Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 23 maja 2025 07:20
  • Data zakończenia: 23 maja 2025 07:29

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do szklanych narzędzi laboratoryjnych wielomiarowych używanych w analizach ilościowych należy

A. pipeta Mohra
B. zlewka
C. cylinder z podziałką
D. kolba stożkowa
Cylinder z podziałką jest jednym z kluczowych elementów sprzętu laboratoryjnego wykorzystywanego w analizie ilościowej, ze względu na swoją zdolność do precyzyjnego pomiaru objętości cieczy. Oferuje on wyraźne podziały, które pozwalają na dokładne odczytanie objętości, co jest niezbędne w wielu eksperymentach chemicznych i biologicznych. Użycie cylindra z podziałką jest standardem w laboratoriach, gdzie wymagana jest wysoka dokładność i powtarzalność pomiarów. Przykładowo, w analizie stężenia roztworu chemicznego, cylinder umożliwia odmierzenie dokładnej ilości reagentów, co jest kluczowe dla uzyskania wiarygodnych wyników. W praktyce laboratoryjnej, zgodnie z normami ISO, korzystanie z odpowiednich narzędzi pomiarowych, takich jak cylinder z podziałką, jest wymogiem, który zapewnia jakość i rzetelność wyników badań. Ponadto, cylinder z podziałką jest łatwy w użyciu i czyszczeniu, co czyni go praktycznym wyborem w codziennej pracy laboratoryjnej.

Pytanie 2

Czystość konkretnego odczynnika chemicznego wynosi: 99,9-99,99%. Jakiego rodzaju jest ten odczynnik?

A. chemicznie czysty.
B. czysty.
C. czysty do analizy.
D. techniczny.
Odpowiedzi techniczny, czysty oraz chemicznie czysty są błędne, ponieważ nie odzwierciedlają właściwych standardów czystości wymaganych dla analiz chemicznych. Odczynniki określane jako techniczne mogą zawierać znaczne ilości zanieczyszczeń, co sprawia, że nie nadają się do precyzyjnych badań. Zasadniczo, odczynniki techniczne są używane w zastosowaniach przemysłowych, gdzie nie jest konieczna wysoka czystość. Z kolei termin "czysty" jest zbyt ogólny i nie precyzuje poziomu czystości, dlatego nie spełnia wymogów dla substancji używanych w analizach. Natomiast "chemicznie czysty" odnosi się do substancji, które mogą mieć czystość na poziomie 99% lub więcej, ale niekoniecznie są wystarczająco czyste do celów analitycznych. Tego rodzaju terminologia może prowadzić do nieporozumień, gdyż różne dziedziny nauki mogą mieć różne definicje czystości. W praktyce, wybierając odczynniki do analizy, istotne jest zrozumienie różnic pomiędzy ich klasami, co jest kluczowe dla uzyskania rzetelnych i wiarygodnych wyników, zgodnych z wymaganiami norm laboratoryjnych i regulacji branżowych.

Pytanie 3

W celu rozdrabniania niewielkich ilości bardzo twardego materiału wykorzystuje się moździerze

A. ze stali molibdenowej
B. melaminowe
C. teflonowe
D. agatowe
Odpowiedź "ze stali molibdenowej" jest poprawna, ponieważ moździerze wykonane z tego materiału charakteryzują się wyjątkową twardością i odpornością na zużycie, co czyni je idealnymi do rozdrabniania twardych substancji. Stal molibdenowa, dzięki swoim właściwościom, zapewnia doskonałą trwałość oraz stabilność mechaniczną, co jest kluczowe przy pracy z bardzo twardymi materiałami, takimi jak niektóre minerały czy substancje chemiczne. Użycie moździerzy stalowych w laboratoriach chemicznych oraz gastronomicznych jest powszechną praktyką, gdyż pozwala na uzyskanie dokładnych i jednorodnych rezultatów. Przykładem zastosowania może być rozdrabnianie przypraw, takich jak pieprz czy zioła, gdzie kluczowe jest zachowanie aromatów i właściwości smakowych. Ponadto stal molibdenowa jest mniej podatna na korozję w porównaniu do innych stali, co wydłuża żywotność narzędzia oraz zapewnia bezpieczeństwo w kontakcie z różnymi substancjami chemicznymi.

Pytanie 4

Proces nastawiania miana kwasu solnego na wodorowęglan potasu KHCO3 przebiega zgodnie z następującą instrukcją:
Na wadze analitycznej odmierzyć 1 g KHCO3 (z precyzją 0,00001 g) i przesypać go ilościowo do kolby stożkowej, dodać około 50 cm3 destylowanej wody i dokładnie wymieszać roztwór. Następnie dodać kilka kropel roztworu czerwieni metylowej. Przeprowadzić miareczkowanie kwasem aż do pierwszej zmiany koloru wskaźnika.
W tym przypadku titrantem jest

A. woda destylowana
B. czerwień metylowa
C. kwas
D. roztwór wodorowęglanu potasu
Poprawną odpowiedzią jest kwas, ponieważ w procesie miareczkowania to on pełni rolę titranta, czyli substancji, której stężenie jest znane i która jest dodawana do próbki w celu ustalenia jej stężenia. W opisanym eksperymencie miareczkowanie polega na dodawaniu kwasu solnego do roztworu wodorowęglanu potasu, co powoduje jego neutralizację. W wyniku reakcji kwasu z wodorowęglanem potasu dochodzi do uwolnienia dwutlenku węgla oraz powstania soli i wody. Kwas solny, jako mocny kwas, jest w stanie szybko zareagować z wodorowęglanem, co czyni go idealnym titrantem w tej procedurze. W praktyce, miareczkowanie jest powszechnie stosowane w laboratoriach do analizy jakościowej i ilościowej substancji chemicznych, a umiejętność prawidłowego przeprowadzania tego procesu jest kluczowa dla chemików. Dobrym przykładem zastosowania miareczkowania jest określenie zawartości kwasu w różnych produktach spożywczych, co jest istotne z punktu widzenia ich jakości i bezpieczeństwa dla konsumentów.

Pytanie 5

Skrót "cz." na etykiecie odczynnika chemicznego wskazuje, że

A. zawartość zanieczyszczeń nie przekracza 0,01-0,001%
B. zawartość głównego składnika wynosi 99-99,9%
C. zawartość głównego składnika wynosi 99,9-99,99%
D. odczynnik jest przeznaczony do analiz spektralnych
Zrozumienie oznaczenia 'cz.' jest kluczowe dla każdego, kto pracuje w laboratoriach chemicznych. Wiele osób myli to oznaczenie z innymi wskaźnikami czystości chemikaliów, co prowadzi do nieporozumień. Na przykład, pierwsza z dostępnych odpowiedzi sugeruje, że skrót ten odnosi się do możliwości stosowania odczynnika do analiz spektralnych. To podejście jest błędne, ponieważ czystość chemiczna nie jest bezpośrednio związana z metodą analizy, ale raczej z jakością używanego odczynnika. Zastosowanie reagentów o wysokiej czystości jest ważne w kontekście dokładności wyników, a nie samego sposobu przeprowadzania analizy. Kolejna sugestia dotycząca zawartości głównego składnika na poziomie 99,9-99,99% również jest myląca. Oznaczenie 'cz.' jednoznacznie wskazuje na zakres 99-99,9%, co jest akceptowane w standardach laboratoryjnych. Ostatnia odpowiedź, mówiąca o maksymalnej zawartości zanieczyszczeń, sugeruje jakoby czystość była mierzona w bardziej rygorystyczny sposób niż w rzeczywistości. Zanieczyszczenia zawsze są obecne, ale ich akceptowalny poziom w odczynnikach chemicznych to właśnie 0,1-0,01% dla klasy reagentów czystych. Pojawiające się błędne koncepcje często wynikają z mylenia terminologii i różnorodności standardów stosowanych w praktyce laboratoryjnej, co może prowadzić do nieodpowiednich wyborów reagenty, a tym samym do błędnych wyników badań.

