Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 22 maja 2025 22:11
  • Data zakończenia: 22 maja 2025 22:29

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Gdzie stosowany jest odśrodkowy regulator prędkości obrotowej?

A. w rzędowej pompie wtryskowej
B. w przeponowej pompie paliwowej silnika z zapłonem iskrowym
C. w pompie tłoczkowej o niskim ciśnieniu
D. w paliwowej pompie wysokiego ciśnienia w systemie Common Rail
Rzędowa pompa wtryskowa jest kluczowym elementem systemu zasilania silników diesla, a zastosowanie odśrodkowego regulatora prędkości obrotowej w tej konstrukcji ma na celu zapewnienie optymalnej wydajności i precyzyjnego dawkowania paliwa. Odśrodkowy regulator działa na zasadzie wykorzystania siły odśrodkowej, co przekłada się na automatyczne dostosowanie dawki paliwa w zależności od prędkości obrotowej silnika. Dzięki temu, pompa wtryskowa może dostarczać odpowiednią ilość paliwa w zależności od aktualnych warunków pracy, co wpływa na oszczędność paliwa, redukcję emisji spalin oraz poprawę osiągów silnika. W praktyce, takie rozwiązania są zgodne z najlepszymi praktykami branżowymi, które zalecają zastosowanie regulacji w systemach wtryskowych w celu zwiększenia efektywności energetycznej i zmniejszenia wpływu na środowisko. Przykładem może być nowoczesna technologia Common Rail, w której dokładne dawkowanie paliwa jest kluczowe dla osiągnięcia wysokiej sprawności silnika.

Pytanie 2

Niski wynik uzyskany w pomiarze przeprowadzonym metodą Eusama wskazuje na potrzebę wymiany

A. amortyzatory
B. sprężyny śrubowe zawieszenia
C. hamulce tarczowe
D. stabilizatory
Amortyzatory to naprawdę ważny element w zawieszeniu każdego auta. Dobrze działają, kiedy kontrolują ruchy sprężyn i redukują drgania. Jak masz niski wynik z metody Eusama, to znaczy, że twoje amortyzatory mogą nie działać jak powinny, a to może wpłynąć na całe zawieszenie. W branży zwraca się uwagę na to, żeby regularnie sprawdzać i serwisować amortyzatory, bo to podstawa dla bezpieczeństwa i komfortu jazdy. Jeżeli wynik jest niziutki, to warto pomyśleć o ich wymianie. Dzięki temu poprawisz stabilność auta i skrócisz drogę hamowania. Ignorowanie stanu amortyzatorów może prowadzić do jakichś poważniejszych problemów, a nawet wypadków. Dlatego dobrze, żeby mechanicy na bieżąco kontrolowali ich stan, zwłaszcza że to jedna z najlepszych praktyk w tej branży.

Pytanie 3

Kompletne oddzielenie współdziałających elementów za pomocą środka smarowego ma miejsce

A. w przypadku tarcia suchego
B. w sytuacji tarcia granicznego
C. w trakcie docierania wstępnego
D. w momencie tarcia płynnego
Docieranie wstępne to po prostu oszlifowanie powierzchni na początku, ale w tym etapie elementy się stykają, więc tarcie jest o wiele większe niż w przypadku tarcia płynnego. Używa się tu mało smaru, no ale nie ma pełnego rozdzielenia powierzchni, więc może się to kończyć szybszym zużyciem. A tarcie suche to już w ogóle dramat, bo wtedy nie ma smaru i powierzchnie się stykają bezpośrednio, co strasznie podnosi współczynnik tarcia i przyspiesza zużycie. Natomiast tarcie graniczne? To sytuacja, gdy film smarujący jest za cienki, co może zniszczyć wszystko przez te siły tarcia. Trzeba rozumieć, że te stany nie mają pełnego rozdzielenia powierzchni, bo to jest przepustka do złej efektywności w mechanice. Często ludzie mylą te pojęcia i myślą, że smarowanie tam działa tak samo jak przy tarciu płynnym, ale to duży błąd. Żeby osiągnąć dobre warunki pracy, trzeba dążyć do tego, by smar cały czas był na poziomie, co pomoże uniknąć bezpośredniego kontaktu i zminimalizować tarcie.

Pytanie 4

W samochodzie zauważono nierówną pracę silnika przy wyższych obrotach. Na początku należy zweryfikować

A. szczelność układu chłodzenia
B. ciśnienie w układzie smarowania
C. opory w układzie napędowym
D. drożność filtra paliwa
Drożność filtra paliwa jest kluczowym aspektem, który wpływa na właściwą pracę silnika. Filtr paliwa ma za zadanie zatrzymywanie zanieczyszczeń i zanieczyszczeń w paliwie, co zapewnia czystość układu paliwowego. Nierówna praca silnika przy wyższych prędkościach obrotowych może być spowodowana niedostatecznym dopływem paliwa do komory spalania, co może wynikać z zatykania się filtra. W praktyce, kiedy filtr jest zanieczyszczony, silnik nie otrzymuje odpowiedniej ilości paliwa, co może prowadzić do spadku mocy i niestabilnego biegu. Dobre praktyki serwisowe sugerują regularną wymianę filtra paliwa zgodnie z zaleceniami producenta pojazdu, a także kontrolę jego stanu w przypadku wystąpienia problemów z pracą silnika. Warto również zwrócić uwagę na jakość paliwa, gdyż niskiej jakości paliwo może szybciej zatykać filtr. Zrozumienie tej zasady pozwala na szybsze diagnozowanie problemów i skuteczniejsze działania naprawcze.

Pytanie 5

Aby zmierzyć odległość między elektrodami świecy zapłonowej, należy zastosować

A. wzorcową płytkę.
B. suwmiarkę.
C. mikrometr do średnic.
D. szczelinomierz.
Szczelinomierz to narzędzie pomiarowe, które jest idealnie przystosowane do pomiaru przerwy między elektrodami świecy zapłonowej. Dzięki swojej budowie, szczelinomierz pozwala na dokładne określenie wymiaru szczeliny, co jest kluczowe dla prawidłowego funkcjonowania świecy zapłonowej. Utrzymanie odpowiedniej przerwy między elektrodami jest istotne, ponieważ wpływa na efektywność zapłonu mieszanki paliwowej, co z kolei przekłada się na osiągi silnika oraz jego oszczędność paliwa. Zbyt mała przerwa może prowadzić do niepełnego spalania i zwiększonej emisji spalin, natomiast zbyt duża może skutkować trudnościami w uruchomieniu silnika oraz niestabilną pracą. Użycie szczelinomierza, zwłaszcza w kontekście regularnych przeglądów i konserwacji, jest zgodne z najlepszymi praktykami w branży motoryzacyjnej. Przykładowo, podczas wymiany świec zapłonowych warto sprawdzić ich przerwę, aby upewnić się, że silnik będzie pracował optymalnie.

Pytanie 6

Jakie jest zadanie cewki zapłonowej?

