Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 2 maja 2025 15:53
  • Data zakończenia: 2 maja 2025 16:00

Egzamin niezdany

Wynik: 11/40 punktów (27,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Proces nitrowania najczęściej realizuje się, stosując organiczny substrat

A. mieszaniną kwasów azotowego(V) oraz siarkowego(VI)
B. rozcieńczonym kwasem azotowym(V)
C. stężonym kwasem azotowym(V)
D. mieszaniną kwasów azotowego(V) oraz solnego
Reakcji nitrowania nie można przeprowadzać skutecznie przy użyciu wyłącznie rozcieńczonego kwasu azotowego(V), ponieważ w takim przypadku reakcja nie zachodzi z odpowiednią wydajnością. Rozcieńczony kwas azotowy ma zbyt niską stężenie, co powoduje, że nie jest w stanie dostarczyć wystarczającej ilości grup nitrowych do substratu organicznego. Z tego powodu stężony kwas azotowy jest znacznie bardziej efektywny, ale sam w sobie także nie jest wystarczający dla optymalizacji procesu, jak pokazuje praktyka. Mieszanina kwasów azotowego i siarkowego, a nie samodzielny kwas azotowy, jest standardem w chemii organicznej. Ponadto, stosowanie stężonego kwasu azotowego bez kwasu siarkowego może prowadzić do niekontrolowanych reakcji, takich jak nadmierne nitrowanie, co skutkuje powstawaniem niepożądanych produktów ubocznych. Użycie samego kwasu solnego nie tylko nie ma sensu w kontekście nitrowania, ale również może prowadzić do całkowicie innych reakcji chemicznych, co podkreśla znaczenie właściwego doboru reagentów. W praktyce, w laboratoriach i przemyśle chemicznym należy zawsze dążyć do użycia sprawdzonych metod, aby uzyskać pożądane produkty. Właściwe przygotowanie reagentów oraz kontrola warunków reakcji są kluczowe dla sukcesu procesów chemicznych.

Pytanie 2

Wskaż jaka zawartość chlorków w próbce wody pozwala na wykorzystanie tej wody do produkcji betonu zgodnie z normą PN-EN 1008.

Wymagania dotyczące zawartości chlorków w wodzie do produkcji betonu według normy PN-EN 1008
substancjadopuszczalna wartość w mg/dm3
chlorki1000
A. 1000 g/m3
B. 10 g/dm3
C. 107 mg/m3
D. 1000 g/dm3
Wybierając odpowiedzi, takie jak 1000 g/dm3 czy 10 g/dm3, można zauważyć pewne nieporozumienia dotyczące jednostek i norm. Odpowiedź 1000 g/dm3 jest zdecydowanie zbyt wysoka, ponieważ oznaczałaby, że woda zawiera 1000 gramów chlorków na każdy litr, co jest równoważne stężeniu 1 kg/dm3. Tego rodzaju stężenie jest nierealistyczne w kontekście wody pitnej czy technologicznej, a także przekracza wszelkie normy dotyczące jakości wody. Z kolei 10 g/dm3, chociaż teoretycznie dopuszczalne, również jest niewłaściwe, ponieważ w kontekście normy PN-EN 1008, odpowiednia wartość wynosi 1000 mg/dm3, co odpowiada 1 g/dm3. W tym przypadku istnieje nieporozumienie związane z konwersją jednostek, które są kluczowe w inżynierii budowlanej. Wybór 107 mg/m3 również wykazuje zrozumienie problemu, ale nie odnosi się do normy, w której wartość dla chlorków jest znacznie wyższa. Stąd wynika, że często błędy w odpowiedziach są efektem niepewności co do prawidłowego przeliczenia jednostek oraz niezrozumienia znaczenia norm, które mają na celu zapewnienie bezpieczeństwa i trwałości konstrukcji. Każdy inżynier budowlany powinien być dobrze zaznajomiony z odpowiednimi normami oraz umieć prawidłowo interpretować wyniki badań, co jest niezbędne do podejmowania właściwych decyzji technologicznych.

Pytanie 3

Proces oddzielania mieszaniny niejednorodnej, który zachodzi w wyniku opadania cząstek pod działaniem grawitacji, nazywamy

A. absorpcja
B. hydratacja
C. dekantacja
D. sedymentacja
Hydratacja, absorpcja i dekantacja to procesy, które różnią się zasadniczo od sedymentacji, co może prowadzić do nieporozumień. Hydratacja odnosi się do procesu, w którym cząsteczki wody wchodzą w interakcje z innymi substancjami, często prowadząc do ich rozpuszczenia lub zmiany stanu skupienia. Nie jest to więc proces związany z opadaniem cząstek ani ich separacją przez grawitację. Absorpcja z kolei dotyczy wchłaniania substancji przez inne materiały, co również nie ma związku z grawitacyjnym oddzielaniem cząstek. W kontekście chemii i technologii materiałowej absorpcja ma zastosowanie w procesach takich jak filtracja, gdzie substancje są wchłaniane przez porowate materiały, ale nie jest to tożsame z sedymentacją. Dekantacja to metoda polegająca na oddzielaniu cieczy od osadu, jednak wymaga wcześniejszej sedymentacji, aby cząstki mogły opaść na dno. Dekantacja jest bardziej zaawansowanym procesem, który nie odbywa się wyłącznie pod wpływem siły grawitacji, lecz również zakłada manualne lub mechaniczne oddzielenie faz. Dlatego zrozumienie różnic między tymi procesami jest kluczowe w naukach przyrodniczych i inżynieryjnych, a niepoprawne przypisanie cech jednego procesu do drugiego może prowadzić do błędnych wniosków oraz nieefektywności w praktycznych zastosowaniach.

Pytanie 4

Wykorzystując pipetę gazową, pobrano próbkę azotu (Mn2 = 28 g/mol) o objętości 250 cm3 w standardowych warunkach. Jaką masę ma zmierzony azot?

A. 0,1563 g
B. 3,1250 g
C. 1,5635 g
D. 0,3125 g
Niepoprawne odpowiedzi wynikają z błędów w obliczeniach związanych z masą gazu w warunkach normalnych. Wiele z podanych odpowiedzi może sugerować błędne podejście do obliczeń ilości moli lub nieprawidłowe konwersje jednostek. Na przykład, jeżeli ktoś obliczyłby masę gazu w oparciu o nieprawidłową objętość molową, np. 1 mol zajmujący objętość 1 litra, uzyskane wyniki byłyby znacznie niższe od rzeczywistych. Często także pomijana jest konwersja objętości z mililitrów na litry, co może prowadzić do znacznych rozbieżności. Innym częstym błędem jest niewłaściwe zastosowanie wzoru na masę, co prowadzi do nieadekwatnych wartości. W przypadku obliczeń chemicznych, kluczowe jest zrozumienie, że masa gazu jest ściśle związana z jego objętością oraz warunkami, w jakich się znajduje. Standardy laboratoryjne, takie jak korzystanie z odpowiednich objętości molowych i precyzyjnych pomiarów, są fundamentalne dla uzyskiwania wiarygodnych rezultatów. Praktyka ta jest niezbędna w codziennej pracy chemików, gdzie jakiekolwiek odstępstwo od norm może prowadzić do błędnych wyników oraz zafałszowania danych eksperymentalnych.

Pytanie 5

Aby oczyścić zwęglone osady w probówce, należy zastosować

A. słabą zasadę
B. rozpuszczalnik organiczny
C. mieszaninę chromową
D. słaby kwas
Rozpuszczalniki organiczne, takie jak etanol czy aceton, są często stosowane do rozpuszczania substancji organicznych, jednak ich skuteczność w usuwaniu zwęglonych osadów jest ograniczona. Zwęglone resztki to w dużej mierze węgiel, który nie reaguje z większością związków organicznych, co czyni je trudnymi do usunięcia za pomocą takich rozpuszczalników. Użycie słabego kwasu, jak kwas octowy, może również okazać się niewystarczające, ponieważ nie posiada on wystarczającej siły do utlenienia zwęglonych osadów, które są bardziej odporne na działanie słabych kwasów. Słabe zasady, takie jak wodorotlenek sodu, mogą pomóc w usuwaniu niektórych zanieczyszczeń, ale podobnie jak kwasy, ich działanie na zwęglone osady jest ograniczone. W praktyce laboratoryjnej, stosowanie tych substancji może prowadzić do mylnych wniosków o ich skuteczności, co może skutkować nieodpowiednim przygotowaniem sprzętu lub próbek do dalszych analiz. Dlatego ważne jest, aby korzystać z odpowiednich, sprawdzonych metod oczyszczania, takich jak stosowanie mieszaniny chromowej, która zapewnia lepsze rezultaty w usuwaniu trudnych do zlikwidowania osadów.