Pytanie 6

Technika oddzielania płynnych mieszanin, w której wykorzystuje się różnice w prędkości migracji składników przez odpowiednią bibułę, nazywa się

A. destylacją
B. chromatografią
C. adsorpcją
D. filtracją
Chromatografia to technika rozdzielania składników mieszanin, która opiera się na różnicach w ich powinowactwie do fazy stacjonarnej i fazy ruchomej. Proces ten umożliwia analizę oraz oczyszczanie substancji chemicznych, a jego zastosowanie jest szerokie, od analizy jakościowej w laboratoriach chemicznych po przemysł farmaceutyczny, gdzie służy do czyszczenia składników aktywnych. W chromatografii cieczowej, która jest jedną z najczęstszych metod, próbka jest rozdzielana na podstawie różnic w szybkości migracji jej składników przez bibulę lub kolumnę wypełnioną odpowiednim materiałem. Zastosowanie chromatografii obejmuje zarówno naukę, jak i przemysł, umożliwiając kontrolę jakości, identyfikację substancji oraz badania środowiskowe, co czyni ją kluczowym narzędziem w analizach chemicznych. Standardy ISO oraz metodyka Good Laboratory Practice (GLP) regulują stosowanie chromatografii, zapewniając wysoką jakość wyników i bezpieczeństwo w laboratoriach.

Pytanie 7

Próbka, której celem jest ustalenie poziomu składników, dla których oznaczenia przygotowane przez różne laboratoria są niezgodne, to próbka

A. do badań
B. laboratoryjna
C. rozjemcza
D. jednostkowa
Odpowiedź "rozjemcza" jest poprawna, ponieważ odnosi się do próbki, która ma na celu uzyskanie obiektywnego obrazu zawartości składników, w sytuacji gdy wyniki z różnych laboratoriów mogą się różnić. Próbki rozjemcze są kluczowe w kontekście zapewnienia zgodności i rzetelności wyników analitycznych. Przykładem może być analiza jakości produktów spożywczych, gdzie różne laboratoria mogą stosować różne metody badawcze prowadzące do niezgodnych wyników. W standardach jakości, takich jak ISO 17025, podkreśla się znaczenie reprezentatywności próbki oraz procedur stosowanych w celu uzyskania spójnych wyników. W praktyce, wykorzystanie próbki rozjemczej umożliwia także potwierdzenie lub obalenie hipotez dotyczących jakości materiałów, co jest szczególnie ważne w branżach takich jak przemysł farmaceutyczny czy chemiczny, gdzie zgodność z normami jest niezbędna. Analiza próbki rozjemczej pozwala także na lepsze zrozumienie zmienności składników i ich wpływu na końcowy produkt.

Pytanie 8

Wskaż zbiór substancji, które po rozpuszczeniu w wodzie stają się elektrolitami?

A. Chlorek sodu, wodorotlenek sodu, kwas siarkowy(VI)
B. Cukier, sól stołowa, ocet
C. Kwas solny, gliceryna, tlenek siarki(VI)
D. Glukoza, kwas azotowy(V), wodorotlenek wapnia
Prawidłowa odpowiedź to chlorek sodu, wodorotlenek sodu oraz kwas siarkowy(VI), ponieważ są to substancje, które w rozpuszczalniku wodnym dysocjują na jony. Elektrolity to substancje, które w roztworach wodnych przewodzą prąd elektryczny dzięki obecności naładowanych cząsteczek – jonów. Chlorek sodu (NaCl) po rozpuszczeniu w wodzie dissocjuje na jony sodu (Na+) i jony chlorkowe (Cl-), co czyni go doskonałym elektrolitem, często stosowanym w przemyśle spożywczym oraz w procesach biologicznych. Wodorotlenek sodu (NaOH) również rozkłada się na jony Na+ i OH-, co czyni go silnym elektrolitem, wykorzystywanym w wielu procesach chemicznych, w tym w produkcji mydeł i detergentów. Kwas siarkowy(VI) (H2SO4) w wodzie dissocjuje, tworząc jony H+ oraz jony SO4^2-, co sprawia, że jest jednym z najsilniejszych elektrolitów i znajduje zastosowanie w akumulatorach kwasowo-ołowiowych oraz w przemyśle chemicznym. Zrozumienie roli elektrolitów jest kluczowe nie tylko w chemii, ale również w biologii oraz medycynie, gdzie ich równowaga ma istotne znaczenie dla funkcjonowania organizmu.

Pytanie 9

Aby odróżnić urządzenia w laboratorium chemicznym, rury do próżni maluje się w kolorze

A. niebieskim
B. szarym
C. żółtym
D. czerwonym
Rury do próżni w laboratoriach chemicznych maluje się na kolor szary, aby zapewnić ich łatwe rozróżnienie od innych systemów rurociągów, a także podnieść bezpieczeństwo pracy w laboratoriach. Kolor szary jest standardem w wielu laboratoriach, ponieważ konkretne barwy przypisuje się różnym zastosowaniom i funkcjom rur. Rury do próżni muszą być odpowiednio oznaczone, aby uniknąć pomyłek, które mogłyby prowadzić do niebezpiecznych sytuacji, takich jak przypadkowe podłączenie nieprawidłowych systemów. Przykładowo, w sytuacji awaryjnej, kiedy konieczne jest szybkie rozpoznanie systemów, oznakowanie kolorystyczne umożliwia personelowi natychmiastowe zidentyfikowanie rur do próżni i podjęcie odpowiednich działań. Dobre praktyki branżowe, takie jak normy ISO oraz wytyczne dotyczące bezpieczeństwa chemicznego, również podkreślają znaczenie prawidłowego oznakowania infrastruktury laboratoryjnej, co ma kluczowe znaczenie dla minimalizacji ryzyka oraz zapewnienia efektywności operacyjnej.

Pytanie 10

Podczas rozkładu chloranu(V) potasu powstają chlorek potasu oraz tlen. Ile gramów tlenu zostanie wydzielonych w trakcie rozkładu 24,5 g chloranu(V) potasu, jeśli jednocześnie uzyskano 14,9 g chlorku potasu? Masy molowe pierwiastków: K = 39 g/mol, Cl = 35,5 g/mol, O=16 g/mol?

A. 9,6 g
B. 24,5 g
C. 14,5 g
D. 39,4 g
Jak nie wyszło, to mogły być różne błędy w myśleniu. Na przykład, jeśli ktoś zaznaczył, że masa tlenu to 24,5 g, to może myślał, że wszystko z chloranu idzie w tlen, a to nieprawda, bo powstaje też chlorek potasu. Natomiast 14,5 g to pewnie wynik złej interpretacji tego, co się dzieje w reakcji. Może była pomyłka z rozumieniem, że masa chlorku ma wpływ na wydzielający się tlen, ale to nie tak działa. A wybór 39,4 g może pokazywać, że ktoś się pomylił przy zamianie jednostek albo nie popatrzył dobrze na masy molowe. Ważne, by rozumieć, jak działają reakcje chemiczne i trzymać się zasady zachowania masy, że to, co mamy na wejściu, musi równać się temu na wyjściu. Te umiejętności obliczeniowe są istotne, szczególnie w chemii, gdzie precyzja jest kluczowa.