A. produkcja wysokiego natężenia prądu
B. wytwarzanie wysokiego napięcia
C. ochrona przed przepięciem
D. generowanie iskry zapłonowej
Nieprawidłowe formułowanie odpowiedzi prowadzi do nieporozumień dotyczących działania cewki zapłonowej. Może pojawić się mylne przekonanie, że cewka zapłonowa wytwarza jedynie iskry zapłonowe. W rzeczywistości iskra jest efektem końcowym procesu indukcji napięcia, a nie bezpośrednim zadaniem cewki. Istotne jest rozróżnienie między pojęciem wysokiego napięcia a wysokiego natężenia prądu, które są często mylone. Cewka zapłonowa generuje wysokie napięcie, a nie wysokie natężenie prądu, co jest kluczowe dla prawidłowego funkcjonowania układu zapłonowego. Ponadto, cewka nie pełni funkcji zabezpieczających przed przepięciem, gdyż jej głównym celem jest dostarczenie energii do zapłonu, a nie ochrona systemu przed nadmiarowym napięciem. Właściwe zrozumienie zasad działania cewki zapłonowej jest kluczowe dla diagnostyki i naprawy układów zapłonowych, co w praktyce oznacza, że technicy muszą umieć rozpoznać, jak i dlaczego cewka wytwarza wysokie napięcie oraz jakie są implikacje dla pracy silnika. Ignorowanie tych faktów może prowadzić do błędnych diagnoz i niewłaściwych napraw, co w konsekwencji wpływa na wydajność i żywotność silnika.

Pytanie 7

W klasyfikacji olejów American Petroleum Institute /API/ olej oznaczony symbolem GL to olej

A. hydrauliczny
B. do silników o ZI
C. do silników o ZS
D. przekładniowy
Istnieje kilka błędnych koncepcji związanych z odpowiedziami, które można by uznać za poprawne. Pierwsza z nich dotyczy olejów do silników o zapłonie samoczynnym (ZS). Oleje te, zwane również olejami silnikowymi, są przeznaczone do smarowania silników diesla i charakteryzują się specyficznymi właściwościami, które różnią się od wymagań dla olejów przekładniowych. Ważne jest zrozumienie, że oleje te są klasyfikowane według innych standardów, takich jak API CJ-4 czy ACEA E9, które są dostosowane do eksploatacji w silnikach o zapłonie samoczynnym. Drugą mylną koncepcją są oleje hydrauliczne. Oleje te również różnią się od olejów przekładniowych, gdyż są zaprojektowane do pracy w systemach hydraulicznych, gdzie kluczowe są takie właściwości jak niska lepkość oraz doskonałe właściwości przeciwzużyciowe, a także odporność na działanie wody. Oleje hydrauliczne są klasyfikowane według norm takich jak ISO 32, 46, 68, które wskazują na ich lepkość. Ostatnia z wymienionych opcji to oleje do silników o zapłonie iskrowym (ZI), które są z kolei dedykowane silnikom benzynowym. Oleje te powinny spełniać różne wymagania, takie jak API SN, co nie ma związku z olejami przekładniowymi. Błąd w rozumieniu klasyfikacji olejów API może prowadzić do nieprawidłowego doboru oleju, co z kolei może skutkować uszkodzeniem komponentów pojazdu. Dlatego tak istotne jest posługiwanie się właściwymi oznaczeniami i klasyfikacjami przy wyborze olejów do różnych zastosowań w motoryzacji.

Pytanie 8

Regulator odśrodkowy oraz regulator podciśnieniowy stanowią składniki systemu

A. rozrządu
B. zasilania z wtryskiem wielopunktowym
C. zapłonowego
D. zasilania z wtryskiem jednopunktowym
Pojęcia związane z regulatorem odśrodkowym i podciśnieniowym są często mylone z innymi systemami w silnikach spalinowych, co może prowadzić do nieporozumień w zakresie ich zastosowania. W przypadku układu zasilania z wtryskiem jednopunktowym, który charakteryzuje się prostą konstrukcją, nie stosuje się osobnych regulatorów odśrodkowych ani podciśnieniowych. Wtrysk jednopunktowy wykorzystuje zazwyczaj jeden wtryskiwacz, co ogranicza potrzebę zaawansowanej regulacji zapłonu. Podobnie, układ rozrządu, odpowiedzialny za synchronizację ruchu zaworów, nie ma bezpośredniego związku z funkcjonowaniem regulatorów zapłonu. Takie pomylenie wynika często z niepełnego zrozumienia, jakie elementy odpowiadają za różne procesy w silniku. Układ zapłonowy jest odrębnym systemem, który niezależnie reguluje moment zapłonu w odpowiedzi na różne parametry pracy silnika. W przypadku układu zapłonowego, zarówno regulator odśrodkowy, jak i podciśnieniowy, są integralnymi częściami, które zapewniają optymalną pracę silnika w różnych warunkach. Wtryskiwanie paliwa, niezależnie od tego, czy jest jednopunktowe, czy wielopunktowe, również nie wpływa na działanie regulatorów zapłonu, ponieważ ich główną funkcją jest zapewnienie odpowiedniego momentu zapłonu, a nie kontrola procesu wtrysku. To zrozumienie różnic między tymi systemami jest kluczowe dla efektywnej diagnostyki i naprawy silników spalinowych. Wiedza o tym, jakie elementy są odpowiedzialne za konkretne funkcje w silniku, pozwala uniknąć nieporozumień oraz poprawia jakość wykonywanych napraw i usług serwisowych.

Pytanie 9

Jakiego woltomierza o odpowiednim zakresie pomiarowym należy użyć do pomiaru spadku napięcia podczas rozruchu akumulatora?

A. 20 V DC
B. 2 V DC
C. 2 V AC
D. 20 V AC
Odpowiedź 20 V DC to trafny wybór. Kiedy mierzysz spadek napięcia na akumulatorze, który działa w trybie stałoprądowym, to woltomierz musi być przystosowany do napięcia stałego (DC). Wartość 20 V powinna być wystarczająca do uchwycenia typowych spadków napięcia, które mogą wystąpić podczas uruchamiania silnika. W praktyce, warto zmierzyć napięcie przed uruchomieniem i w trakcie rozruchu, żeby upewnić się, że akumulator działa jak należy. Jeśli wskazania spadają poniżej 12 V, to raczej coś jest nie tak. W branży mamy standardy, jak SAE J537, które podkreślają, jak ważne jest monitorowanie napięcia akumulatora, żeby zapobiegać różnym awariom w systemach elektrycznych pojazdu. Z kolei prawidłowe pomiary to klucz do diagnostyki i planowania konserwacji akumulatorów – bez tego ciężko będzie utrzymać efektywność zasilania.

Pytanie 10

Podczas naprawy pojazdu został wymieniony filtr paliwa, filtr kabinowy oraz komplet klocków hamulcowych osi przedniej. Koszt jednej roboczogodziny to 90,00 zł netto. Oblicz całkowity koszt naprawy netto.

Lp.wykaz częścicena netto
[zł]
1.olej silnikowy 4l125,00
2.filtr oleju45,00
3.filtr kabinowy85,00
4.filtr paliwa115,00
5.klocki hamulcowe osi przedniej- kpl.95,00
6.klocki hamulcowe osi tylnej- kpl.112,00
7.tarcze hamulcowe osi przedniej-kpl.160,00
Lp.czynnościczas naprawy
[rg.]
1.wymiana filtra paliwa0,5
2.wymiana filtra kabinowego0,3
3.wymiana klocków hamulcowych osi przedniej1,2
4.wymiana klocków hamulcowych osi tylnej1,3

A. 680,00 zł
B. 475,00 zł
C. 635,00 zł
D. 380,00 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 475,00 zł to dobry wybór, bo uwzględnia wszystkie ważne elementy kosztów naprawy samochodu. Żeby policzyć całkowity koszt naprawy netto, trzeba zsumować koszty robocizny oraz ceny części. Moim zdaniem, policzenie robocizny jest kluczowe – bierzesz stawkę za godzinę (90,00 zł) i mnożysz przez czas pracy. Zwykle wymiana filtrów i klocków hamulcowych zajmuje około 3 godzin, więc wychodzi nam 3 godziny razy 90,00 zł, co daje 270,00 zł. Do tego dodaj koszty części, które w tym przypadku mogą wynieść około 205,00 zł. Jak się to zsumuje (270,00 zł + 205,00 zł), dostajemy całość 475,00 zł netto. Pamiętaj, że dokładne obliczenia kosztów napraw są mega ważne, jak chcesz dobrze zarządzać wydatkami w warsztacie – tak przynajmniej mówią w branży.

