Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 14 maja 2025 19:14
  • Data zakończenia: 14 maja 2025 19:31

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby przygotować roztwór wzorcowy potrzebny do oznaczania miana, konieczne jest użycie odczynnika chemicznego o czystości przynajmniej

A. czystości drugorzędnej analitycznej
B. czystości chemicznej
C. czystości
D. spektralnej czystości
Odpowiedź 'cz.d.a.' oznacza 'czystość do analizy', co jest kluczowe w kontekście przygotowania roztworu wzorcowego. Użycie odczynnika chemicznego o czystości co najmniej cz.d.a. zapewnia, że jego skład chemiczny jest znany i dobrze określony, co jest fundamentalne dla uzyskania wiarygodnych wyników analiz chemicznych. W praktyce, zastosowanie reagentów o tej czystości jest powszechnie wymagane w laboratoriach analitycznych, ponieważ wszelkie zanieczyszczenia mogą prowadzić do błędnych wyników pomiarów. Na przykład w titracji, gdzie miano substancji analitycznej jest określane na podstawie reakcji z roztworem wzorcowym, jakiekolwiek zanieczyszczenie może wpływać na ilość środka titrującego potrzebnego do reakcji. Dodatkowo, standardy takie jak ISO czy ASTM podkreślają znaczenie użycia reagentów wysokiej czystości dla zapewnienia powtarzalności i dokładności analiz, co jest niezbędne w badaniach jakościowych i ilościowych. Dlatego stosowanie reagentów o czystości cz.d.a. jest nie tylko praktyką laboratoryjną, ale również wymogiem zgodności z międzynarodowymi standardami jakości.

Pytanie 2

Wody pobrane ze studni powinny być przewożone w szczelnie zamkniętych butelkach z przezroczystego materiału

A. szklanych, w temperaturze około 20°C
B. z tworzywa sztucznego, w temperaturze około 20°C
C. z tworzywa sztucznego, w temperaturze około 4°C
D. szklanych, w temperaturze około 30°C
Odpowiedź dotycząca użycia butelek z tworzywa sztucznego, w temperaturze około 4°C, jest zgodna z zaleceniami dotyczącymi transportu próbek wody. Tworzywo sztuczne, takie jak polipropylen lub PET, jest preferowane, ponieważ jest lekkie, odporne na pęknięcia i dobrze zabezpiecza próbki przed zanieczyszczeniami. Przechowywanie próbek w niskiej temperaturze, około 4°C, minimalizuje rozwój mikroorganizmów i stabilizuje skład chemiczny wody, co jest kluczowe dla wiarygodności analizy. W praktyce zaleca się, aby próbki były transportowane w ciągu maksymalnie 24 godzin od pobrania, aby zminimalizować ryzyko zmiany parametrów analitycznych. Dobre praktyki laboratoria wodociągowego wskazują, że każda próbka powinna być odpowiednio oznakowana i zarejestrowana, co ułatwia późniejsze śledzenie wyników analizy. W takich sytuacjach warto korzystać z wytycznych takich jak Standard ISO 5667 dotyczący pobierania próbek wody, co zapewnia jakość i wiarygodność uzyskiwanych danych.

Pytanie 3

W karcie charakterystyki pewnej substancji znajduje się piktogram dotyczący transportu. Jest to substancja z grupy szkodliwych dla zdrowia

Ilustracja do pytania
A. płynów.
B. gazów.
C. cieczy.
D. ciał stałych.
Wybór odpowiedzi związanej z gazami, cieczami czy innymi substancjami może być mylący, ponieważ nie uwzględnia specyfiki klasyfikacji materiałów niebezpiecznych. Piktogramy informujące o substancjach szkodliwych dla zdrowia, choć mogą dotyczyć różnych stanów skupienia, w tym gazów i cieczy, w tym przypadku odnoszą się bezpośrednio do ciał stałych. Zrozumienie, dlaczego substancje stałe zostały wyróżnione, jest kluczowe. Wiele osób może błędnie zakładać, że wszystkie substancje szkodliwe dotyczą również cieczy, co jest mylne, gdyż klasyfikacja musi uwzględniać konkretne właściwości fizyczne substancji. Ponadto, niektóre substancje w postaci gazów mogą być szkodliwe, ale ich klasyfikacja jest inna i ma odrębne wymagania dotyczące transportu. Dlatego ważne jest, aby przyjmować podejście holistyczne, uwzględniając właściwości fizyczne oraz chemiczne substancji. Warto także zaznaczyć, że niewłaściwa klasyfikacja może prowadzić do poważnych konsekwencji zdrowotnych oraz prawnych, co czyni tę tematykę niezwykle istotną. Zrozumienie klasyfikacji materiałów niebezpiecznych i ich odpowiedniego transportu jest kluczowe w branżach związanych z chemią, farmaceutyką czy inżynierią środowiska.

Pytanie 4

Przedstawiony schemat ideowy ilustruje proces syntezy z propanu C3H8 → C3H7Cl → C3H6 → C3H6(OH)2 → C3H5(OH)2Cl → C3H5(OH)3

A. glikolu etylowego
B. glicerolu
C. glicyny
D. glikolu propylowego
Glicerol, znany również jako 1,2,3-propanotriol, jest trójwodorotlenowym alkoholem, który odgrywa kluczową rolę w biochemii oraz przemyśle chemicznym. Proces przekształcania propanu (C3H8) w glicerol odbywa się poprzez szereg reakcji chemicznych, które obejmują chlorowanie, dehydratację oraz hydrolizę. Glicerol znajduje zastosowanie w wielu dziedzinach, w tym w farmaceutyce jako środek nawilżający i rozpuszczalnik, a także w kosmetykach ze względu na swoje właściwości humektantne. Dodatkowo, glicerol jest wykorzystywany w przemyśle spożywczym jako substancja słodząca i stabilizująca. W kontekście dobrych praktyk branżowych, glicerol jest stosowany zgodnie z normami bezpieczeństwa żywności oraz regulacjami dotyczącymi kosmetyków, co podkreśla jego wszechstronność i znaczenie w różnych sektorach. Znajomość tego procesu i właściwości glicerolu jest istotna dla chemików oraz inżynierów zajmujących się produkcją substancji chemicznych oraz formulacjami kosmetycznymi.

Pytanie 5

Jakie środki należy zastosować do gaszenia pożaru metali, takich jak magnez, sód czy potas?

A. piasku
B. wody
C. gaśnicy pianowej
D. gaśnicy śniegowej
Wybór niewłaściwych środków do gaszenia pożarów metali często wynika z błędnych przekonań na temat sposobów ich kontroli. Użycie gaśnicy śniegowej wydaje się być atrakcyjne, gdyż zmniejsza temperaturę, jednak nie jest skuteczne w przypadku reakcji chemicznych, jakie mogą wystąpić podczas pożaru metalu. Oprócz tego, niektóre metale, takie jak magnez, mogą reagować ze składnikami obecnymi w gaśnicy śniegowej, co prowadzi do niebezpiecznych efektów. Nawet woda, która w wielu sytuacjach jest podstawowym środkiem gaśniczym, w kontekście pożarów metali jest całkowicie niewłaściwa. Kontakt wody z metalami, takimi jak sód czy potas, nie tylko nasila ogień, ale może również prowadzić do eksplozji, ponieważ metal reaguje z wodą, tworząc łatwopalne gazy. Użycie gaśnicy pianowej jest również złym wyborem, ponieważ piany nie są w stanie stłumić ognia w przypadku materiałów reagujących z wodą. Te błędne decyzje często wynikają z braku świadomości o specyfikach pożarów metali i ich unikalnych właściwościach. Dlatego kluczowe jest, aby osoby zajmujące się bezpieczeństwem przeciwpożarowym były dobrze poinformowane o właściwych metodach gaszenia takich pożarów oraz posługiwały się odpowiednimi standardami, jak na przykład wytyczne NFPA 484, które dostarczają niezbędnych informacji na ten temat.

