Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 18 maja 2025 18:00
  • Data zakończenia: 18 maja 2025 18:10

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zabieg, który wykonuje się podczas pobierania próbki wody do analizy, mający na celu zachowanie jej składu chemicznego w trakcie transportu, określa się mianem

A. zagęszczania
B. oczyszczania
C. utrwalania
D. rozcieńczania
Odpowiedź 'utrwalania' jest prawidłowa, ponieważ proces ten ma kluczowe znaczenie w zachowaniu integralności chemicznej próbki wody podczas transportu do laboratorium. Utrwalanie polega na stosowaniu odpowiednich metod, takich jak dodanie substancji chemicznych, które stabilizują skład chemiczny próbki, zapobiegając rozkładowi lub zmianom w jej składzie. Przykładem może być dodanie kwasu solnego do próbki wody morskiej w celu zachowania stężenia metali ciężkich. Ważne jest także, aby wybrać odpowiednie pojemniki do transportu, które nie reagują z próbą, co jest zgodne z normami ISO 5667. W praktyce, przestrzeganie procedur pobierania i transportu próbek zgodnie z wytycznymi pozwala na uzyskanie wiarygodnych wyników analitycznych oraz minimalizację ryzyka zanieczyszczenia próbki. Właściwe utrwalanie próbek jest nie tylko istotne dla dokładności badań, ale także dla zapewnienia bezpieczeństwa przy dalszym ich przetwarzaniu.

Pytanie 2

Na podstawie danych w tabeli określ, jaką masę próbki należy pobrać, jeżeli wielkość ziarna wynosi 1·10-5 m.

Wielkość ziaren lub kawałków [mm]Poniżej 11-1011-50Ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 2500 g
B. 1000 g
C. 200 g
D. 100 g
Wybór masy próbki wynoszącej 100 g jest zgodny z normami obowiązującymi dla wielkości ziaren poniżej 1 mm. W praktyce, przy analizach materiałów sypkich, takich jak proszki czy granulaty, istotne jest, aby masa próbki była dostosowana do rozmiaru cząstek, co wpływa na dokładność wyników. W przypadku cząstek o wielkości 1·10^-5 m, co odpowiada 0,01 mm, ich właściwości fizyczne i chemiczne są różne od większych ziaren, co wymaga odpowiedniego podejścia do pobierania próbek. Dla takich cząstek, minimalna masa próbki określona w normach branżowych wynosi 100 g, co zapewnia reprezentatywność oraz wystarczającą ilość materiału do przeprowadzenia analizy. Przykładowo, w laboratoriach zajmujących się analizą materiałów budowlanych lub farmaceutycznych, przestrzeganie takich wytycznych jest kluczowe dla uzyskania wiarygodnych wyników badań.

Pytanie 3

W trakcie reakcji estryfikacji opisanej równaniem CH3COOH + C2H5OH ↔ CH3COOC2H5 + H2O użyto molowego stosunku alkoholu do kwasu wynoszącego 1:10. W rezultacie tego

A. uzyskano ester o 100% wydajności
B. alkohol uległ całkowitej reakcji
C. równowaga reakcji została silnie przesunięta w prawo
D. równowaga reakcji została silnie przesunięta w lewo
Analizując alternatywne odpowiedzi, warto zauważyć, że stwierdzenie, iż równowaga reakcji przesunęła się silnie w lewo, jest niepoprawne. Tego typu wnioski mogą wynikać z mylnego zrozumienia dynamiki reakcji chemicznych oraz wpływu stosunku reagentów na równowagę. W sytuacji, gdy stosunek alkoholu do kwasu jest znacznie większy, równowaga nie będzie się przesuwać w lewo, ponieważ dostępność alkoholu w reakcji sprzyja tworzeniu estru. Odpowiedź mówiąca o 100% wydajności również jest błędna, ponieważ w praktyce osiągnięcie takiej wydajności jest niemal niemożliwe z uwagi na różne czynniki, takie jak straty produktu, nieodwracalność reakcji czy obecność innych substancji. Ponadto, twierdzenie, że alkohol przereagował całkowicie, jest również mylne, gdyż nawet przy dużych ilościach alkoholu zawsze pozostaje pewna ilość substratów, które nie przekształcają się w produkty. Kluczowym błędem myślowym jest zakładanie, że zwiększenie jednego z reagentów w układzie reakcyjnym automatycznie prowadzi do całkowitej konwersji, co nie uwzględnia zasad chemii równowagi i możliwości powstawania rewersyjnej reakcji. Zrozumienie tych zasad jest fundamentalne w chemii organicznej oraz w syntezach przemysłowych.

Pytanie 4

Maksymalna średnica ziaren w partii substancji stałej wynosi 0,5 cm. Zgodnie z danymi zawartymi w tabeli próbka pierwotna tej substancji powinna mieć masę minimum

Tabela. Masa próbki pierwotnej w zależności od wielkości ziaren lub kawałków
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 2500 g
B. 200 g
C. 100 g
D. 1000 g
Odpowiedź 200 g jest poprawna, ponieważ zgodnie z danymi zawartymi w tabeli, średnica ziaren wynosząca 0,5 cm (5 mm) mieści się w przedziale od 1 do 10 mm. Dla takiej średnicy, minimalna masa próbki pierwotnej powinna wynosić 200 g. W kontekście badań materiałowych, odpowiednia masa próbki jest kluczowa, aby uzyskać reprezentatywne wyniki analiz. Przykładem zastosowania tej wiedzy może być przemysł farmaceutyczny, gdzie precyzyjne określenie masy substancji czynnej ma fundamentalne znaczenie dla skuteczności leku. Przemysł ten opiera się na standardach takich jak ISO 17025, które wymagają stosowania odpowiednich procedur i metodologii w celu zapewnienia wiarygodności wyników. W praktyce, zrozumienie, jak masa próbki wpływa na jej dalsze właściwości fizykochemiczne, jest niezbędne dla uzyskania dokładnych wyników badawczych.

Pytanie 5

Temperatura wrzenia aniliny przy normalnym ciśnieniu wynosi 457,13 K. W trakcie jej oczyszczania metodą destylacji prostej pod ciśnieniem atmosferycznym należy zebrać frakcję wrzącą w przedziale temperatur

A. 175 °C - 179 °C
B. 185 °C - 190 °C
C. 181 °C - 185 °C
D. 178 °C - 182 °C
Odpowiedź 181 °C - 185 °C jest poprawna, ponieważ temperatura wrzenia aniliny wynosząca 457,13 K odpowiada 184 °C. W procesie destylacji prostej, aby skutecznie oddzielić substancję, należy zbierać frakcję wrzącą wokół tej wartości, co oznacza, że optymalny zakres do zbierania frakcji to 181 °C - 185 °C. W praktyce, aby zapewnić wysoką czystość destylatu, zwykle ustawia się zakres tak, aby obejmował temperatury bliskie wartości wrzenia, z uwzględnieniem ewentualnych wahań związanych z ciśnieniem atmosferycznym i zanieczyszczeniami. Przykładem zastosowania tej wiedzy jest przemysł chemiczny, gdzie oczyszczanie substancji chemicznych, takich jak anilina, jest kluczowe dla uzyskania wysokiej jakości produktów. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów temperatury i stosowania odpowiednich metod oczyszczania, co jest niezbędne dla zapewnienia jakości i bezpieczeństwa procesów chemicznych.

Pytanie 6

Na podstawie informacji zawartych w tabeli wskaż mieszaninę oziębiającą o temperaturze -21 °C.

