Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 28 kwietnia 2025 08:27
  • Data zakończenia: 28 kwietnia 2025 08:35

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W systemie Windows można zweryfikować parametry karty graficznej, używając następującego polecenia

A. dxdiag
B. graphics
C. color
D. cliconfig
Wybierając inne opcje jak 'color', 'graphics' czy 'cliconfig', nie trafiasz zbytnio w sedno, ponieważ to nie są dobre polecenia do sprawdzania karty graficznej. Opcja 'color' w ogóle nie odnosi się do diagnostyki sprzętu w Windowsie, więc to nie zadziała. 'Graphics' też nie jest poleceniem, które można użyć samodzielnie; to bardziej ogólne pojęcie. Co do 'cliconfig', to narzędzie związane z ustawieniami baz danych, a nie z diagnostyką. Używanie tych złych poleceń może być frustrujące, bo nie przynosi oczekiwanych rezultatów. Wiele osób myli różne terminy, co sprawia, że wybierają niewłaściwe narzędzia. Dlatego ważne jest, żeby zrozumieć, co się używa i do czego to służy, żeby lepiej radzić sobie z problemami w systemie.

Pytanie 2

Jak skrót wskazuje na rozległą sieć komputerową, która obejmuje swoim zasięgiem miasto?

A. PAN
B. MAN
C. WAN
D. LAN
MAN (Metropolitan Area Network) to termin odnoszący się do dużej sieci komputerowej, która obejmuje zasięgiem całe miasto lub jego znaczną część. MAN łączy w sobie cechy zarówno lokalnych sieci komputerowych (LAN), jak i rozległych sieci (WAN), oferując połączenia o wyższej prędkości i większej przepustowości w porównaniu do WAN. Przykładowe zastosowania MAN obejmują sieci wykorzystywane przez uczelnie lub instytucje rządowe, które muszą połączyć różne budynki w obrębie jednego miasta. Standardy takie jak IEEE 802.3 oraz technologie takie jak Ethernet są często wykorzystywane w MAN, co pozwala na korzystanie z wysokiej jakości połączeń optycznych oraz kablowych. Dodatkowo, MAN może integrować różne usługi, takie jak VoIP, video conferencing oraz dostęp do internetu, co czyni go kluczowym elementem infrastruktury miejskiej. W miastach inteligentnych MAN może wspierać różne aplikacje, takie jak zarządzanie ruchem, monitorowanie jakości powietrza czy systemy bezpieczeństwa miejskiego.

Pytanie 3

Jakie medium transmisyjne nosi nazwę 100BaseTX i jaka jest maksymalna prędkość danych, która może być w nim osiągnięta?

A. Kabel UTP kategorii 5 o prędkości transmisji do 100 Mb/s
B. Światłowód wielomodowy o prędkości transmisji do 100 Mb/s
C. Kabel UTP kategorii 5e o prędkości transmisji do 1000 Mb/s
D. Światłowód jednomodowy o prędkości transmisji do 1000 Mb/s
Kabel UTP kategorii 5, znany jako 100BaseTX, jest standardem określającym medium transmisyjne dla sieci Ethernet. Jego maksymalna prędkość transmisji sięga 100 Mb/s, co czyni go odpowiednim rozwiązaniem dla większości zastosowań biurowych i domowych. W standardzie tym stosuje się cztery pary skręconych przewodów, co zapewnia stabilność sygnału i minimalizuje zakłócenia elektromagnetyczne. Przykładem wykorzystania tego standardu jest budowanie lokalnych sieci komputerowych (LAN), gdzie 100BaseTX umożliwia efektywną komunikację między komputerami, routerami i innymi urządzeniami. Warto również zauważyć, że kategoria 5 została zastąpiona przez nowsze standardy, takie jak kategoria 5e, jednak 100BaseTX pozostaje w użyciu w wielu starszych instalacjach. Wiedza na temat tego standardu jest kluczowa dla projektantów sieci, którzy muszą rozważyć nie tylko aktualne potrzeby, ale i przyszłe rozszerzenia infrastruktury sieciowej.

Pytanie 4

Który z rodzajów rekordów DNS w systemach Windows Server określa alias (inną nazwę) dla rekordu A związanej z kanoniczną (rzeczywistą) nazwą hosta?

A. AAAA
B. PTR
C. CNAME
D. NS
Rekordy NS (Name Server) są odpowiedzialne za wskazywanie serwerów DNS, które są autorytatywne dla danej strefy DNS. Nie mają one jednak roli w definiowaniu aliasów dla innych rekordów, co czyni je nieodpowiednim wyborem w kontekście pytania. W praktyce, rekordy NS są przede wszystkim używane do zarządzania hierarchią serwerów DNS i kierowania zapytań do odpowiednich serwerów, co jest kluczowe w architekturze DNS, ale nie ma związku z aliasami dla rekordów A. Z kolei rekord PTR (Pointer Record) stosowany jest do odwrotnej analizy DNS, co oznacza, że umożliwia mapowanie adresów IP na nazwy domenowe. To zjawisko jest wykorzystywane głównie w kontekście zabezpieczeń i logowania, ale nie ma zastosowania w definiowaniu aliasów. Rekordy AAAA są analogiczne do rekordów A, ale ich głównym zadaniem jest wspieranie adresów IPv6. Choć mają one kluczowe znaczenie w kontekście nowoczesnych aplikacji internetowych, nie pełnią one funkcji aliasów dla innych rekordów. Typowe błędy myślowe, które mogą prowadzić do wyboru tych nieodpowiednich typów rekordów, to mylenie ich funkcji oraz nieznajomość specyfiki działania DNS. Prawidłowe zrozumienie ról poszczególnych rekordów DNS jest kluczowe dla efektywnego zarządzania infrastrukturą sieciową.

Pytanie 5

Do obserwacji stanu urządzeń w sieci wykorzystywane jest oprogramowanie operujące na podstawie protokołu

A. SMTP (Simple Mail Transport Protocol)
B. STP (SpanningTreeProtocol)
C. SNMP (Simple Network Management Protocol)
D. FTP (File Transfer Protocol)
FTP (File Transfer Protocol) to protokół używany do przesyłania plików pomiędzy komputerami w sieci. Jego podstawowym celem jest umożliwienie użytkownikom przesyłania i pobierania plików, a nie zarządzanie stanem urządzeń sieciowych. Stosowanie FTP do monitorowania urządzeń byłoby nieefektywne, ponieważ nie oferuje on funkcji związanych z zbieraniem danych o stanie sprzętu czy jego wydajności. STP (Spanning Tree Protocol) jest protokołem używanym do zapobiegania pętlom w sieciach Ethernet, co jest zupełnie innym zagadnieniem niż monitorowanie stanu urządzeń. STP dba o to, aby w sieci nie powstały cykle, a nie zbiera dane o urządzeniach. SMTP (Simple Mail Transport Protocol) to protokół odpowiedzialny za wysyłanie wiadomości e-mail, co również nie ma związku z monitorowaniem stanu urządzeń. Te odpowiedzi mogą prowadzić do nieporozumień, ponieważ w kontekście zarządzania siecią istotne jest zrozumienie, które protokoły są przeznaczone do określonych zadań. Typowe błędy myślowe obejmują mylenie protokołów komunikacyjnych z protokołami zarządzania, co prowadzi do nieprawidłowych wniosków i wyborów. W praktyce, znajomość odpowiednich protokołów jest kluczowa dla efektywnego zarządzania infrastrukturą sieciową.