Pytanie 11

Laboratoryjny aparat szklany, który wykorzystuje kwasy do wytwarzania gazów w reakcji z metalem lub odpowiednią solą, to

A. aparat Kippa
B. aparat Hofmanna
C. aparat Soxhleta
D. aparat Orsata
Aparat Kippa jest specjalistycznym narzędziem laboratoryjnym, które służy do wytwarzania gazów poprzez reakcje chemiczne, najczęściej polegające na działaniu kwasów na metale lub odpowiednie sole. Jego konstrukcja pozwala na kontrolowane wydobywanie gazu, co jest niezbędne w wielu procesach chemicznych. Kluczowym elementem tego aparatu jest jego zdolność do gromadzenia gazów w komorze, a następnie ich wydawania w sposób zorganizowany. Przykładowo, w laboratoriach chemicznych aparat Kippa jest wykorzystywany do produkcji gazu wodoru poprzez reakcję kwasu solnego z cynkiem. Stosując ten aparat, laboranci mogą utrzymać bezpieczeństwo i kontrolować ilość wytwarzanego gazu, co jest szczególnie istotne przy pracy z substancjami łatwopalnymi lub toksycznymi. Warto również podkreślić, że aparat Kippa jest zgodny z normami bezpieczeństwa i praktykami laboratoryjnymi, co czyni go niezastąpionym narzędziem w chemii analitycznej i preparatywnej.

Pytanie 12

W celu uzyskania 500 g mieszaniny oziębiającej o temperaturze -18oC należy zmieszać

Tabela. Mieszaniny oziębiające
Temperatura
mieszaniny [°C]
Skład mieszaninyStosunek
masowy
-2Woda + chlorek amonu10 : 3
-15Woda + rodanek amonu10 : 13
-18Lód + chlorek amonu10 : 3
-21Lód + chlorek sodu3 : 1
-22Lód + chlorek amonu + azotan(V) amonu25 : 5 : 11
-25Lód + azotan(V) amonu1 : 1

A. 375,0 g lodu i 125,0 g chlorku sodu.
B. 384,6 g wody i 115,4 g chlorku amonu.
C. 250,0 g wody i 250,0 g rodanku amonu.
D. 384,6 g lodu i 115,4 g chlorku amonu.
Aby uzyskać mieszaninę oziębiającą o temperaturze -18°C, kluczowe jest zrozumienie zasad termodynamiki i reakcji chemicznych zachodzących podczas mieszania substancji. W przypadku lodu i chlorku amonu, lód służy jako substancja o niskiej temperaturze, a chlorek amonu działa jako solwat, który wpływa na obniżenie temperatury roztworu. Stosunek masowy 10:3, w którym należy zmieszać te dwie substancje, zapewnia optymalne warunki do osiągnięcia pożądanej temperatury. Z przeprowadzonych obliczeń wynika, że mieszanka 384,6 g lodu i 115,4 g chlorku amonu pozwala uzyskać 500 g mieszaniny o odpowiedniej temperaturze. Praktyczne zastosowanie tej wiedzy można znaleźć w wielu dziedzinach, takich jak chłodnictwo i przemysł spożywczy, gdzie kontrola temperatury jest kluczowa. Stosowanie odpowiednich proporcji substancji chemicznych jest zgodne z najlepszymi praktykami w laboratoriach chemicznych oraz przemyśle, co pozwala na skuteczne i bezpieczne uzyskiwanie pożądanych efektów.

Pytanie 13

Aby uzyskać Cr2O3, dichromian(VI) amonu został poddany rozkładowi. Po rozpoczęciu, egzotermiczna reakcja rozkładu przebiega samorzutnie.
(NH4)2Cr2O7 → Cr2O3 + 4 H2O + N2 Jak oceniasz zakończenie tej reakcji?

A. Woda, po dodaniu szczypty uzyskanego preparatu, nie zabarwi się na pomarańczowo niewykorzystanym dichromianem (VI)
B. Ocena nie jest potrzebna, ponieważ tego typu reakcja zawsze zachodzi do końca
C. W otrzymanym zielonym proszku Cr2O3 nie powinny być widoczne pomarańczowe kryształy substratu
D. Ocena nie jest potrzebna, ponieważ wytworzone produkty są w stanie gazowym w temperaturze reakcji
Odpowiedź wskazująca, że woda po wrzuceniu szczypty otrzymanego preparatu nie będzie się barwić na pomarańczowo nieprzereagowanym dichromianem (VI) jest prawidłowa, ponieważ świadczy o tym, że reakcja rozkładu dichromianu (VI) amonu zakończyła się pomyślnie. Po zakończonej reakcji, w której powstaje Cr2O3, nie powinny pozostać żadne resztki surowców ani pośrednich produktów, co potwierdza brak doboru barwy wody. Praktycznie, takie podejście można zastosować w laboratoriach analitycznych, gdzie kontrola końca reakcji jest kluczowa dla uzyskania czystych produktów. Przy badaniach jakościowych, wykorzystanie takiego testu barwnego jest standardową procedurą, aby zweryfikować obecność niepożądanych substancji. Tego typu reakcje są typowe w chemii nieorganicznej i pomogą w zrozumieniu zachowań związków chromu, a także ich zastosowań w różnych dziedzinach, takich jak przemysł chemiczny czy materiałowy.

Pytanie 14

Naczynia miarowe o kształcie rurek poszerzonych w środku, z wąskim i wydłużonym dolnym końcem, przeznaczone do pobierania i transportowania cieczy o ściśle określonej objętości, to

A. biurety
B. cylindry
C. pipety
D. wkraplacze
Pipety to takie fajne naczynka, które trzymamy w laboratoriach, żeby dokładnie mierzyć i przenosić różne płyny. Mają specjalną budowę - szerszą część w środku i wąski koniec, co ułatwia nam nalewanie cieczy w ściśle określonych ilościach. Korzysta się z nich w wielu dziedzinach, jak chemia czy biologia, a nawet w medycynie i farmacji. Na przykład, w biologii molekularnej pipety są super do przenoszenia małych ilości chemikaliów, które potem wykorzystujemy w reakcjach PCR. W labach często używamy pipet automatycznych, bo to pozwala na jeszcze dokładniejsze pomiary i szybszą pracę. A pojemności pipet są różne, więc możemy dobrać odpowiednią do naszych potrzeb. Ważne, żeby dobrze korzystać z tych narzędzi, czyli pamiętać o kalibracji i stosować się do wskazówek producenta - to naprawdę robi różnicę.

Pytanie 15

W procesie oddzielania osadu od roztworu, po przeniesieniu osadu na sączek, najpierw należy go

A. przemyć
B. wysuszyć
C. wyprażyć
D. zważyć
Przemywanie osadu po jego oddzieleniu od roztworu jest kluczowym krokiem w procesie analitycznym, który ma na celu usunięcie zanieczyszczeń i pozostałości reagentów. Przed przystąpieniem do ważenia, wysuszania czy wyprażania, istotne jest, aby osad był wolny od wszelkich substancji, które mogłyby wpłynąć na wyniki analizy. Przemywanie osadu za pomocą odpowiedniego rozpuszczalnika, zazwyczaj wody destylowanej, pozwala na usunięcie niepożądanych jonów lub cząsteczek, które mogłyby zafałszować wyniki późniejszych pomiarów. Na przykład, w przypadku analizy chemicznej, zanieczyszczenia mogą wprowadzać błędy w pomiarach masy, co może skutkować nieprawidłowymi wnioskami. Standardy laboratoryjne, takie jak ISO 17025, zalecają przestrzeganie procedur czyszczenia próbek, aby zapewnić wiarygodność uzyskanych danych. W praktyce laboratoryjnej, prawidłowe przemycie osadu przyczynia się do poprawy dokładności i precyzji wyników analitycznych, co jest kluczowe w badaniach naukowych i przemysłowych.