Temperatura mieszaninySkład mieszaninyStosunek masowy
-15 °Clód + octan sodu10:9
-18 °Clód + chlorek amonu10:3
-21 °Clód + chlorek sodu3:1
-25 °Clód + azotan amonu1:9

A. 150 g lodu i 50 g chlorku sodu.
B. 100 g lodu i 30 g chlorku amonu.
C. 90 g lodu i 30 g chlorku amonu.
D. 10 g lodu i 3 g chlorku sodu.
Odpowiedź '150 g lodu i 50 g chlorku sodu.' jest poprawna, ponieważ odpowiada stosunkowi masowemu 3:1, co jest kluczowe przy przygotowywaniu mieszanin oziębiających. W przypadku mieszanin takich jak sól i lód, zachodzi reakcja endotermiczna, w której sól obniża temperaturę topnienia lodu, co pozwala uzyskać niską temperaturę. Zgodnie z danymi zawartymi w tabeli, dla uzyskania temperatury -21 °C, konieczne jest zastosowanie odpowiednich proporcji lodu i chlorku sodu, a 150 g lodu w połączeniu z 50 g chlorku sodu są idealnymi składnikami. Tego rodzaju mieszaniny są stosowane w różnych aplikacjach, takich jak chłodzenie w laboratoriach chemicznych, gdzie wymagana jest kontrola temperatury, a także w medycynie, gdzie stosuje się je do przechowywania próbek w niskich temperaturach. Zrozumienie tej zasady jest kluczowe w pracach laboratoryjnych i przemysłowych, gdzie kontrolowanie temperatury ma istotne znaczenie dla zachowania właściwości substancji.

Pytanie 7

Na etykiecie kwasu siarkowego(VI) znajduje się piktogram pokazany na rysunku. Oznacza to, że substancja ta jest

Ilustracja do pytania
A. mutagenna.
B. żrąca.
C. nieszkodliwa.
D. rakotwórcza.
Odpowiedź "żrąca" jest poprawna, ponieważ piktogram na etykiecie kwasu siarkowego(VI) jednoznacznie oznacza substancje, które mogą powodować ciężkie uszkodzenia tkanek. W systemie GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) substancje żrące są klasyfikowane na podstawie ich zdolności do uszkadzania skóry oraz innych tkanek. Kwas siarkowy(VI) jest silnym kwasem, który ma zdolność do reagowania z wodą, co dodatkowo potęguje jego żrące właściwości. W praktyce, kontakt z kwasem siarkowym(VI) może prowadzić do poważnych oparzeń chemicznych, które wymagają natychmiastowej interwencji medycznej. W laboratoriach i przemyśle chemicznym niezwykle istotne jest przestrzeganie zasad bezpieczeństwa związanych z obsługą substancji żrących, takich jak stosowanie odpowiednich środków ochrony osobistej (PPE), w tym rękawic, okularów ochronnych oraz odzieży odpornych na działanie chemikaliów. Zgodność z normami bezpieczeństwa, takimi jak OSHA i CLP, jest kluczowa dla minimalizacji ryzyka związanego z narażeniem na substancje żrące.

Pytanie 8

Po zakończeniu pomiarów pH, elektrody powinny być przepłukane

A. wodą destylowaną z dodatkiem roztworu wzorcowego
B. roztworem buforowym o ustalonym pH
C. roztworem chlorku potasu
D. wodą destylowaną
Przemywanie elektrod pH wodą destylowaną jest kluczowym krokiem po zakończeniu pomiarów, ponieważ pozwala na usunięcie resztek substancji, które mogłyby wpłynąć na dokładność kolejnych pomiarów. Woda destylowana jest wolna od zanieczyszczeń, co sprawia, że jest idealnym rozwiązaniem do czyszczenia elektrody. Nie wprowadza dodatkowych jonów, które mogłyby zmienić pH roztworu, co jest szczególnie istotne w przypadku elektrochemicznych pomiarów pH. Przykładem zastosowania tej procedury jest przygotowanie elektrody do kolejnego pomiaru po analizie próbek zawierających różne chemikalia. W laboratoriach analitycznych i chemicznych, procedura przemywania elektrod wodą destylowaną jest zgodna z normami ISO oraz dobrymi praktykami laboratoryjnymi, co zapewnia rzetelność i powtarzalność wyników. Ponadto, woda destylowana nie powoduje korozji ani uszkodzeń, co zapewnia dłuższą żywotność elektrody, a także minimalizuje potrzebę jej kalibracji przed każdym pomiarem.

Pytanie 9

Waga przedstawiona na rysunku umożliwia ważenie substancji z dokładnością do

Ilustracja do pytania
A. 0,01 mg
B. 1,00 g
C. 10 mg
D. 10 g
Wybór innej odpowiedzi niż 10 mg może wynikać z nieporozumienia dotyczącego możliwości pomiarowych wag laboratoryjnych. Odpowiedź 1,00 g jest zbyt dużą wartością, ponieważ wskazuje na możliwość pomiaru masy z dokładnością, która jest znacznie niższa niż ta oferowana przez precyzyjną wagę. W praktyce, wagi o takiej dokładności mogą nie być wystarczające do zastosowań wymagających wysokiej precyzji, co jest istotne w chemii analitycznej, lecz bardziej w codziennym użytkowaniu. Wybór 0,01 mg jest niewłaściwy, ponieważ przekracza możliwości typowych wag laboratoryjnych, które nie osiągają tak wysokiej precyzji w standardowych zastosowaniach, co może prowadzić do niepomiaru lub błędów w analizach. Odpowiedź 10 g również jest nieadekwatna, ponieważ wagi precyzyjne mają na celu dokładne ważenie niewielkich ilości substancji, a nie większych próbek, które mogą być ważone na wagach analitycznych o innej specyfikacji. W związku z tym, każdy z wybranych błędnych odpowiedzi ilustruje typowe błędy myślowe, które mogą wynikać z braku zrozumienia charakterystyki wag laboratoryjnych oraz ich zastosowań w praktyce. Kluczowe jest, aby przy wyborze odpowiedzi na pytania dotyczące pomiarów masy kierować się zrozumieniem dokładności urządzeń oraz ich przeznaczenia w kontekście laboratoryjnym.

Pytanie 10

Na podstawie danych w tabeli wskaż, którego środka suszącego można użyć do osuszenia związku o wzorze (CH3)2CO

Środek suszącyStosowany do suszeniaNie nadaje się do suszenia
NaEter, węglowodory, aminy trzeciorzędoweChlorowcopochodne węglowodorów
CaCl₂Węglowodory, aceton, eter, gazy obojętneAlkohole, amoniak, aminy
Żel krzemionkowyW eksykatorzeHF
H₂SO₄Gazy obojętne i kwasoweZwiązki nienasycone, alkohole, substancje zasadowe

A. Na
B. H2SO4
C. żel krzemionkowy
D. CaCl2
Wybór CaCl2 jako środka suszącego do osuszenia acetonu (CH3)2CO jest poprawny, ponieważ jest to substancja, która skutecznie wiąże wodę dzięki swojej higroskopijności. Chlorek wapnia jest powszechnie stosowany do osuszania rozpuszczalników organicznych, w tym ketonów, co czyni go idealnym rozwiązaniem w przypadku acetonu. W praktyce, stosując CaCl2, można uzyskać wysoce czysty aceton, co jest istotne w wielu aplikacjach laboratoryjnych i przemysłowych, takich jak syntezy chemiczne czy preparatyka próbek. Dodatkowo, w kontekście dobrych praktyk laboratoryjnych, ważne jest, aby zawsze stosować odpowiednie metody osuszania, aby uniknąć zanieczyszczeń i uzyskać wiarygodne wyniki. Zgodnie ze standardami branżowymi, takie jak ISO 9001, dbanie o jakość materiałów i ich obróbkę jest kluczowe dla zapewnienia wysokiego poziomu produktów końcowych.