Pytanie 6

Symbol przedstawiony na ilustracji oznacza rodzaj złącza

Ilustracja do pytania
A. HDMI
B. DVI
C. FIRE WIRE
D. COM
Odpowiedzi wskazujące na DVI COM czy HDMI są błędne gdyż każda z tych technologii pełni inne funkcje i ma unikalną specyfikację techniczną. DVI czyli Digital Visual Interface jest standardem stosowanym do przesyłania sygnału wideo między komputerem a monitorem. Charakteryzuje się możliwością przesyłania zarówno sygnału analogowego jak i cyfrowego co czyni go wszechstronnym wyborem dla urządzeń wyświetlających. Złącza DVI są łatwo rozpoznawalne dzięki swojej szerokiej prostokątnej konstrukcji z wieloma pinami. COM to skrót od Communication Port który odnosi się do złączy szeregowych używanych w komputerach do komunikacji z urządzeniami peryferyjnymi takimi jak modemy czy drukarki. COM jest starszym standardem który stopniowo ustępuje miejsca nowszym technologiom USB. Złącza te są zazwyczaj 9-pinowe i mają charakterystyczny trapezoidalny kształt. HDMI czyli High-Definition Multimedia Interface to nowoczesny standard stosowany do przesyłania zarówno obrazu jak i dźwięku w wysokiej jakości. HDMI jest powszechnie wykorzystywane w urządzeniach takich jak telewizory konsole do gier czy projektory. Złącza HDMI są prostokątne i bardziej kompaktowe niż DVI co ułatwia ich stosowanie w mniejszych urządzeniach. Zrozumienie różnic między tymi technologiami pozwala na właściwe ich zastosowanie w zależności od konkretnych potrzeb co jest kluczowe w rozwoju zawodowym techników i inżynierów w dziedzinie elektroniki i telekomunikacji.

Pytanie 7

Aby zapewnić bezpieczną komunikację terminalową z serwerem, powinno się skorzystać z połączenia z użyciem protokołu

A. SSH
B. Telnet
C. TFTP
D. SFTP
Kwestia bezpieczeństwa w sieciach komputerowych to istotna sprawa, a wybór odpowiedniego protokołu ma duże znaczenie dla ochrony danych. Telnet, mimo że był popularny, wysyła dane bez szyfrowania, przez co łatwo mogą zostać przechwycone przez niepowołane osoby. Teraz, korzystanie z Telnetu raczej nie jest najlepszym pomysłem, zwłaszcza w zarządzaniu systemami. Z kolei protokół TFTP (Trivial File Transfer Protocol) został stworzony tylko do przesyłania plików, a nie do zdalnego logowania czy zarządzania. Jego prostota oraz brak zabezpieczeń sprawiają, że nie nadaje się do wysyłania wrażliwych danych. Natomiast SFTP (SSH File Transfer Protocol) zapewnia bezpieczne przesyłanie plików, ale jest bardziej skupiony na transferze niż na zarządzaniu. Ludzie, którzy wybierają złe protokoły, często nie zdają sobie sprawy z zagrożeń, jakie niesie przesyłanie danych w otwartych sieciach, co może prowadzić do utraty ważnych informacji. Ważne jest, aby rozumieć, że jedynie te protokoły, które oferują solidne szyfrowanie i autoryzację, jak SSH, naprawdę mogą zapewnić ochronę przed atakami i włamaniami.

Pytanie 8

Adres IP 192.168.2.0/24 został podzielony na cztery mniejsze podsieci. Jaką maskę mają te nowe podsieci?

A. 255.255.255.224
B. 255.255.255.192
C. 255.255.255.128
D. 225.225.225.240
Wybór jednej z pozostałych odpowiedzi nie jest prawidłowy z kilku powodów. Maska 255.255.255.224 odpowiada notacji /27, co pozwala na podział na 8 podsieci, a nie 4. Przesunięcie granicy maski w prawo o dodatkowe 3 bity powoduje, że mamy 32 adresy w każdej podsieci, z czego tylko 30 może być używanych przez hosty. Taki nadmiar segmentacji nie byłby konieczny w przypadku czterech podsieci, prowadząc do marnotrawienia adresów IP. Z kolei maska 255.255.255.128 (czyli /25) pozwala na utworzenie zaledwie 2 podsieci, co jest również sprzeczne z wymaganiami zadania. Wreszcie, odpowiedź 225.225.225.240 jest niepoprawna z przyczyn technicznych, gdyż ta wartość nie jest ani zrozumiała, ani stosowana w kontekście masek podsieci. Odpowiedzi te mogą prowadzić do powszechnych błędów w zrozumieniu mechanizmów adresacji w sieci, w szczególności w kontekście podziału na podsieci, co jest kluczowym zagadnieniem w planowaniu i zarządzaniu sieciami komputerowymi. Właściwe zrozumienie tego tematu jest niezbędne dla specjalistów IT, aby uniknąć problemów z wydajnością lub brakiem dostępnych adresów IP w rozwijających się sieciach.

Pytanie 9

Uszkodzenie mechaniczne dysku twardego w komputerze stacjonarnym może być spowodowane

A. przechodzeniem w stan uśpienia systemu po zakończeniu pracy zamiast wyłączenia
B. niewykonywaniem defragmentacji dysku
C. dopuszczeniem do przegrzania dysku
D. nieprzeprowadzaniem operacji czyszczenia dysku
Nie czyszczenie dysku ani defragmentacja same w sobie nie uszkodzą go mechanicznie. To prawda, że te operacje pomagają poprawić szybkość systemu, ale nie mają wpływu na to, jak dysk działa na poziomie fizycznym. Czyszczenie jest ważne, bo dzięki temu na dysku nie ma zbędnych plików, a defragmentacja porządkuje dane na nośniku. Ale zignorowanie tego po prostu spowolni system, a nie zniszczy dysk. A ten stan uśpienia? No, on nie szkodzi dyskowi, wręcz przeciwnie, pozwala szybko wrócić do pracy. Zamykanie systemu to inna sprawa, jest to ważne dla danych, ale nie ma wpływu na mechanikę. Prawdziwym zagrożeniem może być niewłaściwe zarządzanie temperaturą pracy dysku. Myślę, że warto zwrócić uwagę na to, co się dzieje w otoczeniu komputera i dbać o chłodzenie, żeby nie dopuścić do przegrzania.

Pytanie 10

Jaki typ pamięci powinien być umieszczony na płycie głównej komputera w miejscu, które wskazuje strzałka?

Ilustracja do pytania
A. SD-RAM DDR3
B. SIMM
C. SO-DIMM DDR2
D. FLASH
Wybór niewłaściwego typu pamięci do instalacji na płycie głównej może prowadzić do nieprawidłowego działania systemu lub jego całkowitego braku. SIMM to starszy typ pamięci, używany głównie w komputerach z lat 80. i 90., charakteryzujący się 30- lub 72-pinowymi modułami, które nie pasują do nowoczesnych slotów DIMM. Pamięci te nie są kompatybilne z obecnymi standardami, takimi jak DDR3, i oferują znacznie mniejsze prędkości przesyłania danych oraz przepustowości. SO-DIMM DDR2 to z kolei typ pamięci używany głównie w laptopach i mniejszych urządzeniach, jednak także nie jest kompatybilny z typowymi slotami DIMM na płycie głównej komputerów stacjonarnych. DDR2 różni się od DDR3 pod względem napięcia operacyjnego, szybkości oraz architektury, co sprawia, że nie może być stosowany zamiennie. FLASH to inny rodzaj pamięci, używany do przechowywania danych w sposób trwały, jak np. w dyskach SSD czy kartach pamięci. FLASH nie jest pamięcią operacyjną, a raczej magazynem danych, stąd też nie można jej stosować w roli pamięci RAM. Błędem jest zakładanie, że wszystkie rodzaje pamięci mogą pasować do każdego slotu na płycie głównej. Dlatego ważne jest, aby przy wyborze pamięci RAM uwzględniać specyfikację techniczną płyty głównej i typ obsługiwanej pamięci.

Pytanie 11

Na rysunku przedstawiono ustawienia karty sieciowej urządzenia z adresem IP 10.15.89.104/25. Co z tego wynika?