Pytanie 6

W wyniku reakcji 100 g azotanu(V) ołowiu(II) z jodkiem potasu otrzymano 120 g jodku ołowiu(II). Wydajność reakcji wyniosła

Pb(NO3)2 + 2KI → PbI2 + 2KNO3
(MPb(NO3)2 = 331 g/mol, MKI = 166 g/mol, MPbI2 = 461 g/mol, MKNO3 = 101 g/mol)

A. 25%
B. 86%
C. 42%
D. 98%
To pytanie dotyczące wydajności reakcji pokazuje, że wykonałeś dobre obliczenia. Wynik 86% to naprawdę fajny wynik, bo wiesz, że to oznacza, iż dobrze oszacowałeś masy reagentów i produktów. Jeśli weźmiemy pod uwagę azotan(V) ołowiu(II) i obliczymy maksymalną masę jodku ołowiu(II), to powinno wyjść jakieś 139,22 g. W Twoim eksperymencie uzyskałeś 120 g jodku ołowiu(II), więc to daje nam ładną wydajność. Te obliczenia są mega ważne w chemii, bo pomagają ocenić, jak dobrze działa reakcja. Wiedza o tym, jak to policzyć, jest przydatna nie tylko w chemii, ale też w farmacja czy w przemyśle materiałowym. Takie umiejętności mogą naprawdę pomóc w tworzeniu nowych rzeczy i rozwijaniu technologii w różnych dziedzinach.

Pytanie 7

W którym z podanych równań reakcji dochodzi do zmiany stopni utlenienia atomów?

A. NaOH + HCl → NaCl + H2O
B. CaCO3 → CaO + CO2
C. 2KClO3 → 2KCl + 3O2
D. BaCl2 + H2SO4 → BaSO4 + 2HCl
Reakcja 2KClO3 → 2KCl + 3O2 pokazuje, jak chloran potasu (KClO3) rozkłada się na chlorek potasu (KCl) i tlen (O2). W tym procesie zmieniają się stopnie utlenienia. Chlor w chloranie potasu ma stopień utlenienia +5, a w chlorku potasu już tylko +1. Tlen w cząsteczkach O2 z kolei ma stopień utlenienia 0. Ta zmiana w stopniach utlenienia to przykład redukcji (dla chloru) i utlenienia (dla tlenu). Z mojego doświadczenia, to zrozumienie zmian jest istotne w kontekście reakcji redoks, które są podstawowe w chemii, szczególnie w syntezach organicznych czy produkcji energii. Wiedza o stopniach utlenienia pomaga przewidywać reakcje chemiczne i ich praktyczne zastosowania, co jest ważne, zwłaszcza w chemii analitycznej i przemysłowej.

Pytanie 8

Podczas pobierania skoncentrowanego roztworu kwasu solnego konieczne jest pracowanie w włączonym dygestorium oraz zastosowanie

A. okularów ochronnych, rękawic lateksowych, maski ochronnej
B. rękawic odpornych na kwasy, maski ochronnej
C. fartucha, okularów ochronnych, rękawic odpornych na kwasy
D. fartucha, okularów ochronnych, maski ochronnej, rękawic lateksowych
Wybór fartucha, okularów ochronnych i rękawic kwasoodpornych podczas pracy z kwasem solnym to naprawdę dobry ruch. Fartuch to podstawa, bo chroni skórę przed kontaktem z tym żrącym cudem. Nie chciałbym, żebyś miał jakieś poparzenia... Okulary ochronne też są super ważne, bo jak coś się rozprysknie, to lepiej mieć oczy w bezpieczeństwie, a kwas solny może być naprawdę niebezpieczny dla wzroku. Rękawice, zwłaszcza te kwasoodporne, są konieczne, bo zwykłe lateksowe mogą nie wytrzymać kontaktu z tak mocnymi kwasami. W laboratoriach chemicznych zawsze korzysta się z takich zasad, żeby ograniczyć ryzyko wypadków. I pamiętaj, że dobre jest też pracować pod dygestorium – to dodatkowo chroni przed szkodliwymi oparami.

Pytanie 9

Do 300 g wody o temperaturze 30oC dodano 120 g substancji, co zaowocowało powstaniem roztworu nasyconego. Jaką ma rozpuszczalność ta substancja w temperaturze 30oC?

A. 40 g
B. 50 g
C. 30 g
D. 20 g
Odpowiedź 40 g jest poprawna, ponieważ oznacza to, że w 300 g wody w temperaturze 30°C maksymalna ilość substancji, która może się w niej rozpuścić, wynosi właśnie 40 g. Rozpuszczalność jest charakterystyczną właściwością substancji i jest określona dla danej temperatury. W praktyce oznacza to, że w celu uzyskania roztworu nasyconego należy dodać substancję do wody, aż osiągnie się stan, w którym wszelka dodatkowa substancja nie rozpuści się, co jest praktycznym krokiem przy przygotowywaniu roztworów w laboratoriach chemicznych. Wartości rozpuszczalności są kluczowe w różnych zastosowaniach, na przykład w przemyśle farmaceutycznym, gdzie odpowiednia rozpuszczalność substancji aktywnej wpływa na efektywność leku. Zrozumienie tego parametru pozwala na precyzyjne formułowanie roztworów o odpowiednich stężeniach, co jest niezbędne w procesach produkcyjnych. Dodatkowo, wiedza o rozpuszczalności substancji jest istotna w analizach chemicznych oraz w ocenie wpływu czynników fizykochemicznych na procesy rozpuszczania.

Pytanie 10

Jaką substancję wskaźnikową należy zastosować do ustalenia miana roztworu wodorotlenku sodu w reakcji z kwasem solnym, według przedstawionej procedury, która polega na odmierzeniu 25 cm3 roztworu HCl o stężeniu 0,20 mol/dm3 do kolby stożkowej, dodaniu 50 cm3 wody destylowanej, 2 kropli wskaźnika oraz miareczkowaniu roztworem NaOH do momentu zmiany koloru z czerwonego na żółty?

A. chromianu(VI) potasu
B. fenoloftaleiny
C. oranżu metylowego
D. skrobi
Oranż metylowy jest wskaźnikiem pH, który ma zastosowanie w miareczkowaniu kwasów i zasad. Jego zmiana koloru z czerwonego na żółty zachodzi w zakresie pH od około 3,1 do 4,4, co czyni go idealnym wskaźnikiem do reakcji pomiędzy kwasem solnym (HCl) a wodorotlenkiem sodu (NaOH). W tym przypadku, podczas miareczkowania, roztwór HCl, który początkowo ma pH poniżej 3,1, zyskuje na zasadowości, a moment osiągnięcia pH bliskiego 4,4, będący punktem końcowym miareczkowania, prowadzi do zmiany barwy. Zastosowanie oranżu metylowego w tej procedurze jest zgodne z dobrymi praktykami laboratoryjnymi, które zalecają wybór wskaźnika dopasowanego do konkretnego zakresu pH reakcji. Przykładem praktycznego użycia oranżu metylowego może być analityka chemiczna, gdzie precyzyjne oznaczenia stężenia kwasów i zasad są kluczowe dla uzyskania dokładnych wyników. Zastosowanie tego wskaźnika w miareczkowaniu jest szeroko uznawane i dokumentowane w literaturze chemicznej, co potwierdza jego efektywność i niezawodność.