Pytanie 6

Przedstawiono wyciąg z karty charakterystyki substancji chemicznej. Na podstawie informacji zawartej w zamieszczonym fragmencie karty wskaż wzór chemiczny substancji, której można użyć jako materiału neutralizującego lodowaty kwas octowy.

Kwas octowy lodowaty 99,5%

Materiały zapobiegające rozprzestrzenianiu się skażenia i służące do usuwania skażenia

Jeżeli to możliwe i bezpieczne, zlikwidować lub ograniczyć wyciek (uszczelnić, zamknąć dopływ cieczy, uszkodzone opakowanie umieścić w opakowaniu awaryjnym). Ograniczyć rozprzestrzenianie się rozlewiska przez obwałowanie terenu; zebrane duże ilości cieczy odpompować. Małe ilości rozlanej cieczy przysypać niepalnym materiałem chłonnym (ziemia, piasek oraz materiałami neutralizującymi kwasy, np. węglanem wapnia lub sodu, zmielonym wapieniem, dolomitem), zebrać do zamykanego pojemnika i przekazać do zniszczenia.

Zanieczyszczoną powierzchnię spłukać wodą. Popłuczyny zebrać i usunąć jako odpad niebezpieczny.

A. CaCO3 • MgCO3
B. NaCl
C. (NH4)2SO>sub>4
D. CaSO4
Odpowiedź "CaCO3 • MgCO3" jest poprawna, ponieważ wskazuje na zastosowanie dolomitu, który zawiera zarówno węglan wapnia (CaCO3), jak i węglan magnezu (MgCO3). Te substancje są znane z właściwości alkalicznych, co sprawia, że są skutecznymi materiałami neutralizującymi kwasy, takie jak lodowaty kwas octowy. W praktyce, węglan wapnia jest często wykorzystywany w przemysłach chemicznych i budowlanych jako środek neutralizujący, a dolomit znajduje zastosowanie w rolnictwie jako poprawiacz gleby. Neutralizacja kwasów jest kluczowa w procesach przemysłowych, aby zminimalizować ryzyko korozji i uszkodzeń instalacji. Standardy dotyczące stosowania materiałów neutralizujących opierają się na zasadach bezpieczeństwa chemicznego, które wymagają stosowania odpowiednich substancji w celu ochrony zdrowia i środowiska. Zdecydowanie zaleca się korzystanie z tego typu włączy w laboratoriach oraz podczas procesów produkcyjnych, aby zapewnić zgodność z normami ochrony środowiska.

Pytanie 7

Aby przeprowadzić analizę jakościową, próbkę mosiądzu należy roztworzyć w stężonym kwasie

A. bromowodorowym
B. chlorowodorowym
C. siarkowym(VI)
D. azotowym(V)
Stosowanie kwasu siarkowego(VI) do roztwarzania mosiądzu nie jest optymalnym rozwiązaniem, ponieważ mimo że kwas siarkowy jest silnym kwasem, nie jest efektywny w przypadku stopów miedzi, takich jak mosiądz. Kwas siarkowy reaguje z miedzią, ale proces ten jest wolniejszy i mniej skuteczny w porównaniu do kwasu azotowego. Użycie kwasu chlorowodorowego może również prowadzić do niepełnych reakcji, ponieważ nie jest on wystarczająco silnym utleniaczem, a jego stosowanie w kontekście metali nieżelaznych, takich jak miedź, może prowadzić do ich nierozpuszczenia. Kwas bromowodorowy, mimo że jest kwasem, również nie wykazuje właściwości utleniających, które są kluczowe w procesie analizy jakościowej. W przypadku błędnego wyboru kwasu, można napotkać problemy związane z niepełnym rozpuszczeniem próbki, co prowadzi do błędnych wyników analizy. Typowym błędem jest założenie, że każdy silny kwas może zastąpić inny w reakcjach chemicznych, co jest mylne. Efektywność rozpuszczania stopów metalowych wymaga zastosowania odpowiednich reakcji chemicznych, które nie tylko rozpuszczają próbki, ale również prowadzą do ich pełnej analizy składu chemicznego. W rezultacie, niewłaściwy wybór kwasu może skutkować nieprawidłowymi wynikami, co w praktyce laboratoryjnej jest nieakceptowalne i może prowadzić do dalszych problemów związanych z jakością i bezpieczeństwem produktów końcowych.

Pytanie 8

Jakie urządzenie jest wykorzystywane do oczyszczania próbki gazowej?

A. chłodnica
B. rozdzielacz
C. płuczka
D. zestaw sit
Chłodnica, zestaw sit oraz rozdzielacz to urządzenia, które pełnią różne funkcje w procesach przemysłowych, jednak nie są przeznaczone do oczyszczania gazów. Chłodnice służą do obniżania temperatury gazów lub cieczy, co ma znaczenie w wielu aplikacjach, ale nie jest ich celem usuwanie zanieczyszczeń. W przypadku zestawów sit, ich główną rolą jest separacja cząsteczek na podstawie wielkości, co może być przydatne w procesach takich jak filtracja, ale nie skutkuje to oczyszczaniem gazów z rozpuszczalnych zanieczyszczeń. Rozdzielacze natomiast, są stosowane do kierowania przepływu gazów lub cieczy w danym systemie, co ma znaczenie w kontekście zapewnienia odpowiedniego przepływu, ale nie wpływają na jakość gazu pod względem czystości chemicznej. Typowe błędy myślowe prowadzące do wyboru tych odpowiedzi obejmują mylenie funkcji różnych urządzeń oraz nieznajomość procesów oczyszczania gazów, co jest kluczowe dla zrozumienia ich roli w przemyśle. W praktyce, dobór odpowiednich technologii oczyszczania gazów powinien być oparty na szczegółowej analizie zanieczyszczeń oraz wymagań regulacyjnych, co podkreśla znaczenie znajomości specyfiki każdego z urządzeń.

Pytanie 9

Ropa naftowa stanowi mieszankę węglowodorów. Jaką metodę wykorzystuje się do jej rozdzielania na składniki?

A. krystalizację
B. destylację frakcyjną
C. sedymentację
D. destylację prostą
Destylacja frakcyjna to naprawdę najbardziej odpowiedni sposób na rozdzielanie ropy naftowej. Dzięki niej możemy oddzielać różne frakcje węglowodorów, bo opiera się na ich punktach wrzenia. W praktyce to wygląda tak, że mieszanka cieczy przechodzi przez kolumnę destylacyjną i przy różnych temperaturach wrzenia frakcji, oddzielają się one na różnych poziomach. W przemyśle naftowym używa się tej metody do produkcji paliw, jak benzyna, olej napędowy czy nafta lotnicza, które są separowane w odpowiednich zakresach temperatur. To wszystko jest zgodne z tym, co robią specjaliści i naprawdę ważne, bo liczy się efektywność rozdziału i jakość produktów. Co ciekawe, destylacja frakcyjna ma też zastosowanie w innych branżach, na przykład w produkcji alkoholu czy chemii organicznej. Tam też potrzeba dobrego oddzielania składników, żeby uzyskać czyste substancje.

Pytanie 10

Wskaż zbiór substancji, które po rozpuszczeniu w wodzie stają się elektrolitami?

A. Kwas solny, gliceryna, tlenek siarki(VI)
B. Cukier, sól stołowa, ocet
C. Chlorek sodu, wodorotlenek sodu, kwas siarkowy(VI)
D. Glukoza, kwas azotowy(V), wodorotlenek wapnia
Wybór substancji, które nie są elektrolitami, może prowadzić do licznych nieporozumień, dlatego warto zrozumieć, dlaczego odpowiedzi te są błędne. Cukier, sól kuchenna i ocet wydają się być substancjami rozpuszczalnymi w wodzie, jednak tylko sól kuchenna może być uznana za elektrolit. Cukier (sacharoza) rozpuszcza się w wodzie, tworząc roztwór, ale nie dissocjuje na jony, co oznacza, że nie przewodzi prądu elektrycznego. Takie substancje są nazywane substancjami nieelektrolitycznymi. Podobnie, gliceryna i tlenek siarki(VI) nie są elektrolitami - gliceryna jest organicznym alkoholem, który również nie dissocjuje w wodzie na jony, a tlenek siarki(VI) reaguje z wodą, tworząc kwas siarkowy, ale w swojej pierwotnej formie nie jest elektrolitem. W przypadku glukozy, jej rozpuszczenie w wodzie prowadzi do powstania roztworu, który nie wykazuje przewodnictwa elektrycznego, ponieważ glukoza również nie dissocjuje na jony. Niewłaściwe postrzeganie substancji jako elektrolitów może wynikać z błędnego rozumienia ich właściwości chemicznych oraz różnicy między substancjami, które po rozpuszczeniu w wodzie prowadzą do powstania naładowanych cząsteczek, a tymi, które tego nie robią. Kluczowe jest zrozumienie mechanizmów dysocjacji oraz właściwości chemicznych różnych substancji, aby uniknąć takich nieporozumień w chemii i pokrewnych dziedzinach.