Pytanie 11

Diagnostyka systemu hamulcowego na stanowisku rolkowym nie umożliwia

A. wykrycia owalizacji bębnów hamulcowych
B. wykrycia deformacji oraz bicia tarcz hamulcowych
C. ustalenia różnic sił hamowania na wszystkich kołach pojazdu
D. oceny stopnia zużycia elementów ciernych
Wybór odpowiedzi dotyczącej oceny stopnia zużycia elementów ciernych jako poprawnej jest uzasadniony z punktu widzenia diagnostyki układu hamulcowego. Stanowisko rolkowe, używane do testowania hamulców, pozwala na analizę siły hamowania w warunkach dynamicznych, jednakże nie dostarcza informacji o stopniu zużycia klocków czy szczęk hamulcowych. Zużycie tych elementów jest oceniane na podstawie grubości materiału ciernego, a nie na podstawie testów na rolkach. W praktyce, monitoring zużycia elementów ciernych powinien odbywać się podczas regularnych przeglądów technicznych, gdzie możliwa jest wizualna inspekcja oraz pomiar grubości klocków. Standardy takie jak ECE R90 w Europie wymagają, by części zamienne były identyczne pod względem jakości i wydajności z oryginalnymi elementami. Dlatego wiedza o zużyciu elementów ciernych jest kluczowa dla zapewnienia bezpieczeństwa pojazdu oraz efektywności układu hamulcowego.

Pytanie 12

Badanie zadymienia spalin przeprowadza się w silnikach

A. z zapłonem iskrowym
B. zasilanych paliwem CNG
C. zasilanych paliwem LPG
D. z zapłonem samoczynnym
Pomiar zadymienia spalin to naprawdę ważna sprawa, szczególnie w silnikach Diesla, bo tam spalanie zachodzi inaczej niż w silnikach benzynowych. W silnikach z zapłonem samoczynnym, jak te dieslowskie, temperatura i ciśnienie są wyższe, co prowadzi do większej produkcji cząstek stałych. Dlatego normy emisji, takie jak Euro 6, mają tu swoje mocne restrykcje. Oprócz tego, monitorowanie zadymienia jest kluczowe dla diagnostyki silnika i może pomóc w optymalizacji spalania. Z własnego doświadczenia mogę powiedzieć, że dobrze przeprowadzone pomiary zadymienia nie tylko zmniejszają zużycie paliwa, ale też pomagają w walce z zanieczyszczeniami powietrza. Użycie odpowiednich analizatorów zadymienia to podstawa, żeby wszystko działało zgodnie z normami.

Pytanie 13

Po prawidłowej realizacji naprawy związanej z wymianą czujnika prędkości obrotowej koła?

A. kontrolka ABS wyłączy się automatycznie po osiągnięciu odpowiedniej prędkości jazdy
B. należy odłączyć klemę masową akumulatora na 15 sekund
C. konieczne jest ponowne przeprowadzenie diagnostyki układu oraz usunięcie kodów błędów
D. należy dziesięciokrotnie uruchomić silnik w celu przeprowadzenia samodiagnozy układu ABS
Odpowiedź dotycząca samoczynnego wygaszenia kontrolki ABS po osiągnięciu odpowiedniej prędkości jazdy jest prawidłowa, ponieważ system ABS monitoruje różne parametry pracy pojazdu, w tym prędkość obrotową kół. Po wymianie czujnika prędkości obrotowej, jeśli naprawa została przeprowadzona prawidłowo, kontrolka powinna zgasnąć automatycznie, gdy pojazd osiągnie prędkość, przy której system uznaje, że wszystko działa zgodnie z oczekiwaniami. Jest to zgodne z zasadami automatycznych systemów diagnostycznych, które są instalowane w nowoczesnych pojazdach. Praktycznym przykładem zastosowania tej wiedzy może być sytuacja, w której mechanik wymienia czujnik prędkości obrotowej, a następnie wykonuje jazdę próbną, aby upewnić się, że kontrolka ABS wygasła. W takich przypadkach należy również pamiętać, że diagnostyka układów ABS wiąże się z monitorowaniem pracy systemu w czasie rzeczywistym, co może obejmować obserwację zachowania pojazdu na drodze. Dlatego znajomość tego procesu jest kluczowa dla każdego specjalisty zajmującego się naprawami układów hamulcowych.

Pytanie 14

Jak dokonuje się odczytu ustawienia geometrii kół?

A. przy skręcie kół o 30 stopni
B. wyłącznie w przypadku pojazdu nieobciążonego
C. zgodnie z wytycznymi producenta
D. wyłącznie w przypadku pojazdu obciążonego
Odpowiedź "zgodnie z zaleceniami producenta" jest prawidłowa, ponieważ ustawienia geometrii kół powinny być dokonywane zgodnie z zaleceniami producenta pojazdu. Każdy producent definiuje specyficzne parametry dla ustawienia geometrii, takie jak kąt nachylenia, zbieżność czy kąt wyprzedzenia sworznia zwrotnicy, które są optymalne dla danego modelu pojazdu. Przykładowo, niewłaściwe ustawienie geometrii kół może prowadzić do nadmiernego zużycia opon, problemów z układem kierowniczym, a także wpływać na stabilność pojazdu podczas jazdy. Użycie odpowiednich narzędzi i technik, jak np. laserowych systemów do pomiaru geometrii, umożliwia precyzyjne ustawienie, co jest kluczowe dla bezpieczeństwa i komfortu jazdy. W praktyce, zaleca się przeprowadzanie tych regulacji podczas rutynowych przeglądów technicznych, szczególnie po zmianie zawieszenia, wymiany opon lub kolizji. Regularne sprawdzanie geometrii kół pozwala na utrzymanie właściwych parametrów, co przekłada się na lepszą wydajność paliwową oraz dłuższą żywotność komponentów zawieszenia.

Pytanie 15

Podczas zakupu panewek łożysk głównych wału korbowego warto zwrócić uwagę na

A. instalację tylko nowych panewek
B. sekwencję montowanych korbowodów
C. zastosowanie odpowiedniego luzu montażowego umożliwiającego obrót panewek w korpusie
D. właściwe osadzenie panewek względem otworów olejowych
Odpowiednie osadzenie panewek w stosunku do otworów olejowych jest kluczowe dla prawidłowego funkcjonowania łożysk głównych wału korbowego. Paneweczki, jako elementy współpracujące z wałem korbowym, muszą być właściwie ustawione, aby zapewnić odpowiedni przepływ oleju smarującego, co jest niezbędne dla zmniejszenia tarcia i zapobiegania zużyciu. W przypadku niewłaściwego osadzenia, możliwe są zastoje oleju, co prowadzi do przegrzewania się komponentów oraz ich przedwczesnego uszkodzenia. Praktyczne zastosowanie tej zasady obejmuje dokładne wyrównanie panewek z otworami olejowymi podczas montażu, co można osiągnąć poprzez użycie specjalnych narzędzi pomiarowych, takich jak suwmiarki czy mikrometry, które pozwalają na precyzyjne dopasowanie. Zgodnie z wytycznymi producentów silników, ważne jest również, aby przed montażem sprawdzić czystość powierzchni oraz stan panewek, co przyczynia się do ich długotrwałej eksploatacji i efektywności działania silnika.