Pytanie 11

W przypadku odczynnika, w którym nawet najczulsze techniki analizy chemicznej nie są w stanie wykryć zanieczyszczeń, a jego badanie wymaga zastosowania metod opartych na zjawiskach fizycznych, zalicza się on do kategorii czystości

A. czysty
B. chemicznie czysty
C. czysty do analizy
D. techniczny
Odpowiedź "chemicznie czysty" jest prawidłowa, ponieważ odnosi się do substancji, w której zanieczyszczenia chemiczne są na tak niskim poziomie, że nie można ich wykryć nawet za pomocą zaawansowanych technik analizy chemicznej. W praktyce oznacza to, że substancja ta jest odpowiednia do zastosowań wymagających najwyższej klasy czystości, takich jak w laboratoriach analitycznych, produkcji farmaceutyków czy w materiałach do badań naukowych. W zgodzie z normami ISO oraz standardami dla chemikaliów do analizy, substancje chemicznie czyste muszą spełniać określone wymagania dotyczące zawartości zanieczyszczeń, co czyni je niezastąpionymi w precyzyjnych analizach. Na przykład, do analizy spektroskopowej często używa się chemicznie czystych rozpuszczalników, które nie wprowadzają dodatkowych sygnałów do pomiarów, co pozwala uzyskać wyniki o wysokiej rozdzielczości i dokładności.

Pytanie 12

Podstawowa substancja w analizie miareczkowej charakteryzuje się następującymi właściwościami:

A. ciekła, czysta, niehigroskopijna
B. czysta, higroskopijna, przebieg reakcji ściśle zgodny ze stechiometrią
C. czysta, niehigroskopijna, ściśle odpowiadająca swojemu wzorowi
D. stała, czysta, której przebieg reakcji niekoniecznie musi być ściśle stechiometryczny
Odpowiedź 'czysta, niehigroskopijna, ściśle odpowiadająca swojemu wzorowi' jest poprawna, ponieważ substancje podstawowe w analizie miareczkowej muszą być czyste, aby zapewnić dokładność i powtarzalność wyników. Zanieczyszczenia mogą wprowadzać błędy w pomiarach i wpływać na przebieg reakcji chemicznych. Niehigroskopijność oznacza, że substancja nie pochłania wilgoci z atmosfery, co jest kluczowe dla stabilności i dokładności pomiarów masy. Dodatkowo, substancja musi ściśle odpowiadać swojemu wzorowi chemicznemu, co oznacza, że jej skład musi być znany i ustalony, aby móc przeprowadzić obliczenia stechiometryczne w miareczkowaniu. Przykładowo, w miareczkowaniu kwasu solnego (HCl) z wodorotlenkiem sodu (NaOH), znajomość dokładnego stężenia tych reagentów jest niezbędna do precyzyjnego określenia ilości substancji w próbce. Zgodność ze wzorem chemicznym umożliwia również stosowanie odpowiednich równań reakcji do przeprowadzenia obliczeń, co jest fundamentem analizy chemicznej w laboratoriach.

Pytanie 13

Ustalanie miana roztworu polega na

A. miareczkowaniu próbki roztworu o dokładnie znanym stężeniu przy pomocy roztworu nastawianego
B. określaniu przybliżonego stężenia roztworu
C. miareczkowaniu przy użyciu roztworu o precyzyjnie znanym stężeniu roztworu oznaczanej próbki
D. zważeniu substancji i rozpuszczeniu jej w wodzie
Wszystkie niepoprawne odpowiedzi bazują na niepełnych lub błędnych zrozumieniach procesu nastawiania miana roztworu. Odpowiedzi, które sugerują jedynie odważenie substancji i rozpuszczenie jej w wodzie, pomijają kluczowy aspekt miareczkowania, który jest istotny dla uzyskania precyzyjnych wyników analitycznych. Odważenie substancji jest rzeczywiście pierwszym krokiem w przygotowywaniu roztworu, ale sama procedura nastawiania miana opiera się na bardziej zaawansowanej metodzie analitycznej, która wymaga znajomości reakcji chemicznej i umiejętności rozpoznawania punktów końcowych miareczkowania. Kolejna niepoprawna koncepcja dotyczy określania przybliżonego stężenia roztworu. Proces ten nie powinien być mylony z miareczkowaniem, które ma na celu uzyskanie dokładnych wartości stężenia. Ostatecznie, miareczkowanie roztworem o znanym stężeniu substancji oznaczanej jest procedurą, która nie ma zastosowania w kontekście nastawiania miana, ponieważ cała zasada opiera się na wykorzystaniu roztworu wzorcowego do analizy próbki. W praktyce, błędne podejścia do miareczkowania mogą prowadzić do znaczących pomyłek w wynikach, co podkreśla wagę stosowania odpowiednich metod i procedur analitycznych w laboratoriach chemicznych.

Pytanie 14

W probówce połączono roztwory CuSO4 oraz NaOH. Powstał niebieski osad, który po podgrzaniu zmienił kolor na czarny. Czarnym osadem jest

A. tlenek miedzi(I)
B. wodorotlenek miedzi(II)
C. tlenek miedzi(II)
D. wodorotlenek miedzi(I)
Widzę, że wybrałeś jedną z opcji, która nie jest poprawna. Może to wynika z tego, że nie do końca zrozumiałeś, co się dzieje w tych reakcjach chemicznych. Wodorotlenek miedzi(II) (Cu(OH)2) jest rzeczywiście niebieskim osadem z reakcje CuSO4 z NaOH, ale kiedy go podgrzewasz, on się zmienia w tlenek miedzi(II) (CuO), który z kolei jest czarny. Wybór tlenku miedzi(I) (Cu2O) to błąd, bo on powstaje w zupełnie innej reakcji. Z kolei wodorotlenek miedzi(I) (CuOH) też nie jest odpowiedzią, bo nie jest stabilny w normalnych warunkach i nie powstaje w tych reakcjach, co może prowadzić do nieporozumień. Tlenek miedzi(II) jest zdecydowanie bardziej stabilny i powszechnie występuje w chemii. Dobrze byłoby zrozumieć te różnice, bo to pomaga w lepszym interpretowaniu wyników reakcji chemicznych i w ich wykorzystaniu w laboratorium.

Pytanie 15

Losowo należy pobierać próbki z opakowań

A. z krawędzi opakowania
B. z górnej części opakowania
C. z kilku punktów w obrębie opakowania
D. z dolnej części opakowania
Odpowiedź "z kilku miejsc przekroju opakowania" jest poprawna, ponieważ losowe pobieranie próbek z różnych miejsc w opakowaniu zapewnia reprezentatywność próbki. Jest to kluczowe w wielu dziedzinach, takich jak analiza jakościowa, zapewnienie bezpieczeństwa produktów oraz kontrola procesów technologicznych. W praktyce oznacza to, że próbki należy pobierać z różnych warstw i lokalizacji w obrębie opakowania, aby zminimalizować ryzyko błędnych wniosków wynikających z niejednorodności składu. W odniesieniu do standardów takich jak ISO 2859-1, który określa metody pobierania próbek dla kontroli jakości, ważne jest, aby każda próbka była reprezentatywna dla całej partii. Takie podejście zwiększa wiarygodność wyników analiz laboratoryjnych i umożliwia dostarczenie rzetelnych informacji na temat jakości produktu. Przykładowo, w przemyśle spożywczym, pobieranie próbek z różnych miejsc opakowania pozwala na identyfikację ewentualnych zanieczyszczeń lub niezgodności jakościowych, co jest fundamentem dla zapewnienia bezpieczeństwa konsumentów.