Ilustracja do pytania
A. serwer DNS znajduje się w tej samej podsieci co urządzenie
B. adres maski jest błędny
C. adres domyślnej bramy pochodzi z innej podsieci niż adres hosta
D. adres IP jest błędny
Adresowanie sieciowe jest kluczowym aspektem w zarządzaniu sieciami komputerowymi, a zrozumienie prawidłowej konfiguracji pozwala unikać typowych błędów. Jednym z nich jest założenie, że adres domyślnej bramy może być poza podsiecią hosta. Brama domyślna działa jako punkt dostępu do innej sieci, więc musi być w tej samej podsieci. Pomieszanie tego pojęcia prowadzi do sytuacji, w której urządzenia nie mogą poprawnie przesyłać danych poza swoją lokalną sieć. Podobnie błędne przekonanie, że adres maski jest nieprawidłowy, może wynikać z nieznajomości, jak maski działają. Maska 255.255.255.128 jest prawidłowa i oznacza, że mamy do czynienia z siecią o rozmiarze 128 adresów. Nieprawidłowe przypisanie maski skutkuje błędnym definiowaniem granic podsieci. Natomiast myślenie, że adres IP jest nieprawidłowy, często wynika z braku zrozumienia zakresów adresów i ich podziału według maski. Wreszcie, zakładanie, że serwer DNS musi być w tej samej podsieci co urządzenie, jest błędne. Serwery DNS często znajdują się poza lokalną siecią, a ich rola polega na tłumaczeniu nazw domen na adresy IP. Błędy te wskazują na potrzebę głębszego zrozumienia zasad adresowania i routingu w sieciach. Edukacja w tym zakresie pomaga unikać problemów z komunikacją i poprawia efektywność zarządzania siecią. Zrozumienie tych zasad jest niezbędne dla każdego, kto pracuje z sieciami komputerowymi i dąży do ich optymalnej konfiguracji i działania.

Pytanie 12

Co to jest serwer baz danych?

A. OTDR
B. MySQL
C. MSDN
D. VPN
MSDN, czyli Microsoft Developer Network, to platforma stworzona przez Microsoft, która oferuje dokumentację, narzędzia oraz zasoby dla programistów. Nie jest to serwer bazodanowy, lecz źródło informacji i wsparcia dla różnych technologii Microsoftu, w tym SQL Server, co może prowadzić do mylnego wniosku. VPN (Virtual Private Network) to technologia, która pozwala na bezpieczne łączenie się z siecią poprzez szyfrowanie połączeń, ale również nie ma nic wspólnego z serwerami bazodanowymi. Z kolei OTDR (Optical Time-Domain Reflectometer) to urządzenie stosowane w telekomunikacji do analizy włókien optycznych, które również nie ma związku z zarządzaniem bazami danych. Typowym błędem jest mylenie różnych technologii i narzędzi, które są używane w kontekście IT. Niezrozumienie podstawowych różnic pomiędzy tymi zjawiskami może prowadzić do dezorientacji i błędnych wyborów w praktyce. Zamiast skupiać się na narzędziach związanych z programowaniem czy sieciami, kluczowe jest zrozumienie, że serwer bazodanowy to system dedykowany do przechowywania danych, jak MySQL. Prawidłowe podejście do nauki technologii bazodanowych powinno obejmować ich funkcjonalności oraz zastosowanie w praktyce.

Pytanie 13

Aby zapobiec uszkodzeniom układów scalonych przy serwisie sprzętu komputerowego, należy korzystać z

A. okularów ochronnych
B. gumowych rękawiczek
C. opaski antystatycznej
D. skórzanych rękawiczek
Opaska antystatyczna jest kluczowym elementem ochrony przy naprawach sprzętu komputerowego, ponieważ ma na celu zminimalizowanie ryzyka uszkodzenia układów scalonych w wyniku wyładowań elektrostatycznych (ESD). Wyładowania te mogą prowadzić do trwałego uszkodzenia komponentów elektronicznych, co jest szczególnie niebezpieczne w przypadku wrażliwych układów scalonych. Opaska antystatyczna działa na zasadzie przewodzenia ładunków elektrycznych ze skóry technika do uziemienia, co zapobiega gromadzeniu się ładunków na ciele. W praktyce, podczas pracy z komputerami, technicy powinni nosić taką opaskę, aby zachować bezpieczeństwo zarówno dla urządzeń, jak i dla samego siebie. Dobrą praktyką jest również stosowanie mat antystatycznych oraz uziemionych narzędzi, co razem pozwala na stworzenie bezpiecznego środowiska pracy. Warto pamiętać, że nieprzestrzeganie tych zasad może prowadzić do kosztownych napraw i strat związanych z uszkodzonym sprzętem.

Pytanie 14

Sieć lokalna posiada adres IP 192.168.0.0/25. Który adres IP odpowiada stacji roboczej w tej sieci?

A. 192.160.1.25
B. 192.168.0.192
C. 192.168.0.100
D. 192.168.1.1
Adresy IP 192.168.1.1, 192.160.1.25 i 192.168.0.192 są nieprawidłowe dla sieci lokalnej o adresie 192.168.0.0/25, ponieważ nie mieszczą się w odpowiednim zakresie adresów. Adres 192.168.1.1 znajduje się w innej podsieci, a dokładniej w sieci 192.168.1.0/24. Ta sytuacja może prowadzić do nieporozumień w zarządzaniu siecią, ponieważ urządzenia w różnych podsieciach nie mogą się ze sobą komunikować bez odpowiedniej konfiguracji routingu. Adres 192.160.1.25 jest całkowicie nieprawidłowy, ponieważ nie zgodny z klasą C, do której należy sieć 192.168.x.x, a także nie pasuje do zakresu prywatnych adresów IP. Z kolei adres 192.168.0.192, mimo że należy do tej samej sieci, jest adresem rozgłoszeniowym (broadcast) dla podsieci 192.168.0.0/25, co oznacza, że jest używany do wysyłania pakietów do wszystkich urządzeń w tej podsieci. W rezultacie, przydzielanie adresu, który jest adresem rozgłoszeniowym, jest błędem, ponieważ nie może być przypisany do konkretnego urządzenia. Kluczowe jest, aby przydzielając adresy IP, kierować się zasadami podziału i zarządzania adresacją IP, aby uniknąć konfliktów oraz zapewnić prawidłową komunikację w sieci.

Pytanie 15

Po podłączeniu działającej klawiatury do któregokolwiek z portów USB nie ma możliwości wyboru awaryjnego trybu uruchamiania systemu Windows. Jednakże, klawiatura funkcjonuje prawidłowo po uruchomieniu systemu w standardowym trybie. Co to sugeruje?

A. uszkodzone porty USB
B. uszkodzony kontroler klawiatury
C. niepoprawne ustawienia BIOS-u
D. uszkodzony zasilacz
Problemy z wyborem awaryjnego trybu uruchomienia systemu Windows przy użyciu klawiatury podłączonej do USB mogą prowadzić do błędnych wniosków na temat ich przyczyny. Uszkodzony zasilacz, mimo że może wpływać na ogólną wydajność komputera, nie ma bezpośredniego wpływu na działanie klawiatury w kontekście jej rozpoznawania podczas uruchamiania systemu. Usterki w zasilaczu mogą prowadzić do niestabilności systemu, ale klawiatura powinna działać, o ile zasilanie jest wystarczające. Uszkodzony kontroler klawiatury jest również mało prawdopodobny, ponieważ klawiatura działa normalnie po uruchomieniu systemu, co sugeruje, że sam sprzęt jest sprawny. Z kolei uszkodzone porty USB mogą powodować problemy z innymi urządzeniami, ale jeżeli klawiatura działa w normalnym trybie, to oznacza, że porty są funkcjonalne. Należy zwrócić uwagę, że problemy z ustawieniami BIOS-u są najczęściej spotykaną przyczyną błędów w rozpoznawaniu urządzeń w trakcie rozruchu, co z kolei może prowadzić do mylnych wniosków dotyczących uszkodzeń sprzętowych. Dlatego ważne jest, aby diagnostyka zaczynała się od analizy ustawień BIOS-u, zamiast zakładać, że problem leży w sprzęcie.