Pytanie 16

Wtryskiwacz, będący częścią systemu zasilania K-Jetronic, ma na celu dostarczenie dawki

A. powietrza do kolektora dolotowego
B. powietrza bezpośrednio do komory spalania
C. paliwa do kolektora dolotowego
D. paliwa bezpośrednio do komory spalania
Pomimo że wszystkie podane odpowiedzi dotyczą elementów układu zasilania, niestety niektóre z nich są błędne z merytorycznego punktu widzenia. Wtryskiwacz nie ma na celu dostarczania powietrza do kolektora dolotowego, ponieważ jego funkcja polega wyłącznie na wtryskiwaniu paliwa. Powietrze do silnika jest zasysane przez układ dolotowy, a jego ilość jest kontrolowana przez przepustnicę, a nie przez wtryskiwacz. Kolejna nieprecyzyjna odpowiedź sugeruje, że wtryskiwacz dostarcza paliwo bezpośrednio do komory spalania, co jest mylnym założeniem. Proces spalania w silniku spalinowym wymaga, aby paliwo najpierw zmieszało się z powietrzem w kolektorze dolotowym, gdzie następuje atomizacja paliwa, co zwiększa efektywność spalania. Również stwierdzenie, że wtryskiwacz wprowadza powietrze bezpośrednio do komory spalania, jest całkowicie błędne, ponieważ wtryskiwacz jest odpowiedzialny tylko za paliwo. Te nieporozumienia mogą wynikać z braku świadomości, jak działa system zasilania i jakie są różnice między różnymi komponentami wtrysku paliwa. Właściwe zrozumienie działania wtryskiwacza i jego roli w procesie zasilania silnika jest kluczowe dla analizy i diagnozy problemów związanych z układami paliwowymi. Zastosowanie systemów wtrysku paliwa zgodnych z aktualnymi normami emisji spalin oraz standardami technicznymi jest niezbędne dla zapewnienia efektywności i ekologiczności nowoczesnych pojazdów.

Pytanie 17

Przegub homokinetyczny zapewnia

A. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów nie są w tej samej linii
B. zmienną prędkość obrotową a także kątową wałów napędzającego i napędzanego
C. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów są w tej samej linii
D. stałą prędkość obrotową oraz kątową wałów napędzającego i napędzanego
Przegub równobieżny, czyli przegub homokinetyczny, jest naprawdę ważnym elementem w układach napędowych, szczególnie w autach. Jego największą zaletą jest to, że pozwala na zachowanie stałej prędkości obrotowej, niezależnie od tego, jak są ustawione osie. Dlatego właśnie wykorzystuje się go w autach osobowych i różnych maszynach. Na przykład, w napędach na cztery koła, te przeguby pozwalają na pokonywanie zakrętów bez straty mocy, co wpływa na lepszą stabilność i przyczepność. Przeguby te są też projektowane według branżowych standardów, jak ISO 9001, co daje pewność ich jakości. Gdyby osie obrotu były nierównoległe, inne typy przegubów mogłyby wprowadzać wibracje lub zmieniać prędkość, co mogłoby zaszkodzić systemowi napędowemu.

Pytanie 18

Oblicz czas obsługi pojazdu o przebiegu 60 tys. km. Wykorzystaj dane z tabeli.

Nazwa operacjiPrzebieg (tys. km)
153060100160
Czas wykonania operacji [min]
Kontrola oświetlenia1515151515
Wymiana płynów-10305050
Kontrola układu hamulcowego1010151520
Zabezpieczenia antykorozyjne nadwozia30--30-
Kontrola układu paliwowego-20-40-
Kontrola zawieszenia1010151525

A. 185 minut
B. 165 minut
C. 65 minut
D. 75 minut

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 75 minut, co jest wynikiem dokładnego zsumowania czasów poszczególnych operacji serwisowych wymaganych dla pojazdu o przebiegu 60 tys. km. Kontrola oświetlenia trwa 15 minut, wymiana płynów to 30 minut, a kontrola układu hamulcowego i paliwowego po 15 minut każda. Łącznie daje to 15 + 30 + 15 + 15 = 75 minut. Takie podejście do obliczeń jest zgodne z dobrymi praktykami w branży motoryzacyjnej, gdzie dokładność czasu obsługi pojazdu jest kluczowa dla planowania serwisu. Wiedza na temat poszczególnych operacji serwisowych i ich czasów jest niezbędna dla mechaników, aby efektywnie zarządzać harmonogramem prac oraz informować klientów o przewidywanym czasie naprawy. Zrozumienie tych operacji pozwala również na lepsze prognozowanie kosztów serwisowych, co jest istotne z perspektywy zarządzania flotą pojazdów lub w kontekście indywidualnego właściciela samochodu.

Pytanie 19

Odczuwane wibracje podczas startu pojazdu mogą świadczyć o

A. zablokowaniu systemu chłodzenia
B. deformacji tarczy hamulcowej
C. niewyważeniu kół
D. uszkodzeniu tarczy sprzęgłowej
Kiedy tarcza sprzęgłowa jest uszkodzona, możesz odczuwać nieprzyjemne drgania, jak ruszasz pojazdem. To ta część, która łączy silnik z skrzynią biegów, więc jest dość ważna. Jak tarcza się zużyje albo przegrzeje, to moc jest przenoszona nierównomiernie i to właśnie te drgania możesz odczuwać w kabinie. Przykłady? Kiedy wciśniesz pedał sprzęgła i czujesz stuk lub wibracje, to może znaczy, że czas na wymianę tarczy. W motoryzacji dobrze jest regularnie sprawdzać sprzęgło, szczególnie w autach, które jeżdżą sporo albo mają duży przebieg. Wymiana uszkodzonej tarczy jest mega istotna, żeby jazda była bezpieczna i komfortowa, a cały układ dobrze działał.

Pytanie 20

System kontroli trakcji ma na celu utrzymanie przyczepności

A. poprzeczną opon napędowych
B. wzdłużną opon napędowych.
C. wzdłużną wszystkich opon.
D. wzdłużną i poprzeczną opon napędowych.
Układ kontroli trakcji (TCS) jest kluczowym elementem systemów bezpieczeństwa w nowoczesnych pojazdach, którego głównym celem jest zapewnienie optymalnej przyczepności kół napędowych w trakcie przyspieszania. Poprawna odpowiedź, dotycząca zachowania przyczepności wzdłużnej kół napędowych, jest istotna, ponieważ to właśnie te koła są odpowiedzialne za przenoszenie mocy silnika na nawierzchnię drogi. W sytuacjach, gdy występuje poślizg, na przykład na śliskiej nawierzchni, system TCS automatycznie kontroluje moc silnika oraz, w niektórych przypadkach, hamuje poszczególne koła, aby zminimalizować poślizg i poprawić stabilność pojazdu. Przykładowo, w przypadku samochodów osobowych, podczas nagłego przyspieszania na mokrej nawierzchni, TCS może ograniczyć moc silnika lub wprowadzić delikatne hamowanie, co pozwala na zachowanie pełnej kontroli nad pojazdem. Zastosowanie układów TCS jest zgodne z normami bezpieczeństwa, co czyni je standardem w branży motoryzacyjnej, przyczyniając się do zmniejszenia liczby wypadków związanych z utratą kontroli nad pojazdem.