Pytanie 11

Niemetal o kolorze fioletowoczarnym, który łatwo przechodzi w stan gazowy, to

A. jod
B. fosfor
C. chlor
D. brom
Chlor, brom i fosfor to inne pierwiastki chemiczne, które mogą budzić wątpliwości w kontekście tego pytania, jednak żaden z nich nie spełnia wszystkich kryteriów opisanych w pytaniu. Chlor jest gazem, który w standardowych warunkach ma zielono-żółtą barwę i jest stosunkowo reaktywny, ale nie ulega sublimacji w sposób typowy dla jodu. Brom, choć w postaci ciekłej w temperaturze pokojowej ma ciemnoczerwono-brązową barwę, również nie jest fioletowoczarnego koloru i nie sublimuje w takich ilościach jak jod. Z kolei fosfor występuje w różnych formach alotropowych, ale najbardziej znany jest biały i czerwony fosfor, które nie mają fioletowoczarnej barwy. Fosfor jest również bardziej stały w temperaturach pokojowych w porównaniu do jodu, co czyni go nieodpowiednim kandydatem. Typowym błędem przy wyborze odpowiedzi jest skupienie się na ogólnych właściwościach chemicznych tych pierwiastków, nie zwracając uwagi na specyfikę opisaną w pytaniu. W kontekście sublimacji i barwy, jod jest jednoznacznie zdefiniowany i nie ma sobie równych w tej grupie pierwiastków, co czyni go odpowiedzią właściwą. Zrozumienie tych różnic pozwala lepiej orientować się w chemii i właściwościach pierwiastków, co jest kluczowe zarówno w naukach ścisłych, jak i w zastosowaniach praktycznych.

Pytanie 12

Czystość konkretnego odczynnika chemicznego wynosi: 99,9-99,99%. Jakiego rodzaju jest ten odczynnik?

A. chemicznie czysty.
B. czysty.
C. techniczny.
D. czysty do analizy.
Odpowiedzi techniczny, czysty oraz chemicznie czysty są błędne, ponieważ nie odzwierciedlają właściwych standardów czystości wymaganych dla analiz chemicznych. Odczynniki określane jako techniczne mogą zawierać znaczne ilości zanieczyszczeń, co sprawia, że nie nadają się do precyzyjnych badań. Zasadniczo, odczynniki techniczne są używane w zastosowaniach przemysłowych, gdzie nie jest konieczna wysoka czystość. Z kolei termin "czysty" jest zbyt ogólny i nie precyzuje poziomu czystości, dlatego nie spełnia wymogów dla substancji używanych w analizach. Natomiast "chemicznie czysty" odnosi się do substancji, które mogą mieć czystość na poziomie 99% lub więcej, ale niekoniecznie są wystarczająco czyste do celów analitycznych. Tego rodzaju terminologia może prowadzić do nieporozumień, gdyż różne dziedziny nauki mogą mieć różne definicje czystości. W praktyce, wybierając odczynniki do analizy, istotne jest zrozumienie różnic pomiędzy ich klasami, co jest kluczowe dla uzyskania rzetelnych i wiarygodnych wyników, zgodnych z wymaganiami norm laboratoryjnych i regulacji branżowych.

Pytanie 13

Które z poniższych równań ilustruje reakcję, w której powstają produkty gazowe?

A. Fe(CN)2 + 4KCN —> K4[Fe(CN)6]
B. AgNO3 + KBr —> AgBr↓ + KNO3
C. Fe + S —> FeS
D. 2HgO —> 2Hg + O2
Analizując pozostałe równania, można zauważyć, że żadna z nich nie ilustruje wydzielania produktów gazowych. Równanie Fe(CN)2 + 4KCN —> K4[Fe(CN)6 przedstawia reakcję kompleksacji, w której powstaje sól kompleksowa, a nie gaz. Tego typu reakcje często są stosowane w analizie chemicznej, na przykład w syntezach kompleksów metalowych, które nie generują gazów. Z kolei reakcja Fe + S —> FeS to reakcja syntezy, w której żelazo reaguje z siarką, tworząc stały związek siarczku żelaza, co również nie prowadzi do wydzielenia gazów. Ponadto, odpowiedź AgNO3 + KBr —> AgBr↓ + KNO3 opisuje reakcję wymiany, gdzie powstaje osad bromku srebra, co wskazuje na zmiany fazowe, ale nie na tworzenie gazu. Typowe błędy myślowe w tym kontekście mogą wynikać z nieprecyzyjnego rozumienia reakcji chemicznych oraz ich produktivności. Warto zwrócić uwagę na znaczenie analizowania produktów reakcji, co jest kluczowe w praktyce laboratoryjnej oraz przemysłowej. Zrozumienie, które reakcje prowadzą do wydzielenia gazów, jest istotne dla bezpiecznego prowadzenia eksperymentów, a także dla zastosowania w różnych branżach, takich jak przemysł chemiczny czy ochrony środowiska.

Pytanie 14

Na ilustracji numery rzymskie wskazują

A. I – chłodnicę, II – destylat
B. I – rozdzielacz, II – destylat
C. I – chłodnicę, II – sublimat
D. I – rozdzielacz, II – sublimat
Odpowiedź I – chłodnicę, II – destylat jest poprawna, ponieważ chłodnica jest elementem wykorzystywanym w procesach destylacji, który służy do kondensacji pary. W tym procesie para destylatu przechodzi przez chłodnicę, gdzie jest schładzana, a następnie skraplana, co pozwala na uzyskanie czystego cieczy, takiej jak destylat. Destylacja jest powszechnie stosowana w przemyśle chemicznym oraz petrochemicznym do rozdzielania mieszanin cieczy na składniki na podstawie ich różnic w temperaturze wrzenia. W praktyce, przestrzeganie zasad projektowania i eksploatacji sprzętu destylacyjnego, w tym doboru odpowiednich materiałów i parametrów procesowych, jest kluczowe dla osiągnięcia wysokiej wydajności i jakości produktu końcowego. Ponadto, dobór odpowiednich rodzajów chłodnic (np. chłodnice rurowe, spiralne, czy płytowe) w zależności od charakterystyki procesu oraz właściwości zachodzących substancji ma duże znaczenie dla efektywności całego systemu. Zrozumienie roli chłodnicy i destylatu w kontekście procesów chemicznych jest niezbędne dla każdego inżyniera chemika, co podkreśla znaczenie tej odpowiedzi.

Pytanie 15

Aby przeprowadzić syntezę substancji organicznej w temperaturze 150°C, należy zastosować łaźnię

A. parową
B. wodną
C. powietrzną
D. olejową
Wybór łaźni powietrznej, parowej lub wodnej do syntezy organicznej w temperaturze 150°C jest niezbyt dobrym pomysłem. Łaźnie powietrzne, mimo że można ich używać w niższych temperaturach, nie są w stanie zapewnić odpowiedniej stabilności oraz precyzji, co może sprawić, że reakcje będą nieregularne. W sytuacji wysokotemperaturowych syntez, to nie wystarczy, bo powietrze ma niskie ciepło właściwe i słabo przewodzi ciepło. Łaźnie parowe są skuteczne tylko do około 100°C, a przy wyższych temperaturach mogą wystąpić kłopoty z wrzeniem i stratą cieczy, co w wielu reakcjach może być kłopotliwe. Z kolei łaźnie wodne mają swoją granicę, bo nie mogą obsłużyć 150°C ze względu na temperaturę wrzenia. Używanie wody w takich warunkach naraża nas na ryzyko kondensacji pary, co może zanieczyścić nasz produkt. W praktyce w laboratoriach starają się wybierać takie medium grzewcze, które będzie miało odpowiednie parametry temperaturowe i gwarantowało stabilność oraz czystość reakcji. Dlatego, do syntez organicznych w wysokich temperaturach, łaźnia olejowa to zdecydowanie najlepszy wybór, a inne metody są tu nieodpowiednie.