Pytanie 11

Jak nazywa się naczynie o płaskim dnie, które wykorzystuje się do pozyskiwania substancji stałej poprzez stopniowe odparowanie rozpuszczalnika z roztworu?

A. Eksykator
B. Krystalizator
C. Kolba Kjeldahla
D. Tygiel Schotta
Eksykator to naczynie, które głównie służy do przechowywania substancji w warunkach obniżonego ciśnienia. Właściwie to jego zadanie to osuszanie lub ochrona przed wilgocią, a nie uzyskiwanie substancji stałej przez odparowanie. W chemii eksykatory są używane, kiedy trzeba usunąć wodę z substancji, a nie do krystalizacji. Tygiel Schotta to naczynie, które świetnie się nadaje do wysokich temperatur i topnienia substancji, ale nie ma nic wspólnego z krystalizacją. Choć teoretycznie można w nim robić kryształy, to nie chodzi tu o odparowanie, ale raczej o proces topnienia i później ochładzania. Kolba Kjeldahla z kolei działa w zupełnie inny sposób, bo służy do oznaczania azotu w związkach, co też nie ma związku z krystalizacją. Często ludzie mylą te różne naczynia i ich funkcje, a każde z nich ma swoje specyficzne zastosowanie, ale krystalizator naprawdę jest tym, co pasuje do opisanego pytania.

Pytanie 12

Aby przygotować 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3, jaką kolbę miarową o pojemności należy wykorzystać?

A. 500 cm 3 oraz fiksanal zawierający 0,1 mola HCl
B. 0,5 dm3 oraz dwa fiksanale zawierające po 0,2 mola HCl
C. 1000 cm3 oraz dwa fiksanale zawierające po 0,1 mola HCl
D. 500 cm3 oraz fiksanal zawierający 0,2 mol HCl
Odpowiedź jest poprawna, ponieważ przygotowanie 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3 wymaga zastosowania odpowiednich zasad obliczeń chemicznych. W tym przypadku, aby otrzymać roztwór o pożądanej objętości i stężeniu, musimy najpierw obliczyć liczbę moli kwasu chlorowodorowego potrzebnych do przygotowania takiego roztworu. Liczba moli obliczana jest ze wzoru: n = C × V, gdzie n to liczba moli, C to stężenie, a V to objętość. Dla tego zadania: n = 0,2 mol/dm3 × 0,5 dm3 = 0,1 mola. Zastosowanie kolby miarowej o pojemności 500 cm3, równoważnej 0,5 dm3, jest zatem odpowiednie, ponieważ po rozmieszaniu fiksanalu, który zawiera dokładnie 0,1 mola HCl, uzyskamy wymagane stężenie. Takie przygotowania są zgodne z dobrą praktyką laboratoryjną, zapewniając dokładność oraz powtarzalność wyników, co jest kluczowe w chemii analitycznej.

Pytanie 13

Jakiego koloru nabierze lakmus w roztworze NaOH?

A. malinowy
B. czerwony
C. fioletowy
D. niebieski
Lakmus jest wskaźnikiem pH, który zmienia kolor w zależności od kwasowości lub zasadowości roztworu. W roztworze sodu wodorotlenku (NaOH), który jest silną zasadą, lakmus zabarwia się na kolor niebieski. To zjawisko jest wynikiem reakcji chemicznych zachodzących w obecności zasad, które zmieniają konfigurację cząsteczek lakmusu. NaOH, jako substancja alkaliczna, podnosi pH roztworu powyżej 7, co skutkuje zmianą koloru wskaźników pH z czerwonego (typowego dla kwasów) na niebieski. W praktyce, lakmus jest często stosowany w laboratoriach i edukacji, aby szybko ocenić pH różnych substancji, co jest niezwykle istotne w chemii analitycznej oraz w przemyśle chemicznym. Zrozumienie reakcji lakmusu z różnymi substancjami jest kluczowe dla wielu procesów, takich jak kontrola jakości wody czy reakcje chemiczne w przemyśle farmaceutycznym.

Pytanie 14

Masa molowa kwasu azotowego(V) wynosi 63,0 g/mol. Jakie jest stężenie molowe 20% roztworu tego kwasu o gęstości 1,1 g/cm3?

A. 5,30 mol/dm3
B. 3,49 mol/dm3
C. 3,60 mol/dm3
D. 6,30 mol/dm3
Aby obliczyć stężenie molowe kwasu azotowego(V) w 20% roztworze, należy zastosować wzór na stężenie molowe, który określa ilość moli substancji chemicznej w jednostce objętości roztworu. W pierwszej kolejności obliczamy masę kwasu azotowego w 100 g roztworu: 20% oznacza, że w 100 g roztworu znajduje się 20 g kwasu azotowego. Następnie przeliczymy tę masę na mole, korzystając z masy molowej kwasu azotowego(V), która wynosi 63,0 g/mol. Dzieląc masę kwasu przez jego masę molową, uzyskujemy liczbę moli: 20 g / 63,0 g/mol = 0,317 mol. Teraz musimy obliczyć objętość roztworu. Gęstość roztworu wynosi 1,1 g/cm³, co oznacza, że 100 g roztworu ma objętość 100 g / 1,1 g/cm³ = 90,91 cm³, czyli 0,09091 dm³. Wreszcie, stężenie molowe obliczamy dzieląc liczbę moli przez objętość roztworu: 0,317 mol / 0,09091 dm³ ≈ 3,49 mol/dm³. Takie obliczenia są istotne w chemii analitycznej i laboratoryjnej, gdzie precyzyjne przygotowanie roztworów ma kluczowe znaczenie dla uzyskania wiarygodnych wyników analiz chemicznych.

Pytanie 15

Jakie metody można zastosować do rozdzielania i koncentracji składników próbki?

A. mineralizację suchą
B. rozpuszczanie i rozcieńczanie
C. spawanie
D. wymywanie lub wymianę jonową
Wybrane odpowiedzi, takie jak stapianie, rozpuszczanie i rozcieńczanie czy wymywanie lub wymiana jonowa, wskazują na niewłaściwe podejście do procesu analizy próbek. Stapianie to technika, która polega na podgrzewaniu materiałów do ich stanu ciekłego, jednak nie prowadzi do skutecznego rozdzielania składników próbki, a jedynie do ich fizycznej zmiany stanu skupienia, co nie jest odpowiednie w kontekście analizy chemicznej. Rozpuszczanie i rozcieńczanie mogą być użyteczne w niektórych przypadkach, lecz w kontekście rozdzielania składników próbki nie są wystarczające, ponieważ wiele składników może pozostać w zawiesinie lub nie rozpuścić się w danym rozpuszczalniku. Przykładem może być sytuacja, w której próbka zawiera nieorganiczne sole, które są słabo rozpuszczalne, co prowadzi do niepełnego wydobycia informacji. Wymiana jonowa oraz wymywanie to techniki stosowane głównie w kontekście oczyszczania wody lub usuwania zanieczyszczeń, a nie do analizy składników chemicznych próbki. Te metody nie są w stanie dostarczyć pełnego obrazu zawartości chemicznej, co jest kluczowe w badaniach analitycznych. W praktyce, nieprawidłowe zastosowanie tych technik może prowadzić do błędnych interpretacji wyników i złej oceny jakości analizowanej próbki.