Pytanie 21

Energia mechaniczna w silnikach cieplnych nie powstaje w wyniku procesu spalania

A. benzyny
B. gazu ziemnego
C. oleju napędowego
D. oleju silnikowego
Odpowiedź "olej silnikowy" jest poprawna, ponieważ energia mechaniczna w silnikach cieplnych nie jest uzyskiwana bezpośrednio z procesów spalania tego paliwa w silniku. W rzeczywistości olej silnikowy nie jest paliwem, lecz środkiem smarnym, który zmniejsza tarcie pomiędzy ruchomymi częściami silnika, co z kolei wpływa na jego efektywność oraz żywotność. Silniki cieplne wykorzystują różne rodzaje paliw, takich jak olej napędowy, benzyna, czy gaz ziemny, do generowania energii poprzez proces spalania. Przykładem może być silnik diesla, który spala olej napędowy, generując energię mechaniczną do napędu pojazdu. Warto zauważyć, że stosowanie odpowiedniego oleju silnikowego jest kluczowe dla prawidłowego funkcjonowania silnika, a odpowiednie standardy, takie jak API (American Petroleum Institute) oraz ACEA (Association des Constructeurs Européens d'Automobiles), określają wymagania dotyczące jakości olejów silnikowych, co wpływa na wydajność i efektywność silników.

Pytanie 22

Wstępna ocena organoleptyczna stanu technicznego amortyzatora, obejmuje

A. analizę zużycia sprężyn zawieszenia
B. analizę wzrokową stopnia zużycia opon pojazdu
C. analizę stanu zużycia drążków kierowniczych
D. analizę stanu zużycia tulei wahaczy
Wybór odpowiedzi dotyczących oceny zużycia drążków kierowniczych, tulei wahaczy oraz sprężyn zawieszenia może prowadzić do nieprawidłowych wyników oceny stanu technicznego pojazdu. Choć te elementy są istotne dla funkcjonowania układu zawieszenia, nie są bezpośrednio związane z wstępną, organoleptyczną oceną stanu amortyzatora. Drążki kierownicze są odpowiedzialne za kierowanie pojazdem, a ich zużycie może wpływać na precyzję prowadzenia, ale ich badanie nie jest pierwszym krokiem w ocenie stanu amortyzatorów. Tuleje wahaczy, które odpowiadają za stabilność zawieszenia, można ocenić jedynie w późniejszych etapach diagnostyki. Natomiast sprężyny zawieszenia, choć kluczowe dla amortyzacji, również wymagają bardziej szczegółowego badania, które nie jest częścią wstępnej, wizualnej oceny. Często błędne rozumienie struktury układu zawieszenia oraz jego poszczególnych komponentów prowadzi do zaniżania znaczenia oceny stanu opon. W praktyce nieprawidłowe oceny mogą skutkować niebezpiecznymi warunkami na drodze, co podkreśla znaczenie zrozumienia oraz przestrzegania właściwych procedur diagnostycznych.

Pytanie 23

Podczas wymiany uszkodzonego wałka sprzęgłowego stwierdzono luz osiowy jego łożyska wynoszący 1,175 mm. Podkładka regulacyjna, którą należy dobrać na podstawie danych z tabeli, będzie miała grubość

Luz osiowy łożyska
(mm)
Grubość podkładki regulacyjnej
(mm)
Luz osiowy łożyska
(mm)
Grubość podkładki regulacyjnej
(mm)
0,750 - 0,7740,7251,150 - 1,1741,125
0,775 - 0,7990,7501,175 - 1,1991,150
0,800 - 0,8240,7751,200 - 1,2241,175
0,825 - 0,8490,8001,225 - 1,2491,200
0,850 - 0,8740,8251,250 - 1,2741,225
0,875 - 0,8990,8501,275 - 1,2991,250
0,900 - 0,9240,8751,300 - 1,3241,275
0,925 - 0,9490,9001,325 - 1,3491,300
0,950 - 0,9740,9251,350 - 1,3741,325
0,975 - 0,9990,9501,375 - 1,3991,350
1,000 - 1,0240,9751,400 - 1,4241,375
1,025 - 1,0491,0001,425 - 1,4491,400
1,050 - 1,0741,0251,450 - 1,4741,425
1,075 - 1,0991,0501,475 - 1,4991,450
1,100 - 1,1241,0751,500 - 1,5241,475
1,125 - 1,1491,1001,525 - 1,5491,500

A. 1,200-1,224 mm
B. 1,150 mm
C. 1,175 mm
D. 1,775-1,799 mm
Odpowiedź 1,150 mm jest prawidłowa, ponieważ zgodnie z danymi z tabeli, luz osiowy łożyska wynoszący 1,175 mm wskazuje na potrzebę użycia podkładki regulacyjnej o grubości 1,150 mm. W praktyce, dobór odpowiedniej grubości podkładki jest kluczowy dla zapewnienia właściwego działania mechanizmu. Niewłaściwie dobrana podkładka może prowadzić do nadmiernych luzów lub wręcz zablokowania ruchu, co może powodować uszkodzenie wałka lub łożyska. W przemyśle stosuje się różne standardy, aby określić odpowiednie grubości podkładek w zależności od wymagań konstrukcyjnych. Użycie podkładki o grubości 1,150 mm w tym przypadku jest zgodne z najlepszymi praktykami, które sugerują, aby zawsze dobierać elementy zgodnie z rzeczywistymi wartościami luzów, aby zapewnić długotrwałą i efektywną pracę maszyn.

Pytanie 24

Jak sprawdza się szczelność przestrzeni nadtłokowej cylindrów silnika spalinowego w pojeździe?

A. płaszczyznę głowicy
B. średnicę cylindra
C. luzy w zaworach
D. ciśnienie sprężania
Odpowiedź "ciśnienie sprężania" jest poprawna, ponieważ szczelność przestrzeni nadtłokowej cylindrów silnika spalinowego jest bezpośrednio związana z efektywnością procesu sprężania mieszanki paliwowo-powietrznej. Ciśnienie sprężania świadczy o tym, czy mieszanka jest odpowiednio sprężona przed zapłonem, co ma kluczowe znaczenie dla osiągów silnika. Wysokie ciśnienie sprężania może wskazywać na dobrą szczelność uszczelniaczy, pierścieni tłokowych oraz głowicy cylindrów. Regularne pomiary ciśnienia sprężania są standardem w diagnostyce silników spalinowych, często stosowanym przez mechaników podczas rutynowych przeglądów. Przykładowo, przy pomiarze ciśnienia sprężania, wartości poniżej normy mogą sugerować zużycie pierścieni tłokowych lub nieszczelności w głowicy cylindrów, co prowadzi do spadku mocy i zwiększonego zużycia paliwa. Dlatego też, analiza ciśnienia sprężania jest kluczowym elementem oceny stanu technicznego silnika, przyczyniającym się do zapewnienia jego niezawodności i efektywności.

Pytanie 25

Jakie napięcie uważa się za bezpieczne dla ludzi?