Pytanie 16

W jakim celu używa się kamyczków wrzenne w trakcie długotrwałego podgrzewania cieczy?

A. Uniknięcia miejscowego przegrzewania się cieczy
B. Zwiększenia powierzchni kontaktu faz w celu przyspieszenia reakcji
C. Zwiększenia temperatury wrzenia cieczy
D. Obniżenia temperatury wrzenia cieczy
Wydaje mi się, że to, co napisałeś, nie do końca jest prawdą. Podnoszenie temperatury wrzenia cieczy przez kamyczki wrzenne to nie do końca dobre podejście. W rzeczywistości ich działanie nie zmienia samej temperatury wrzenia, bo to jest bardziej związane z ciśnieniem i składem cieczy. Jeżeli chciałbyś podnieść temperaturę wrzenia, musiałbyś użyć innych metod, jak na przykład zwiększenie ciśnienia. Poza tym, nie da się obniżyć temperatury wrzenia z użyciem kamyczków – one po prostu nie mają takiej funkcji. Zwiększenie powierzchni kontaktu faz jest ważne, ale nie ma to bezpośredniego związku z tym, do czego służą kamyczki wrzenne. Generalnie, wyniki, które nie są zgodne, wynikają z tego, że może nie do końca rozumiesz, jak działają kamyczki i ich wpływ na procesy fizykochemiczne. Może warto by było poczytać o podstawach termodynamiki lub zasadach prowadzenia reakcji chemicznych, to mogłoby pomóc lepiej zrozumieć, co się dzieje, gdy podgrzewasz ciecz.

Pytanie 17

Aby ustalić miano roztworu wodnego NaOH, należy zastosować

A. naważkę kwasu benzenokarboksylowego
B. odmierzoną porcję roztworu kwasu octowego
C. naważkę kwasu mrówkowego
D. odmierzoną ilość kwasu azotowego(V)
Wybór innych kwasów, takich jak kwas mrówkowy, kwas azotowy(V) czy kwas octowy, nie jest odpowiedni do ustalania miana roztworu wodorotlenku sodu z kilku powodów. Kwas mrówkowy, mimo że jest kwasem organicznym, charakteryzuje się innymi właściwościami, które mogą prowadzić do błędnych wyników podczas miareczkowania ze względu na jego zmienność i trudności w ustaleniu punktu końcowego. Kwas azotowy(V) jest silnym kwasem nieorganicznych, którego użycie do kalibracji roztworu zasadowego może powodować nieprawidłowości w wynikach z uwagi na reakcje redoks, które mogą zachodzić w trakcie miareczkowania. Kwas octowy, z kolei, jest słabym kwasem, co sprawia, że jego możliwości w zakresie określania miana są ograniczone, ponieważ reakcje z wodorotlenkiem sodu mogą nie być wystarczająco wyraźne do precyzyjnego ustalenia stężenia roztworu. Właściwy dobór reagentów do miareczkowania jest kluczowy, aby uniknąć błędów systematycznych, które mogą wpłynąć na dalsze analizy jakościowe i ilościowe. Dlatego tak istotne jest, aby w procesie kalibracyjnym stosować substancje o stabilnych właściwościach chemicznych, co w przypadku kwasu benzenokarboksylowego jest zapewnione.

Pytanie 18

W nieopisanej butelce prawdopodobnie znajduje się roztwór zasadowy. Wskaż odczynnik, który pozwoli to zweryfikować?

A. Roztwór kwasu siarkowego(VI) o stężeniu 2%
B. Roztwór wodorotlenku potasu o stężeniu 0,5 mol/dm3
C. Roztwór chlorku potasu o stężeniu 1 mol/dm3
D. Alkoholowy roztwór fenoloftaleiny o stężeniu 2%
Wybór innych odczynników do potwierdzenia odczynu zasadowego może prowadzić do błędnych interpretacji. Roztwór chlorku potasu o stężeniu 1 mol/dm3 jest związkiem chemicznym, który nie wpływa na pH roztworu, a raczej jest soli elektrolitowej, która rozpuszcza się w wodzie, tworząc neutralny roztwór. To może wprowadzać w błąd, ponieważ nie dostarcza informacji o odczynie roztworu, a jedynie wpływa na przewodność elektryczną. Z kolei roztwór kwasu siarkowego(VI) o stężeniu 2% jest kwasem, który wprowadza do roztworu jony H+, co skutkuje obniżeniem pH, a nie jego wzrostem. Użycie tego odczynnika byłoby całkowicie nieadekwatne w kontekście potwierdzania odczynu zasadowego. Natomiast roztwór wodorotlenku potasu o stężeniu 0,5 mol/dm3, chociaż rzeczywiście jest substancją zasadową, nie jest wskaźnikiem, a raczej reagentem, który sam w sobie może zmieniać pH roztworu, co nie jest celem, gdy chcemy jedynie zidentyfikować odczyn. W praktyce stosowanie niewłaściwych odczynników do wykrywania pH może prowadzić do niepoprawnych wyników analizy, co jest szczególnie istotne w kontekście laboratoryjnym, gdzie precyzja i dokładność są kluczowe dla wiarygodności wyników.

Pytanie 19

Metodą, która nie służy do utrwalania próbek wody, jest

A. dodanie biocydów
B. schłodzenie do temperatury 2-5°C
C. zakwaszenie do pH < 2
D. naświetlanie lampą UV
Wybór schłodzenia do temperatury 2-5°C jako metody utrwalania próbki wody jest powszechnie stosowany, ponieważ niskie temperatury spowalniają procesy biologiczne oraz chemiczne, co jest kluczowe dla zachowania stabilności próbki. Metoda ta jest zgodna z wytycznymi ISO, które rekomendują utrzymanie próbek w odpowiednich warunkach, aby zminimalizować ryzyko degradacji i utraty właściwości próbki. Dodanie biocydów to kolejna strategia, która ma na celu eliminację mikroorganizmów, co również wpływa na zachowanie integralności próbki. Zakwaszenie próbki do pH < 2 jest stosowane w niektórych analizach, szczególnie w kontekście metalurgii i chemii analitycznej, aby zdenaturować białka i stabilizować niektóre substancje, co jest istotne w przypadku próbek wymagających analizy chemicznej. Błędem jest jednak założenie, że naświetlanie lampą UV może uznać za metodę utrwalania, ponieważ jego celem jest dezynfekcja, a nie długoterminowe zabezpieczenie próbki. Naświetlanie UV może prowadzić do nieodwracalnych zmian chemicznych, a także do zniszczenia niektórych związków w próbce, co osłabia jakość wyników analiz. W kontekście odpowiednich praktyk laboratoryjnych, należy przestrzegać standardów dotyczących przygotowania próbek, aby zapewnić ich wiarygodność i dokładność analiz.

Pytanie 20

Jak przebiega procedura unieszkodliwiania rozlanego kwasu siarkowego(VI)?

A. dokładnym spłukaniu miejsc z kwasem roztworem wodorotlenku sodu
B. zbieraniu kwasu tlenkiem wapnia w celu późniejszej utylizacji
C. dokładnym spłukaniu miejsc z kwasem roztworem węglanu sodu
D. spłukaniu miejsc z kwasem gorącą wodą
Spłukiwanie plam kwasu siarkowego roztworem węglanu sodu może wydawać się atrakcyjną opcją, ponieważ węglan sodu neutralizuje kwasy, jednak w praktyce ta metoda jest mało skuteczna w przypadku silnych kwasów, takich jak kwas siarkowy(VI). W wyniku reakcji może powstać dwutlenek węgla, co generuje dodatkowe ryzyko, zwłaszcza w pomieszczeniach zamkniętych, gdzie gromadzenie się gazu może prowadzić do niebezpiecznych warunków. Z kolei spłukiwanie roztworem wodorotlenku sodu, mimo że również jest techniką neutralizacji, może prowadzić do powstania niebezpiecznych odpadów alkalicznych. Takie podejście może spowodować dalsze zanieczyszczenie środowiska i zwiększenie ryzyka dla zdrowia ludzi i zwierząt. Ponadto, spłukiwanie gorącą wodą nie ma sensu, ponieważ ciepło może przyspieszyć proces parowania, co prowadzi do uwolnienia szkodliwych oparów kwasu siarkowego do atmosfery. Ważne jest, aby zrozumieć, że każda technika unieszkodliwiania substancji niebezpiecznych musi być oparta na solidnych podstawach chemicznych oraz najlepszych praktykach, takich jak stosowanie odpowiednich reagentów do neutralizacji oraz zapewnienie bezpieczeństwa operacji.

