zmierzona wysokość osi celowej Hc wynosi 202,21 m, a odczyt wartości podziału łaty niwelacyjnej z kreski środkowej lunety niwelatora to s = 1,140?

A. Hp = 202,32 m
B. Hp = 201,07 m
C. Hp = 203,35 m
D. Hp = 202,01 m
Poprawna odpowiedź to Hp = 201,07 m, co wynika z zastosowania prawidłowej metody obliczania rzędnej pokrywy studzienki kanalizacyjnej. Rzędna pokrywy studzienki (Hp) jest obliczana na podstawie wysokości osi celowej (Hc) oraz odczytu wartości podziału łaty (s). Wzór na obliczenie rzędnej pokrywy studzienki można zapisać jako: Hp = Hc - s. W naszym przypadku, podstawiając wartości, otrzymujemy: Hp = 202,21 m - 1,140 m = 201,07 m. Jest to standardowa metoda stosowana w geodezji, zapewniająca dokładność pomiarów oraz zgodność z normami branżowymi. Zrozumienie tych zasad jest kluczowe, szczególnie w kontekście projektowania infrastruktury oraz prac budowlanych, gdzie precyzyjne pomiary mają fundamentalne znaczenie dla bezpieczeństwa i funkcjonalności obiektów. Przykładem zastosowania takiej wiedzy w praktyce może być wyznaczanie poziomów wód gruntowych czy projektowanie systemów odwadniających, gdzie dokładne rzędne mają istotny wpływ na efektywność działania tych systemów.

Pytanie 34

Ile punktów o wysokościach odpowiadających cechom warstwic, które je przecinają, należy ustalić przeprowadzając interpolację warstwic o cięciu warstwicowym wynoszącym 0,25 m pomiędzy sąsiednimi pikietami o wysokościach 213,20 m i 214,49 m?

A. 5 punktów
B. 3 punkty
C. 4 punkty
D. 2 punkty
Twoja odpowiedź jest na pewno ok! Przy interpolacji warstwic, kiedy mamy cięcie 0,25 m i od wysokości 213,20 m do 214,49 m, trzeba najpierw obliczyć różnicę wysokości. Wychodzi 1,29 m. Jak podzielisz to przez 0,25 m, dostaniesz prawie 5,16. To znaczy, że powinieneś wyznaczyć pięć punktów na wysokościach: 213,25 m, 213,50 m, 213,75 m, 214,00 m i 214,25 m. Ten sposób interpolacji to standard w geodezji i inżynierii lądowej, bo precyzyjne wysokości są mega ważne, zwłaszcza przy budowach czy tworzeniu map. Dzięki takiemu podejściu masz lepsze dane terenowe, co z kolei wpływa na jakość projektów i efektywność pomiarów.

Pytanie 35

Gdy różnice współrzędnych między początkiem a końcem boku AB wynoszą ΔxAB = 0, ΔyAB > 0, to jaki jest azymut AzAB boku AB?

A. 400g
B. 100g
C. 200g
D. 300g
Poprawna odpowiedź to 100g, ponieważ azymut boku AB można określić na podstawie różnic współrzędnych ΔxAB i ΔyAB. W tym przypadku mamy do czynienia z sytuacją, gdy ΔxAB = 0 oraz ΔyAB > 0. Oznacza to, że punkt końcowy boku AB znajduje się bezpośrednio nad punktem początkowym w układzie współrzędnych. W takim kontekście azymut, definiowany jako kąt pomiędzy kierunkiem północnym a wektorem prowadzącym od punktu początkowego do końcowego, wynosi 0° (lub 400g w systemie g) w kierunku północnym. Biorąc pod uwagę, że kierunek północny odpowiada 0g, możemy stwierdzić, że azymut boku AB wynosi 100g, co odpowiada kierunkowi wschodniemu. Tego rodzaju obliczenia są kluczowe w geodezji oraz inżynierii lądowej, gdzie precyzyjne określenie azymutu jest niezbędne do właściwego pomiaru i nawigacji. W praktyce, znajomość azymutów jest szczególnie istotna w projektach budowlanych oraz w nawigacji geodezyjnej, gdzie błędy w pomiarach mogą prowadzić do poważnych konsekwencji.

Pytanie 36

Jaką osnowę powinno się założyć do geodezyjnej obsługi dużego zakładu przemysłowego, którego realizacja przebiegać będzie w etapach?

A. Realizacyjną dwurzędową
B. Realizacyjną typu A
C. Realizacyjną jednorzędową
D. Realizacyjną wydłużoną
Osnowa realizacyjna dwurzędowa to świetny wybór, jeśli chodzi o geodezję w dużych zakładach. Szczególnie, gdy prace są podzielone na etapy. Taka osnowa jest bardzo precyzyjna i elastyczna, a to naprawdę ważne przy inwestycjach, które rozwijają się w tempie błyskawicy. W praktyce to oznacza, że geodeci mogą szybko dostosować pomiary do zmieniających się warunków na budowie, co ułatwia kontrolowanie postępu w różnych częściach projektu. Dzięki osnowie dwurzędowej, możliwe jest równoczesne robienie kilku pomiarów, co znacząco przyspiesza realizację inwestycji. Na przykład w trakcie budowy fabryki można jednocześnie zajmować się pomiarami pod fundamenty, instalacjami technicznymi i rozmieszczaniem sieci infrastrukturalnych. To zdecydowanie zwiększa efektywność całego przedsięwzięcia. I co ważne, zgodne z normami, takimi jak PN-EN ISO 17123, użycie takiej osnowy w dużych projektach to klucz do zachowania wysokich standardów dokładności i rzetelności pomiarów.