A. 24 V
B. 220 V
C. 360 V
D. 110 V
Wybór napięcia 220 V, 110 V lub 360 V niesie ze sobą poważne ryzyko dla bezpieczeństwa użytkowników. Napięcie 220 V, które jest standardem w wielu krajach, może prowadzić do groźnych obrażeń ciała w przypadku kontaktu. Wysokie napięcia, takie jak 360 V, są jeszcze bardziej niebezpieczne, ponieważ mogą spowodować natychmiastowe porażenie prądem, co w wielu przypadkach prowadzi do śmierci. Napięcie 110 V, choć niższe, wciąż mieści się w zakresie, który może być potencjalnie niebezpieczny, szczególnie w mokrych warunkach, gdzie opór ciała jest znacznie mniejszy. Często pojawiają się błędne przekonania, że im niższe napięcie, tym mniejsze ryzyko, co prowadzi do ignorowania zasad bezpieczeństwa przy pracy z urządzeniami elektrycznymi. W rzeczywistości, nawet napięcia uważane za 'niski' mogą być niebezpieczne w przypadku niewłaściwego użytkowania lub w nieodpowiednich warunkach. Dlatego tak istotne jest przestrzeganie norm oraz stosowanie odpowiednich środków ochronnych, takich jak izolatki czy odpowiednie obudowy. Zrozumienie różnicy pomiędzy napięciami oraz ich wpływu na bezpieczeństwo użytkowników jest kluczowe w projektowaniu i użytkowaniu systemów elektrycznych.

Pytanie 26

Podczas instalacji nowej uszczelki pod głowicą, co należy zrobić w pierwszej kolejności?

A. dokręcić śruby głowicy w odpowiedniej sekwencji
B. sprawdzić ustawienie luzów zaworowych
C. sprawdzić ciśnienie sprężania w cylindrach
D. dokręcić śruby przy użyciu klucza oczkowego
Dokręcanie śrub głowicy w odpowiedniej kolejności jest kluczowym krokiem w montażu nowej uszczelki pod głowicą. Proces ten ma na celu zapewnienie równomiernego rozkładu sił na uszczelce, co w konsekwencji zapobiega jej nieszczelności i umożliwia prawidłowe działanie silnika. Dobre praktyki wskazują na zastosowanie sekwencji dokręcania, która zazwyczaj zaczyna się od śrub centralnych i przechodzi w stronę zewnętrznych, co pozwala na stopniowe i kontrolowane napięcie. Właściwe dokręcenie śrub zgodnie z zaleceniami producenta, które często są podane w dokumentacji technicznej lub książkach serwisowych, jest niezbędne dla zachowania integralności silnika. Niewłaściwe dokręcenie może prowadzić do przemieszczenia głowicy, co w efekcie skutkuje uszkodzeniem uszczelki, a nawet całej jednostki napędowej. Dlatego też przed przystąpieniem do dokręcania konieczne jest dokładne zapoznanie się z instrukcjami i użycie odpowiedniego klucza dynamometrycznego, aby stosować właściwy moment obrotowy. Przykładem może być dokręcanie głowicy w silnikach typu DOHC, gdzie precyzyjne napięcie jest kluczowe dla utrzymania właściwego ciśnienia sprężania.

Pytanie 27

Podczas diagnostyki elektrycznej układu zapłonowego wykryto, że silnik nie uruchamia się z powodu braku iskry. Jaka może być przyczyna tego problemu?

A. Zatkany filtr powietrza
B. Zbyt niskie napięcie akumulatora
C. Uszkodzona cewka zapłonowa
D. Niewłaściwe ciśnienie wtrysku paliwa
Brak iskry w układzie zapłonowym jest najczęściej spowodowany problemem z cewką zapłonową. Cewka zapłonowa ma kluczowe znaczenie, ponieważ zamienia niskie napięcie z akumulatora na wysokie napięcie potrzebne do wytworzenia iskry w świecy zapłonowej. Gdy cewka jest uszkodzona, nie jest w stanie wytworzyć wymaganego napięcia, co prowadzi do braku iskry i uniemożliwia uruchomienie silnika. W praktyce, diagnoza uszkodzonej cewki zapłonowej może obejmować pomiar oporności uzwojeń cewki za pomocą multimetru oraz sprawdzenie fizycznego stanu cewki, takiego jak pęknięcia czy ślady przepaleń. Z mojego doświadczenia wynika, że dobrze jest również sprawdzić połączenia elektryczne i upewnić się, że nie ma korozji czy przerw. Wymiana uszkodzonej cewki zapłonowej jest standardową praktyką w naprawach układów zapłonowych i jest zgodna z dobrymi praktykami w branży motoryzacyjnej.

Pytanie 28

Co oznacza oznaczenie TWI umieszczone na oponie?

A. przeznaczenie opony do pojazdu terenowego
B. dostosowanie opony do sezonu zimowego
C. graniczne zużycie bieżnika
D. typ materiału użytego do produkcji bieżnika
Oznaczenie TWI (Tread Wear Indicator) na oponie jest kluczowym wskaźnikiem informującym kierowców o granicznym zużyciu bieżnika. W momencie, gdy bieżnik opony osiągnie poziom wskazany przez TWI, oznacza to, iż opona jest zużyta do minimum dopuszczalnego poziomu, co może negatywnie wpływać na bezpieczeństwo jazdy. Praktyczne zastosowanie TWI polega na regularnym monitorowaniu stanu opon, co jest kluczowe dla zapewnienia optymalnej przyczepności, zwłaszcza w trudnych warunkach drogowych. Warto pamiętać, że minimalna głębokość bieżnika, zgodna z europejskimi normami, wynosi 1,6 mm, jednak zaleca się wymianę opon już przy głębokości 3 mm, aby uniknąć potencjalnych zagrożeń. Właściwe zarządzanie zużyciem opon nie tylko zwiększa bezpieczeństwo, ale także przyczynia się do dłuższej żywotności pojazdu i zmniejszenia kosztów eksploatacyjnych.

Pytanie 29

Najbardziej efektywną metodą ochrony antykorozyjnej nadwozia w trakcie produkcji jest

A. cynkowanie części nadwozia
B. malowanie blach farbami chlorokauczukowymi
C. montowanie osłon z plastiku
D. pokrywanie metalu pastami uszczelniającymi
Cynkowanie elementów nadwozia to jedna z najskuteczniejszych metod ochrony przed korozją, szeroko stosowana w przemyśle motoryzacyjnym. Proces ten polega na nałożeniu warstwy cynku na metalowe powierzchnie, co skutecznie chroni przed działaniem wilgoci i innych czynników atmosferycznych. Warstwa cynku działa jako katoda, co oznacza, że nawet w przypadku uszkodzenia powłoki, metalowa powierzchnia nadal jest chroniona przez cynk, który utlenia się zamiast stali. Przykładem zastosowania cynkowania jest wiele nowoczesnych pojazdów, które w procesie produkcji są cynkowane ogniowo, co zapewnia długotrwałą ochronę przed rdzą. W praktyce, zgodnie z normą ISO 1461, cynkowanie ogniowe zapewnia doskonałą przyczepność oraz odporność na zarysowania, co jest kluczowe w kontekście trwałości i estetyki nadwozia samochodowego. Wybór cynkowania jako metody zabezpieczenia antykorozyjnego jest zgodny z dobrymi praktykami branżowymi, co potwierdzają liczne badania dotyczące efektywności ochrony przed korozją w różnych warunkach eksploatacyjnych.

Pytanie 30

Jakiej wielkości nie można określić, korzystając z metody pomiaru bezpośredniego?

A. Grubości pierścienia
B. Średnicy tłoka
C. Objętości cylindra
D. Średnicy sworznia tłokowego
Objętości cylindra nie można zmierzyć metodą pomiaru bezpośredniego, ponieważ wymaga ona zastosowania bardziej skomplikowanych technik obliczeniowych. Objętość cylindryczna zależy od jego wymiarów, takich jak średnica i wysokość, ale sama w sobie nie jest wymiarem, który można bezpośrednio zmierzyć. W praktyce pomiar objętości często przeprowadza się za pomocą metod pośrednich, takich jak wypełnienie cylindra cieczą czy gazem, a następnie obliczenie objętości na podstawie zmierzonych wartości. W branży inżynieryjnej i mechanicznej standardem jest stosowanie równań matematycznych, takich jak V = πr²h, gdzie V to objętość, r to promień podstawy, a h to wysokość. Przykłady zastosowań obejmują projektowanie silników spalinowych, gdzie precyzyjne obliczenia objętości cylindrów są kluczowe dla efektywności silnika oraz jego wydajności.