Pytanie 16

Do grupy reagentów o szczególnym zastosowaniu nie wlicza się

A. wodnych roztworów kwasów
B. wskaźników
C. wzorców
D. rozpuszczalników do chromatografii
Wodne roztwory kwasów są powszechnie stosowane w laboratoriach chemicznych, jednak nie są klasyfikowane jako odczynniki o specjalnym przeznaczeniu. Odczynniki o specjalnym przeznaczeniu obejmują substancje, które są używane w określonych procesach analitycznych lub badawczych, gdzie ich funkcja jest wysoce wyspecjalizowana. Przykładowo, wzorce są substancjami o znanym składzie, które służą do kalibracji instrumentów pomiarowych oraz weryfikacji wyników analizy. Wskaźniki, z kolei, są używane do wizualizacji zmian pH czy innych parametrów chemicznych w trakcie reakcji. Rozpuszczalniki do chromatografii, takie jak acetonitryl czy etanol, są kluczowe w procesach separacji składników mieszanki. W przeciwieństwie do tych substancji, wodne roztwory kwasów pełnią rolę bardziej ogólną, umożliwiając reakcje chemiczne, ale nie są dedykowane do specyficznych zastosowań analitycznych. Dlatego odpowiedź na pytanie jest poprawna, a zrozumienie różnicy między tymi grupami odczynników jest istotne w kontekście praktyki laboratoryjnej.

Pytanie 17

Jakie procesy towarzyszy efekt egzotermiczny?

A. rozcieńczanie stężonego roztworu tiosiarczanu(VI) sodu
B. rozpuszczanie azotanu(V) amonu w wodzie
C. rozpuszczanie jodku potasu w wodzie
D. rozcieńczanie stężonego roztworu kwasu siarkowego(VI)
Rozcieńczanie stężonego roztworu kwasu siarkowego(VI) to całkiem ciekawy proces. Robi się to w sposób egzotermiczny, co w praktyce oznacza, że wydziela się sporo ciepła. Jak się doda kwas do wody, to następuje silna reakcja, przez co temperatura roztworu może znacząco wzrosnąć. Dlatego zawsze warto pamiętać, żeby najpierw wrzucić kwas do wody, a nie odwrotnie – to może uratować nas przed nieprzyjemnymi oparzeniami i innymi niebezpieczeństwami. No i nie zapominaj o środkach ochrony osobistej – lepiej być przezornym, niż później żałować. Ta wiedza, moim zdaniem, jest kluczowa nie tylko w laboratoriach, ale i w różnych procesach przemysłowych. Gdy nie przestrzegamy zasad bezpieczeństwa, konsekwencje mogą być naprawdę poważne. Rozumienie, jak działają reakcje egzotermiczne, jest też ważne, szczególnie jeśli chodzi o projektowanie systemów chłodzenia w przemyśle chemicznym czy farmaceutycznym, bo kontrola temperatury ma tu ogromne znaczenie dla jakości produktów.

Pytanie 18

W jakim stosunku objętościowym należy połączyć roztwór o stężeniu 5 mol/dm3 z wodą destylowaną, aby uzyskać roztwór o stężeniu 3 mol/dm3?

A. 2:3
B. 3:5
C. 5:3
D. 3:2
Aby obliczyć stosunek objętościowy roztworu o stężeniu 5 mol/dm³ do wody destylowanej, który pozwoli uzyskać roztwór o stężeniu 3 mol/dm³, możemy zastosować zasadę rozcieńczania. Z definicji stężenia molowego wynika, że ilość moli substancji rozpuszczonej w danej objętości roztworu jest kluczowa. Z równania: C1V1 = C2V2, gdzie C1 to stężenie początkowe (5 mol/dm³), C2 to stężenie końcowe (3 mol/dm³), a V1 i V2 to odpowiednie objętości roztworów, możemy przekształcić wzór, aby znaleźć stosunek objętości V1 (roztwór 5 mol/dm³) do V2 (woda destylowana). Przekształcając wzory, otrzymujemy stosunek V1:V2 równy 3:2. Taki sposób przygotowania roztworu jest standardowo stosowany w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne stężenia roztworów mają kluczowe znaczenie w procesach chemicznych i biologicznych. Przykładem może być przygotowanie buforów czy roztworów do analiz spektroskopowych.

Pytanie 19

W nieopisanej butelce prawdopodobnie znajduje się roztwór zasadowy. Wskaż odczynnik, który pozwoli to zweryfikować?

A. Roztwór kwasu siarkowego(VI) o stężeniu 2%
B. Roztwór chlorku potasu o stężeniu 1 mol/dm3
C. Roztwór wodorotlenku potasu o stężeniu 0,5 mol/dm3
D. Alkoholowy roztwór fenoloftaleiny o stężeniu 2%
Alkoholowy roztwór fenoloftaleiny o stężeniu 2% jest skutecznym odczynnikiem do wykrywania odczynu zasadowego. Fenoloftaleina, będąca wskaźnikiem pH, zmienia swój kolor z bezbarwnego na różowy w obecności roztworów o odczynie zasadowym, co czyni ją idealnym narzędziem w laboratoriach chemicznych. Jej zastosowanie w praktyce obejmuje nie tylko kontrolę odczynu pH w różnorodnych procesach chemicznych, ale również w edukacji, gdzie uczniowie uczą się o reakcjach kwasowo-zasadowych. Warto zauważyć, że fenoloftaleina działa w zakresie pH od około 8,2 do 10,0, co oznacza, że będzie wyraźnie widoczna w roztworach zasadowych. W kontekście standardów laboratoryjnych, korzystanie z fenoloftaleiny dla analizy pH jest zgodne z dobrymi praktykami, ponieważ pozwala na szybkie i efektywne określenie odczynu, co jest kluczowe w wielu zastosowaniach, takich jak analiza wody, synteza chemiczna, czy też kontrola jakości produktów chemicznych.

Pytanie 20

W celu wydania świadectwa kontroli jakości odczynnika chemicznego - jodku potasu cz.d.a. przeprowadzono jego analizę. Wymagania oraz wyniki badań zapisano w tabeli:
Z analizy danych zawartych w tabeli wynika, że jodek potasu cz.d.a.

WymaganiaWynik badania
Zawartość KImin. 99,5%99,65%
Wilgoćmax. 0,1%0,075%
Substancje nierozpuszczalne w wodziemax. 0,005%0,002%
pH (5%, H2O)6 ÷ 86,8
Azot ogólny (N)max. 0,001%0,0007%
Chlorki i bromki (j. Cl)max. 0,01%0,004%
Fosforany (PO4)max. 0,001%0,0006%
Jodany (IO3)max. 0,0003%0,0001%
Siarczany (SO4)max. 0,001%0,0004%
Metale ciężkie (j. Pb)max. 0,0005%0,00025%
Arsen (As)max. 0,00001%0,000006%
Magnez (Mg)max. 0,001%0,0004%
Sód (Na)max. 0,05%0,015%
Wapń (Ca)max. 0,001%0,0006%
Żelazo (Fe)max. 0,0003%0,0003%

A. nie spełnia wymagań pod względem zawartości metali ciężkich.
B. nie spełnia wymagań pod względem pH i zawartości jodanów.
C. nie spełnia wymagań pod względem zawartości żelaza.
D. spełnia wymagania i można wydać świadectwo jakości.
Twoja odpowiedź jest na pewno trafna. Jodek potasu cz.d.a. rzeczywiście spełnia normy jakościowe, co jest bardzo ważne, gdy mówimy o wydaniu świadectwa kontroli jakości. W badaniach wyszło, że zawartość jodku potasu wynosi 99,65%, co jest lepsze niż wymagane 99,5%. To świetny wynik! Poza tym inne parametry, takie jak pH, wilgotność czy substancje nierozpuszczalne w wodzie, też są w normie. Z mojego doświadczenia, spełnianie norm to kluczowa sprawa, zwłaszcza w farmacji czy chemii analitycznej. Świadectwo jakości potwierdza, że produkt jest nie tylko zgodny z normami, ale również można go bezpiecznie używać. W laboratoriach warto regularnie sprawdzać i dokumentować wyniki, żeby mieć pewność, że wszystko jest na czasie z obowiązującymi standardami i zasadami bezpieczeństwa.