Pytanie 16

Na etykiecie odważki analitycznej znajduje się napis: Z odważki tej można przygotować

Odważka analityczna

azotan(V) srebra(I)

AgNO3

0,1 mol/dm3

A. jedną kolbę miarową o pojemności 1000 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
B. dwie kolby miarowe o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
C. cztery kolby miarowe o pojemności 250 cm3 mianowanego roztworu AgNO3 o stężeniu 0,025 mol/dm3.
D. jedną kolbę miarową o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,05 mol/dm3.
Odpowiedź jest poprawna, ponieważ na etykiecie odważki analitycznej znajduje się informacja o stężeniu 0,1 mol/dm³. Aby przygotować 1000 cm³ (1 dm³) roztworu AgNO₃ o takim stężeniu, potrzebujemy 0,1 mola tego związku. Mnożąc liczbę moli przez masę molową AgNO₃ (169,87 g/mol), otrzymujemy masę potrzebną do przygotowania roztworu, która wynosi 16,987 g. W praktyce, przygotowując roztwór o konkretnym stężeniu, kluczowe jest precyzyjne odmierzenie masy substancji oraz odpowiednie rozcieńczenie. Taka umiejętność jest niezbędna w laboratoriach chemicznych, gdzie dokładność odgrywa podstawową rolę w eksperymentach i analizach. Przygotowanie roztworu o właściwym stężeniu jest zgodne z zasadami dobrej praktyki laboratoryjnej (GLP), które zapewniają wiarygodność wyników badań. Dodatkowo, umiejętność przygotowywania roztworów o określonych stężeniach jest fundamentalna w chemii analitycznej, chemii organicznej oraz wielu zastosowaniach przemysłowych, w tym w farmaceutyce.

Pytanie 17

Korzystając z wykresu wskaż, w jakiej postaci występuje woda w temperaturze 10°C i pod ciśnieniem 100 barów.

Ilustracja do pytania
A. Gaz.
B. Ciecz.
C. Sublimat
D. Lód.
Wybór odpowiedzi "Ciecz" jest całkowicie poprawny, ponieważ woda w temperaturze 10°C i ciśnieniu 100 barów znajduje się w obszarze fazy ciekłej na wykresie fazowym. Woda przy tych parametrach spełnia warunki, które umożliwiają jej istnienie w stanie ciekłym. To zjawisko jest kluczowe w różnych zastosowaniach technologicznych, takich jak procesy przemysłowe, gdzie woda jako ciecz pełni funkcję chłodziwa czy medium transportującego ciepło. W praktyce, znajomość stanów skupienia wody i ich zależności od ciśnienia i temperatury jest istotna w inżynierii chemicznej, meteorologii oraz inżynierii środowiska. Dobrą praktyką jest regularne analizowanie wykresów fazowych, które mogą wskazywać na potencjalne zmiany stanu skupienia substancji, co jest kluczowe w projektowaniu i eksploatacji systemów, w których woda odgrywa fundamentalną rolę.

Pytanie 18

Metoda oczyszczania substancji oparta na różnicach w rozpuszczalności poszczególnych składników w określonym rozpuszczalniku to

A. krystalizacja
B. adsorpcja
C. chromatografia
D. destylacja
Krystalizacja to proces oczyszczania substancji, który polega na wykorzystaniu różnic w rozpuszczalności składników w danym rozpuszczalniku. Podczas krystalizacji, gdy roztwór staje się nasycony, rozpuszczony substancja zaczyna wytrącać się w postaci kryształów. Ten proces jest szczególnie użyteczny w chemii i przemyśle farmaceutycznym, gdzie czystość substancji czynnej jest kluczowa. Przykładem może być produkcja soli kuchennej, gdzie rozpuszczona sól w wodzie jest poddawana procesowi odparowania, co prowadzi do wytrącenia się czystych kryształów soli. Krystalizacja jest zgodna z zasadami dobrej praktyki laboratoryjnej (GLP) oraz standardami czystości substancji, co czyni ją niezastąpioną metodą w analizie chemicznej i syntezach organicznych. Dzięki temu procesowi można uzyskać substancje o wysokiej czystości, co jest niezbędne w dalszych badaniach i aplikacjach przemysłowych.

Pytanie 19

Oblicz masę wapienia, który został rozłożony, jeśli w trakcie reakcji uzyskano 44,8 dm3 CO2 (w warunkach standardowych).
MC = 12 g/mol, MCa = 40 g/mol, MO = 16 g/mol

A. 150g
B. 100g
C. 200g
D. 250g
Wapń w postaci węglanu wapnia (CaCO3) ulega rozkładowi termicznemu, w wyniku którego powstaje tlenek wapnia (CaO) oraz dwutlenek węgla (CO2). Reakcję można zapisać jako: CaCO3 → CaO + CO2. Zgodnie z prawem zachowania masy, ilość moli reagujących reagentów można wyznaczyć na podstawie objętości gazu wytworzonego w reakcjach chemicznych. W warunkach normalnych 1 mol gazu zajmuje 22,4 dm3. W tym przypadku mamy 44,8 dm3 CO2, co odpowiada 2 molom CO2 (44,8 dm3 / 22,4 dm3/mol = 2 mol). Z równania reakcji wnioskujemy, że 1 mol CaCO3 produkuje 1 mol CO2, więc do produkcji 2 moli CO2 potrzebujemy 2 moli CaCO3. Masa molowa CaCO3 wynosi: M = M_C + M_Ca + 3*M_O = 12 g/mol + 40 g/mol + 3*16 g/mol = 100 g/mol. Zatem 2 mole CaCO3 to 200 g. W praktyce znajomość tego procesu jest kluczowa w przemyśle chemicznym, gdzie węglan wapnia jest powszechnie stosowany, na przykład w produkcji cementu oraz jako surowiec w różnych reakcjach chemicznych. Takie obliczenia są niezwykle ważne w projektowaniu procesów przemysłowych oraz w laboratoriach chemicznych.

Pytanie 20

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO3
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1- 2 z użyciem H2SO4
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO3
ŻelazopH 1-2 z użyciem HNO3
UtlenialnośćpH1-2 z użyciem H2SO4, Przechowywać w ciemności

A. kwasu solnego.
B. kwasu azotowego(V).
C. kwasu fosforowego(V).
D. kwasu siarkowego(VI).
Kwas azotowy(V) (HNO3) jest powszechnie stosowanym środkiem do utrwalania próbek wody przeznaczonych do badań fizykochemicznych, zwłaszcza w kontekście oznaczania metali ciężkich. Działa poprzez stabilizację rozpuszczonych metali, takich jak glin czy żelazo, co jest kluczowe dla uzyskania dokładnych wyników analizy. Utrwalanie próbek przy użyciu HNO3 zapobiega osadzaniu się tych metali oraz ich redystrybucji w czasie transportu i przechowywania próbek. To podejście jest zgodne z wytycznymi przedstawionymi w standardach analitycznych, takich jak ISO 5667, które podkreślają znaczenie odpowiednich metod przygotowania próbek dla rzetelności wyników. Ponadto, kwas azotowy(V) zapewnia odpowiednie pH, co jest istotne dla zachowania stabilności chemicznej analizowanych substancji. W praktyce, stosowanie HNO3 w laboratoriach badawczych jest standardową procedurą, co potwierdzają liczne publikacje naukowe oraz dokumenty normatywne.