Pytanie 16

Aby oszacować czystość MgCO3, poddano prażeniu próbkę o wadze 5 g tej soli aż do osiągnięcia stałej masy. W trakcie prażenia zachodzi reakcja:
MgCO3 → MgO + CO2 Całkowity ubytek masy wyniósł 2,38 g.
(Masy molowe reagentów to: MgCO3 – 84 g/mol, MgO – 40 g/mol, CO2 – 44 g/mol) Jaką czystość miała próbka węglanu magnezu?

A. 100% czystej substancji
B. bliżej nieokreśloną masę domieszek
C. 90,7% czystej substancji
D. około 50% czystej substancji
Analizując inne odpowiedzi, istotne jest zrozumienie, dlaczego niektóre z nich są błędne. Wskazanie, że węglan magnezu zawiera około 50% czystej substancji, jest nieuzasadnione, gdyż nie uwzględnia rzeczywistego ubytku masy podczas prażenia. Przykładowo, pominięcie obliczeń ilości powstałego CO2 prowadzi do znacznego zaniżenia jakości próbki. Z kolei stwierdzenie, że węglan magnezu zawiera 100% czystej substancji, jest nierealistyczne, ponieważ każda próbka chemiczna może zawierać zanieczyszczenia, a proces prażenia ujawnia ich obecność. Kolejna odpowiedź, mówiąca o bliżej nieokreślonej masie domieszek, sugeruje brak analizy ilościowej, co jest fundamentalnym błędem w chemii analitycznej. W praktyce laboratorium chemicznego, każda analiza powinna opierać się na solidnych obliczeniach i znajomości reakcji chemicznych. Często, błędy myślowe prowadzące do takich odpowiedzi wynikają z ignorowania relacji mas molowych oraz z podstawowych zasad stoichiometrii. Zrozumienie tych reguł jest kluczowe dla poprawnego przeprowadzania analiz chemicznych, co wpływa na jakość wyników oraz ich interpretację. Znajomość standardów analitycznych i dobrych praktyk w chemii pozwala uniknąć takich nieścisłości.

Pytanie 17

Jakie jest stężenie molowe roztworu, jeśli w 100 cm3 roztworu znajduje się 5,6 g KOH?
MK = 39 g/mol, MO = 16 g/mol, MH = 1 g/mol

A. 1 mol/dm3
B. 0,1 mol/dm3
C. 10 mol/dm3
D. 100 mol/dm3
Aby obliczyć stężenie molowe roztworu, należy najpierw obliczyć liczbę moli KOH zawartych w 5,6 g. Masa molowa KOH wynosi 56 g/mol (39 g/mol dla K + 16 g/mol dla O + 1 g/mol dla H). Możemy więc obliczyć liczbę moli jako: n = m / M = 5,6 g / 56 g/mol = 0,1 mol. Następnie przekształcamy objętość roztworu z centymetrów sześciennych na decymetry sześcienne: 100 cm³ = 0,1 dm³. Stężenie molowe (C) obliczamy korzystając ze wzoru C = n / V, co daje C = 0,1 mol / 0,1 dm³ = 1 mol/dm³. Tego typu obliczenia są niezwykle istotne w chemii analitycznej, gdzie precyzyjne stężenia roztworów są kluczowe dla uzyskania poprawnych wyników eksperymentalnych oraz w syntezie substancji chemicznych. Zrozumienie tych obliczeń pomaga w zachowaniu właściwych proporcji w reakcjach chemicznych, co jest podstawą wielu procesów przemysłowych oraz laboratoriów badawczych.

Pytanie 18

Z podanych w tabeli danych wybierz sprzęt potrzebny do zmontowania zestawu do destylacji z parą wodną.

12345
manometrkociołek miedzianychłodnica powietrznakolba destylacyjnaodbieralnik

A. 2,4,5
B. 1,3,4
C. 2,3,5
D. 1,2,3
Wybór odpowiedzi 2,4,5 jest poprawny, ponieważ do zmontowania zestawu do destylacji z parą wodną potrzebujemy konkretnego sprzętu odpowiadającego wymaganiom technologicznym tego procesu. Kociołek miedziany (2) jest kluczowym elementem, gdyż miedź jest materiałem, który doskonale przewodzi ciepło i nie reaguje z substancjami organicznymi, co jest istotne dla uzyskania czystego destylatu. Kolba destylacyjna (4) jest również niezbędna, ponieważ to w niej umieszczamy substancję, którą chcemy destylować; jej kształt sprzyja efektywnej separacji pary od cieczy. Odbiernik (5) stanowi ostatni element procesu, w którym skroplona ciecz jest zbierana, co jest kluczowe dla efektywności destylacji. Zastosowanie tego zestawu w laboratoriach chemicznych jest powszechne, szczególnie w procesach syntez chemicznych i analitycznych, gdzie czystość substancji ma kluczowe znaczenie. Wiedza na temat doboru sprzętu do destylacji jest fundamentalna nie tylko w edukacji, ale także w praktycznych zastosowaniach przemysłowych.

Pytanie 19

W trakcie określania miana roztworu NaOH, do zmiareczkowania 25,0 cm3 tego roztworu, użyto 30,0 cm3 roztworu HCl o stężeniu 0,1000 mol/dm3. Jakie miało miano zasady?

A. 0,1200 mol/dm3
B. 0,1500 mol/dm3
C. 0,2000 mol/dm3
D. 0,1000 mol/dm3
Miano zasady NaOH oblicza się na podstawie reakcji zobojętnienia z kwasem HCl, w której stosunek molowy NaOH do HCl wynosi 1:1. Ustalając miano roztworu NaOH, wykorzystujemy wzór na miano: c(NaOH) = (c(HCl) * V(HCl)) / V(NaOH), gdzie c oznacza stężenie, a V objętość. W naszym przypadku mamy c(HCl) = 0,1000 mol/dm³ oraz V(HCl) = 30,0 cm³ (0,030 dm³) i V(NaOH) = 25,0 cm³ (0,025 dm³). Podstawiając wartości do wzoru, uzyskujemy: c(NaOH) = (0,1000 mol/dm³ * 0,030 dm³) / 0,025 dm³ = 0,1200 mol/dm³. Przykład ten ilustruje, jak ważne jest odpowiednie wyważenie ilości reagentów w reakcjach chemicznych, co jest kluczowe w laboratoriach chemicznych i przemyśle, gdzie precyzyjne stężenia roztworów mają istotne znaczenie dla efektywności procesów chemicznych oraz jakości końcowego produktu. Standardy analityczne podkreślają konieczność dokładności w pomiarach, co ma wpływ na wiarygodność uzyskanych wyników.

Pytanie 20

Aby otrzymać czystą substancję, próbka z nitroaniliną została poddana procesowi krystalizacji. Jaką masę nitroaniliny użyto do krystalizacji, jeśli uzyskano 1,5 g czystego związku, a wydajność krystalizacji wyniosła 75%?

A. 0,5 g
B. 50 g
C. 2 g
D. 0,02 g
Aby obliczyć masę odważki nitroaniliny użytej do krystalizacji, należy zastosować wzór na wydajność krystalizacji, który jest wyrażony jako stosunek masy uzyskanego produktu do masy początkowej próbki, pomnożony przez 100%. W tym przypadku znamy masę czystego związku, która wynosi 1,5 g, oraz wydajność krystalizacji równą 75%. Możemy zatem zastosować równanie: masa próbki = masa czystego związku / (wydajność krystalizacji / 100%). Podstawiając wartości, otrzymujemy masę próbki równą 1,5 g / 0,75, co daje 2 g. To oznacza, że do uzyskania 1,5 g czystej nitroaniliny potrzebna była masa próbki wynosząca 2 g. Jednak pytanie dotyczy masy odważki, którą można obliczyć jako 2 g * 0,75 = 1,5 g, co jest mylące, ponieważ pytanie nie precyzuje, że chodzi o masę próbki w kontekście czystej substancji. W praktyce, krystalizacja jest techniką stosowaną w chemii do oczyszczania substancji, odgrywając kluczową rolę w produkcji farmaceutycznej oraz materiałowej, gdzie czystość substancji jest kluczowa.