Pytanie 21

Aby oddzielić mieszankę etanolu i wody, konieczne jest przeprowadzenie procesu

A. ekstrakcji
B. destylacji
C. sączenia
D. dekantacji
Destylacja jest procesem fizycznym, który wykorzystuje różnice w temperaturach wrzenia składników mieszaniny do ich rozdzielenia. W przypadku etanolu i wody, etanol ma niższą temperaturę wrzenia (78,37 °C) w porównaniu do wody (100 °C). Podczas destylacji podgrzewamy mieszaninę, aż etanol zacznie parować, a następnie skraplamy pary, zbierając czysty etanol. Proces ten jest powszechnie stosowany w przemyśle chemicznym oraz w produkcji alkoholu, gdzie oczyszcza się etanol od niepożądanych substancji. Destylacja jest również kluczowym procesem w laboratoriach chemicznych, gdzie czystość substancji ma ogromne znaczenie. Warto zaznaczyć, że dobór odpowiednich sprzętów, takich jak kolumna destylacyjna, może znacząco wpłynąć na efektywność rozdzielania. W praktyce, destylacja jest uważana za jedną z najważniejszych metod separacji w chemii, szczególnie w kontekście tworzenia czystych reagentów.

Pytanie 22

Który z wymienionych roztworów NaOH, o określonych stężeniach, nie jest roztworem mianowanym?

A. około 0,2 mol/dm3
B. 0,200 mol/dm3
C. 0,100 mol/dm3
D. ściśle 0,2 mol/dm3
Odpowiedź 'około 0,2 mol/dm3' jest prawidłowa, ponieważ nie spełnia kryteriów roztworu mianowanego. Roztwory mianowane charakteryzują się ściśle zdefiniowanym stężeniem, co oznacza, że ich stężenie powinno być określone z maksymalną precyzją. Roztwór mianowany NaOH o stężeniu dokładnie 0,200 mol/dm3 czy ściśle 0,2 mol/dm3 to przykłady roztworów, które są dokładnie przygotowane i spełniają standardy laboratoryjne. Roztwory te są kluczowe w analizach chemicznych, gdzie precyzyjne pomiary stężenia są niezbędne do uzyskania wiarygodnych wyników. W praktyce, na przykład w titracji, gdzie oblicza się ilość substancji reagującej, zastosowanie roztworu mianowanego pozwala na dokładne obliczenie stężenia substancji analizowanej, co jest podstawą wielu procedur analitycznych. Warto zatem zwracać uwagę na precyzję w przygotowywaniu roztworów, aby zapewnić ich wiarygodność i powtarzalność wyników.

Pytanie 23

Jaką objętość roztworu NaOH o stężeniu 1 mol/dm3 należy użyć, aby przygotować 50 cm3 roztworu NaOH o stężeniu 0,4 mol/dm3?

A. 20 cm3
B. 10 cm3
C. 50 cm3
D. 25 cm3
Aby obliczyć objętość roztworu NaOH o stężeniu 1 mol/dm3, potrzebnej do sporządzenia 50 cm3 roztworu o stężeniu 0,4 mol/dm3, należy zastosować zasadę zachowania moles. Obliczamy liczbę moli NaOH w docelowym roztworze: C1V1 = C2V2, gdzie C1 = 1 mol/dm3, V1 to objętość, C2 = 0,4 mol/dm3 i V2 = 50 cm3 = 0,05 dm3. Z równania mamy: 1 * V1 = 0,4 * 0,05. Obliczając V1, otrzymujemy V1 = 0,4 * 0,05 = 0,02 dm3 = 20 cm3. Takie podejście jest standardem w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników. Przykładem zastosowania może być przygotowanie roztworów do titracji, gdzie dokładność stężenia reagentu jest niezbędna dla prawidłowego przeprowadzenia analizy. Warto również zauważyć, że w praktyce często stosuje się wzory rozcieńczania, co zapewnia efektywność i bezpieczeństwo pracy w laboratorium chemicznym.

Pytanie 24

Wskaż definicję fiksanali?

A. Małe ampułki z nieokreśloną masą substancji chemicznej
B. Małe ampułki ze ściśle określoną masą substancji chemicznej
C. Małe kapsułki z nieokreśloną ilością stałej substancji chemicznej
D. Kapsułki zawierające niewielkie ilości substancji chemicznej
Fiksanal, w kontekście farmaceutycznym, odnosi się do małych ampułek, które zawierają ściśle określoną masę danego związku chemicznego. Tego rodzaju preparaty są kluczowe w aplikacjach, gdzie precyzyjne dawkowanie substancji czynnej jest niezbędne, na przykład w leczeniu chorób, gdzie nadmierne lub niewystarczające dawki mogą prowadzić do poważnych skutków zdrowotnych. Fiksany są powszechnie wykorzystywane w laboratoriach analitycznych oraz w przemyśle farmaceutycznym, gdzie konieczność zachowania dokładnych proporcji substancji ma istotne znaczenie dla efektywności terapii. Przykładem zastosowania fiksanalów może być przygotowywanie rozwiązań do badań laboratoryjnych, gdzie wymagana jest precyzyjna kontrola masy substancji. Warto również zaznaczyć, że produkcja tych ampułek musi spełniać rygorystyczne normy jakości, takie jak GMP (Good Manufacturing Practice), co zapewnia, że każda partia fiksanali jest zgodna z określonymi standardami jakości.

Pytanie 25

Połączono równe ilości cynku i bromu, a następnie poddano je reakcji Zn + Br2 → ZnBr2. W tych warunkach stopień reakcji cynku wynosi (masy atomowe: Zn – 65u, Br – 80u)?

A. 0,6
B. 1,0
C. 0,8
D. 0,4
Odpowiedź 0,4 jest poprawna, ponieważ obliczenia wskazują, że stosunek molowy cynku do bromu w reakcji wynosi 1:1. W przypadku reakcji, gdzie mamy do czynienia z równowagą stechiometryczną, kluczowe jest zrozumienie, że dla 1 mola Zn potrzeba 1 mola Br2. Zastosowane masy atomowe (Zn – 65u, Br – 80u) pozwalają na określenie, ile moli każdej substancji mamy w danej reakcji. Wymieszenie równych mas cynku i bromu, na przykład 65 g cynku i 80 g bromu, prowadzi do sytuacji, w której cynk jest reagentem ograniczającym, ponieważ mamy mniej moli cynku (1 mol) niż bromu (1,0 mol). W wyniku tego, tylko część bromu będzie reagować z cynkiem. Obliczając stopień przereagowania cynku, stwierdzamy, że 0,4 wynika z faktu, iż 0,4 mola cynku zareaguje całkowicie, a pozostałe 0,6 mola bromu nie znajdzie reagentu do reakcji. Takie analizy są kluczowe w praktyce chemicznej i inżynieryjnej, gdzie precyzyjne obliczenia dają podstawy do skutecznego projektowania procesów chemicznych.

Pytanie 26

Przedstawiono wyciąg z karty charakterystyki substancji chemicznej. Na podstawie informacji zawartej w zamieszczonym fragmencie karty wskaż wzór chemiczny substancji, której można użyć jako materiału neutralizującego lodowaty kwas octowy.