Pytanie 16

Skrypt o nazwie wykonaj w systemie Linux zawiera: echo -n "To jest pewien parametr " echo $? Wykonanie poleceń znajdujących się w pliku spowoduje wyświetlenie podanego tekstu oraz

A. stanu ostatniego wykonanego polecenia
B. numeru procesu, który był ostatnio uruchomiony w tle
C. listy wszystkich parametrów
D. numeru procesu aktualnie działającej powłoki
Wybór odpowiedzi, która odnosi się do numeru procesu ostatnio wykonywanego w tle, jest niepoprawny, ponieważ '$?' nie zwraca tej informacji. W systemie Linux, aby uzyskać identyfikator procesu (PID) ostatnio wykonywanego polecenia w tle, należałoby użyć '$!', które zwraca PID ostatniego procesu uruchomionego w tle. Podobnie, odpowiedź wskazująca na numer procesu aktualnie wykonywanej powłoki jest myląca, ponieważ powłoka nie zwraca swojego własnego PID przez '$?'. Również pojęcie listy wszystkich parametrów jest dalekie od rzeczywistości, gdyż '$?' nie ma związku z parametrami przekazywanymi do skryptu czy funkcji. Zrozumienie tych podstawowych różnic jest kluczowe, gdyż błędne użycie zmiennych powłokowych może prowadzić do nieefektywnych skryptów i trudności w ich debugowaniu. W kontekście pisania skryptów, ważne jest, aby precyzyjnie rozumieć, co dany symbol oznacza i jakie informacje można z jego użyciem uzyskać. Często programiści początkujący mylą te zmienne, co prowadzi do nieporozumień i błędów w logicznej konstrukcji skryptów. Warto również zapoznać się z dokumentacją, aby lepiej zrozumieć, jak działają polecenia w powłoce bash i jakie mają zastosowanie w praktyce.

Pytanie 17

Jakie jest standardowe połączenie między skanerem a aplikacją graficzną?

A. SCAN
B. TWAIN
C. USB
D. OPC
Odpowiedzi takie jak SCAN, USB czy OPC nie pasują do pytania o standardy komunikacyjne między skanerem a programem graficznym. SCAN to ogólny termin, który mówi o procesie przerabiania obrazu na cyfrowy, a nie o standardzie komunikacji. USB, z kolei, to interfejs, który pozwala podłączać różne urządzenia do komputera, więc chociaż jest ważny, to nie jest specyficznym protokołem do skanowania. A OPC to standard, który w sumie dotyczy automatyki, a nie skanowania obrazów. Takie odpowiedzi mogą wprowadzać w błąd, bo mogą sugerować, że różne technologie się ze sobą pokrywają, co nie jest do końca prawdą. Ważne jest, żeby rozumieć, że TWAIN to specjalny standard komunikacji, a inne odpowiedzi mówią o bardziej ogólnych kwestiach.

Pytanie 18

Firma świadcząca usługi sprzątania potrzebuje drukować faktury tekstowe w czterech kopiach równocześnie, na papierze samokopiującym. Jaką drukarkę powinna wybrać?

A. Atramentową
B. Igłową
C. Laserową
D. Termosublimacyjną
Wybór drukarki, która nie jest igłowa, w kontekście drukowania faktur na papierze samokopiującym, prowadzi do szeregu problemów. Drukarki termosublimacyjne, podczas gdy oferują wysoką jakość wydruku, nie są przystosowane do zastosowań, w których konieczne jest jednoczesne uzyskanie wielu kopii. Proces termosublimacji polega na podgrzewaniu barwników, co skutkuje ich przenikaniem w strukturę papieru, jednak nie zapewnia to możliwości wydruku na kilku warstwach papieru samokopiującego. Podobnie, drukarki laserowe, które wykorzystują technologię toneru, również nie będą w stanie efektywnie drukować na papierze samokopiującym. W ich przypadku, toner nie przylega do papieru na tyle mocno, aby umożliwić przeniesienie obrazu na kolejne warstwy, co jest kluczowe w przypadku takich dokumentów jak faktury. Z kolei drukarki atramentowe, mimo że potrafią generować wysokiej jakości wydruki kolorowe, mogą być problematyczne, jeśli chodzi o koszt eksploatacji i czas schnięcia tuszu, co w przypadku samokopiujących arkuszy może prowadzić do rozmazywania się wydruków. W rezultacie, brak zrozumienia specyfiki potrzeb związanych z drukowaniem dokumentów może prowadzić do wyboru niewłaściwego urządzenia, co w dłuższej perspektywie może generować znaczne problemy organizacyjne oraz dodatkowe koszty.

Pytanie 19

Ile sieci obejmują komputery z adresami IP przedstawionymi w tabeli oraz standardową maską sieci?

Komputer 1172.16.15.5
Komputer 2172.18.15.6
Komputer 3172.18.16.7
Komputer 4172.20.16.8
Komputer 5172.20.16.9
Komputer 6172.21.15.10

A. Jednej
B. Czterech
C. Sześciu
D. Dwóch
Analizując błędne odpowiedzi kluczowe jest zrozumienie jak maska podsieci wpływa na klasyfikację komputerów w ramach sieci. Odpowiedź wskazująca że wszystkie komputery znajdują się w jednej sieci (1) ignoruje fakt że adresy IP klasy B z maską 255.255.0.0 mają pierwsze dwie liczby jako identyfikatory sieci. Różnorodne początki adresów takie jak 172.16 172.18 i 172.20 oznaczają że komputery znajdują się w odrębnych sieciach. Odpowiedź sugerująca sześć różnych sieci (2) może wynikać z nieprawidłowego rozumienia jak działa maska sieci. Każdy adres IP nie musi być przypisany do osobnej sieci a maska określa zakres adresów które są częścią tej samej sieci. W przypadku klasy B maska 255.255.0.0 wskazuje że sieć jest identyfikowana przez pierwsze dwie części adresu co wyraźnie dzieli te komputery na mniej niż sześć sieci. Odpowiedź że tylko dwie sieci są obecne (4) może być efektem błędnego założenia że adresy o podobnych początkowych liczbach są w tej samej sieci co jest nieprawdą w kontekście adresów klasy B. Dlatego zrozumienie jak maski podsieci działają pozwala na dokładne określenie liczby sieci i uniknięcie takich błędów. Poprawna analiza wymaga uwzględnienia struktury adresu i logiki stosowanej do podziału adresów IP na podsieci co jest kluczowe w efektywnym zarządzaniu zasobami sieciowymi.

Pytanie 20

Jaka jest prędkość przesyłania danych w standardzie 1000Base-T?

A. 1 MB/s
B. 1 GB/s
C. 1 Mbit/s
D. 1 Gbit/s
Odpowiedzi 1 Mbit/s, 1 MB/s oraz 1 GB/s są nieprawidłowe i wynikają z nieporozumień dotyczących jednostek miary oraz standardów transmisji danych. Odpowiedź 1 Mbit/s jest znacznie poniżej rzeczywistej prędkości oferowanej przez standard 1000Base-T. 1 Mbit/s oznacza prędkość transmisji wynoszącą jedynie 1 milion bitów na sekundę, co jest typowe dla starszych technologii, jak np. 56k modem. Z kolei 1 MB/s odnosi się do prędkości 1 megabajta na sekundę, co w jednostkach bitowych daje równowartość 8 Mbit/s. Ta wartość również znacząco odbiega od rzeczywistej prędkości standardu 1000Base-T. W przypadku odpowiedzi 1 GB/s, choć zbliżona do prawidłowej wartości, wprowadza w błąd ponieważ 1 GB/s to równowartość 8 Gbit/s, co przewyższa możliwości technologiczne przyjęte w standardzie 1000Base-T. Takie nieprecyzyjne interpretacje jednostek mogą prowadzić do błędnych wyborów przy projektowaniu sieci, co w efekcie wpływa na wydajność i koszty. Ważne jest, aby w kontekście technologii sieciowych znać różnice między jednostkami miary (bit, bajt) oraz zrozumieć ich zastosowanie w praktyce. Zrozumienie tych koncepcji jest kluczowe nie tylko dla inżynierów sieci, ale również dla menedżerów IT, którzy odpowiedzialni są za wdrażanie efektywnych rozwiązań w obszarze infrastruktury sieciowej.