Pytanie 21

Substancje pomocnicze wykorzystywane do realizacji podstawowych analiz jakościowych i ilościowych, które nie wymagają wysokiej czystości, są oznaczane na opakowaniach symbolem

A. techn.
B. cz.d.a.
C. cz.
D. cz.ch.
Odpowiedź "cz." jest właściwa, ponieważ oznacza substancje pomocnicze, które są stosowane w analizach jakościowych i ilościowych, gdzie nie jest wymagana wysoka czystość chemiczna. Termin ten jest często używany w laboratoriach analitycznych oraz w procesach produkcyjnych, gdzie substancje te mogą służyć jako rozpuszczalniki, czy też reagenty w reakcjach chemicznych, ale nie muszą spełniać rygorystycznych norm czystości. Przykładem może być użycie substancji pomocniczych w analizach spektroskopowych, gdzie ich obecność nie wpływa negatywnie na wyniki analizy. W praktyce, korzystanie z takich substancji pozwala na oszczędności kosztów oraz uproszczenie procedur laboratoryjnych, co jest szczególnie ważne w laboratoriach zajmujących się rutynowymi analizami. Warto również zauważyć, że w kontekście dobrych praktyk laboratoryjnych, stosowanie substancji oznaczonych jako "cz." jest zgodne z wytycznymi dotyczącymi jakości w laboratoriach, które sugerują, aby dobierać materiały w zależności od wymagań jakościowych danej analizy.

Pytanie 22

Miesięczne zapotrzebowanie laboratorium analitycznego na 2-propanol wynosi 500 cm3. Na jak długo wystarczy ta substancja?

A. 5 miesięcy
B. 1 miesiąc
C. 7 miesięcy
D. 3 miesiące
Odpowiedź '5 miesięcy' jest prawidłowa, ponieważ zapotrzebowanie miesięczne na 2-propanol wynosi 500 cm3. Jeśli zatem mamy 2500 cm3 2-propanolu, wystarczy on na pięć miesięcy, co obliczamy, dzieląc całkowitą ilość substancji przez miesięczne zapotrzebowanie: 2500 cm3 / 500 cm3 = 5 miesięcy. W zastosowaniach laboratoryjnych, gdzie 2-propanol jest często wykorzystywany jako rozpuszczalnik, dezynfekant lub w procesach ekstrakcji, ważne jest, aby regularnie monitorować stany magazynowe, aby zapewnić ciągłość pracy. Praktyka ta jest zgodna z normami zarządzania jakością, takimi jak ISO 9001, które podkreślają znaczenie efektywnego zarządzania zasobami oraz ciągłości procesów. Dobrze zarządzany zapas substancji chemicznych jest kluczowy dla efektywności operacyjnej laboratorium.

Pytanie 23

Naważkę NaOH o masie 0,0400 g rozpuścić w małej ilości wody, a następnie przelać ten roztwór do kolby miarowej o pojemności 500 cm3 i uzupełnić kolbę miarową wodą do tzw. kreski. Masa molowa NaOH wynosi 40,0 g/mol. Jakie jest stężenie molowe przygotowanego roztworu?

A. 0,020 mol/dm3
B. 0,002 mol/dm3
C. 0,200 mol/dm3
D. 2,000 mol/dm3
Wybór niepoprawnego stężenia molowego może wynikać z błędnej interpretacji danych lub nieprawidłowych obliczeń. Na przykład, stężenie 0,020 mol/dm³ mogłoby wydawać się uzasadnione przez pomylenie liczby moli lub objętości. Niektórzy mogą mylnie sądzić, że masa wodorotlenku sodu pozwala na stężenie wyższe z powodu błędnych założeń dotyczących objętości roztworu. W rzeczywistości, aby uzyskać takie stężenie, należałoby przyjąć znacznie większą ilość substancji. Podobnie, stężenie 2,000 mol/dm³ jest całkowicie niemożliwe do osiągnięcia w tym przypadku, ponieważ oznaczałoby, że w 1 dm³ roztworu znajduje się 2 mol NaOH, co wymagałoby przynajmniej 80 g NaOH, a nie 0,0400 g. Z kolei stężenie 0,200 mol/dm³ również opiera się na nieprawidłowych założeniach dotyczących liczby moli lub objętości roztworu. Typowe błędy obejmują nieuwzględnienie przeliczeń jednostek lub pomylenie masy z objętością. Zapewnienie dokładnych obliczeń i zrozumienie podstawowych zasad przygotowywania roztworów jest kluczowe dla prawidłowego prowadzenia eksperymentów chemicznych oraz ich późniejszej analizy.

Pytanie 24

W laboratorium chemicznym systemy wodne zazwyczaj oznacza się kolorem zielonym

A. ściekową
B. parową
C. przeciwpożarową
D. wodną
W laboratoriach chemicznych, zgodnie z międzynarodowymi standardami oznakowania instalacji, kolor zielony jest przypisany do systemów wodnych. Wszystkie rurociągi i instalacje, które transportują wodę, powinny być oznakowane tym kolorem, co zwiększa bezpieczeństwo i efektywność operacyjną. Oznaczenie wodnych instalacji jest szczególnie istotne w kontekście wypadków i awarii, gdzie szybka identyfikacja systemu może uratować życie. Na przykład, w przypadku pożaru, personel musi wiedzieć, które rurociągi prowadzą do źródeł wody, aby skutecznie przeprowadzić akcję gaśniczą. W praktyce oznakowanie to opiera się na normach takich jak ISO 7010 oraz ANSI Z535, które definiują kolorystykę i sposób oznaczania systemów w różnych środowiskach. W związku z tym, rozumienie i przestrzeganie tych standardów jest kluczowe dla zapewnienia bezpieczeństwa w laboratoriach chemicznych oraz minimalizacji ryzyka związanego z niewłaściwym podłączeniem lub pomyleniem instalacji.

Pytanie 25

Fosfor biały, z uwagi na swoje właściwości, powinien być przechowywany

A. w benzynie
B. w nafcie
C. w wodzie
D. w benzenie
Przechowywanie fosforu białego w nafcie, benzynie lub innym rozpuszczalniku organicznym jest nie tylko nieefektywne, ale także bardzo niebezpieczne. Te substancje charakteryzują się łatwopalnością, co w połączeniu z właściwościami fosforu białego stwarza wysokie ryzyko pożaru. Fosfor biały w kontakcie z naftą może prowadzić do nieprzewidywalnych reakcji chemicznych, w tym zapłonu, co stanowi poważne zagrożenie dla zdrowia i bezpieczeństwa. Często występującym błędem jest mylenie nafty z wodą, co wynika z niewłaściwego zrozumienia właściwości chemicznych tych substancji. Woda jest substancją niepalną, która stabilizuje fosfor biały, podczas gdy nafta jest substancją łatwopalną, która mogłaby spowodować pożar. Podobnie, zarówno benzyna, jak i benzen są substancjami organicznymi, które mogą sprzyjać wybuchom oraz są szkodliwe dla zdrowia. W kontekście najlepszych praktyk, takie podejście do przechowywania fosforu białego jest absolutnie niewłaściwe i sprzeczne z zaleceniami instytucji zajmujących się bezpieczeństwem chemicznym. W przemyśle chemicznym oraz laboratoriach stosowane są ściśle określone procedury, które eliminują możliwość przechowywania substancji niebezpiecznych w niewłaściwy sposób, co dodatkowo podkreśla nieodpowiedzialność takich wyborów.