Pytanie 37

Południkiem osiowym w odwzorowaniu Gaussa-Krügera dla układu współrzędnych PL-2000 jest południk

A. 20°
B. 21°
C. 19°
D. 22°
Odpowiedź 21° jest poprawna, ponieważ w układzie współrzędnych PL-2000 południkiem osiowym odwzorowania Gaussa-Krügera dla strefy, w której mieści się Polska, jest właśnie południk 21°. Układ PL-2000 jest oparty na odwzorowaniu Gaussa-Krügera, które jest używane do precyzyjnego odwzorowywania powierzchni ziemi na płaszczyznach. Południki osiowe są kluczowe, ponieważ definiują strefy odwzorowań, co jest istotne w kontekście dokładności geodezyjnej oraz kartograficznej. Użycie południka 21° pozwala na minimalizację zniekształceń w obszarze, co jest przydatne w praktyce, na przykład w geodezji czy podczas tworzenia map topograficznych. Dobór odpowiednich południków jest zgodny z normami, takimi jak PN-EN ISO 19111, które określają zasady klasyfikacji i odwzorowań strefowych. Wiedza na temat południków osiowych jest kluczowa dla profesjonalistów zajmujących się kartografią i geodezją, ponieważ wpływa na jakość i dokładność realizowanych projektów.

Pytanie 38

Określ wartość poziomu odniesienia profilu podłużnego, jeśli maksymalna wysokość zaznaczonego na tym profilu punktu wynosi 225,85 m, a minimalna 185,20 m?

A. 230,00 m
B. 200,00 m
C. 225,00 m
D. 180,00 m
Wartość poziomu porównawczego profilu podłużnego oblicza się na podstawie różnicy pomiędzy najwyższą a najniższą wysokością punktów. W tym przypadku najwyższa wysokość wynosi 225,85 m, a najniższa 185,20 m. Aby określić poziom porównawczy, należy wziąć pod uwagę dolne granice terenu, które są istotne w kontekście inżynierii lądowej i budowlanej. Poziom porównawczy powinien znajdować się poniżej najwyższej wartości, ale bliżej dolnej wartości, aby uwzględnić zmiany w terenie i ułatwić dalsze prace projektowe. Odpowiedzią 180,00 m ustalamy wartość, która zapewnia nie tylko wygodę w operacjach inżynieryjnych, ale również odpowiada praktycznym wymaganiom budowlanym, takim jak odwodnienie i wznoszenie konstrukcji. W ogólnej praktyce, ustalanie odpowiedniego poziomu porównawczego jest kluczowe dla zapewnienia bezpieczeństwa i efektywności projektów budowlanych, co podkreślają standardy związane z projektowaniem infrastruktury. Przykładem zastosowania tej wiedzy może być projektowanie dróg, gdzie poziom porównawczy musi uwzględniać różnice w wysokościach, aby zapobiec problemom z odprowadzaniem wód opadowych oraz zapewnić stabilność konstrukcji.

Pytanie 39

System informacyjny, który umożliwia zbieranie, aktualizację i udostępnianie danych o sieciach uzbrojenia terenu GESUT, to

A. ewidencja geometryczna systemu uzbrojenia terenu
B. ewidencja geodezyjna systemu urządzeń technicznych
C. geodezyjna ewidencja sieci uzbrojenia terenu
D. ewidencja geometryczna sieci uzbrojenia terenu
Geodezyjna ewidencja sieci uzbrojenia terenu (GESUT) jest kluczowym narzędziem w zarządzaniu infrastrukturą przestrzenną. Odpowiedź, która wskazuje na geodezyjną ewidencję, jest prawidłowa, ponieważ koncentruje się na precyzyjnym zbieraniu i utrzymywaniu danych geodezyjnych dotyczących sieci uzbrojenia, takich jak wodociągi, kanalizacje czy linie energetyczne. GESUT umożliwia nie tylko aktualizację tych danych, ale także ich udostępnianie różnym użytkownikom, co ma istotne znaczenie w kontekście planowania przestrzennego i zarządzania kryzysowego. Przykładowo, w sytuacji awarii sieci wodociągowej, szybki dostęp do map GESUT może znacząco przyspieszyć działania naprawcze. Dodatkowo, zgodnie z dobrymi praktykami branżowymi, ewidencja ta powinna być zgodna z krajowymi standardami, co pozwala na jej integrację z innymi systemami informacyjnymi, w tym ewidencją gruntów i budynków. Takie zintegrowane podejście wspiera efektywne zarządzanie infrastrukturą oraz podnosi jakość świadczonych usług.

Pytanie 40

Zastosowanie metody niwelacji służy do pomiaru oraz zagęszczenia osnowy wysokościowej?

A. powierzchniowej
B. profilów
C. barometrycznej
D. reperów
Odpowiedź "reperów" jest prawidłowa, ponieważ pomiar i zagęszczenie osnowy wysokościowej przy użyciu metody niwelacji opiera się na wykorzystaniu reperów, które są stałymi punktami odniesienia. Repery to trwałe punkty, na których można precyzyjnie mierzyć wysokości. W procesie niwelacji, sprzęt pomiarowy, jak np. niwelator optyczny, jest ustawiany na statywie w punkcie pomiarowym, a następnie odczyty wysokości są wykonywane w stosunku do reperów. Przykładem zastosowania tej metody są prace geodezyjne, gdzie precyzyjne określenie wysokości terenowych jest kluczowe, na przykład w budownictwie lub inżynierii lądowej. Kiedy ustalamy osnowę wysokościową, stosowanie reperów jako punktów odniesienia zapewnia wysoką dokładność pomiarów. Zgodnie z normami geodezyjnymi, np. PN-EN ISO 17123, metody niwelacji powinny być realizowane zgodnie z ustalonymi procedurami, aby zapewnić wiarygodność wyników.