Pytanie 21

Jednym z rezultatów wykonania poniższego polecenia jest ```sudo passwd -n 1 -x 5 test```

A. automatyczne zablokowanie konta użytkownika test po pięciokrotnym wprowadzeniu błędnego hasła
B. ustawienie możliwości zmiany hasła po jednym dniu
C. zmiana aktualnego hasła użytkownika na test
D. wymuszenie konieczności stosowania haseł o długości minimum pięciu znaków
Pomimo że niektóre odpowiedzi mogą wydawać się logiczne, każda z nich nie oddaje rzeczywistego działania polecenia. Zmiana hasła bieżącego użytkownika na 'test' nie jest możliwa przez to polecenie. Komenda 'passwd' służy do zarządzania hasłami użytkowników, ale nie zmienia hasła bezpośrednio na wartość określoną w poleceniu. Ustawianie wymogu minimalnej długości hasła na pięć znaków nie jest też zadaniem tej komendy, ponieważ '-n' i '-x' dotyczą tylko czasu ważności haseł, a nie ich długości. Dodatkowo, automatyczna blokada konta po pięciokrotnym błędnym podaniu hasła jest zupełnie inną funkcjonalnością, która nie jest realizowana przez polecenie 'passwd'. W rzeczywistości takie zabezpieczenia ustawia się w konfiguracji PAM (Pluggable Authentication Module) lub w plikach konfiguracyjnych systemu, a nie poprzez tego rodzaju polecenia. Te nieporozumienia mogą wynikać z mylnego przekonania, że każda komenda dotycząca haseł ma szeroką funkcjonalność, podczas gdy każda z opcji ma swoje specyficzne zastosowanie. W kontekście bezpieczeństwa systemów operacyjnych kluczowe jest zrozumienie funkcji, jakie pełnią poszczególne komendy oraz ich parametry, aby właściwie zarządzać polityką bezpieczeństwa haseł i kont użytkowników.

Pytanie 22

Aby poprawić organizację plików na dysku i przyspieszyć działanie systemu, co należy zrobić?

A. poddać defragmentacji.
B. usunąć pliki tymczasowe.
C. wyeliminować nieużywane oprogramowanie.
D. przeskanować dysk za pomocą programu antywirusowego.
Usuwanie plików tymczasowych czy odinstalowywanie starych programów to coś, co warto robić, żeby komputer działał lepiej, ale to nie jest defragmentacja. Te działania mogą pomóc w zwolnieniu miejsca, co w efekcie może podnieść wydajność, ale nie zmienia, jak dane leżą na dysku. Jak odinstalowujesz nieużywane programy, to też dobrze, ale nie rozwiązuje to problemu z fragmentacją. Skanowanie antywirusowe jest super ważne, żeby pozbyć się wirusów, ale to nie ma wpływu na to, jak szybko dostępne są zfragmentowane pliki. Dużo osób myli te działania z defragmentacją, bo wszystkie one są ważne dla działania systemu, ale celują w różne rzeczy. Często się zdarza, że ludzie myślą, że te wszystkie konserwacje to to samo co defragmentacja i przez to mogą nie rozumieć, jak działa optymalizacja dysku.

Pytanie 23

Który z podanych adresów IP należy do kategorii adresów prywatnych?

A. 131.107.5.65
B. 190.5.7.126
C. 192.168.0.1
D. 38.176.55.44
Adres IP 192.168.0.1 jest przykładem adresu prywatnego, który należy do zarezerwowanej przestrzeni adresowej na potrzeby sieci lokalnych. W standardzie RFC 1918 zdefiniowane są trzy zakresy adresów IP, które są uważane za prywatne: 10.0.0.0/8, 172.16.0.0/12 oraz 192.168.0.0/16. Adresy te nie są routowane w Internecie, co oznacza, że nie mogą być bezpośrednio używane do komunikacji z urządzeniami spoza sieci lokalnej. Takie rozwiązanie zwiększa bezpieczeństwo sieci, ponieważ urządzenia w sieci prywatnej są ukryte przed publicznym dostępem. W praktyce, adres 192.168.0.1 jest często używany jako domyślny adres bramy w routerach, co umożliwia użytkownikom dostęp do panelu administracyjnego urządzenia. Umożliwia to konfigurowanie ustawień sieciowych, takich jak zabezpieczenia Wi-Fi czy przypisywanie adresów IP w sieci lokalnej. Zrozumienie rozróżnienia między adresami prywatnymi a publicznymi jest kluczowe dla efektywnego zarządzania sieciami komputerowymi oraz zapewnienia ich bezpieczeństwa.

Pytanie 24

Na ilustracji przedstawiono diagram funkcjonowania

Ilustracja do pytania
A. karty dźwiękowej
B. karty graficznej
C. kontrolera USB
D. modemu
Schemat nie jest związany z działaniem kontrolera USB, karty graficznej ani modemu. Kontrolery USB służą do zarządzania portami USB, umożliwiając komunikację między urządzeniami peryferyjnymi a komputerem. Odpowiadają za przesył danych, zasilanie urządzeń oraz zarządzanie ich stanem. Charakterystyczne dla kontrolerów USB są elementy takie jak magistrale danych i interfejsy komunikacyjne, które nie są obecne na schemacie. Karta graficzna natomiast przetwarza dane wideo i renderuje obraz na monitorze. W jej budowie odnajdziemy procesory graficzne (GPU), pamięć VRAM oraz różne wyjścia wideo, co znacząco różni się od przedstawionej struktury. Schemat nie zawiera elementów związanych z procesowaniem grafiki takich jak shadery czy jednostki rasteryzujące. Modem jest urządzeniem komunikacyjnym, które moduluje i demoduluje sygnały analogowe, umożliwiając transmisję danych przez linie telefoniczne lub inne media komunikacyjne. Modemy zawierają elementy takie jak interfejsy sieciowe, modulatory i demodulatory, które również nie są obecne na schemacie. Typowym błędem jest mylenie różnych funkcji komponentów komputerowych, co prowadzi do błędnych wniosków w przypadku analizy schematów technicznych. Zrozumienie specyfiki działania urządzeń takich jak karty dźwiękowe, graficzne oraz kontrolery USB jest kluczowe dla prawidłowej interpretacji schematów oraz ich faktycznego zastosowania w infrastrukturze komputerowej.

Pytanie 25

Jakie urządzenie należy zastosować do pomiaru mocy zużywanej przez komputer?

A. tester zasilaczy
B. amperomierz
C. woltomierz
D. watomierz
No więc, woltomierz, amperomierz i tester zasilaczy to różne przyrządy, ale niestety nie wystarczą do dokładnego pomiaru mocy, którą bierze komputer. Woltomierz pokazuje tylko napięcie, a to nie mówi nic o zużyciu energii samo w sobie. Amperomierz z kolei mierzy tylko natężenie prądu, a żeby uzyskać pełny obraz mocy, trzeba brać pod uwagę również napięcie i współczynnik mocy, który pokazuje, jak efektywnie energia jest wykorzystywana. Tester zasilaczy, mimo że potrafi sprawdzić stan zasilania, też nie da pełnego obrazu mocy. Dlatego wiele osób myśli, że pomiar jednego z tych parametrów jest wystarczający do oceny mocy, ale to nieprawda. Musisz mieć watomierz, który łączy te wszystkie dane, żeby dostać pełny obraz wydajności energetycznej. Zrozumienie tej różnicy jest naprawdę ważne, zwłaszcza dla osób zajmujących się elektroniką czy chcących mądrze gospodarować energią w komputerach.

Pytanie 26

Jeśli sieć 172.16.6.0/26 zostanie podzielona na dwie równe podsieci, to ile adresowalnych hostów będzie w każdej z nich?