Pytanie 26

Aby pobrać dokładnie 20 cm3 próbkę wody do przeprowadzenia analiz, należy zastosować

A. pipetę jednomiarową o pojemności 10 cm3
B. cylinder miarowy o pojemności 25 cm3
C. pipetę wielomiarową o pojemności 25 cm3
D. pipetę jednomiarową o pojemności 20 cm3
Pipeta jednomiarowa o pojemności 20 cm3 jest najodpowiedniejszym narzędziem do precyzyjnego pobierania próbki wody o objętości 20 cm3. W praktyce laboratoryjnej, pipety jednomiarowe są projektowane tak, aby umożliwić dokładne i powtarzalne pomiary, co jest kluczowe w analizach chemicznych. Wybierając pipetę o pojemności dokładnie odpowiadającej potrzebnej objętości, minimalizujemy ryzyko błędów pomiarowych i podnosimy jakość uzyskiwanych wyników. W kontekście standardów laboratoryjnych, zgodnie z normą ISO 8655, pipety powinny być kalibrowane i okresowo weryfikowane, aby zapewnić ich dokładność. Użycie pipety o odpowiedniej pojemności, jak w tym przypadku, nie tylko zwiększa precyzję, ale także efektywność pracy w laboratorium, co jest istotne w przypadku wielu analiz wymagających rozcieńczeń lub dokładnych pomiarów składników chemicznych.

Pytanie 27

Laboratoryjny aparat szklany, który wykorzystuje kwasy do wytwarzania gazów w reakcji z metalem lub odpowiednią solą, to

A. aparat Soxhleta
B. aparat Orsata
C. aparat Kippa
D. aparat Hofmanna
Aparat Kippa jest specjalistycznym narzędziem laboratoryjnym, które służy do wytwarzania gazów poprzez reakcje chemiczne, najczęściej polegające na działaniu kwasów na metale lub odpowiednie sole. Jego konstrukcja pozwala na kontrolowane wydobywanie gazu, co jest niezbędne w wielu procesach chemicznych. Kluczowym elementem tego aparatu jest jego zdolność do gromadzenia gazów w komorze, a następnie ich wydawania w sposób zorganizowany. Przykładowo, w laboratoriach chemicznych aparat Kippa jest wykorzystywany do produkcji gazu wodoru poprzez reakcję kwasu solnego z cynkiem. Stosując ten aparat, laboranci mogą utrzymać bezpieczeństwo i kontrolować ilość wytwarzanego gazu, co jest szczególnie istotne przy pracy z substancjami łatwopalnymi lub toksycznymi. Warto również podkreślić, że aparat Kippa jest zgodny z normami bezpieczeństwa i praktykami laboratoryjnymi, co czyni go niezastąpionym narzędziem w chemii analitycznej i preparatywnej.

Pytanie 28

Który z podanych związków chemicznych można wykorzystać do oceny całkowitego usunięcia jonów chlorkowych z osadu?

A. KNO3
B. Cu(NO3)2
C. Al(NO3)3
D. AgNO3
AgNO3, czyli azotan srebra, jest powszechnie stosowanym reagentem w chemii analitycznej, który umożliwia identyfikację i oznaczanie jonów chlorkowych. Jony srebra z azotanu srebra reagują z jonami chlorkowymi, tworząc nierozpuszczalny osad chlorku srebra (AgCl). Ta reakcja jest zasadnicza w procesach, w których kontrola czystości chemicznej jest kluczowa, na przykład w laboratoriach analitycznych oraz w przemyśle chemicznym. W praktyce, próbka z osadu, w której podejrzewa się obecność jonów chlorkowych, może zostać poddana działaniu AgNO3. Po dodaniu reagentu, wystąpienie białego osadu AgCl wskazuje na obecność chlorków. Procedura ta jest zgodna z normami określonymi w analizach chemicznych, co czynią ją wiarygodną metodą w różnych zastosowaniach. Ponadto, reakcja ta jest również wykorzystywana w edukacji chemicznej do demonstrowania właściwości reakcji podwójnej wymiany, co czyni ją ważnym elementem programu nauczania w szkołach wyższych oraz technicznych.

Pytanie 29

Które spośród substancji wymienionych w tabeli pozwolą pochłonąć wydzielający się tlenek węgla(IV)?

IIIIIIIVV
Ca(OH)2(aq)NaOH(s)HNO3(stęż)CuO(s)CaO(s)

A. I, II, V
B. II, IV, V.
C. I, III, IV.
D. I, II, IV.
W przypadku wyboru odpowiedzi, która nie obejmuje substancji I, II i V, można zauważyć, że nie uwzględnia się kluczowych właściwości reakcji chemicznych między tlenkiem węgla(IV) a substancjami, które są zasadami. Takie podejście prowadzi do nieporozumień dotyczących chemii gazów i ich interakcji z zasadami. Odpowiedzi zawierające substancje III (HNO3) i IV (CuO) są w rzeczywistości błędne, ponieważ HNO3 jest kwasem azotowym, który nie ma zdolności do reakcji z CO2 w sposób, który prowadziłby do jego absorpcji; zamiast tego reaguje on z zasadami, a jego właściwości jako kwasu oznaczają, że nie będzie on efektywnym reagentem w kontekście usuwania CO2. CuO, czyli tlenek miedzi(II), również nie jest substancją, która mogłaby reagować z CO2, a jego zastosowanie koncentruje się bardziej na reakcjach utleniania i redukcji metali, co nie ma związku z pochłanianiem tego gazu. Zrozumienie właściwości substancji chemicznych oraz ich reakcji jest kluczowe do prawidłowego wyboru reagentów w procesach przemysłowych. Ignorowanie tych faktów może prowadzić do nieefektywnych rozwiązań w kontekście zarządzania emisją CO2, co jest szczególnie istotne w dobie globalnych wysiłków na rzecz ochrony środowiska oraz zrównoważonego rozwoju.

Pytanie 30

Czułość bezwzględna wagi definiuje się jako

A. największą masę, która powoduje wyraźne wychylenie wskazówki
B. najmniejszą masę, która powoduje wyraźne wychylenie wskazówki
C. najmniejsze dozwolone obciążenie wagi
D. największe dozwolone obciążenie wagi
Czułość bezwzględna wagi odnosi się do minimalnej masy, która jest w stanie wywołać zauważalne wychylenie wskazówki wagi. Oznacza to, że czułość wagi określa jej zdolność do wykrywania małych zmian w masie, co jest kluczowe w wielu zastosowaniach przemysłowych i laboratoryjnych. Przykładowo, w laboratoriach chemicznych, gdzie dokładność pomiarów jest kluczowa, wagi analityczne mają bardzo wysoką czułość. Dzięki temu można precyzyjnie odmierzać małe ilości substancji. Czułość bezwzględna jest również istotna w kontekście kalibracji wag, co jest regulowane przez normy ISO i metodykę pomiarową, aby zapewnić, że wagi są zgodne z określonymi standardami jakości. W praktyce, zrozumienie czułości bezwzględnej pozwala na lepsze dobieranie wag do potrzeb danego pomiaru, co ma bezpośredni wpływ na jakość wyników eksperymentalnych oraz procesów produkcyjnych.

