Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 22 maja 2025 22:28
  • Data zakończenia: 22 maja 2025 22:44

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na podstawie zamieszczonych w tabeli współrzędnych punktów kontrolowanych, wyznaczonych w wyniku pomiarów, oblicz liniowe przemieszczenie punktu nr 21.

Nr punktuPomiar pierwotnyPomiar wtórny
Xp [m]Yp [m]Xw [m]Yw [m]
20130,220242,256130,225242,255
21125,212258,236125,220258,240
22134,515234,515134,510234,510
23138,310230,025138,313230,026

A. p = 10 mm
B. p = 9 mm
C. p = 3 mm
D. p = 5 mm
Wszystkie odpowiedzi inne niż p = 9 mm wynikają najczęściej z błędnego zrozumienia metody obliczania przemieszczenia liniowego. Istotne jest, aby w procesie obliczeń poprawnie zidentyfikować współrzędne punktu przed i po pomiarach. Wiele osób może pomylić się w obliczeniach, myląc różnice z wartościami absolutnymi współrzędnych, co prowadzi do błędnych wyników. Odpowiedzi takie jak p = 5 mm, p = 10 mm, czy p = 3 mm mogą sugerować niepełne zrozumienie zastosowania twierdzenia Pitagorasa, które jest fundamentalne w obliczeniach przestrzennych. Typowe błędy myślowe, które prowadzą do takich niepoprawnych konkluzji, to pomijanie elementów wzoru lub fałszywe założenia dotyczące proporcji pomiędzy współrzędnymi. Każde nieprecyzyjne przeliczenie może skutkować dużymi błędami w końcowych wynikach, co w kontekście geodezji i pomiarów przestrzennych ma poważne konsekwencje. Dlatego tak ważne jest, aby przed przystąpieniem do obliczeń zawsze zweryfikować dane wejściowe oraz zastosować odpowiednie techniki analizy, co zapewnia wysoką jakość i dokładność uzyskanych wyników.

Pytanie 2

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych z zastosowaniem metody ortogonalnej?

A. Szczegóły terenowe sytuacyjne
B. Wysokości punktów terenu
C. Domiary prostokątne
D. Numery obiektów budowlanych
Poprawną odpowiedzią jest stwierdzenie, że na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną nie zamieszcza się wysokości punktów terenu. Szkic polowy służy do przedstawienia szczegółów sytuacyjnych, takich jak numery budynków czy tereny użytkowe, które są kluczowe dla analizy zagospodarowania przestrzennego. W przypadku pomiaru ortogonalnego skupiamy się na odwzorowaniu kształtów i układów w pionie i poziomie, co ułatwia późniejsze prace geodezyjne i kartograficzne. Wysokości punktów terenu, które są istotne w kontekście modelowania terenu, są zazwyczaj rejestrowane osobno, w ramach pomiarów wysokościowych, a następnie łączone z danymi sytuacyjnymi w procesie tworzenia map. Takie podejście jest zgodne z normami geodezyjnymi, które promują precyzję i efektywność w zbieraniu danych.

Pytanie 3

Jaką metodą powinno się ustalić wysokość stanowiska instrumentu w niwelacji punktów rozrzuconych?

A. Biegunową
B. Niwelacji siatkowej
C. Ortogonalną
D. Niwelacji reperów
Niwelacja reperów to metoda, która pozwala na precyzyjne wyznaczenie wysokości stanowiska instrumentu niwelacyjnego w kontekście pomiarów punktów rozproszonych. Ta technika polega na pomiarze różnic wysokości pomiędzy reperami, które są wcześniej ustalone w terenie i mają znaną wysokość. Dzięki temu, operator instrumentu może łatwo określić wysokość punktów, do których będą odniesione inne pomiary. Praktycznym przykładem zastosowania tej metody jest budowa infrastruktury, gdzie precyzyjne ustalenie poziomu terenu jest kluczowe dla dalszych prac budowlanych. W branży inżynieryjnej i geodezyjnej, zgodnie z normami ISO 17123, niwelacja reperów jest uznawana za jedno z podstawowych narzędzi do zapewnienia dokładności pomiarów. Dobre praktyki wskazują na konieczność regularnej kalibracji instrumentów oraz stosowanie sprawdzonych reperów, co podnosi wiarygodność wyników pomiarów.