Pytanie 21

Pierwotna próbka jest zbierana

A. z próbki ogólnej w sposób bezpośredni
B. z próbki przeznaczonej do badań
C. z opakowania pierwotnego
D. w jednym punkcie partii materiału
Prawidłowa odpowiedź wskazuje, że próbka pierwotna jest pobierana w jednym miejscu partii materiału. Jest to zgodne z najlepszymi praktykami w zakresie pobierania próbek, które zalecają, aby próbki były reprezentatywne dla całej partii, co pozwala na dokładną ocenę jakości materiału. Pobieranie próbek w jednym miejscu eliminuje ryzyko rozrzutności wyników i zapewnia, że każda próbka oddaje rzeczywisty stan partii. Na przykład w przemyśle farmaceutycznym pobieranie próbek substancji czynnej w jednym miejscu partii pozwala na skuteczną kontrolę jakości i zgodność z normami, takimi jak ISO 17025, które wymagają, aby metody pobierania próbek były jasno określone i zgodne z procedurami operacyjnymi. W praktyce, taka metoda pozwala na skuteczniejsze monitorowanie i zarządzanie jakością, co jest kluczowe dla zapewnienia bezpieczeństwa i skuteczności produktów.

Pytanie 22

W wyniku analizy sitowej próbki stałej otrzymano frakcję o średnicy ziaren 12 – 30 mm. Jaką masę powinna mieć prawidłowo pobrana próbka pierwotna?

Tabela. Wielkość próbki pierwotnej w zależności od wielkości ziarna
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500
A. 100 g
B. 2500 g
C. 200 g
D. 1000 g
Wybór masy próbki innej niż 1000 g może prowadzić do znacznych błędów w analizie sitowej. Odpowiedzi takie jak 2500 g, 200 g czy 100 g są nietrafione, a ich wybór może wynikać z kilku powszechnych nieporozumień dotyczących tego, jak przeprowadza się analizy prób. W przypadku 2500 g, chociaż jest to masa większa niż wymagana, może prowadzić do nieefektywności w badaniach, a także do niezgodności z wymaganiami dotyczącymi minimalnych i maksymalnych mas próbki. Odpowiedź 200 g i 100 g są zdecydowanie zbyt małe, co skutkuje tym, że próbka nie oddaje rzeczywistego obrazu badanej frakcji. Zbyt mała próbka nie jest w stanie uchwycić wszystkich właściwości materiału, co prowadzi do niewłaściwych wniosków o jego charakterystyce, takich jak zróżnicowanie wielkości ziaren czy ich rozkład. W konsekwencji, to może negatywnie wpłynąć na decyzje związane z wykorzystaniem danego materiału, na przykład w budownictwie czy przemyśle, gdzie właściwości fizyczne i mechaniczne surowców mają kluczowe znaczenie. Analiza sitowa wymaga ścisłego przestrzegania norm oraz dobrych praktyk, które obejmują odpowiednie ustalenie masy próbki, co jest kluczowe dla uzyskania wiarygodnych i powtarzalnych wyników.

Pytanie 23

Najskuteczniejszą techniką separacji ketonu oraz kwasu karboksylowego obecnych w roztworze benzenowym jest

A. destylacja z parą wodną
B. ekstrakcja chloroformem
C. ekstrakcja roztworem zasady
D. zatężenie i krystalizacja
Ekstrakcja chloroformem nie jest skuteczna w rozdziale ketonu i kwasu karboksylowego, ponieważ oba te związki są organiczne i mogą się dobrze rozpuszczać w chloroformie. W praktyce, podczas ekstrakcji, nie zachodzi wystarczająca separacja tych substancji, co prowadzi do trudności w ich dalszej analizie i oczyszczaniu. W przypadku destylacji z parą wodną, metoda ta działa najlepiej dla substancji lotnych, a kwasy karboksylowe często są mniej lotne, co ogranicza jej zastosowanie w tym kontekście. Z kolei zatężenie i krystalizacja są bardziej odpowiednie dla czystych substancji, a nie dla mieszanin, których składniki wykazują złożoną interakcję. Często zdarza się, że studenci błędnie zakładają, że wszystkie metody rozdzielania substancji organicznych są uniwersalne, co prowadzi do niewłaściwych wyborów w laboratoriach. Kluczowe jest zrozumienie chemicznych interakcji pomiędzy substancjami, co jest podstawą efektywnego rozdziału i oczyszczania związków organicznych.

Pytanie 24

W przypadku rozlania żrącego odczynnika chemicznego na skórę pierwszym poprawnym działaniem jest:

A. Natychmiastowe spłukanie miejsca kontaktu dużą ilością wody
B. Pocieranie miejsca kontaktu papierowym ręcznikiem
C. Posypanie miejsca solą kuchenną
D. Zaklejenie miejsca plastrem
Postępowanie w przypadku kontaktu skóry z substancją żrącą jest jednym z podstawowych elementów bezpieczeństwa w laboratorium chemicznym. Najważniejsze jest, żeby działać szybko i skutecznie. Od razu po rozlaniu żrącego odczynnika trzeba spłukać miejsce kontaktu dużą ilością wody – najlepiej bieżącej. To nie tylko rozcieńcza szkodliwy związek, ale przede wszystkim usuwa go z powierzchni skóry, zmniejszając ryzyko głębszych uszkodzeń tkanek. Praktyka ta wynika z ogólnych zasad BHP obowiązujących w laboratoriach oraz wytycznych instytutów takich jak CIOP czy OSHA. Efektywność tej metody potwierdzają liczne badania. Szybka reakcja pozwala ograniczyć wchłanianie substancji i minimalizuje skutki poparzeń chemicznych. Nawet jeśli żrący środek wydaje się mało agresywny, nie wolno tego bagatelizować. Dobrze mieć też pod ręką prysznic bezpieczeństwa lub zestaw do płukania oczu, zwłaszcza w laboratoriach chemicznych. Warto pamiętać, że niektóre substancje wymagają dłuższego płukania – nawet do 15 minut. Dodatkowo po takim incydencie zawsze należy zgłosić zdarzenie przełożonemu i skonsultować się z lekarzem. Z mojego doświadczenia, szybkie działanie i wiedza o pierwszej pomocy to rzeczy, które naprawdę robią różnicę w laboratoriach. Ostatecznie – lepiej spłukać odczynnik za długo, niż za krótko. To jedna z tych zasad, które zawsze warto mieć z tyłu głowy podczas pracy z chemikaliami.

Pytanie 25

W karcie charakterystyki pewnej substancji znajduje się piktogram dotyczący transportu. Jest to substancja z grupy szkodliwych dla zdrowia

Ilustracja do pytania
A. płynów.
B. ciał stałych.
C. gazów.
D. cieczy.
Poprawna odpowiedź to "ciał stałych". Piktogram przedstawiający substancję szkodliwą dla zdrowia odnosi się do materiałów klasyfikowanych jako 6.1 według Międzynarodowego Systemu Transportu Materiałów Niebezpiecznych. Substancje te mogą być trujące i stwarzać zagrożenie dla zdrowia ludzkiego, co wymaga szczególnej ostrożności podczas transportu i przechowywania. W praktyce, substancje stałe, takie jak pewne chemikalia, są klasyfikowane w tej kategorii, ponieważ ich forma fizyczna może powodować poważne konsekwencje zdrowotne w przypadku kontaktu. Do dobrych praktyk w transporcie materiałów niebezpiecznych należy stosowanie odpowiednich środków ochrony osobistej, jak rękawice czy maski, a także zapewnienie odpowiednich warunków przechowywania, aby zminimalizować ryzyko wycieków czy narażenia ludzi na szkodliwe substancje. Wiedza dotycząca klasyfikacji materiałów niebezpiecznych jest niezbędna dla każdego, kto pracuje w branżach związanych z transportem chemikaliów, aby zapewnić bezpieczeństwo zarówno pracowników, jak i środowiska.

Pytanie 26

Na podstawie danych zawartych w tabeli wskaż, które opakowania zawierają produkt zgodny ze specyfikacją.