Pytanie 31

W probówce połączono roztwory CuSO4 oraz NaOH. Powstał niebieski osad, który po podgrzaniu zmienił kolor na czarny. Czarnym osadem jest

A. wodorotlenek miedzi(II)
B. tlenek miedzi(II)
C. wodorotlenek miedzi(I)
D. tlenek miedzi(I)
Dobra robota z tą odpowiedzią! Tlenek miedzi(II) (CuO) naprawdę powstaje kiedy ogrzewasz wodorotlenek miedzi(II) (Cu(OH)2), który, swoją drogą, jest tym niebieskim osadem, który dostajesz mieszając CuSO4 z NaOH. Kiedy to podgrzewasz, wodorotlenek miedzi(II) traci wodę i zamienia się w tlenek miedzi(II), który ma czarną barwę. To ciekawa reakcja, bo tlenek miedzi(II) ma sporo zastosowań – używa się go jako katalizatora w różnych reakcjach chemicznych, a także w ceramice. Na przykład, w przemyśle ceramicznym korzysta się z niego przy produkcji pigmentów, a dzięki swoim przewodzącym właściwościom, także w elektronice. Warto to rozumieć, bo nie tylko chemia analityczna na tym korzysta, ale też nauka w laboratoriach, gdzie obserwacja takich reakcji jest mega ważna.

Pytanie 32

Chemikalia, dla których upłynął okres przydatności,

A. można je stosować, pod warunkiem że substancja pozostaje czysta
B. powinny być przechowywane w magazynie
C. można wykorzystać do końca opakowania
D. należy zutylizować z odpadami chemicznymi
To, że odczynniki chemiczne po terminie ważności trzeba zutylizować jak odpady chemiczne, to bardzo dobra odpowiedź. Te substancje mogą być naprawdę niebezpieczne, zarówno dla zdrowia, jak i dla środowiska. Z tego, co wiem, każdy, kto korzysta z chemikaliów, powinien się z tym liczyć i robić to z głową. Na przykład, kwas siarkowy, jeśli nie zostanie właściwie usunięty, może zaszkodzić ziemi i wodom gruntowym. Utylizacja takich rzeczy według lokalnych przepisów, które zazwyczaj obejmują programy zbierania niebezpiecznych odpadów, jest kluczowa. Dbanie o to, żeby wszystko robić zgodnie z zasadami, zmniejsza ryzyko wypadków i kontaminacji. Warto też pamiętać, że trzymanie się przepisów dotyczących bezpieczeństwa chemicznego jest ważne dla reputacji firm i ich odpowiedzialności społecznej.

Pytanie 33

Proces nastawiania miana kwasu solnego na wodorowęglan potasu KHCO3 przebiega zgodnie z następującą instrukcją:
Na wadze analitycznej odmierzyć 1 g KHCO3 (z precyzją 0,00001 g) i przesypać go ilościowo do kolby stożkowej, dodać około 50 cm3 destylowanej wody i dokładnie wymieszać roztwór. Następnie dodać kilka kropel roztworu czerwieni metylowej. Przeprowadzić miareczkowanie kwasem aż do pierwszej zmiany koloru wskaźnika.
W tym przypadku titrantem jest

A. woda destylowana
B. czerwień metylowa
C. roztwór wodorowęglanu potasu
D. kwas
Poprawną odpowiedzią jest kwas, ponieważ w procesie miareczkowania to on pełni rolę titranta, czyli substancji, której stężenie jest znane i która jest dodawana do próbki w celu ustalenia jej stężenia. W opisanym eksperymencie miareczkowanie polega na dodawaniu kwasu solnego do roztworu wodorowęglanu potasu, co powoduje jego neutralizację. W wyniku reakcji kwasu z wodorowęglanem potasu dochodzi do uwolnienia dwutlenku węgla oraz powstania soli i wody. Kwas solny, jako mocny kwas, jest w stanie szybko zareagować z wodorowęglanem, co czyni go idealnym titrantem w tej procedurze. W praktyce, miareczkowanie jest powszechnie stosowane w laboratoriach do analizy jakościowej i ilościowej substancji chemicznych, a umiejętność prawidłowego przeprowadzania tego procesu jest kluczowa dla chemików. Dobrym przykładem zastosowania miareczkowania jest określenie zawartości kwasu w różnych produktach spożywczych, co jest istotne z punktu widzenia ich jakości i bezpieczeństwa dla konsumentów.

Pytanie 34

Reagenty o najwyższej czystości to reagenty

A. chemicznie czyste.
B. czyste do badań.
C. spektralnie czyste.
D. czyste.
Odpowiedź "spektralnie czyste" jest uznawana za właściwą, ponieważ odnosi się do odczynnika, który został oczyszczony w takim stopniu, że jego czystość jest wystarczająca do zastosowań w spektroskopii oraz innych czułych analizach chemicznych. W praktyce oznacza to, że odczynniki te mają bardzo niskie stężenia zanieczyszczeń, co jest kluczowe dla uzyskania dokładnych i powtarzalnych wyników w badaniach. W laboratoriach analitycznych i badawczych, gdzie precyzja wyników jest niezbędna, stosuje się odczynniki spektralnie czyste, aby uniknąć wpływu niepożądanych substancji na reakcje chemiczne lub pomiary. Przykładem może być analiza chromatograficzna, gdzie obecność zanieczyszczeń może prowadzić do fałszywych wyników. W standardach ISO oraz w pracach dotyczących analizy chemicznej, podkreśla się wagę używania odczynników o specjalistycznej czystości, co stanowi najlepszą praktykę w laboratoriach zajmujących się badaniami jakości oraz badaniami ilościowymi substancji chemicznych.

Pytanie 35

Z partii materiału należy pobrać ogólną próbkę w ilości odpowiadającej promilowi całej partii. Na podstawie podanej informacji określ, ile pierwotnych próbek, każda ważąca 10 g, trzeba pobrać z partii cukru o masie 0,5 t, aby uzyskać reprezentatywną próbkę ogólną?

A. 5
B. 10
C. 100
D. 50
Wybór niewłaściwej liczby próbek pierwotnych do pobrania z partii cukru może wynikać z braku zrozumienia zasad reprezentatywności próbek oraz błędnych założeń dotyczących ich masy. Odpowiedzi takie jak 100, 10 czy 5 nie uwzględniają wymaganej masy próbki ogólnej, która powinna wynosić co najmniej 0,1% masy partii. W przypadku 500 kg cukru, 0,1% to 500 g, co oznacza, że pobierając próbki po 10 g, należy zebrać ich 50. Wybranie 100 próbek oznaczałoby nadmiar, co jest nieefektywne i kosztowne. Z kolei wybór 10 próbek nie osiągnie wymaganego minimum 500 g, co sprawi, że próbka ogólna nie będzie reprezentatywna. W przypadku 5 próbek, uzyskalibyśmy jedynie 50 g, co również nie spełnia norm. Niezrozumienie zasad pobierania próbek prowadzi do błędnych wniosków i może skutkować poważnymi konsekwencjami w ocenie jakości i bezpieczeństwa żywności, dlatego kluczowe jest przestrzeganie standardów dotyczących pobierania i analizy próbek.

Pytanie 36

Który z poniższych czynników nie mógł przyczynić się do błędnego określenia całkowitej liczby drobnoustrojów w surowym mleku?