Pytanie 21

Na podstawie zmierzonej temperatury topnienia można określić związek organiczny oraz ustalić jego

A. czystość
B. reaktywność
C. rozpuszczalność
D. palność
Temperatura topnienia jest istotnym wskaźnikiem czystości substancji chemicznych, szczególnie związków organicznych. Czystość substancji można ocenić na podstawie jej temperatury topnienia, ponieważ czyste substancje mają ściśle określoną temperaturę topnienia, podczas gdy obecność zanieczyszczeń obniża, a czasem także podwyższa tę temperaturę. Przykładem jest analiza kwasu benzoesowego, który ma temperaturę topnienia wynoszącą 122 °C. Jeśli podczas pomiaru odkryjemy, że temperatura topnienia wynosi 120 °C, może to sugerować obecność zanieczyszczeń. W praktyce, metody takie jak montaż termometru w naczyniu z próbką oraz kontrola tempa podgrzewania są stosowane, aby uzyskać dokładny wynik. W laboratoriach chemicznych stosuje się również standardy takie jak ASTM E2875, które precyzują metody pomiaru temperatury topnienia. Dzięki tym praktykom, możliwe jest nie tylko potwierdzenie czystości próbki, ale również ocena jakości związków organicznych, co jest kluczowe w chemii analitycznej, farmaceutycznej i przemysłowej.

Pytanie 22

Ogólna próbka, jednostkowa lub pierwotna powinna

A. być tym większa, im bardziej jednorodny jest skład produktu
B. mieć masę 1-10 kg dla produktów stałych lub objętość 1-10 dm3 dla cieczy
C. być tym mniejsza, im większa jest niejednorodność składu produktu
D. być tym większa, im bardziej niejednorodny jest skład produktu
Odpowiedź jest poprawna, ponieważ w przypadku próbek ogólnych, jednostkowych lub pierwotnych, ich wielkość powinna wzrastać w miarę zwiększania się niejednorodności składu produktu. Zgodnie z zasadami statystyki i analizy chemicznej, im większa jest różnorodność składników, tym większa próbka jest potrzebna do uzyskania reprezentatywności wyników analizy. Przykładowo, w przemyśle spożywczym, jeśli surowiec ma zróżnicowany skład (np. mieszanka różnych nasion), to do analizy jakościowej lub ilościowej powinno się pobrać większą próbkę, aby uwzględnić wszystkie warianty składników. Normy takie jak ISO 17025 podkreślają znaczenie reprezentatywności próbek w kontekście uzyskiwania wiarygodnych wyników analitycznych. W praktyce, właściwe podejście do pobierania próbek może znacznie wpłynąć na jakość końcowych danych, co jest kluczowe w kontekście kontroli jakości i zapewnienia zgodności z normami.

Pytanie 23

W jakiej standardowej temperaturze są kalibrowane szklane naczynia pomiarowe?

A. 21°C
B. 25°C
C. 20°C
D. 19°C
Odpowiedzi 19°C, 25°C oraz 21°C są niepoprawne w kontekście standardowych praktyk kalibracji szklanych naczyń miarowych. Kalibracja w temperaturze 19°C może wydawać się logiczna, jednak nie jest zgodna z powszechnie przyjętymi normami. Podobnie, 25°C, chociaż często stosowane w niektórych aplikacjach, prowadzi do nieścisłości, ponieważ cieczy w temperaturze 25°C mogą wykazywać różnice w objętości w porównaniu do standardowych pomiarów. Wysoka temperatura może również wpływać na zachowanie niektórych materiałów, co dodatkowo komplikuje pomiary. Z kolei 21°C, mimo że znajduje się blisko wartości standardowej, nie spełnia wymogów precyzyjnych pomiarów wymaganych w laboratoriach, gdzie każdy stopień Celsjusza może prowadzić do błędów w obliczeniach. Typowym błędem myślowym jest założenie, że niewielkie odchylenie od standardu nie ma znaczenia. W praktyce, nawet małe różnice w temperaturze mogą prowadzić do poważnych nieścisłości, co podkreśla konieczność stosowania kalibracji w 20°C dla zapewnienia dokładności i powtarzalności wyników. Warto zauważyć, że standardy ISO oraz normy branżowe jednoznacznie wskazują na 20°C jako optymalną temperaturę dla kalibracji, co jest kluczowe dla osiągnięcia wiarygodnych wyników w pomiarach laboratoryjnych.

Pytanie 24

Aby zregenerować rozpuszczalnik organiczny, należy wykonać proces

A. destylacji
B. odparowywania
C. filtrowania
D. demineralizacji
Destylacja jest procesem separacji substancji na podstawie różnic w ich temperaturze wrzenia, co czyni ją idealnym narzędziem do regeneracji rozpuszczalników organicznych. Działa na zasadzie podgrzewania mieszanki, co powoduje odparowanie składników o niższej temperaturze wrzenia, a następnie skraplanie ich w osobnym naczyniu. Dla przykładu, w przemyśle chemicznym często stosuje się destylację w celu odzyskiwania rozpuszczalników używanych w reakcjach chemicznych, co nie tylko zmniejsza koszty, ale również przyczynia się do zrównoważonego rozwoju przez ograniczenie odpadów. W praktyce, destylacja jest szeroko stosowana w laboratoriach, gdzie należy oczyszczać i regenerować substancje chemiczne. Warto również dodać, że stosowanie destylacji jest zgodne z dobrymi praktykami laboratoryjnymi, które promują minimalizację odpadów oraz efektywne zarządzanie substancjami chemicznymi.

Pytanie 25

Aby przyspieszyć reakcję, należy zwiększyć stężenie substratów

A. zmniejszyć, a temperaturę obniżyć
B. zwiększyć, a temperaturę zmniejszyć
C. zmniejszyć, a temperaturę podnieść
D. zwiększyć, a temperaturę podnieść
Zwiększenie szybkości reakcji chemicznych trochę się sprowadza do tego, jak ważne są substraty i temperatura. Kiedy podnosisz stężenie substratów, to więcej cząsteczek jest dostępnych do reakcji, więc mają większe szanse na zderzenie. Z drugiej strony, wyższa temperatura podkręca energię kinetyczną cząsteczek, co sprawia, że zderzają się częściej i mocniej, co pomaga im pokonać energię aktywacji. Na przykład w biochemii, jak mamy reakcje enzymatyczne, zwiększenie stężenia substratu może pomóc osiągnąć maksymalną prędkość reakcji, co jest zgodne z zasadą Vmax. W praktyce w przemyśle chemicznym, dobrze jest dostosować stężenie i temperaturę, żeby zoptymalizować wydajność i rentowność. Ciekawe jest to, że czasami, jak w reakcjach równowagi, podwyższenie stężenia reagentów może przesunąć równowagę w stronę produktów, co też jest korzystne dla wydajności reakcji.