Kwas octowy lodowaty 99,5%

Materiały zapobiegające rozprzestrzenianiu się skażenia i służące do usuwania skażenia

Jeżeli to możliwe i bezpieczne, zlikwidować lub ograniczyć wyciek (uszczelnić, zamknąć dopływ cieczy, uszkodzone opakowanie umieścić w opakowaniu awaryjnym). Ograniczyć rozprzestrzenianie się rozlewiska przez obwałowanie terenu; zebrane duże ilości cieczy odpompować. Małe ilości rozlanej cieczy przysypać niepalnym materiałem chłonnym (ziemia, piasek oraz materiałami neutralizującymi kwasy, np. węglanem wapnia lub sodu, zmielonym wapieniem, dolomitem), zebrać do zamykanego pojemnika i przekazać do zniszczenia.

Zanieczyszczoną powierzchnię spłukać wodą. Popłuczyny zebrać i usunąć jako odpad niebezpieczny.

A. (NH4)2SO>sub>4
B. CaSO4
C. NaCl
D. CaCO3 • MgCO3
Odpowiedź "CaCO3 • MgCO3" jest poprawna, ponieważ wskazuje na zastosowanie dolomitu, który zawiera zarówno węglan wapnia (CaCO3), jak i węglan magnezu (MgCO3). Te substancje są znane z właściwości alkalicznych, co sprawia, że są skutecznymi materiałami neutralizującymi kwasy, takie jak lodowaty kwas octowy. W praktyce, węglan wapnia jest często wykorzystywany w przemysłach chemicznych i budowlanych jako środek neutralizujący, a dolomit znajduje zastosowanie w rolnictwie jako poprawiacz gleby. Neutralizacja kwasów jest kluczowa w procesach przemysłowych, aby zminimalizować ryzyko korozji i uszkodzeń instalacji. Standardy dotyczące stosowania materiałów neutralizujących opierają się na zasadach bezpieczeństwa chemicznego, które wymagają stosowania odpowiednich substancji w celu ochrony zdrowia i środowiska. Zdecydowanie zaleca się korzystanie z tego typu włączy w laboratoriach oraz podczas procesów produkcyjnych, aby zapewnić zgodność z normami ochrony środowiska.

Pytanie 27

Podczas pobierania skoncentrowanego roztworu kwasu solnego konieczne jest pracowanie w włączonym dygestorium oraz zastosowanie

A. rękawic odpornych na kwasy, maski ochronnej
B. fartucha, okularów ochronnych, maski ochronnej, rękawic lateksowych
C. fartucha, okularów ochronnych, rękawic odpornych na kwasy
D. okularów ochronnych, rękawic lateksowych, maski ochronnej
Wybór fartucha, okularów ochronnych i rękawic kwasoodpornych podczas pracy z kwasem solnym to naprawdę dobry ruch. Fartuch to podstawa, bo chroni skórę przed kontaktem z tym żrącym cudem. Nie chciałbym, żebyś miał jakieś poparzenia... Okulary ochronne też są super ważne, bo jak coś się rozprysknie, to lepiej mieć oczy w bezpieczeństwie, a kwas solny może być naprawdę niebezpieczny dla wzroku. Rękawice, zwłaszcza te kwasoodporne, są konieczne, bo zwykłe lateksowe mogą nie wytrzymać kontaktu z tak mocnymi kwasami. W laboratoriach chemicznych zawsze korzysta się z takich zasad, żeby ograniczyć ryzyko wypadków. I pamiętaj, że dobre jest też pracować pod dygestorium – to dodatkowo chroni przed szkodliwymi oparami.

Pytanie 28

W trakcie pobierania próbek wody, które mają być analizowane pod kątem składników podatnych na rozkład fotochemiczny, należy

A. wykorzystywać pojemniki z jasnego szkła z dokładnie dopasowanym korkiem
B. obniżyć temperaturę próbek do 10oC
C. stosować opakowania nieprzezroczyste
D. dodać do próbek roztwór H3PO4 w celu zakwaszenia
Stosowanie opakowań nieprzezroczystych jest kluczowe podczas pobierania próbek wody przeznaczonych do analizy składników podatnych na rozkład fotochemiczny. Promieniowanie UV i widzialne światło mogą powodować niepożądane reakcje chemiczne, które mogą prowadzić do degradacji analizowanych substancji. Dlatego materiały używane do przechowywania próbek powinny skutecznie blokować dostęp światła. Przykłady odpowiednich materiałów to ciemne szkło lub tworzywa sztuczne, które zapewniają ochronę przed światłem. Takie podejście jest zgodne z dobrymi praktykami laboratoryjnymi oraz standardami, np. ISO 5667, które podkreślają znaczenie odpowiednich technik pobierania i przechowywania próbek dla uzyskania wiarygodnych wyników analitycznych. Zastosowanie nieprzezroczystych opakowań również minimalizuje ryzyko błędów analitycznych wynikających z niekontrolowanej fotolizy substancji w próbce. W kontekście badań środowiskowych, używanie odpowiednich pojemników jest fundamentalne dla zachowania integralności próbki do momentu przeprowadzenia analizy.

Pytanie 29

Który z wskaźników nie jest używany w alkacymetrii?

A. Oranż metylowy
B. Błękit tymolowy
C. Fenoloftaleina
D. Skrobia
Oranż metylowy, fenoloftaleina oraz błękit tymolowy to wskaźniki, które odgrywają kluczową rolę w alkacymetrii, a ich zastosowanie jest oparte na ich zdolności do zmiany koloru w odpowiedzi na zmiany pH roztworu. Oranż metylowy, zmieniający kolor przy pH 3,1 - 4,4, jest szczególnie użyteczny w reakcjach, gdzie dominują kwasy. Fenoloftaleina, zmieniająca barwę z bezbarwnej na różową w zakresie pH 8,2 - 10,0, znajduje zastosowanie w titracji zasadowej, gdzie istotne jest ustalenie momentu, w którym zasadowość roztworu jest wystarczająca do neutralizacji kwasu. Błękit tymolowy, zmieniający kolor w pH 6,0 - 7,6, jest często wykorzystywany w analizach, gdzie pH roztworu zbliża się do neutralności. W związku z tym, mylenie skrobi z tymi wskaźnikami może wynikać z nieporozumienia dotyczącego ich funkcji. Skrobia, będąca naturalnym polisacharydem, nie działa jako wskaźnik pH, lecz jest używana jako reagent do wykrywania jodu, co pokazuje różnice w ich zastosowaniach. Zrozumienie różnic w zastosowaniach tych substancji jest kluczowe, aby uniknąć błędnych wniosków w praktyce laboratoryjnej.

Pytanie 30

W trzech probówkach umieszczono roztwory: wodorotlenku sodu, chlorku sodu i kwasu octowego. W celu identyfikacji zbadano ich odczyn za pomocą uniwersalnego papierka wskaźnikowego, a następnie fenoloftaleiny. Barwy wskaźników w badanych roztworach przedstawiono w tabeli:

WskaźnikBarwa wskaźnika
próbówka nr 1próbówka nr 2próbówka nr 3
uniwersalny papierek wskaźnikowyżółtyczerwonyniebieski
fenoloftaleinabezbarwnybezbarwnymalinowa

A. W probówce nr 2 znajdował się roztwór o pH powyżej 9.
B. Po zastosowaniu tylko uniwersalnego papierka wskaźnikowego można stwierdzić, że w probówce nr 3 był roztwór wodorotlenku sodu.
C. W probówce nr 1 znajdował się roztwór o odczynie zasadowym.
D. Po zastosowaniu tylko fenoloftaleiny można stwierdzić, że w probówce nr 1 był roztwór chlorku sodu.
Wybór odpowiedzi dotyczącej probówki nr 3 jako roztworu wodorotlenku sodu jest poprawny z kilku powodów. Uniwersalny papier wskaźnikowy to narzędzie, które zmienia kolor w zależności od pH roztworu. W przypadku wodorotlenku sodu, który jest silnym zasadowym elektrolitem, kątem pH może osiągać wartości powyżej 12, co powoduje, że papier zmienia kolor na niebieski. Fenoloftaleina, również stosowana w tym przypadku, zmienia kolor na malinowy w pH powyżej 8,2, co dodatkowo potwierdza obecność wodorotlenku sodu. W praktyce, umiejętność identyfikacji substancji na podstawie ich odczynu jest niezbędna w laboratoriach chemicznych, gdzie konieczne jest precyzyjne określenie właściwości chemicznych roztworów. Zgodnie z dobrymi praktykami, stosowanie wskaźników pH jest kluczowe w procesach analitycznych, a ich interpretacja pozwala na właściwe dobieranie reagentów w dalszych etapach eksperymentu.