Pytanie 4

Podczas aktualizacji mapy zasadniczej w czasie pomiarów szczegółowych terenu sporządza się szkic

A. przeglądowy
B. polowy
C. inwentaryzacyjny
D. dokumentacyjny
Każda z pozostałych odpowiedzi nie oddaje właściwego kontekstu dla procesu aktualizacji mapy zasadniczej. Szkic przeglądowy, choć może służyć do ogólnej oceny terenu, nie zapewnia szczegółowego uchwycenia danych niezbędnych do aktualizacji mapy. Tego rodzaju szkic ma na celu jedynie przedstawienie nawykowych cech terenu, a nie zbieranie precyzyjnych informacji w terenie. Z kolei inwentaryzacyjny szkic odnosi się do dokumentacji już istniejących obiektów i ich stanu, co jest niezbędne w procesie inwentaryzacji, ale nie w samym pomiarze terenu i jego szczegółowym odwzorowaniu w dokumentach mapowych. Ostatnia z odpowiedzi, szkic dokumentacyjny, również nie pasuje do kontekstu, ponieważ koncentruje się bardziej na formalnej prezentacji danych, a nie na ich zbieraniu w terenie. Typowym błędem myślowym jest mylenie różnych rodzajów szkiców i ich zastosowań. Aby skutecznie wykonywać pomiary w terenie, istotne jest zrozumienie różnicy między dokumentacją a praktycznym zbieraniem danych. Wiedza o tym, jakie narzędzie wykorzystać w danej sytuacji, wpłynie na jakość końcowego produktu, jakim jest mapa zasadnicza.

Pytanie 5

Aby ustanowić osnowę pomiarową, należy przeprowadzić terenowy wywiad na podstawie mapy

A. topograficzną
B. zasadniczą
C. klasyfikacyjną
D. przeglądową
Wybór mapy topograficznej jako podstawy do założenia osnowy pomiarowej jest nieodpowiedni, ponieważ mapa topograficzna, mimo że przedstawia ukształtowanie terenu w szerszym kontekście, nie zawiera wystarczająco szczegółowych informacji o granicach działek czy infrastrukturze niezbędnych do precyzyjnego zakupu osnowy. Może to prowadzić do błędów w lokalizacji punktów pomiarowych oraz do nieścisłości w dalszych pracach geodezyjnych. Z kolei mapa przeglądowa, z założenia służąca do ogólnej orientacji przestrzennej, również nie dostarcza wystarczających szczegółów, co może skutkować niepoprawnym określeniem granic działek oraz nieodpowiednią lokalizacją punktów osnowy. Zastosowanie mapy klasyfikacyjnej, która skupia się na podziale terenu na różne klasy użytkowania, nie ma praktycznego zastosowania w kontekście zakładania osnowy pomiarowej. Dobrą praktyką jest korzystanie z mapy zasadniczej, która dostarcza precyzyjnych informacji nie tylko o ukształtowaniu terenu, ale także o wszelkich istotnych elementach, które mogą mieć wpływ na pomiary geodezyjne. Wybór niewłaściwej mapy może prowadzić do poważnych problemów w dalszych etapach projektu, w tym do błędów w pomiarach oraz w szacunkach dotyczących obszarów i wymagań dotyczących budowy.

Pytanie 6

Jaką czynność należy wykonać podczas przeprowadzania wywiadu terenowego, który poprzedza pomiary sytuacyjne i wysokościowe?