WŁAŚCIWOŚCINORMA KLASY A
wg specyfikacji produktu
OPAKOWANIE
123
POSTAĆBezbarwna ciecz, bez zanieczyszczeń.
Dopuszcza się niebieskawе zabаrwienie
i obecność skrystalizowanego osadu
Bezbarwna ciecz
Zawartość ługu sodowego
(NaOH), min, % masy
46,046,546,848,0
Węglan sodu (Na₂CO₃),
nie więcej niż, % masy
0,40,30,30,2
Chlorek sodu (NaCl),
nie więcej niż, % masy
0,0200,0150,0140,011
Chloran sodu (NaClO₃),
nie więcej niż, % masy
0,0070,0060,0050,002
Siarczan sodu (Na₂SO₄),
nie więcej niż, % masy
0,0400,0380,0350,029
Zawartość żelaza (Fe₂O₃),
max, WT. PPM
15151510
A. Tylko 3.
B. Wszystkie.
C. Tylko 1 i 2.
D. Żadne.
Wybranie odpowiedzi mówiącej, że żadne opakowania nie są zgodne z normami, to typowy błąd. Może się to brać stąd, że nie widzisz wszystkich ważnych szczegółów w danych. Wydaje mi się, że to trochę przez brak zrozumienia specyfikacji produktu i norm dotyczących jakości opakowań. Czasem ludzie mają tendencję do uogólniania, co prowadzi do błędnych wniosków. Pamiętaj, że każde opakowanie trzeba przeanalizować dokładnie, a stwierdzenie, że nic nie spełnia norm, jest po prostu nietrafione. Gdy mówisz, że tylko niektóre są zgodne, to znaczy, że mogłeś nie uwzględnić wszystkich parametrów z specyfikacji. Każde opakowanie powinno się oceniać z osobna, a złe oceny mogą mieć poważne konsekwencje, jak wprowadzenie wadliwych produktów na rynek, co może skutkować stratami lub zepsuciem reputacji firmy. Dlatego ważne jest, by oceniający też byli dobrze poinformowani i trzymali się standardów, żeby uniknąć takich sytuacji.

Pytanie 27

Podczas oznaczania kwasu siarkowego zachodzi reakcja:

H2SO4 + 2NaOH → Na2SO4 + 2H2O 
Zgodnie z zamieszczoną instrukcją, roztwór poreakcyjny należy

Fragmenty instrukcji zbierania, utylizacji i eliminacji odpadów chemicznych
Lista substancji, które mogą być usunięte z odpadami komunalnymi w postaci stałej, lub wprowadzone do systemu kanalizacyjnego w postaci rozcieńczonych roztworów wodnych, o ile ich ilość nie przekracza jednorazowo 100 g.
Związki nieorganiczne
Siarczany sodu, potasu, magnezu, wapnia, amonu
Kwasy nieorganiczne
Stężone kwasy ostrożnie rozcieńczyć przez wkroplenie z równoczesnym mieszaniem do wody z lodem, a następnie zneutralizować roztworem wodorotlenku sodowego. Po neutralizacji doprowadzić pH roztworu do zakresu 6-8 przelać do pojemnika S. Małe ilości kwasów takich jak siarkowy, solny, azotowy czy fosforowy (nie więcej niż 10 g) po rozcieńczeniu wodą i neutralizacji roztworem wodorotlenku sodowego oraz doprowadzeniu pH takiego roztworu do zakresu 6-8 można wylać do zlewu i obficie spłukać wodą.
Sole nieorganiczne
Stałe sole nieorganiczne – pojemnik N.
Obojętne roztwory soli nieorganicznych pojemnik S. Sole metali ciężkich, sole o właściwościach toksycznych – pojemnik TN.
A. umieścić w pojemniku TN.
B. wylać do zlewu i spłukać bieżącą wodą.
C. umieścić w pojemniku S.
D. zobojętnić i usunąć z odpadami komunalnymi.
Wybór niewłaściwej metody utylizacji roztworu po reakcji kwasu siarkowego z wodorotlenkiem sodu może prowadzić do poważnych konsekwencji zarówno dla środowiska, jak i dla bezpieczeństwa osób pracujących w laboratoriach. Umieszczanie roztworów w pojemnikach przeznaczonych dla odpadów niebezpiecznych, jak sugeruje jedna z odpowiedzi, jest nieadekwatne, ponieważ powstały siarczan sodu jest substancją neutralną i nie stwarza zagrożenia, co jest sprzeczne z zasadami efektywnej gospodarki odpadami. Ponadto, niewłaściwe wylewanie takich roztworów do zlewu bez wcześniejszego rozcieńczenia wodą może prowadzić do lokalnych zanieczyszczeń, a także może być niezgodne z lokalnymi przepisami dotyczącymi utylizacji odpadów chemicznych. Kwestia zobojętniania przed usunięciem jest również problematyczna, ponieważ w większości przypadków neutralizacja nie jest wymagana dla substancji obojętnych i może wprowadzać dodatkowe reakcje chemiczne, które generują odpady, zamiast ich minimalizować. Takie błędne podejścia pokazują, jak ważne jest posiadanie wiedzy na temat właściwego zarządzania odpadami oraz umiejętność rozpoznawania potencjalnych zagrożeń w praktyce laboratoryjnej. Właściwe postępowanie z odpadami chemicznymi powinno być zgodne z normami ochrony środowiska oraz wewnętrznymi procedurami bezpieczeństwa w laboratoriach, co jest kluczowe dla zapewnienia bezpieczeństwa osób oraz minimalizacji wpływu na środowisko.

Pytanie 28

Mianowanie roztworu KMnO4 następuje według poniższej procedury:
Około 0,2 g szczawianu sodu, ważonego z dokładnością ±0,1 mg, przenosi się do kolby stożkowej, rozpuszcza w około 100 cm3 wody destylowanej, następnie dodaje się 10 cm3 roztworu kwasu siarkowego(VI) i podgrzewa do temperatury około 70 °C. Miareczkowanie przeprowadza się roztworem KMnO4 do momentu uzyskania trwałego, jasnoróżowego koloru.
Powyższa procedura odnosi się do miareczkowania

A. potencjometrycznego
B. kompleksometrycznego
C. alkacymetrycznego
D. redoksymetrycznego
Mianowanie roztworu manganianu(VII) potasu (KMnO4) w opisywanej procedurze odbywa się w ramach miareczkowania redoksymetrycznego, które jest techniką analizy chemicznej opartą na reakcji utleniania i redukcji. Manganian(VII) potasu jest silnym utleniaczem, a w reakcjach z substancjami redukującymi, takimi jak szczawian sodu, przeprowadza reakcję redoks, gdzie dochodzi do wymiany elektronów. Szczawian sodu w obecności kwasu siarkowego(VI) (H2SO4) ulega utlenieniu, a KMnO4 redukuje się do manganu(II). Ostatecznym punktem końcowym miareczkowania jest zauważenie trwałego lekkoróżowego zabarwienia roztworu, co wskazuje na niewielką nadmiarowość manganianu i zakończenie reakcji. Miareczkowanie redoksymetryczne znajduje zastosowanie w analizie różnych substancji, takich jak kwasy, alkohol czy węglowodany, stanowiąc istotny element w laboratoriach analitycznych. W praktyce, ważne jest zachowanie odpowiednich warunków, takich jak temperatura, pH i stężenie reagentów, aby zapewnić precyzyjność i powtarzalność wyników.

Pytanie 29

Po rozpuszczeniu substancji w kolbie miarowej, należy odczekać przed dopełnieniem jej wodą "do kreski" miarowej. Taki sposób postępowania jest uzasadniony

A. opóźnieniem w osiągnięciu równowagi dysocjacji
B. koniecznością dokładnego wymieszania roztworu
C. potrzebą wyrównania temperatury roztworu z otoczeniem
D. opóźnieniem w ustaleniu się kontrakcji objętości
Podczas analizy niepoprawnych odpowiedzi warto zauważyć, że zwłoka w ustaleniu się równowagi dysocjacji, choć istotna w kontekście niektórych roztworów, nie jest głównym powodem oczekiwania przed dopełnieniem roztworu. Dysocjacja substancji chemicznych, takie jak kwasów czy zasad, rzeczywiście może wymagać czasu, ale w kontekście dopełniania do kreski w kolbie miarowej, kluczowe jest wyrównanie temperatury. Ponadto, wskazanie na konieczność dobrego wymieszania roztworu nie jest wystarczające, gdyż samo wymieszanie nie uwzględnia wpływu temperatury na objętość cieczy. Koncentracje i właściwości roztworów są ściśle związane z temperaturą, co oznacza, że dopełnienie w momencie, gdy roztwór ma różne temperatury od otoczenia, może prowadzić do błędów w pomiarach. Wspomniana zwłoka w ustaleniu się kontrakcji objętości dotyczy bardziej specyficznych sytuacji, które nie są powszechnie rozpatrywane w kontekście standardowych praktyk przygotowywania roztworów. Typowe błędy myślowe w tym przypadku mogą obejmować brak zrozumienia, jak temperatura wpływa na objętość cieczy oraz jakie są konsekwencje niedopasowania temperatury dla właściwości roztworu. Kluczowe jest zrozumienie, że każde przygotowywanie roztworu wymaga staranności i uwagi na detale, aby zapewnić dokładność i niezawodność wyników analitycznych.