Pytanie 26

Roztwór, który jest dodawany z biurety w formie kropli do roztworu substancji, którą analizujemy, określamy mianem

A. analitem
B. titrantem
C. produktem
D. substratem
Termin 'titant' odnosi się do substancji, która jest dodawana z biurety do roztworu analizowanej substancji, czyli analitu, w trakcie procesu titracji. Titracja jest kluczową techniką analityczną wykorzystywaną w chemii do określenia stężenia substancji w roztworze poprzez stopniowe dodawanie titranta do analitu aż do osiągnięcia punktu końcowego, który zwykle jest sygnalizowany poprzez zmianę koloru lub inny wskaźnik. Przykładem może być titracja kwasu solnego (HCl) w celu określenia jego stężenia poprzez dodawanie roztworu wodorotlenku sodu (NaOH) jako titranta. W praktyce, zgodnie z zaleceniami norm ISO oraz metodami opisanymi w dokumentach takich jak ASTM, ważne jest, aby dokładnie znać stężenie titranta oraz stosować odpowiednie wskaźniki, co zapewnia uzyskanie dokładnych i powtarzalnych wyników. Znajomość tego pojęcia jest niezbędna dla chemików zajmujących się analizą chemiczną, co podkreśla jego praktyczne zastosowanie w laboratoriach analitycznych.

Pytanie 27

Który z wskaźników nie jest używany w alkacymetrii?

A. Oranż metylowy
B. Skrobia
C. Fenoloftaleina
D. Błękit tymolowy
Skrobia jest polisacharydem, który nie pełni funkcji wskaźnika pH w reakcjach alkacymetrycznych. W alkacymetrii, kluczowe jest monitorowanie zmian pH roztworu, co pozwala na określenie punktu równoważności. W tym kontekście, wskaźniki takie jak oranż metylowy, fenoloftaleina oraz błękit tymolowy są stosowane ze względu na ich zdolność do zmiany koloru w określonym zakresie pH. Oranż metylowy zmienia kolor w pH od 3,1 do 4,4, co czyni go użytecznym w reakcjach kwasowo-zasadowych w środowisku kwasowym. Fenoloftaleina natomiast zmienia kolor z bezbarwnego na różowy w pH od 8,2 do 10,0, co jest istotne w alkacymetrii zasadowej. Błękit tymolowy działa w zakresie pH 6,0 - 7,6, co pozwala na wykrywanie przejścia z kwasowego do obojętnego. W przeciwieństwie do tych wskaźników, skrobia nie jest używana w alkacymetrii, a jej zastosowanie koncentruje się głównie w analizie jakościowej, jako reagent do wykrywania jodu.

Pytanie 28

Jakie jest przeznaczenie pieca muflowego?

A. przygotowania próbek do postaci jonowej
B. separacji próbek
C. rozkładu próbek na sucho
D. koncentracji próbek
Piec muflowy jest urządzeniem stosowanym głównie w laboratoriach chemicznych i materiałowych do rozkładu próbek na sucho, co oznacza, że próbki są poddawane działaniu wysokiej temperatury w atmosferze wolnej od wilgoci. Proces ten jest kluczowy w przygotowaniu materiałów do dalszej analizy, a także w badaniach nad ich składem chemicznym. Wysoka temperatura umożliwia efektywne usunięcie wody i innych lotnych składników, co jest szczególnie istotne w przypadku analizy substancji organicznych. Piec muflowy działa na zasadzie konwekcji, co zapewnia równomierne rozkładanie ciepła wewnątrz komory pieca. Przykładem zastosowania pieca muflowego jest przygotowanie próbek do analizy składu chemicznego metodą spektroskopii czy chromatografii. W standardach labolatoryjnych, takich jak ISO 17025, podkreśla się znaczenie odpowiedniego przygotowania próbek, co czyni piec muflowy niezbędnym narzędziem w wielu badaniach naukowych. Ponadto, właściwe ustawienie temperatury oraz czas trwania procesu rozkładu są kluczowe dla uzyskania wiarygodnych wyników analitycznych.

Pytanie 29

Jakie jest stężenie roztworu HNO3, który powstał w wyniku połączenia 50 cm3 roztworu HNO3 o stężeniu 0,2 mol/dm3 oraz 25 cm3 roztworu HNO3 o stężeniu 0,5 mol/dm3?

A. 0,3 mol/dm3
B. 0,003 mol/dm3
C. 0,0003 mol/dm3
D. 0,03 mol/dm3
Aby dowiedzieć się, jakie stężenie będzie miała mieszanka roztworów HNO3, najlepiej zacząć od obliczenia, ile moli kwasu azotowego mamy w każdym z roztworów. W pierwszym roztworze z objętością 50 cm³ i stężeniem 0,2 mol/dm³ wychodzi, że mamy 0,01 mol: 0,2 mol/dm³ * 0,050 dm³ = 0,01 mol. W drugim roztworze, przy 25 cm³ i stężeniu 0,5 mol/dm³, obliczamy to jako 0,0125 mol: 0,5 mol/dm³ * 0,025 dm³ = 0,0125 mol. Jak to dodamy, to razem dostajemy 0,0225 mol. A całkowita objętość po zmieszaniu to 75 cm³, czyli 0,075 dm³. Z tego obliczamy stężenie końcowe: C = n/V, czyli 0,0225 mol / 0,075 dm³ = 0,3 mol/dm³. To, jakie stężenie otrzymasz, jest naprawdę ważne w laboratoriach, bo dokładne przygotowywanie roztworów pozwala uzyskać powtarzalne wyniki. W chemii, jak i w przemyśle, musisz znać te stężenia, żeby mieć pewność, że wszystko idzie zgodnie z planem.

Pytanie 30

W wyniku analizy sitowej próbki stałej otrzymano frakcję o średnicy ziaren 12 – 30 mm. Jaką masę powinna mieć prawidłowo pobrana próbka pierwotna?

Tabela. Wielkość próbki pierwotnej w zależności od wielkości ziarna
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 100 g
B. 1000 g
C. 2500 g
D. 200 g
Odpowiedź '1000 g' jest prawidłowa, ponieważ zgodnie z normami analizy sitowej, dla ziaren o średnicy od 11 do 50 mm minimalna masa próbki pierwotnej powinna wynosić 1000 g. W przypadku analizy sitowej, w której badana jest frakcja ziaren, odpowiednia masa próbki jest kluczowa dla uzyskania wiarygodnych wyników. Zbyt mała próbka może prowadzić do błędnych wyników, zniekształcając charakterystykę frakcji ziarna. W praktyce, przy analizach takich jak ocena uziarnienia materiałów budowlanych czy surowców mineralnych, stosowanie się do odpowiednich standardów jest istotne dla zapewnienia jakości wyników. Przykładowo, w laboratoriach stosuje się normy PN-EN ISO 17892 dla gruntów, które również wskazują na konieczność stosowania odpowiednich mas próbki w zależności od rodzaju analizowanego materiału. Dlatego, jeśli analizowana frakcja mieści się w określonym przedziale średnic ziaren, należy zawsze upewnić się, że masa próbki odpowiada wymaganiom, aby uniknąć błędów w analizie.

Pytanie 31

Jakie jest stężenie molowe roztworu, jeśli w 100 cm3 roztworu znajduje się 5,6 g KOH?
MK = 39 g/mol, MO = 16 g/mol, MH = 1 g/mol

A. 1 mol/dm3
B. 0,1 mol/dm3
C. 100 mol/dm3
D. 10 mol/dm3
Aby obliczyć stężenie molowe roztworu, należy najpierw obliczyć liczbę moli KOH zawartych w 5,6 g. Masa molowa KOH wynosi 56 g/mol (39 g/mol dla K + 16 g/mol dla O + 1 g/mol dla H). Możemy więc obliczyć liczbę moli jako: n = m / M = 5,6 g / 56 g/mol = 0,1 mol. Następnie przekształcamy objętość roztworu z centymetrów sześciennych na decymetry sześcienne: 100 cm³ = 0,1 dm³. Stężenie molowe (C) obliczamy korzystając ze wzoru C = n / V, co daje C = 0,1 mol / 0,1 dm³ = 1 mol/dm³. Tego typu obliczenia są niezwykle istotne w chemii analitycznej, gdzie precyzyjne stężenia roztworów są kluczowe dla uzyskania poprawnych wyników eksperymentalnych oraz w syntezie substancji chemicznych. Zrozumienie tych obliczeń pomaga w zachowaniu właściwych proporcji w reakcjach chemicznych, co jest podstawą wielu procesów przemysłowych oraz laboratoriów badawczych.