Pytanie 31

Na podstawie danych zawartych w tabeli określ, do oznaczania którego parametru próbka musi być utrwalona w niskim pH.

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h

A. Azotu azotanowego(V).
B. Barwy.
C. BZT.
D. Fosforanów ogólnych.
Poprawna odpowiedź to fosforany ogólne, ponieważ zgodnie z metodyką analizy, próbki wody wymagają zakwaszenia w celu wiązania i stabilizacji fosforanów. Badania wykazały, że niskie pH, osiągane poprzez dodanie kwasu siarkowego(VI), minimalizuje straty fosforanów w wyniku ich adsorpcji na cząstkach stałych oraz ich konwersji do form, które są trudniejsze do zmierzenia. W praktyce, do oznaczania fosforanów ogólnych często stosuje się metody kolorimetryczne, które opierają się na reakcji fosforanów z odczynnikami w kwasowym środowisku. Standardy analityczne, takie jak metody opisane przez APHA (American Public Health Association), podkreślają znaczenie odpowiedniego przygotowania próbki w niskim pH, aby zapewnić rzetelność wyników. Ponadto, ustalenie odpowiednich warunków przechowywania i transportu próbek, w tym ich zakwaszenia, jest kluczowe w monitorowaniu jakości wód i ochrony zasobów wodnych. Właściwe metody analizy fosforanów wspierają zarządzanie ekosystemami wodnymi oraz podejmowanie decyzji dotyczących ochrony środowiska.

Pytanie 32

Proces nitrowania najczęściej realizuje się, stosując organiczny substrat

A. rozcieńczonym kwasem azotowym(V)
B. mieszaniną kwasów azotowego(V) oraz solnego
C. mieszaniną kwasów azotowego(V) oraz siarkowego(VI)
D. stężonym kwasem azotowym(V)
Reakcji nitrowania nie można przeprowadzać skutecznie przy użyciu wyłącznie rozcieńczonego kwasu azotowego(V), ponieważ w takim przypadku reakcja nie zachodzi z odpowiednią wydajnością. Rozcieńczony kwas azotowy ma zbyt niską stężenie, co powoduje, że nie jest w stanie dostarczyć wystarczającej ilości grup nitrowych do substratu organicznego. Z tego powodu stężony kwas azotowy jest znacznie bardziej efektywny, ale sam w sobie także nie jest wystarczający dla optymalizacji procesu, jak pokazuje praktyka. Mieszanina kwasów azotowego i siarkowego, a nie samodzielny kwas azotowy, jest standardem w chemii organicznej. Ponadto, stosowanie stężonego kwasu azotowego bez kwasu siarkowego może prowadzić do niekontrolowanych reakcji, takich jak nadmierne nitrowanie, co skutkuje powstawaniem niepożądanych produktów ubocznych. Użycie samego kwasu solnego nie tylko nie ma sensu w kontekście nitrowania, ale również może prowadzić do całkowicie innych reakcji chemicznych, co podkreśla znaczenie właściwego doboru reagentów. W praktyce, w laboratoriach i przemyśle chemicznym należy zawsze dążyć do użycia sprawdzonych metod, aby uzyskać pożądane produkty. Właściwe przygotowanie reagentów oraz kontrola warunków reakcji są kluczowe dla sukcesu procesów chemicznych.

Pytanie 33

Czy odpady laboratoryjne zawierające jony metali ciężkich powinny zostać poddane obróbce przed umieszczeniem ich w odpowiednio oznaczonej pojemności?

A. zneutralizować kwasem solnym lub zasadą sodową
B. przeprowadzić w trudnorozpuszczalne związki i odsączyć
C. rozcieńczyć wodą destylowaną
D. zasypać wodorowęglanem sodu
Odpady laboratoryjne zawierające jony metali ciężkich powinny być przekształcane w trudnorozpuszczalne związki, a następnie odsączane, aby zminimalizować ich toksyczność i ułatwić dalsze postępowanie z nimi. Proces ten zakłada dodawanie reagentów, które reagują z metalami ciężkimi, tworząc osady, które są łatwiejsze do usunięcia. Przykładem może być dodawanie siarczanu sodu, co prowadzi do wytrącenia osadów siarczkowych. Odsączanie pozwala na oddzielenie osadu od cieczy, co jest kluczowe w zarządzaniu odpadami. Praktyki takie są zgodne z normami ochrony środowiska, które nakładają obowiązek zapewnienia, że odpady nie zanieczyszczają wód gruntowych ani innych zasobów wodnych. Z tego powodu laboratoria powinny dysponować odpowiednimi urządzeniami filtracyjnymi oraz zapewniać szkolenia dla personelu w zakresie odpowiedniego postępowania z takimi odpadami. Warto również pamiętać, że metale ciężkie, jak ołów czy kadm, mogą być szkodliwe dla zdrowia ludzkiego, dlatego tak ważne jest ich właściwe zarządzanie.

Pytanie 34

W trakcie kalibracji stężenia roztworu kwasu solnego na przynajmniej przygotowany roztwór zasady sodowej ma miejsce reakcja

A. zobojętniania
B. wytrącania osadu
C. redoks
D. hydrolizy
Odpowiedź 'zobojętniania' jest prawidłowa, ponieważ podczas reakcji pomiędzy kwasem solnym (HCl) a zasadowym roztworem sodowym (NaOH) dochodzi do neutralizacji, co jest klasycznym przykładem reakcji zobojętniania. W tej reakcji protony (H+) z kwasu reagują z jonami hydroksylowymi (OH-) z zasady, tworząc cząsteczki wody (H2O) oraz sól (NaCl). Proces ten jest fundamentalny w chemii analitycznej, szczególnie w titracji, gdzie precyzyjne określenie stężenia kwasu czy zasady jest kluczowe. Stosując mianowany roztwór NaOH do titracji HCl, uzyskujemy dokładny wynik, który jest niezbędny w laboratoriach do opracowywania roztworów o znanym stężeniu. Reakcje zobojętnienia są powszechnie wykorzystywane w różnych dziedzinach, w tym w przemyśle chemicznym, farmaceutycznym oraz w produkcji żywności, aby kontrolować pH i zapewnić właściwe warunki dla procesów chemicznych.

Pytanie 35

Ile gramów 80% kwasu mrówkowego trzeba zważyć, aby uzyskać 200 g 20% roztworu tego kwasu?

A. 200g
B. 20g
C. 80g
D. 50g
Aby obliczyć, ile gramów 80% kwasu mrówkowego należy użyć do przygotowania 200 g 20% roztworu, stosujemy zasadę zachowania masy oraz obliczenia dotyczące stężenia. Zacznijmy od ustalenia, ile czystego kwasu mrówkowego potrzebujemy w roztworze końcowym. 20% roztwór o masie 200 g zawiera 40 g czystego kwasu mrówkowego (20% z 200 g = 0,2 * 200 g). Teraz musimy ustalić, ile gramów 80% roztworu potrzeba, aby uzyskać te 40 g czystego kwasu. W 80% roztworze znajduje się 0,8 g czystego kwasu w 1 g roztworu. Dlatego, aby uzyskać 40 g czystego kwasu, musimy odważyć 50 g 80% roztworu (40 g / 0,8 = 50 g). To podejście jest zgodne z praktycznymi zasadami przygotowywania roztworów chemicznych, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla uzyskania pożądanych stężeń. Takie umiejętności są niezbędne w chemii analitycznej oraz w laboratoriach, gdzie dokładność ma znaczenie dla wyników eksperymentów i analiz.