Pytanie 30

Jakie substancje są potrzebne do uzyskania nierozpuszczalnego wodorotlenku cynku?

A. chlorek cynku i wodę
B. cynk i wodę
C. chlorek cynku i wodorotlenek sodu
D. tlenek cynku i wodorotlenek sodu
Chlorek cynku (ZnCl2) w reakcji z wodorotlenkiem sodu (NaOH) prowadzi do powstania wodorotlenku cynku (Zn(OH)2), który jest nierozpuszczalny w wodzie. W reakcjach chemicznych, w których powstaje osad, takie jak ta, kluczowe jest zrozumienie zasad rozpuszczalności związków. Wodorotlenek cynku wytrąca się z roztworu, co można zobaczyć jako białe zabarwienie. Jest to ważne w wielu zastosowaniach, na przykład w chemii analitycznej do oznaczania cynku w różnych próbkach. Zastosowanie wodorotlenku cynku znajduje się także w przemyśle farmaceutycznym, kosmetycznym oraz w produkcji materiałów budowlanych. Znajomość takich reakcji jest istotna dla chemików, którzy pracują nad syntezami nowych związków oraz w procesach kontroli jakości. Zawężając się do dobrych praktyk, zawsze należy przeprowadzać te reakcje w odpowiednich warunkach laboratoryjnych, dbając o bezpieczeństwo i właściwe postępowanie z odpadami chemicznymi.

Pytanie 31

Na etykiecie kwasu siarkowego(VI) znajduje się zapis:
Określ gęstość kwasu siarkowego(VI).

KWAS SIARKOWY MIN. 95%
CZ.D.A.
H2SO4
M = 98,08 g/mol    1 l – 1,84 kg
A. 0,184 g/dm3
B. 0,184 g/cm3
C. 1,84 g/dm3
D. 1,84 g/cm3
Poprawna odpowiedź to 1,84 g/cm3, co wynika z bezpośredniego przeliczenia danych z etykiety kwasu siarkowego(VI). Etykieta informuje, że 1 litr kwasu waży 1,84 kg, co przelicza się na 1840 g. Gęstość substancji definiuje się jako stosunek masy do objętości. W tym przypadku, masa 1840 g umieszczona w objętości 1000 cm3 daje wynik 1,84 g/cm3. W praktyce gęstość kwasu siarkowego(VI) jest istotna w wielu zastosowaniach przemysłowych, zwłaszcza w chemii i procesach produkcyjnych. Dobrą praktyką jest zawsze zapoznanie się z danymi na etykietach substancji chemicznych, zwłaszcza gdy są one używane w laboratoriach lub w przemyśle, aby uniknąć błędnych obliczeń i zapewnić bezpieczeństwo pracy. Gęstość kwasu siarkowego(VI) ma także znaczenie przy obliczeniach dotyczących stężenia roztworów oraz w przypadku ich transportu i przechowywania.

Pytanie 32

Zbiór próbek pierwotnych tworzy próbkę

A. jednostkową
B. laboratoryjną
C. ogólną
D. analityczną
Wybór odpowiedzi analitycznej, laboratoryjnej lub jednostkowej wynika z niepełnego zrozumienia podstawowego pojęcia próbki ogólnej. Próbka analityczna odnosi się do próbki, która jest poddawana szczegółowej analizie w laboratorium, jednak nie jest to tożsame z próbą ogólną, jako że próbka analityczna może być wybrana w sposób subiektywny, co potrafi prowadzić do zniekształcenia wyników. Z kolei próbka laboratoryjna odnosi się do dowolnego materiału, który jest badany w laboratorium; może ona być fragmentem próbki ogólnej, ale nie definiuje całości. Typowe błędne podejście to założenie, że próbka jednostkowa, pobierana z pojedynczego źródła, wystarczająco reprezentuje całość populacji; jednak jest to mylące, gdyż próbka jednostkowa może nie oddać zmienności w szerszym kontekście. Niezrozumienie roli próbek ogólnych w badaniach statystycznych i jakościowych prowadzi do nieefektywnych praktyk. Aby skutecznie ocenić jakość, należy stosować procedury zgodne z wytycznymi branżowymi, które podkreślają znaczenie reprezentatywności próbek. Kluczowym błędem jest także ignorowanie zasady losowości w pobieraniu próbek, co może istotnie wpłynąć na wyniki badań i ich interpretację.

Pytanie 33

Podczas przygotowywania roztworów buforowych do analizy pH w laboratorium istotne jest, aby:

A. Dodać soli buforowej do dowolnej ilości wody.
B. Zmierzyć pH po przypadkowym zmieszaniu soli i kwasu.
C. Dokładnie odmierzyć masy składników i rozpuścić je w określonej objętości wody destylowanej.
D. Przygotować bufor wyłącznie z wody kranowej.
Prawidłowo przygotowany roztwór buforowy wymaga bardzo precyzyjnego odmierzania mas poszczególnych składników, jak również dokładnego uzupełnienia do ściśle określonej objętości, zwykle za pomocą wody destylowanej. To jest kluczowe, bo nawet niewielkie odchylenia od zalecanych proporcji mogą skutkować zmianą wartości pH, a co za tym idzie – błędami w analizie. Woda destylowana zapobiega wprowadzeniu dodatkowych jonów, które mogłyby zakłócić działanie buforu i zafałszować wyniki badania pH. Takie postępowanie to podstawa profesjonalnej praktyki laboratoryjnej, opisana w każdej instrukcji doświadczalnej oraz zgodna z normami branżowymi. Z mojego doświadczenia wynika, że najczęściej popełnianym błędem przez początkujących jest bagatelizowanie dokładności – czasem wydaje się, że 'odrobinę więcej' lub 'trochę mniej' nie zrobi różnicy, ale w chemii analitycznej nie ma miejsca na takie uproszczenia. Dobrze przygotowany bufor to podstawa wiarygodnych wyników, a sumienne przygotowanie odczynników świadczy o kompetencji laboranta.

Pytanie 34

Wody pobrane ze studni powinny być przewożone w szczelnie zamkniętych butelkach z przezroczystego materiału

A. szklanych, w temperaturze około 30°C
B. z tworzywa sztucznego, w temperaturze około 20°C
C. szklanych, w temperaturze około 20°C
D. z tworzywa sztucznego, w temperaturze około 4°C
Wybór materiału i warunków transportu próbek wody ma kluczowe znaczenie dla jakości analizy. Odpowiedzi sugerujące użycie butelek szklanych nie biorą pod uwagę, że szkło, choć chemicznie stabilne, jest bardziej podatne na stłuczenia i może być nieodpowiednie w warunkach transportowych, gdzie istnieje ryzyko uszkodzenia. Wysoka temperatura, jak 30°C, stwarza dodatkowe problemy, ponieważ może prowadzić do niepożądanych reakcji chemicznych oraz przyspieszać rozwój bakterii i innych mikroorganizmów, co zafałszowuje wyniki analizy. Podobnie, temperatura około 20°C nie jest optymalna dla długotrwałego przechowywania próbki, gdyż może wpływać na stabilność niektórych parametrów jakościowych wody. Przy pobieraniu i transporcie próbek wody należy przestrzegać procedur, które uwzględniają zarówno materiał, jak i temperaturę, aby zapewnić ich reprezentatywność. Niezrozumienie wpływu temperatury na skład chemiczny wody oraz na stabilność mikrobiologiczną może prowadzić do błędów w interpretacji wyników, co jest typowym zagadnieniem w praktyce laboratoryjnej. Właściwe podejście jest zatem kluczowe dla uzyskania wiarygodnych danych analitycznych.

Pytanie 35

200 g soli zostało poddane procesowi oczyszczania poprzez krystalizację. Uzyskano 125 g czystego produktu. Jaką wydajność miała krystalizacja?