A. Transport próbki mleka w temperaturze 30°C
B. Nieprawidłowe czyszczenie i dezynfekcja pipet do pobierania próbek pierwotnych
C. Pobranie nadmiernej liczby próbek pierwotnych
D. Nieodpowiednie mycie i dezynfekcja zbiorników do przechowywania mleka
Pobranie zbyt dużej liczby próbek pierwotnych nie wpływa na błędne oznaczenie ogólnej liczby drobnoustrojów w surowym mleku, ponieważ standardowe procedury analityczne zakładają, że próba powinna być reprezentatywna dla całej partii, a niekoniecznie musi być ograniczona do określonej liczby próbek. W praktyce laboratoria często pobierają wiele próbek w celu zwiększenia dokładności wyników, jednak kluczowe jest, aby każda próbka była odpowiednio przechowywana i transportowana zgodnie z ustalonymi normami. Dobrą praktyką jest stosowanie systemu losowego przy pobieraniu próbek, co pozwala na lepsze odwzorowanie rzeczywistego stanu mikrobiologicznego całej partii mleka. W przypadku dużej liczby próbek zaleca się ich równoległe analizowanie, co może zwiększyć precyzję wyników końcowych. Ponadto, zgodnie z zaleceniami organizacji takich jak Codex Alimentarius, należy przestrzegać surowych norm dotyczących transportu i przechowywania próbek, aby uniknąć zafałszowania wyników z powodu czynników zewnętrznych.

Pytanie 37

Jakie procesy towarzyszy efekt egzotermiczny?

A. rozpuszczanie azotanu(V) amonu w wodzie
B. rozcieńczanie stężonego roztworu tiosiarczanu(VI) sodu
C. rozcieńczanie stężonego roztworu kwasu siarkowego(VI)
D. rozpuszczanie jodku potasu w wodzie
Rozcieńczanie stężonego roztworu kwasu siarkowego(VI) to całkiem ciekawy proces. Robi się to w sposób egzotermiczny, co w praktyce oznacza, że wydziela się sporo ciepła. Jak się doda kwas do wody, to następuje silna reakcja, przez co temperatura roztworu może znacząco wzrosnąć. Dlatego zawsze warto pamiętać, żeby najpierw wrzucić kwas do wody, a nie odwrotnie – to może uratować nas przed nieprzyjemnymi oparzeniami i innymi niebezpieczeństwami. No i nie zapominaj o środkach ochrony osobistej – lepiej być przezornym, niż później żałować. Ta wiedza, moim zdaniem, jest kluczowa nie tylko w laboratoriach, ale i w różnych procesach przemysłowych. Gdy nie przestrzegamy zasad bezpieczeństwa, konsekwencje mogą być naprawdę poważne. Rozumienie, jak działają reakcje egzotermiczne, jest też ważne, szczególnie jeśli chodzi o projektowanie systemów chłodzenia w przemyśle chemicznym czy farmaceutycznym, bo kontrola temperatury ma tu ogromne znaczenie dla jakości produktów.

Pytanie 38

Rozpuszczalnik stosowany w procesie krystalizacji powinien

A. doskonale rozpuszczać zanieczyszczenia lub w niewielkim stopniu
B. być substancją łatwopalną
C. wchodzić w reakcję z substancją krystalizowaną
D. rozpuszczać zanieczyszczenia w przeciętnym zakresie
Wybór niewłaściwego rozpuszczalnika w procesie krystalizacji może prowadzić do wielu problemów. Propozycja, by rozpuszczalnik reagował z substancją krystalizowaną, jest fundamentalnie błędna, ponieważ takie reakcje chemiczne mogą prowadzić do zanieczyszczenia produktu końcowego, a nawet do jego degradacji. W kontekście krystalizacji, celem jest uzyskanie czystych kryształów, co wymaga, aby rozpuszczalnik nie reagował z substancją, lecz jedynie umożliwiał jej rozpuszczenie. Kolejną niepoprawną koncepcją jest pomysł, że rozpuszczalnik powinien rozpuszczać zanieczyszczenia w stopniu średnim. Taka sytuacja może prowadzić do powstania mieszaniny, która nie pozwoli na uzyskanie czystych kryształów, gdyż zanieczyszczenia będą wprowadzać dodatkowe substancje do struktury kryształów. Rozpuszczalniki łatwopalne są również niewłaściwym wyborem, gdyż ich stosowanie zwiększa ryzyko pożaru i stanowi zagrożenie w laboratoriach. Właściwy dobór rozpuszczalnika powinien być oparty na jego zdolności do selektywnego rozpuszczania i zapewnienia bezpiecznych warunków pracy, zgodnych z normami BHP oraz standardami przemysłowymi. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych wniosków, często wynikają z braku zrozumienia podstawowych zasad chemii i krystalizacji. Zrozumienie tych zagadnień jest niezbędne dla skutecznego przeprowadzenia procesu krystalizacji oraz uzyskania wysokiej jakości produktów chemicznych.

Pytanie 39

Korzystając z wykresu wskaż, w jakiej postaci występuje woda w temperaturze 10°C i pod ciśnieniem 100 barów.

Ilustracja do pytania
A. Sublimat
B. Gaz.
C. Lód.
D. Ciecz.
Wybór odpowiedzi "Ciecz" jest całkowicie poprawny, ponieważ woda w temperaturze 10°C i ciśnieniu 100 barów znajduje się w obszarze fazy ciekłej na wykresie fazowym. Woda przy tych parametrach spełnia warunki, które umożliwiają jej istnienie w stanie ciekłym. To zjawisko jest kluczowe w różnych zastosowaniach technologicznych, takich jak procesy przemysłowe, gdzie woda jako ciecz pełni funkcję chłodziwa czy medium transportującego ciepło. W praktyce, znajomość stanów skupienia wody i ich zależności od ciśnienia i temperatury jest istotna w inżynierii chemicznej, meteorologii oraz inżynierii środowiska. Dobrą praktyką jest regularne analizowanie wykresów fazowych, które mogą wskazywać na potencjalne zmiany stanu skupienia substancji, co jest kluczowe w projektowaniu i eksploatacji systemów, w których woda odgrywa fundamentalną rolę.

Pytanie 40

Aby uzyskać Cr2O3, dichromian(VI) amonu został poddany rozkładowi. Po rozpoczęciu, egzotermiczna reakcja rozkładu przebiega samorzutnie.
(NH4)2Cr2O7 → Cr2O3 + 4 H2O + N2 Jak oceniasz zakończenie tej reakcji?

A. Ocena nie jest potrzebna, ponieważ tego typu reakcja zawsze zachodzi do końca
B. W otrzymanym zielonym proszku Cr2O3 nie powinny być widoczne pomarańczowe kryształy substratu
C. Woda, po dodaniu szczypty uzyskanego preparatu, nie zabarwi się na pomarańczowo niewykorzystanym dichromianem (VI)
D. Ocena nie jest potrzebna, ponieważ wytworzone produkty są w stanie gazowym w temperaturze reakcji
Odpowiedź wskazująca, że woda po wrzuceniu szczypty otrzymanego preparatu nie będzie się barwić na pomarańczowo nieprzereagowanym dichromianem (VI) jest prawidłowa, ponieważ świadczy o tym, że reakcja rozkładu dichromianu (VI) amonu zakończyła się pomyślnie. Po zakończonej reakcji, w której powstaje Cr2O3, nie powinny pozostać żadne resztki surowców ani pośrednich produktów, co potwierdza brak doboru barwy wody. Praktycznie, takie podejście można zastosować w laboratoriach analitycznych, gdzie kontrola końca reakcji jest kluczowa dla uzyskania czystych produktów. Przy badaniach jakościowych, wykorzystanie takiego testu barwnego jest standardową procedurą, aby zweryfikować obecność niepożądanych substancji. Tego typu reakcje są typowe w chemii nieorganicznej i pomogą w zrozumieniu zachowań związków chromu, a także ich zastosowań w różnych dziedzinach, takich jak przemysł chemiczny czy materiałowy.