Pytanie 31

Obniżenie ciśnienia w systemie smarowania silnika wskazuje na usterkę

A. tłoka
B. gładzi cylindrowej
C. pierścieni tłokowych
D. panewek głównych
Spadek ciśnienia w układzie smarowania silnika rzadko bywa związany z uszkodzeniami tłoków, pierścieni tłokowych czy gładzi cylindrowej, co często prowadzi do błędnych wniosków. Tłok jest elementem, który porusza się w gładzi cylindrowej i utrzymuje ciśnienie wewnątrz cylindrów, ale jego uszkodzenie zwykle skutkuje zwiększeniem zużycia oleju i spadkiem mocy silnika, a nie bezpośrednim spadkiem ciśnienia w układzie smarowania. Podobnie, pierścienie tłokowe, które uszczelniają komorę spalania, również nie mają bezpośredniego wpływu na ciśnienie w układzie smarowania, chociaż ich uszkodzenie może prowadzić do problemów z silnikiem. Gładź cylindrowa, będąca powierzchnią, w której porusza się tłok, ma kluczowe znaczenie dla utrzymania odpowiedniej kompresji, ale nie jest bezpośrednio związana z ciśnieniem oleju w układzie smarowania. Aby uniknąć mylnych interpretacji, istotne jest zrozumienie, że spadek ciśnienia oleju jest przede wszystkim związany z systemem smarowania, gdzie kluczowe są panewki i pompa olejowa. Właściwe monitorowanie ciśnienia oleju oraz jego regularna wymiana są standardami pozwalającymi na zapobieganie awariom i wydłużenie żywotności silnika.

Pytanie 32

Do jakiego celu służy synchronizator używany w skrzyni biegów?

A. wyrównanie prędkości obrotowych załączanych elementów
B. modyfikacja prędkości kół napędowych
C. ograniczenie momentu obrotowego przekazywanego na koła
D. ochrona załączonego biegu przed rozłączeniem
Synchronizator w skrzyni biegów odgrywa kluczową rolę w zapewnieniu płynności zmiany biegów przez wyrównanie prędkości obrotowych załączanych elementów, co pozwala na ich bezproblemowe połączenie. W momencie zmiany biegu, synchronizator synchronizuje prędkości obrotowe wałka napędowego i koła zębatego, eliminując ryzyko uszkodzenia elementów skrzyni biegów oraz zwiększając komfort jazdy. Przykładami zastosowania są manualne skrzynie biegów w samochodach osobowych, gdzie kierowca zmienia biegi, a synchronizatory zapewniają, że nie występują zgrzyty ani inne nieprzyjemne dźwięki związane z niewłaściwym połączeniem. Rozwiązania te oparte są na standardach inżynierii mechanicznej, które podkreślają znaczenie precyzyjnego dopasowania elementów mechanicznych oraz poprawnego doboru materiałów. W praktyce, odpowiednio zaprojektowane synchronizatory zmniejszają zużycie elementów układu napędowego, co przekłada się na dłuższą żywotność pojazdu oraz niższe koszty eksploatacji.

Pytanie 33

Podczas inspekcji elementów systemu hamulcowego zauważono pęknięcia wentylowanych tarcz hamulcowych. W takim przypadku powinno się je

A. przetoczyć.
B. zespawać.
C. otrzeć.
D. wymienić.
Wymiana wentylowanych tarcz hamulcowych jest kluczowym krokiem w zapewnieniu bezpieczeństwa i efektywności układu hamulcowego. Pęknięcia w tarczach hamulcowych mogą prowadzić do poważnych problemów, takich jak nierównomierne hamowanie, drżenie kierownicy podczas hamowania, a nawet całkowita awaria hamulców. Zgodnie z normami branżowymi, tarcze hamulcowe powinny być wymieniane, gdy występują znaczące uszkodzenia, które mogą wpływać na ich funkcję. Przykładowo, w przypadku zauważenia pęknięć, które mogą rozwinąć się w większe uszkodzenia, nie należy ryzykować dalszej eksploatacji. W praktyce, technicy często dokumentują stan techniczny tarcz podczas przeglądów, co pozwala na szybkie podejmowanie decyzji o ich wymianie. Wymiana tarcz hamulcowych jest zatem nie tylko zgodna z dobrymi praktykami, ale także kluczowa dla bezpieczeństwa pojazdu i pasażerów. Tylko nowe, nieuszkodzone tarcze mogą zagwarantować odpowiednią wydajność hamowania oraz stabilność pojazdu w różnych warunkach drogowych.

Pytanie 34

Gdzie znajduje zastosowanie sprzęgło wielotarczowe typu Haldex?

A. w klasycznym układzie napędowym
B. w układzie napędowym z napędem na cztery koła
C. w tylnym zblokowanym układzie napędowym
D. w przednim zblokowanym układzie napędowym
Sprzęgło wielotarczowe typu Haldex jest kluczowym elementem w układach napędowych z napędem na cztery koła (4WD), które pozwala na dynamiczne zarządzanie momentem obrotowym między osiami. Jego działanie opiera się na hydraulice oraz elektronicznej kontroli, co umożliwia włączanie napędu na tylne koła w odpowiedzi na zmieniające się warunki drogowe i obciążenie. Przykładem zastosowania sprzęgła Haldex są pojazdy marki Audi, Volkswagen i Seat, gdzie zapewnia ono optymalną trakcję w różnych warunkach, takich jak jazda po śniegu czy błocie. Dzięki technologii Haldex, pojazdy mogą efektywniej rozdzielać moc silnika, co prowadzi do lepszej stabilności oraz bezpieczeństwa. Ponadto, sprzęgło to jest zgodne z najlepszymi praktykami branżowymi, które kładą nacisk na komfort jazdy oraz wydajność energetyczną, a jego konstrukcja umożliwia szybką reakcję na pojawiające się sytuacje, co znacząco zwiększa kontrolę nad pojazdem. W związku z tym, sprzegło Haldex stanowi doskonały przykład innowacji w dziedzinie motoryzacji, łącząc zaawansowaną technologię z praktycznymi rozwiązaniami.

Pytanie 35

Do elementów mechanizmu kierowniczego w zawieszeniu samochodu z sztywną osią przednią zaliczamy

A. koło kierownicy
B. koła pojazdu
C. przekładnię kierowniczą
D. drążek podłużny
Odpowiedzi, które wskazano jako niepoprawne, nie spełniają wymogów do uznania ich za elementy mechanizmu zwrotniczego w zawieszeniu pojazdu ze sztywną osią. Przykładowo, przekładnia kierownicza, mimo że jest kluczowym elementem układu kierowniczego, nie jest częścią mechanizmu zwrotniczego. Jej rolą jest przekształcanie ruchu obrotowego kierownicy w ruch liniowy, który działa na koła, ale nie jest bezpośrednio odpowiedzialna za stabilizację i kontrolę pojazdu na drodze. Koło kierownicy również nie ma związku z mechanizmem zwrotniczym. To element, który umożliwia kierowcy wprowadzanie zmian w kierunku jazdy, ale nie oddziałuje na mechanizmy zawieszenia. Koła pojazdu, z kolei, są istotne dla całego układu jezdnego, jednak same w sobie nie stanowią mechanizmu zwrotniczego. W praktyce, błędna interpretacja ról tych elementów może prowadzić do mylnych wniosków na temat działania układów kierowniczych i zawieszenia. Kluczowe jest zrozumienie, że mechanizm zwrotniczy ma za zadanie zapewnienie precyzyjnej kontroli nad kierunkiem jazdy w połączeniu z odpowiednim zawieszeniem, w którym drążek podłużny odgrywa fundamentalną rolę.