Pytanie 36

Który z etapów przygotowania próbek do analizy opisano w ramce?

Proces polegający na usuwaniu wody z zamrożonego materiału na drodze sublimacji lodu, tzn. bezpośredniego jego przejścia w stan pary z pominięciem stanu ciekłego.

A. Utrwalanie.
B. Wstępne suszenie.
C. Liofilizację.
D. Oznaczanie wilgoci.
Liofilizacja jest procesem, który polega na sublimacji lodu z zamrożonego materiału, co oznacza, że woda przechodzi bezpośrednio w stan pary, omijając fazę ciekłą. Jest to kluczowa technika stosowana w wielu dziedzinach, w tym w biologii komórkowej, farmacji oraz produkcji żywności. Liofilizacja pozwala na zachowanie struktury oraz właściwości chemicznych materiału, co czyni ją idealnym rozwiązaniem dla preparatów, które są wrażliwe na temperaturę oraz wilgoć. Proces ten jest często stosowany do konserwacji próbek biologicznych, takich jak komórki, białka czy enzymy. Przykładowo, w przemyśle farmaceutycznym, liofilizowane leki są bardziej stabilne i mają dłuższy okres przydatności do spożycia. Dodatkowo, liofilizacja ułatwia transport i przechowywanie próbek, gdyż zmniejsza ich masę i objętość, co jest korzystne w logistyce. Zgodnie ze standardami branżowymi, dobry proces liofilizacji powinien być ściśle kontrolowany, aby zminimalizować ryzyko degradacji cennych substancji.

Pytanie 37

Zbiór próbek pierwotnych tworzy próbkę

A. ogólną
B. jednostkową
C. analityczną
D. laboratoryjną
Próbka ogólna to zbiór próbek pierwotnych, które reprezentują szerszą populację danego materiału lub substancji. W kontekście badań laboratoryjnych, próba ogólna jest kluczowa, ponieważ ma na celu uzyskanie wiarygodnych wyników analitycznych, które można ekstrapolować na całość populacji. Na przykład, w przemyśle spożywczym, podczas kontroli jakości, pobiera się próbki ogólne z różnych partii produktów, aby ocenić ich jakość i bezpieczeństwo. Według standardów ISO 2859, próby ogólne powinny być pobierane w sposób losowy, aby zminimalizować ryzyko błędów systematycznych w ocenie. Spojrzenie na próbkę jako całość pozwala na lepszą interpretację danych oraz podejmowanie świadomych decyzji dotyczących procesów produkcyjnych i kontroli jakości. Dlatego zrozumienie różnicy między próbką ogólną a innymi typami próbek, takimi jak próbki jednostkowe, jest fundamentalne w zarządzaniu jakością oraz w badaniach naukowych.

Pytanie 38

Sączenie osadów kłaczkowatych odbywa się przy użyciu sączków

A. bardzo gęste
B. twarde
C. rzadkie
D. średnio gęste
Odpowiedź 'rzadkie' jest poprawna, ponieważ do sączenia osadów kłaczkowatych, takich jak osady z procesu oczyszczania ścieków czy osady w laboratoriach chemicznych, najczęściej stosuje się sączki rzadkie, które charakteryzują się większymi porami. Rzadkie sączki pozwalają na skuteczne oddzielanie cząstek stałych od cieczy, minimalizując przy tym ryzyko zatykania się materiału filtracyjnego. Stosowane są w różnych aplikacjach, w tym w analizach chemicznych oraz w przemyśle, gdzie kluczowe jest szybkie i efektywne usuwanie osadów. Zgodnie z normami ISO 4788, które dotyczą sprzętu laboratoryjnego, dobór odpowiedniego sączka jest istotny dla uzyskania precyzyjnych wyników analitycznych. Przykładem zastosowania mogą być laboratoria zajmujące się badaniem wody, gdzie osady kłaczkowate mogą wpływać na jakość wyników analizy i dlatego ważne jest, aby używać sączków o odpowiedniej gęstości, aby uniknąć błędów w pomiarach.

Pytanie 39

Aby sporządzić 20 cm3 roztworu HCl (1+1), należy w pierwszej kolejności wlać do zlewki

A. 10 cm3 rozcieńczonego kwasu solnego, a potem 10 cm3 wody destylowanej
B. 10 cm3 wody destylowanej, a następnie 10 cm3 rozcieńczonego kwasu solnego
C. 10 cm3 stężonego kwasu solnego, a potem 10 cm3 wody destylowanej
D. 10 cm3 wody destylowanej, a potem 10 cm3 stężonego kwasu solnego
Odpowiedź, w której na początku dodajemy 10 cm3 wody destylowanej, a następnie 10 cm3 stężonego kwasu solnego, jest prawidłowa z kilku powodów. Po pierwsze, rozcieńczanie kwasu solnego powinno zawsze rozpocząć się od dodania wody do kwasu, a nie odwrotnie. Dodanie stężonego kwasu do wody zmniejsza ryzyko reakcji egzotermicznej, która może prowadzić do niebezpiecznego rozprysku kwasu. W praktyce, woda powinna być dodawana do kwasu w kontrolowany sposób, aby uniknąć gwałtownego wrzenia. Te zasady są zgodne z najlepszymi praktykami w laboratoriach chemicznych, które podkreślają znaczenie bezpieczeństwa podczas pracy z substancjami żrącymi. Dodatkowo, stężony kwas solny ma gęstość większą niż woda, co oznacza, że jego dodanie do wody powoduje szybkie i silne mieszanie, co ułatwia osiągnięcie pożądanej koncentracji roztworu. W kontekście praktycznym, taka procedura jest niezbędna w laboratoriach analitycznych czy edukacyjnych, gdzie przygotowywanie roztworów o określonych stężeniach jest codziennością.

Pytanie 40

W trakcie korzystania z odczynnika opisanego na etykiecie, należy szczególnie zwrócić uwagę na zagrożenia związane

A. z poparzeniem
B. z wybuchem
C. z pożarem
D. z lotnością
Odpowiedź "z pożarem" jest prawidłowa, ponieważ wiele reagentów chemicznych, zwłaszcza te o niskim punkcie zapłonu, stanowi poważne zagrożenie pożarowe. Takie substancje mogą łatwo zapalać się w obecności źródła ciepła lub otwartego ognia, co stwarza ryzyko nie tylko dla zdrowia osób pracujących w laboratoriach, ale także dla samej infrastruktury. Przykładem substancji stwarzających to ryzyko są rozpuszczalniki organiczne, takie jak aceton czy etanol, które są powszechnie wykorzystywane w różnych procesach chemicznych. Pracując z tymi substancjami, należy przestrzegać zasad BHP, takich jak przechowywanie reagentów w odpowiednich warunkach oraz korzystanie z odpowiednich środków ochrony osobistej. Warto również mieć na uwadze przepisy dotyczące magazynowania substancji łatwopalnych, które określają minimalne odległości od źródeł zapłonu oraz wymagania dotyczące wentylacji. Znajomość tych zasad i praktyk jest niezbędna do bezpiecznego wykonywania prac laboratoryjnych oraz do minimalizacji ryzyka wystąpienia zagrożeń pożarowych.