A. 32 hosty
B. 28 hostów
C. 29 hostów
D. 30 hostów
Odpowiedzi wskazujące na większą liczbę hostów, takie jak 32, 29 czy 28, zawierają błędne założenia dotyczące adresowania sieci. Przykładowo, wybierając 32 hosty, należy pamiętać, że w każdej podsieci jeden adres jest zarezerwowany dla adresu sieci, a drugi dla adresu rozgłoszeniowego. Dlatego w rzeczywistości, nawet dla większej liczby dostępnych adresów, ilość hostów, które można przypisać, będzie zawsze mniejsza o dwa. W przypadku podsieci /27, co daje 32 adresy IP, tylko 30 z nich będzie mogło być użytych do przypisania komputerom, serwerom czy innym urządzeniom. Podobnie, wybór 29 lub 28 hostów nie uwzględnia prawidłowych zasad obliczania dostępnych adresów w podsieciach. Błędy te najczęściej wynikają z pomyłek podczas obliczania liczby dostępnych adresów lub braku znajomości standardowych zasad dotyczących adresacji IP. Zrozumienie tych zasad jest kluczowe do efektywnego zarządzania siecią i jej segmentowania, co w praktyce może prowadzić do oszczędzania adresów IP i uniknięcia problemów w przyszłości.

Pytanie 27

W systemie operacyjnym Ubuntu konto użytkownika student można wyeliminować przy użyciu komendy

A. user net student /del
B. net user student /del
C. del user student
D. userdel student
Polecenie 'userdel student' jest właściwym sposobem usunięcia konta użytkownika o nazwie 'student' w systemie operacyjnym Ubuntu, który jest oparty na jądrze Linux. Polecenie 'userdel' jest standardowym narzędziem wykorzystywanym w systemach Linux do zarządzania kontami użytkowników. Umożliwia ono nie tylko usunięcie konta, ale także związanych z nim plików, jeśli zastosujemy odpowiednie opcje. Przykładowo, użycie flagi '-r' razem z poleceniem usunięcia pozwala na usunięcie również katalogu domowego użytkownika, co jest istotne dla utrzymania porządku na serwerze. Dbałość o zarządzanie kontami użytkowników oraz ich odpowiednie usuwanie jest kluczowe dla bezpieczeństwa systemu, ponieważ nieusunięte konta mogą być wykorzystane przez nieautoryzowane osoby do uzyskania dostępu do zasobów systemowych. Warto również pamiętać, że przed usunięciem konta należy upewnić się, że wszystkie dane użytkownika zostały zabezpieczone lub przeniesione, aby uniknąć utraty ważnych informacji.

Pytanie 28

W komputerze użyto płyty głównej widocznej na obrazku. Aby podnieść wydajność obliczeniową maszyny, zaleca się

Ilustracja do pytania
A. dodanie dysku SAS
B. zamontowanie dwóch procesorów
C. rozszerzenie pamięci RAM
D. instalację kontrolera RAID
Zwiększenie pamięci operacyjnej to popularna metoda poprawy wydajności, lecz jej efekty są ograniczone przez moc operacyjną procesora. Jeśli procesor nie jest w stanie przetworzyć danych w odpowiednim tempie, nawet duża ilość pamięci RAM nie poprawi znacząco wydajności obliczeniowej. Instalacja kontrolera RAID czy dysku SAS jest związana bardziej z poprawą wydajności w zakresie przechowywania i dostępu do danych niż z mocą obliczeniową jako taką. RAID poprawia redundancję i szybkość odczytu oraz zapisu danych, co jest kluczowe w serwerach baz danych czy systemach przechowywania danych, ale nie wpływa bezpośrednio na szybkość obliczeń procesora. Podobnie, dyski SAS oferują wysoką prędkość przesyłu danych, co przyspiesza operacje związane z wieloma małymi plikami, ale nie zwiększa mocy obliczeniowej CPU. Takie rozwiązania są efektywne w kontekście pracy z dużymi wolumenami danych i zachowania ciągłości pracy systemu, ale nie zwiększają liczby instrukcji przetwarzanych na sekundę przez procesor. Błędem jest przypisywanie im bezpośredniego wpływu na wzrost mocy obliczeniowej CPU, co jest kluczowym elementem tego pytania. Wybór odpowiedniej metody zwiększania wydajności powinien być ściśle związany z analizą bieżących ograniczeń systemowych i specyficznych wymagań użytkowych danego środowiska pracy komputerowej.

Pytanie 29

Która z usług musi być aktywna na ruterze, aby mógł on modyfikować adresy IP źródłowe oraz docelowe podczas przekazywania pakietów pomiędzy różnymi sieciami?

A. TCP
B. UDP
C. FTP
D. NAT
NAT, czyli Network Address Translation, to kluczowa usługa używana w ruterach, która umożliwia zmianę adresów IP źródłowych i docelowych przy przekazywaniu pakietów pomiędzy różnymi sieciami. Jej głównym celem jest umożliwienie wielu urządzeniom w sieci lokalnej korzystania z jednego publicznego adresu IP, co jest szczególnie istotne w kontekście ograniczonej liczby dostępnych adresów IPv4. Dzięki NAT, ruter przypisuje unikalne numery portów do połączeń wychodzących, co pozwala na śledzenie, które pakiety należą do których urządzeń w sieci lokalnej. Przykładowo, w typowej sieci domowej kilka urządzeń, takich jak telefony, komputery i telewizory, może korzystać z jednego adresu IP przypisanego przez ISP, a NAT będzie odpowiedzialny za odpowiednią translację adresów. Zastosowanie NAT pozwala również na zwiększenie bezpieczeństwa sieci, ponieważ adresy IP urządzeń wewnętrznych są ukryte przed bezpośrednim dostępem z zewnątrz. W branży telekomunikacyjnej i informatycznej NAT jest standardem, który wspiera efektywne zarządzanie adresami IP oraz zwiększa prywatność użytkowników.

Pytanie 30

Na podstawie analizy pakietów sieciowych, określ adres IP oraz numer portu, z którego urządzenie otrzymuje odpowiedź?

Ilustracja do pytania
A. 192.168.0.13:51383
B. 192.168.0.13:80
C. 46.28.247.123:80
D. 46.28.247.123:51383
Błędne odpowiedzi wynikają z nieprawidłowego przypisania adresów IP i portów, które nie odpowiadają standardowemu schematowi komunikacji w sieci. Na przykład adres IP 192.168.0.13 jest typowym adresem z zakresu sieci lokalnej (LAN), co oznacza, że nie jest publicznie routowalny w Internecie i służy do identyfikacji hostów w prywatnych sieciach. Port 51383 w odpowiedziach sugeruje dynamiczny lub tymczasowy port, który jest zazwyczaj używany przez aplikacje klienckie do inicjowania połączeń z serwerami z użyciem portów standardowych, takich jak 80 dla HTTP. W przypadku analizy ruchu sieciowego, najczęstszym błędem jest pomieszanie ról źródłowego i docelowego adresu oraz portu. Serwery webowe zazwyczaj nasłuchują na standardowych portach, takich jak 80 dla HTTP i 443 dla HTTPS, co ułatwia standaryzację i optymalizację trasowania w sieci. Zrozumienie różnic między adresami publicznymi i prywatnymi oraz dynamicznymi i statycznymi portami jest kluczowe dla skutecznego zarządzania sieciami komputerowymi. Bez tej wiedzy administratorzy mogą napotkać problemy z konfiguracją sieci, które prowadzą do błędów w komunikacji i zabezpieczeniach. Dlatego ważne jest, aby dokładnie interpretować dane z narzędzi do analizy ruchu sieciowego, takich jak Wireshark, gdzie adresy i porty muszą być prawidłowo zidentyfikowane, aby rozwiązać potencjalne problemy z siecią i zapewnić prawidłowe działanie usług sieciowych. Stosowanie się do dobrych praktyk w zakresie wykorzystania portów oraz adresów IP jest kluczowe dla bezpieczeństwa i wydajności sieciowej.