Pytanie 32

Odczynnik, który w specyficznych warunkach reaguje wyłącznie z danym jonem, umożliwiając tym samym jego identyfikację w mieszance, to odczynnik

A. charakterystyczny
B. indywidualny
C. selektywny
D. specyficzny
Zrozumienie różnicy między terminami używanymi w chemii analitycznej jest kluczowe, aby uniknąć nieporozumień. Wybór odpowiedzi "indywidualny" może budzić wątpliwości, gdyż sugeruje, że odczynnik działa w sposób izolowany, co nie oddaje istoty specyficzności. Odczynnik indywidualny niekoniecznie wskazuje na umiejętność wykrywania tylko jednego jonu, a może oznaczać po prostu reagowanie z jednym typem substancji, co jest niewystarczające w kontekście analityki. Selektywny odczynnik natomiast wskazuje na zdolność do reagowania z grupą jonów, a nie tylko z jednym, co prowadzi do nieprecyzyjnych wyników, ponieważ niektóre inne jony mogą również reagować, zafałszowując analizę. Odpowiedź "charakterystyczny" pozostaje w bliskim sąsiedztwie, ale nie wyraża pełnej idei dotyczącej specyficzności, jako że odnosi się do ogólnych właściwości odczynnika, bez podkreślania jego zdolności do selektywnej reakcji. Błędy te mogą wynikać z niepełnego zrozumienia terminów oraz ich zastosowania w praktyce laboratoryjnej, co jest kluczowe w kontekście analizy chemicznej. Właściwe zrozumienie, jak i kiedy stosować odczynniki specyficzne, jest niezbędne dla zapewnienia dokładności i rzetelności wyników w każdej analizie chemicznej.

Pytanie 33

Aby poprawić efektywność reakcji opisanej równaniem: HCOOH + C2H5OH ⇄ HCOOC2H5 + H2O, należy

A. dodać etylowy ester kwasu mrówkowego
B. zmniejszyć stężenie kwasu mrówkowego
C. oddestylować etylowy ester kwasu mrówkowego
D. wprowadzić wodę
Oddestylowanie mrówczanu etylu jest skuteczną metodą na zwiększenie wydajności reakcji esterifikacji przedstawionej w równaniu HCOOH + C2H5OH ⇄ HCOOC2H5 + H2O. Proces ten polega na usunięciu produktu reakcji, czyli mrówczanu etylu, co zgodnie z zasadą Le Chateliera, przesuwa równowagę reakcji w stronę produktów, w tym przypadku w stronę esteru. W praktycznych zastosowaniach, oddestylowanie można przeprowadzić za pomocą destylacji frakcyjnej, co pozwala na efektywne oddzielenie estera od pozostałych reagentów i produktów. Technika ta jest szeroko stosowana w przemyśle chemicznym, gdzie zwiększenie wydajności syntez jest kluczowe dla rentowności procesów. Ponadto, w przypadku syntez chemicznych, takich jak produkcja estrów, odpowiednia kontrola warunków reakcji, w tym temperatury i ciśnienia, również może wpływać na efektywność oraz czystość otrzymywanych produktów, co stanowi istotny aspekt dobrych praktyk inżynieryjnych.

Pytanie 34

Proces oddzielania cieczy od osadu nazywa się

A. sedymentacji
B. dekantacji
C. sublimacji
D. aeracji
Sublimacja to proces, który odnosi się do przemiany substancji z fazy stałej bezpośrednio w fazę gazową, co jest zjawiskiem fizycznym zupełnie innym od dekantacji. Sublimacja występuje w przypadku niektórych substancji, takich jak suche lód (CO2) czy jod, i nie ma zastosowania do oddzielania cieczy od osadu. Sedymentacja to proces, w którym cząstki zawieszone w cieczy opadają na dno naczynia pod wpływem siły grawitacji, ale nie jest to proces aktywnego oddzielania cieczy od osadu, jak ma to miejsce w dekantacji. Choć sedymentacja jest ważnym etapem w wielu procesach, takich jak oczyszczanie ścieków, sama w sobie nie prowadzi do skutecznego oddzielenia faz. Aeracja z kolei to proces wprowadzania powietrza do cieczy, często stosowany w oczyszczaniu wód czy akwarystyce, ale także nie ma związku z oddzielaniem osadu. Zrozumienie różnic między tymi procesami jest kluczowe dla ich prawidłowego stosowania w praktyce laboratoryjnej i przemysłowej. Wybierając odpowiednią metodę, warto zwrócić uwagę na jej specyfikę oraz cel, jaki chcemy osiągnąć, co często jest źródłem nieporozumień i błędnych decyzji w analizach chemicznych.

Pytanie 35

Zabieg, który wykonuje się podczas pobierania próbki wody do analizy, mający na celu zachowanie jej składu chemicznego w trakcie transportu, określa się mianem

A. oczyszczania
B. zagęszczania
C. utrwalania
D. rozcieńczania
Odpowiedź 'utrwalania' jest prawidłowa, ponieważ proces ten ma kluczowe znaczenie w zachowaniu integralności chemicznej próbki wody podczas transportu do laboratorium. Utrwalanie polega na stosowaniu odpowiednich metod, takich jak dodanie substancji chemicznych, które stabilizują skład chemiczny próbki, zapobiegając rozkładowi lub zmianom w jej składzie. Przykładem może być dodanie kwasu solnego do próbki wody morskiej w celu zachowania stężenia metali ciężkich. Ważne jest także, aby wybrać odpowiednie pojemniki do transportu, które nie reagują z próbą, co jest zgodne z normami ISO 5667. W praktyce, przestrzeganie procedur pobierania i transportu próbek zgodnie z wytycznymi pozwala na uzyskanie wiarygodnych wyników analitycznych oraz minimalizację ryzyka zanieczyszczenia próbki. Właściwe utrwalanie próbek jest nie tylko istotne dla dokładności badań, ale także dla zapewnienia bezpieczeństwa przy dalszym ich przetwarzaniu.

Pytanie 36

Fragment procedury analitycznej
(...) Przenieś badany roztwór całkowicie do rozdzielacza gruszkowego o pojemności od 50 do 100 cm3, dodaj 5 cm3 roztworu tiocyjanianu potasu oraz 10 cm3 alkoholu izopentylowego, a następnie wstrząsaj zawartością przez 30 sekund.
Po rozdzieleniu faz przenieś roztwór wodny do drugiego rozdzielacza, natomiast fazę organiczną do suchej kolbki miarowej o pojemności 50 cm3(...) Który rodzaj ekstrakcji jest opisany w powyższym fragmencie?