Pytanie 36

Jakim elementem realizującym funkcje w hydraulicznej instalacji hamulcowej jest?

A. sprężyna
B. stopa hamulca
C. zawór kierunkowy
D. cylinderek z tłoczkami
W hydraulicznych układach hamulcowych niektóre z podanych opcji, takie jak zawór rozdzielczy, pedał hamulca oraz sprężyna, pełnią funkcje wspomagające, ale nie są elementami wykonawczymi. Zawór rozdzielczy ma za zadanie kierowanie ciśnienia hydraulicznego w odpowiednie miejsce, ale sam w sobie nie generuje siły hamującej. Podobnie pedał hamulca jest elementem, który inicjuje proces hamowania, jednak jego rola ogranicza się do przenoszenia siły nacisku kierowcy na płyn hamulcowy, co nie czyni go elementem wykonawczym. Sprężyna z kolei może być używana w mechanizmach powrotnych tłoczków, ale nie ma bezpośredniego wpływu na proces hamowania. Pomijanie kluczowych ról poszczególnych elementów układu hamulcowego prowadzi do mylnych wniosków, które mogą wpłynąć na zrozumienie działania całego systemu. W kontekście bezpieczeństwa, niewłaściwe zrozumienie funkcji każdego z komponentów może skutkować nieodpowiednimi praktykami konserwacyjnymi i w efekcie obniżeniem skuteczności hamowania. Dlatego kluczowe jest, aby rozumieć, że cylinderek z tłoczkami jest jedynym elementem odpowiedzialnym za przekształcanie ciśnienia hydraulicznego w siłę hamującą, co czyni go fundamentalnym dla prawidłowego działania układu hamulcowego.

Pytanie 37

Z rejonu mostu napędowego dochodzi do uciążliwego hałasu, który wzrasta podczas pokonywania zakrętów. Który z poniższych elementów może być jego przyczyną?

A. Przekładnia główna
B. Łożysko piasty koła
C. Mechanizm różnicowy
D. Półoś napędowa
Łożysko piasty koła, przekładnia główna i półoś napędowa są także istotnymi elementami układu napędowego, ale ich funkcje są inne niż mechanizmu różnicowego. Łożyska piasty są odpowiedzialne za wsparcie koła i umożliwiają jego swobodny obrót. Hałas wydobywający się z łożyska piasty może być spowodowany zużyciem lub brakiem smaru, co prowadzi do nadmiernego luzu i wibracji. Hałas ten jest zazwyczaj bardziej wyraźny podczas jazdy prosto, a niekoniecznie w zakrętach, co jest kluczowym wskaźnikiem, że nie jest to źródło problemu opisanego w pytaniu. Przekładnia główna natomiast odpowiada za przenoszenie momentu obrotowego z wału napędowego na mechanizm różnicowy. Problemy z przekładnią główną mogą prowadzić do hałasu, ale również są one często związane z nieprawidłowym ustawieniem lub zużyciem koła zębatego. Z kolei półoś napędowa, która łączy mechanizm różnicowy z kołami napędowymi, również może powodować hałas, zwłaszcza przy uszkodzeniach lub niewłaściwej instalacji, jednak hałas z niej wydobywający się niekoniecznie będzie się nasilał w zakrętach. Kluczowe jest właściwe zrozumienie, że różne źródła hałasu mogą sugerować różne problemy w układzie napędowym, a niepoprawne przypisanie źródła hałasu do konkretnego elementu może prowadzić do błędnych diagnoz i niewłaściwych napraw.

Pytanie 38

Jakiego materiału używa się do produkcji zbiorniczka wyrównawczego dla płynu hamulcowego?

A. stop aluminium
B. żeliwo
C. szkło
D. tworzywo sztuczne
Zbiorniczki wyrównawcze płynu hamulcowego są zazwyczaj wykonane z tworzyw sztucznych, takich jak polipropylen czy poliwęglan. Materiały te charakteryzują się wysoką odpornością na działanie chemikaliów, co jest istotne, biorąc pod uwagę właściwości płynów hamulcowych, które mogą być agresywne. Tworzywa sztuczne są również lekkie, co przyczynia się do zmniejszenia masy pojazdu oraz poprawy efektywności paliwowej. Ponadto, proces produkcji komponentów z tworzyw sztucznych jest bardziej ekonomiczny i pozwala na łatwiejsze formowanie skomplikowanych kształtów, co jest kluczowe w przypadku projektowania zbiorniczków. Użycie tworzyw sztucznych w branży motoryzacyjnej jest zgodne z normami i dobrymi praktykami, co przyczynia się do zwiększenia trwałości i niezawodności układów hamulcowych. Warto również zauważyć, że nowoczesne technologie umożliwiają recykling tych materiałów, co wpisuje się w trend zrównoważonego rozwoju w przemyśle motoryzacyjnym.

Pytanie 39

Ujemna zbieżność ustawienia kół przednich w pojeździe jest poprawnym ustawieniem kół?

A. autobusów z tylnym napędem
B. samochodów ciężarowych z tylnym napędem
C. samochodów osobowych z tylnym napędem
D. samochodów osobowych z przednim napędem
Zbieżność ujemna to takie ustawienie, gdzie przednie koła są bliżej siebie na końcach niż na podstawie. To dobre rozwiązanie dla aut osobowych z przednim napędem. Dzięki temu samochód lepiej trzyma się drogi w zakrętach i jest bardziej stabilny podczas manewrów. W praktyce oznacza to, że siły boczne są lepiej przenoszone na przednie koła, co jest mega ważne, gdy jeździmy dynamicznie. W autach z przednim napędem, gdzie silnik też jest z przodu, to ustawienie naprawdę poprawia przyczepność opon. Tego rodzaju zbieżność często wykorzystuje się w tuningu sportowym, żeby poprawić właściwości jezdne. Warto dodać, że producenci samochodów oraz normy branżowe zalecają takie ustawienia dla różnych modeli, więc to nie tylko teoria, ale naprawdę sprawdzona praktyka.

Pytanie 40

Częścią układu hamulcowego nie jest

A. wysprzęglik
B. hamulec ręczny
C. pompa ABS
D. korektor siły hamowania
Wysprzęglik nie jest elementem układu hamulcowego, ponieważ jego główną funkcją jest wspomaganie działania sprzęgła w pojazdach mechanicznych. To urządzenie, znane również jako wysprzęglik hydrauliczny, odpowiada za odłączenie napędu silnika od skrzyni biegów, umożliwiając płynne zmiany biegów. W kontekście układu hamulcowego, do jego głównych elementów należą m.in. pompa ABS, hamulec ręczny oraz korektor siły hamowania, które wspólnie pracują nad bezpieczeństwem i efektywnością hamowania. Wysprzęglik nie wpływa na proces hamowania, lecz na działanie sprzęgła, co jest kluczowe dla prawidłowego funkcjonowania przekładni w pojazdach. Wiedza o tym, jakie komponenty są odpowiedzialne za dane funkcje w pojeździe, jest istotna dla mechaników i inżynierów, gdyż pozwala na skuteczniejszą diagnostykę oraz serwis pojazdów.