Pytanie 31

Układy sekwencyjne stworzone z grupy przerzutników, najczęściej synchronicznych typu D, które mają na celu przechowywanie danych, to

A. kodery
B. dekodery
C. rejestry
D. bramki
Rejestry są układami sekwencyjnymi składającymi się z przerzutników, najczęściej typu D, które służą do przechowywania danych. Każdy przerzutnik w rejestrze przechowuje jeden bit informacji, a w przypadku rejestrów o wielu bitach możliwe jest równoczesne przechowywanie i przetwarzanie kilku bitów. Przykładem zastosowania rejestrów jest zapis i odczyt danych w mikroprocesorach, gdzie rejestry pełnią rolę pamięci tymczasowej dla operacji arytmetycznych oraz logicznych. Stosowanie rejestrów w projektowaniu systemów cyfrowych odpowiada za zwiększenie wydajności oraz efektywności procesów obliczeniowych. Zgodnie z dobrymi praktykami inżynieryjnymi, rejestry są również kluczowym elementem w architekturze pamięci, umożliwiając synchronizację z zegarem systemowym oraz zapewniając prawidłowe działanie układów w czasie rzeczywistym. Ponadto, rejestry są często wykorzystywane w różnych układach FPGA oraz ASIC, co podkreśla ich znaczenie w nowoczesnym projektowaniu systemów cyfrowych.

Pytanie 32

W systemie Windows Professional aby ustawić czas dostępności dla drukarki, należy skorzystać z zakładki

A. Konfiguracja w Preferencjach drukowania
B. Zabezpieczenia w Właściwościach drukarki
C. Zaawansowane w Właściwościach drukarki
D. Ustawienia w Preferencjach drukowania
Odpowiedzi sugerujące zakładki 'Zabezpieczenia', 'Konfiguracja' lub 'Ustawienia' w Preferencjach drukowania są niepoprawne, ponieważ nie dotyczą one właściwego konfigurowania czasu dostępności drukarki. Zakładka 'Zabezpieczenia' koncentruje się na kontrolowaniu dostępu do drukarki, co zapewnia, że tylko upoważnieni użytkownicy mogą korzystać z urządzenia, ale nie ma ona wpływu na harmonogram dostępności. 'Konfiguracja' i 'Ustawienia' w Preferencjach drukowania obejmują aspekty związane z jakością wydruku, wyborem papieru czy ustawieniami kolorów, co również nie dotyczy regulacji dostępności. Użytkownicy często mylnie kojarzą te zakładki z zarządzaniem drukarką, co prowadzi do błędnych wniosków. W rzeczywistości, aby efektywnie zarządzać drukowaniem w organizacji, należy skupić się na właściwej konfiguracji dostępności, co nie jest możliwe w ramach zaproponowanych odpowiedzi. Kluczowe jest zrozumienie, że zarządzanie drukiem to nie tylko ustawienie parametrów wydruku, ale również zapewnienie, że urządzenia są dostępne w odpowiednich momentach, co jest osiągane poprzez właściwe użycie zakładki 'Zaawansowane'. Dlatego zaleca się dokładne zapoznanie się z każdą z zakładek w Właściwościach drukarki, aby lepiej rozumieć, jakie funkcje są dostępne i jak można je wykorzystać w codziennej pracy.

Pytanie 33

W jakiej topologii fizycznej sieci każde urządzenie w sieci posiada dokładnie dwa połączenia, jedno z każdym z sąsiadów, a dane są przesyłane z jednego komputera do drugiego w formie pętli?

A. Drzewa
B. Pierścienia
C. Siatki
D. Gwiazdy
Wybór nieprawidłowych topologii może wynikać z błędnego zrozumienia struktury połączeń w sieciach. Topologia siatki, na przykład, charakteryzuje się bardziej złożonym układem, gdzie każde urządzenie może być połączone z wieloma innymi, co zapewnia wysoką odporność na awarie, ale nie spełnia warunku dwóch połączeń dla każdego urządzenia. Siatka oferuje dużą elastyczność, jednak w przypadku awarii jednego z połączeń, inne urządzenia w sieci mogą kontynuować komunikację bez problemów. Z kolei topologia drzewa łączy cechy topologii gwiazdy i magistrali, tworząc hierarchiczną strukturę. Choć pozwala na łatwe zarządzanie siecią, nie zapewnia wymaganej pętli, która jest kluczowa w przypadku topologii pierścieniowej. Wreszcie, w topologii gwiazdy wszystkie urządzenia są połączone z centralnym punktem, co eliminuje możliwość przesyłania danych w pętli, zamiast tego każde urządzenie komunikuje się z centralnym switchem lub hubem. Każda z tych topologii ma swoje zastosowanie i korzyści, ale nie są one zgodne z definicją topologii pierścieniowej, w której głównym elementem jest pętla z dokładnie dwoma połączeniami dla każdego urządzenia.

Pytanie 34

Funkcja systemu operacyjnego, która umożliwia jednoczesne uruchamianie wielu aplikacji w trybie podziału czasu, z tym że realizacja tego podziału odbywa się przez same aplikacje, nosi nazwę

A. wielozadaniowości z wywłaszczeniem
B. wielodostępowości
C. wielozadaniowości kooperatywnej
D. wieloprogramowości
Wielozadaniowość kooperatywna to technika, która pozwala aplikacjom współdzielić czas procesora, przy czym odpowiedzialność za przełączanie kontekstu pomiędzy zadaniami spoczywa na samych aplikacjach. Oznacza to, że aplikacje muszą dobrowolnie oddać kontrolę nad procesorem, co pozwala innym aplikacjom na wykonanie swoich zadań. Systemy operacyjne, takie jak Windows w starszych wersjach, stosowały ten model, gdzie aplikacje były odpowiedzialne za zarządzanie własnym czasem pracy. Przykładem zastosowania wielozadaniowości kooperatywnej może być sytuacja, w której program edytorski i odtwarzacz multimedialny współdzielą zasoby, a edytor musi zakończyć swoje operacje, aby umożliwić odtwarzaczowi dostęp do procesora. Warto zauważyć, że w praktyce ten model może prowadzić do problemów, gdy jedna aplikacja nie oddaje kontroli, co może zamrozić system. Dlatego w nowoczesnych systemach operacyjnych, takich jak Linux czy Windows 10, częściej stosuje się podejście z wywłaszczeniem, które jest bardziej efektywne w zarządzaniu zasobami systemowymi.

Pytanie 35

Internet Relay Chat (IRC) to protokół wykorzystywany do

A. prowadzenia konwersacji w konsoli tekstowej
B. transmisji dźwięku w sieci
C. przesyłania listów do grup dyskusyjnych
D. przesyłania wiadomości e-mail
IRC, czyli Internet Relay Chat, to całkiem fajny protokół do czatowania w czasie rzeczywistym, używający konsoli tekstowej. W odróżnieniu od e-maila czy wiadomości głosowych, IRC skupia się na interaktywnych rozmowach w kanałach tematycznych, co naprawdę sprzyja dyskusjom i wspólnemu działaniu. Można go spotkać w różnych sytuacjach, na przykład zespoły programistyczne korzystają z niego do szybkiej wymiany pomysłów, a różne społeczności online organizują wydarzenia. Choć może się wydawać staroświecki, to ma nadal swoich zwolenników, bo jest prosty w obsłudze i nie potrzebuje zbyt dużo zasobów. Istnieją też standardy, takie jak RFC 1459, które mówią, jak to wszystko powinno działać, co sprawia, że różne klienty i serwery mogą ze sobą współpracować. Dzięki otwartym standardom, IRC jest elastycznym narzędziem, które można dostosować do wielu różnych zastosowań, zarówno w pracy, jak i w życiu osobistym.

Pytanie 36

Aby skopiować folder c:\test wraz ze wszystkimi podfolderami na przenośny dysk f:\ w systemie Windows 7, jakie polecenie należy zastosować?