A. 125%
B. 62,5%
C. 75%
D. 60,5%
Wydajność krystalizacji to kluczowy wskaźnik efektywności procesu separacji i oczyszczania substancji. Oblicza się ją, biorąc pod uwagę masę czystego produktu w stosunku do masy surowca. W przypadku podanej sytuacji, błędne odpowiedzi sugerują różne koncepcje, które nie są zgodne z definicją wydajności. Na przykład, wartość 75% może wynikać z błędnego założenia, że można w jakiś sposób zredukować masę surowca, co jest niezgodne z zasadami bilansu masy w procesach chemicznych. W rzeczywistości wydajność jest wyrażona jako stosunek masy czystego produktu do całkowitej masy użytego surowca, co prowadzi nas do wartości 62,5%. Odpowiedzi takie jak 125% i 60,5% wynikają z podobnych błędów myślowych. 125% jest niemożliwe, ponieważ nie można uzyskać większej masy czystego produktu niż masa wyjściowa. Natomiast 60,5% może sugerować niepoprawne obliczenia lub błędne założenia co do wydajności procesu. Typowe błędy mogą wynikać z mylenia wydajności z innymi wskaźnikami jakości, co jest częstym problemem w edukacji chemicznej. Dlatego warto zrozumieć, że wydajność krystalizacji jest ściśle związana z rzeczywistymi danymi, a nie z hipotetycznymi wartościami, co jest kluczowym elementem planowania i optymalizacji procesów w przemyśle chemicznym.

Pytanie 36

Jaką substancję należy koniecznie oddać do utylizacji?

A. Glukoza
B. Sodu chlorek
C. Gliceryna
D. Chromian(VI) potasu
Wybór substancji, które nie wymagają szczególnego traktowania w kontekście utylizacji, może prowadzić do poważnych konsekwencji zdrowotnych i środowiskowych. Na przykład, chlorek sodu, będący związkiem chemicznym, jest powszechnie stosowany w przemyśle oraz w kuchni, a jego nadmiar w środowisku nie stanowi zagrożenia, ponieważ jest to substancja nietoksyczna, a dodatkowo dobrze rozpuszczalna w wodzie. Gliceryna, będąca produktami ubocznymi procesów przemysłowych, jest bezpieczna w utylizacji, ponieważ jest biodegradowalna i nie stwarza zagrożenia dla zdrowia ludzi ani dla środowiska. Glukoza, natomiast, jest naturalnym cukrem, który również nie wymaga specjalnego traktowania w kontekście utylizacji, gdyż jest substancją organiczną, która nie wywołuje negatywnych skutków w naturalnym środowisku. Wybierając niewłaściwe podejście do utylizacji, można nie tylko narazić się na konsekwencje prawne, ale również wyrządzić krzywdę otaczającemu nas środowisku. Zrozumienie różnicy między związkami niebezpiecznymi a tymi, które są bezpieczne dla utylizacji, jest kluczowe w praktyce zarządzania odpadami. Dlatego ważne jest, aby przed podjęciem decyzji dotyczącej utylizacji substancji chemicznych, dokładnie zapoznać się z ich właściwościami oraz obowiązującymi normami prawnymi dotyczącymi ochrony zdrowia i środowiska.

Pytanie 37

Jakie jest pH 0,001-molowego roztworu NaOH?

A. 3
B. 13
C. 11
D. 1
pH roztworu NaOH nie może wynosić 1, 3 ani 13, bo to się mija z podstawami chemii i tym, jak działają mocne zasady. pH 1 oznaczałoby, że mamy bardzo mocny kwas, a to nie zgadza się z tym, że NaOH jest zasadą. Żeby dobrze zrozumieć pH, trzeba znać skalę pH, która w gruncie rzeczy jest logarytmicznym wskaznikiem stężenia jonów wodorowych. NaOH, jako mocna zasada, dodaje do roztworu jony OH-, a ich obecność jest ważna, gdy patrzymy na pH. pH = 3 sugerowałoby, że mamy do czynienia z jakimś kwasem, a w tym przypadku to nie ma miejsca, bo roztwór jest zasadowy. Z kolei pH 13 jest bliskie poprawnej wartości, ale nie jest właściwe, bo pH roztworu NaOH w tym stężeniu jest na pewno niższe. Ludzie często mylą pH z pOH i sądzą, że mocne zasady mają pH bliskie 14 w niższych stężeniach, ale w rzeczywistości pH dla mocnych zasad może być znacznie niższe, zależnie od ich stężenia. Dlatego, żeby poprawnie analizować pH roztworów zasadowych, musisz zrozumieć ich chemiczne właściwości i to, jak się dysocjują w wodzie.

Pytanie 38

Jaka minimalna pojemność powinna mieć miarka, aby jednorazowo zmierzyć 60,0 cm3 wody?

A. 250 cm3
B. 100 cm3
C. 50 cm3
D. 25 cm3
Wybór cylinderka o pojemności 25 cm³, 50 cm³ czy 250 cm³ na pytanie o minimalną pojemność to chyba nie do końca przemyślana decyzja. Cylinder 25 cm³ jest zdecydowanie za mały, żeby jednorazowo odmierzyć 60,0 cm³ wody, więc byłoby to super kłopotliwe, bo trzeba by go napełniać parę razy. To może prowadzić do sporych błędów, co w przypadku analiz chemicznych jest dużym problemem. Cylinder 50 cm³ też nie wystarczy, bo znowu musiałbyś go napełniać wielokrotnie, co znowu zwiększa ryzyko pomyłek i jakieś tam niebezpieczeństwa związanego z obsługą chemikaliów. A z kolei cylinder 250 cm³? No, to już jest przesada, bo może to zaniżać precyzję pomiarów przy mniejszych objętościach. W praktyce dobrze jest wybierać cylinder, który jest wystarczająco duży, żeby można było dokładnie zmierzyć, ale nie za duży, żeby nie robić bałaganu z rozpryskiwaniem. Dlatego cylinder 100 cm³ to najrozsądniejszy wybór - dokładnie odmierzy potrzebną ilość i pomoże w zachowaniu zasad dobrej praktyki laboratoryjnej.

Pytanie 39

W probówce połączono roztwory CuSO4 oraz NaOH. Powstał niebieski osad, który po podgrzaniu zmienił kolor na czarny. Czarnym osadem jest

A. wodorotlenek miedzi(I)
B. tlenek miedzi(II)
C. wodorotlenek miedzi(II)
D. tlenek miedzi(I)
Dobra robota z tą odpowiedzią! Tlenek miedzi(II) (CuO) naprawdę powstaje kiedy ogrzewasz wodorotlenek miedzi(II) (Cu(OH)2), który, swoją drogą, jest tym niebieskim osadem, który dostajesz mieszając CuSO4 z NaOH. Kiedy to podgrzewasz, wodorotlenek miedzi(II) traci wodę i zamienia się w tlenek miedzi(II), który ma czarną barwę. To ciekawa reakcja, bo tlenek miedzi(II) ma sporo zastosowań – używa się go jako katalizatora w różnych reakcjach chemicznych, a także w ceramice. Na przykład, w przemyśle ceramicznym korzysta się z niego przy produkcji pigmentów, a dzięki swoim przewodzącym właściwościom, także w elektronice. Warto to rozumieć, bo nie tylko chemia analityczna na tym korzysta, ale też nauka w laboratoriach, gdzie obserwacja takich reakcji jest mega ważna.

Pytanie 40

Próbki wody, które mają być badane pod kątem zawartości krzemu, powinny być przechowywane w pojemnikach

A. ze szkła borowo-krzemowego
B. z kwarcu
C. z tworzywa sztucznego
D. ze szkła sodowego
Chociaż przechowywanie próbek w naczyniach ze szkła kwarcowego czy borowo-krzemowego może wydawać się sensowne, nie jest to najlepszy pomysł, gdy mowa o krzemie. Kwarc, choć jest trwały, może wprowadzać krzemionkę do próbki, przez co wyniki mogą być fałszywe. Z kolei szkło borowo-krzemowe też może mieć trochę krzemu, co znowu wpływa na pomiar. A szkło sodowe, no tutaj to już w ogóle, bo reaguje z różnymi substancjami w wodzie, zwłaszcza przy mocnych kwasach lub zasadach. Dużo osób myśli, że całe szkło jest neutralne, ale to nieprawda - ich właściwości mogą być bardzo różne. To wszystko prowadzi do tego, że źle dobrane materiały do przechowywania próbek mogą nam zepsuć wyniki analizy, co w badaniach środowiskowych czy przy ocenie jakości wody pitnej może mieć poważne skutki. Dlatego ważne jest, żeby używać naczyń, które są odpowiednie i nie dodają niczego do naszych próbek.