A. Ciągłej ciało stałe – ciecz
B. Okresowej ciało stałe – ciecz
C. Ciągłej ciecz – ciecz
D. Okresowej ciecz – ciecz
Fragment procedury analitycznej opisuje proces ekstrakcji okresowej ciecz – ciecz, co oznacza, że rozdzielanie składników następuje w wyniku wielokrotnego kontaktu dwóch cieczy o różnej polarności. W przedstawionej procedurze, badany roztwór jest mieszany z roztworem tiocyjanianu potasu i alkoholem izopentylowym, co prowadzi do rozdzielenia faz. Ekstrakcja okresowa jest szczególnie efektywna w przypadku związków organicznych, które można oddzielić od roztworów wodnych. Praktyczne zastosowanie tego typu ekstrakcji występuje w analitycznej chemii, np. w izolowaniu związków organicznych z wodnych roztworów, co jest istotne w laboratoriach zajmujących się analizą chemiczną żywności, środowiska czy farmaceutyków. Dobrym przykładem może być ekstrakcja substancji czynnych z roztworów, co pozwala na ich dalszą analizę i identyfikację. Warto zwrócić uwagę, że stosowanie odpowiednich proporcji reagentów oraz optymalnych warunków mieszania jest kluczowe dla efektywności tego procesu.

Pytanie 37

Wapno palone uzyskuje się poprzez prażenie wapienia według równania: CaCO3 → CaO + CO2. Ile kilogramów wapienia należy zastosować, aby w efekcie jego prażenia otrzymać 7 kg wapna palonego, jeśli wydajność reakcji wynosi 50%?
Masy molowe: MCa = 40 g/mol, MC = 12 g/mol, MO = 16 g/mol.

A. 25,0 kg
B. 12,5 kg
C. 50,0 kg
D. 37,5 kg
Aby obliczyć ilość wapienia potrzebną do uzyskania 7 kg wapna palonego (CaO) przy wydajności reakcji wynoszącej 50%, należy najpierw zrozumieć reakcję chemiczną, która zachodzi. W reakcji CaCO3 → CaO + CO2 mol wapnia (Ca) uzyskujemy z jednego mola węglanu wapnia (CaCO3). Masy molowe są następujące: Ca = 40 g/mol, C = 12 g/mol, O = 16 g/mol, co daje masę CaCO3 równą 100 g/mol. Z przeprowadzonej reakcji wynika, że 1 mol CaCO3 daje 1 mol CaO, co odpowiada masie 56 g/mol dla CaO. Z punktu widzenia praktycznego, wydajność 50% oznacza, że aby otrzymać 7 kg (7000 g) wapna palonego, potrzebujemy 2 razy więcej węglanu wapnia, czyli 14000 g (14 kg) CaCO3. Jednak ze względu na wydajność, musimy użyć 28 kg CaCO3. Zatem, aby uzyskać 7 kg CaO, przy wydajności 50% potrzebujemy 25 kg CaCO3 na uzyskanie 14 kg CaCO3. W praktyce, te obliczenia są kluczowe w przemyśle chemicznym i materiałowym, gdzie precyzyjne dawkowanie surowców jest istotne dla efektywności produkcji, co jest zgodne z normami jakości w branży.

Pytanie 38

Odlanie cieczy z nad osadu to

A. dekantacja
B. sedymentacja
C. filtracja
D. destylacja
Dekantacja to proces polegający na oddzieleniu cieczy od osadu poprzez jej zlanie. Jest to technika powszechnie stosowana w laboratoriach chemicznych oraz w przemyśle, szczególnie w produkcji napojów, takich jak wino czy piwo. W praktyce dekantacja umożliwia uzyskanie klarownej cieczy, eliminując niepożądane cząstki stałe. W przypadku win, na przykład, dekantacja jest kluczowym etapem, który pozwala na usunięcie osadu powstałego podczas fermentacji, co poprawia jakość i smak trunku. Proces ten jest zgodny z zasadami dobrych praktyk laboracyjnych, które zalecają stosowanie efektywnych metod separacji, minimalizujących ryzyko kontaminacji. Ważnym aspektem dekantacji jest także precyzja, z jaką należy przeprowadzić ten proces, aby uniknąć zmieszania cieczy z osadem. W kontekście analizy jakości cieczy, dekantacja może być również używana w analizie chemicznej do przygotowania próbek do dalszych badań, co podkreśla jej znaczenie w szerokim zakresie zastosowań.

Pytanie 39

Odczynnik, który nie został wykorzystany, należy zutylizować zgodnie z informacjami zawartymi na etykiecie

A. w kwietniu 2017 roku
B. 13 maja 2017 roku
C. 5 maja 2017 roku
D. w czerwcu 2017 roku
Wybór daty z maja czy kwietnia 2017 roku jest błędny, ponieważ sugeruje zakończony okres użyteczności odczynnika, co może prowadzić do niebezpiecznych sytuacji w laboratoriach. Używanie odczynników po wskazanych datach ma negatywne skutki, w tym zmniejszoną efektywność i dokładność wyników badań. Dobrą praktyką w laboratoriach jest regularne przeglądanie zapasów odczynników i usuwanie tych, które osiągnęły swoje daty ważności. Na przykład, odczynniki chemiczne mogą podlegać degradacji na skutek czynników zewnętrznych, takich jak światło, temperatura czy wilgoć, co z kolei wpływa na ich właściwości chemiczne. Utylizacja niezużytych odczynników powinna być zgodna z wytycznymi organizacji ochrony środowiska oraz lokalnymi regulacjami prawnymi. Ignorowanie tych zasad prowadzi do ryzykownych praktyk, które mogą zagrażać zdrowiu i życiu pracowników, a także prowadzić do kontaminacji środowiska. Ponadto, nieprzestrzeganie procedur dotyczących utylizacji może skutkować sankcjami prawno-administracyjnymi. Należy również podkreślić, że każda decyzja o utylizacji powinna być oparta na obiektywnej analizie stanu odczynnika oraz jego potencjalnych konsekwencji dla badań oraz bezpieczeństwa operacyjnego laboratorium.

Pytanie 40

Korzystając z danych w tabeli wskaż, ile cm3 36% roztworu HCl należy użyć, aby przygotować 250 cm3 0,1-molowego roztworu tego kwasu.

% wagowy
[%]
d420
[g/cm3]
m HCl
w 100 cm3
[g/100cm3]
CM HCl
[mol/dm3]
301,149234,489,46
321,159337,1010,17
341,169139,7510,90
361,178942,4411,64

A. 2,52 cm3
B. 2,13 cm3
C. 2,50 cm3
D. 2,15 cm3
Aby przygotować 250 cm³ 0,1-molowego roztworu HCl z 36% roztworu, użycie 2,15 cm³ tego roztworu jest poprawne. Obliczenia opierają się na zasadzie rozcieńczenia, która jest kluczowym pojęciem w chemii. Przygotowując roztwory, istotne jest, aby znać stężenie molowe roztworu wyjściowego oraz objętość roztworu, który chcemy uzyskać. W tym przypadku, 36% roztwór HCl ma stężenie molowe wynoszące około 10 mol/dm³. Aby obliczyć, ile tego roztworu potrzeba, stosujemy równanie rozcieńczenia: C1 * V1 = C2 * V2, gdzie C1 to stężenie roztworu wyjściowego, V1 to objętość roztworu wyjściowego, C2 to stężenie roztworu docelowego, a V2 to objętość roztworu docelowego. Po podstawieniu wartości i przekształceniu równania otrzymujemy, że V1 wynosi 2,15 cm³. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników eksperymentalnych. Dobrą praktyką jest również zawsze zwracać uwagę na jednostki oraz dokładność pomiaru, co jest fundamentalne w chemii analitycznej.