A. xcopy f:\test c:\test /E
B. xcopy c:\test f:\test /E
C. copy c:\test f:\test /E
D. copy f:\test c:\test /E
Polecenie 'xcopy c:\test f:\test /E' jest poprawne, ponieważ 'xcopy' to narzędzie systemowe w systemie Windows, które służy do kopiowania plików oraz katalogów, w tym ich podkatalogów. Opcja '/E' pozwala na skopiowanie wszystkich katalogów i podkatalogów, nawet jeśli są one puste. W praktyce, gdy kopiujemy katalogi zawierające wiele podkatalogów, 'xcopy' jest bardziej użyteczne niż 'copy', który nie obsługuje kopiowania podkatalogów. Przykładowo, jeśli mamy strukturę katalogów w 'c:\test', a chcemy ją zduplikować na dysku przenośnym w 'f:\test', użycie tego polecenia zapewni, że wszystkie pliki i struktura folderów zostaną przeniesione w identyczny sposób. Zgodnie z dobrą praktyką, przed wykonaniem operacji kopiowania warto upewnić się, że mamy odpowiednie uprawnienia do folderów oraz wolne miejsce na docelowym nośniku. W przypadku dużych transferów danych, dobrym pomysłem jest także przetestowanie kopiowania na mniejszych zestawach danych, aby upewnić się, że proces przebiega zgodnie z oczekiwaniami.

Pytanie 37

Który z wymienionych systemów operacyjnych nie obsługuje wielozadaniowości?

A. DOS
B. Windows
C. UNIX
D. Linux
W przypadku wybrania odpowiedzi dotyczącej systemów takich jak Linux, Windows czy UNIX, można dostrzec powszechne nieporozumienie w zakresie definicji systemów operacyjnych i ich architektur. Wszystkie wymienione systemy operacyjne to następcze rozwiązania, które obsługują wielozadaniowość, co oznacza, że mogą równolegle wykonywać wiele procesów. Linux, na przykład, jest oparty na architekturze wielozadaniowej, co pozwala użytkownikom na uruchamianie wielu aplikacji jednocześnie, co jest niezwykle przydatne w środowiskach serwerowych i stacjonarnych. Również Windows, który dominował na rynku systemów operacyjnych dla komputerów osobistych, od swoich wczesnych wersji wprowadzał zaawansowane mechanizmy zarządzania pamięcią i procesami, umożliwiając efektywne działanie wielu programów w tym samym czasie. UNIX z kolei, będący fundamentem wielu nowoczesnych systemów operacyjnych, również wprowadzał zaawansowane mechanizmy wielozadaniowości, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii oprogramowania. Typowym błędem myślowym jest utożsamianie architektury systemu operacyjnego z jego funkcjonalnościami. Warto zwrócić uwagę, że systemy silnie oparte na modelu wielozadaniowym przekształciły sposób, w jaki użytkownicy korzystają z komputerów, wprowadzając wygodę oraz zwiększając efektywność pracy."

Pytanie 38

Jakiego typu rozbudowa serwera wymaga zainstalowania dodatkowych sterowników?

A. Instalacja kolejnego procesora
B. Dodanie pamięci RAM
C. Dodanie dysków fizycznych
D. Montaż kolejnej karty sieciowej
Wybór odpowiedzi dotyczący dodania pamięci RAM, montażu kolejnego procesora czy dodania dysków fizycznych nie wymaga zainstalowania dodatkowych sterowników, co często prowadzi do nieporozumień dotyczących rozbudowy sprzętu. Pamięć RAM jest komponentem, który działa bezpośrednio z płytą główną i nie potrzebuje zewnętrznych sterowników, ponieważ jest zarządzana przez system operacyjny oraz BIOS. W przypadku montażu procesora, również nie ma potrzeby dodatkowej instalacji sterowników, ponieważ większość nowoczesnych płyt głównych automatycznie rozpoznaje nowy procesor i wykorzystuje istniejące już w systemie sterowniki. Podobnie rzecz ma się z dyskami fizycznymi – chociaż mogą wymagać konfiguracji w BIOS-ie, sterowniki do dysków (np. SATA) są zazwyczaj już wbudowane w system operacyjny, co czyni proces ich instalacji prostszym. Wybierając te odpowiedzi, można popełnić błąd myślowy polegający na przypuszczeniu, że każdy nowy komponent wymaga nowych sterowników. Kluczowe jest zrozumienie, że tylko niektóre urządzenia, zwłaszcza te, które są złożone lub specjalistyczne, jak karty sieciowe czy graficzne, wymagają dedykowanych sterowników. Również zrozumienie specyfiki działania poszczególnych komponentów jest niezbędne, aby unikać takich błędów.

Pytanie 39

Aby zablokować oraz usunąć złośliwe oprogramowanie, takie jak exploity, robaki i trojany, konieczne jest zainstalowanie oprogramowania

A. antyspyware
B. adblock
C. antymalware
D. antyspam
Odpowiedzi takie jak "antyspyware", "antyspam" oraz "adblock" wydają się być związane z bezpieczeństwem w sieci, jednak nie są one odpowiednie w kontekście blokowania i usuwania szkodliwego oprogramowania typu exploit, robaki oraz trojany. Antyspyware koncentruje się głównie na zwalczaniu programów szpiegujących, które zbierają dane użytkownika bez jego zgody, ale nie jest zaprojektowane do radzenia sobie z bardziej złożonymi zagrożeniami, takimi jak trojany czy robaki, które mogą wprowadzać złośliwy kod do systemu. Antyspam natomiast dotyczy ochrony przed niechcianymi wiadomościami e-mail, a jego funkcjonalność nie obejmuje zagrożeń związanych z aplikacjami czy plikami na komputerze. Adblock to narzędzie mające na celu blokowanie reklam w przeglądarkach internetowych, co choć może poprawić komfort przeglądania, nie ma żadnej mocy w zwalczaniu złośliwego oprogramowania. Użytkownicy często popełniają błąd, myśląc, że programy te mogą zastąpić kompleksowe rozwiązania antywirusowe lub antymalware. W rzeczywistości skuteczna ochrona wymaga zastosowania specjalistycznego oprogramowania, które jest w stanie radzić sobie z różnorodnymi zagrożeniami, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa IT. Właściwe podejście do zabezpieczeń komputerowych uwzględnia użycie dedykowanych narzędzi, które są w stanie skutecznie identyfikować i eliminować złośliwe oprogramowanie przed wyrządzeniem szkód w systemie.

Pytanie 40

Ile adresów można przypisać urządzeniom działającym w sieci o adresie IP 192.168.20.0/26?

A. 4
B. 62
C. 126
D. 30
Wybór błędnych odpowiedzi może wynikać z mylnych obliczeń dotyczących liczby adresów IP w danej sieci. Na przykład liczba 4 sugeruje, że ktoś może błędnie zakładać, że można przydzielić tylko kilka adresów, co jest niezgodne z zasadą maskowania podsieci. Tego typu podejście prowadzi do zrozumienia, że w każdej podsieci musimy brać pod uwagę nie tylko adresy dostępne dla urządzeń, ale także adres sieciowy oraz adres rozgłoszeniowy, które nie mogą być używane jako przypisane adresy IP. Z kolei odpowiedź 30 może być wynikiem niewłaściwego liczenia, które nie uwzględnia wszystkich dostępnych adresów w podsieci. Możliwe, że ktoś odjął więcej adresów niż jest to wymagane. Podobnie, liczba 126 nie ma uzasadnienia w kontekście podanej maski /26, co sugeruje brak zrozumienia, jak działa podział adresów IP w sieciach. W rzeczywistości tylko w większych podsieciach można przydzielić taką liczbę adresów, ale nie przy masce /26. Prawidłowe zrozumienie zasad podziału sieci oraz obliczeń związanych z adresowaniem IP jest kluczowe dla efektywnego zarządzania sieciami. Błędy te mogą prowadzić do nieefektywnego wykorzystania dostępnych adresów IP oraz problemów z ich przydzielaniem, co jest niezgodne z najlepszymi praktykami w zarządzaniu sieciami.