A. Zgłoszenie pracy geodezyjnej geodecie powiatowemu
B. Sporządzenie szkicu polowego z mierzonego terenu
C. Pomiar kontrolny szczegółów terenowych
D. Identyfikację w terenie punktów osnowy geodezyjnej
Identyfikacja w terenie punktów osnowy geodezyjnej jest kluczowym etapem przed przystąpieniem do pomiarów sytuacyjnych i wysokościowych. Osnowa geodezyjna stanowi fundament, na którym opierają się wszystkie inne pomiary. Jej odpowiednie zidentyfikowanie pozwala na precyzyjne odniesienie danych pomiarowych do układu współrzędnych, co jest niezbędne w geodezji. Przykładowo, podczas wykonywania pomiarów dla nowego projektu budowlanego, geodeta najpierw lokalizuje punkty osnowy, aby móc ustawić instrumenty pomiarowe w odpowiednich miejscach. Takie praktyki są zgodne z normami, takimi jak PN-EN ISO 17123, które podkreślają znaczenie stabilności i precyzji punktów osnowy dla efektywnego i wiarygodnego pomiaru. Właściwa identyfikacja punktów osnowy geodezyjnej nie tylko zwiększa dokładność pomiarów, ale również przyczynia się do redukcji błędów w późniejszych analizach i projektach.

Pytanie 7

Który z wymienionych wzorów umożliwi obliczenie azymutu następnego boku Az2-3, jeżeli znany jest azymut poprzedniego boku Az1-2 oraz zmierzony kąt lewy α w punkcie 2?

A. Az2-3 = Az2-1 + α - 200g
B. Az2-3 = Az1-2 – α + 200g
C. Az2-3 = Az2-1 – α + 200g
D. Az2-3 = Az1-2 + α - 200g
Wybór niewłaściwego wzoru do obliczeń azymutu kolejnego boku może wynikać z błędnego zrozumienia relacji między azymutami a pomierzonymi kątami. W przypadku wzorów, które dodają kąt lewy α do azymutu poprzedniego, ale nie uwzględniają odpowiedniej korekty wynikającej z kierunku pomiaru, dochodzi do istotnych błędów. Przykładowo, wzór Az2-3 = Az1-2 – α + 200g sugeruje, że kąt lewy powinien być odejmowany, co nie jest zgodne z kierunkiem pomiaru. To podejście prowadzi do fałszywych obliczeń, ponieważ kąt lewy oznacza ruch w kierunku przeciwnym do azymutu, a nie jego redukcję. Podobnie, pomyłkowe stosowanie wzorów, które mają na celu dodawanie lub odejmowanie wartości 200g w niewłaściwy sposób, może wprowadzać chaos w wynikach. Typowym błędem myślowym jest założenie, że każdy kąt lewy powinien być traktowany w ten sam sposób, niezależnie od kontekstu pomiarowego. Ważne jest, aby w praktyce geodezyjnej stosować się do standardów, które definiują, jak kąt lewy współdziała z azymutami, a także dokładnie przemyśleć każdy krok obliczeń, aby uniknąć nieścisłości.

Pytanie 8

Na szkicu sytuacyjnej osnowy pomiarowejnie przedstawia się

A. rzędnych i odciętych do szczegółów sytuacyjnych
B. wyrównanych wartości kątów poziomych
C. numerów punktów osnowy pomiarowej
D. uśrednionych wartości długości linii pomiarowych
Umieszczenie uśrednionych wartości długości linii pomiarowych, wyrównanych wartości kątów poziomych i numerów punktów osnowy pomiarowej jest powszechną praktyką w szkicach pomiarowych, jednak nie jest to zasadne w kontekście osnowy sytuacyjnej. Uśrednione długości linii pomiarowych są istotne do oceny dokładności i precyzyjności pomiarów, a ich uwzględnienie na szkicu może wprowadzać niepotrzebne zamieszanie, zwłaszcza gdy istotne jest zachowanie oryginalnych pomiarów. Wyrównane wartości kątów poziomych są kluczowe dla analizy geometrii pomiaru, ale ich obecność na szkicu osnowy sytuacyjnej może prowadzić do niejasności, gdyż nie odzwierciedlają one rzeczywistego stanu w terenie. W przypadku numerów punktów osnowy, ich umieszczanie w szkicach jest zgodne z dobrymi praktykami, ponieważ umożliwia identyfikację punktów w przestrzeni. Typowym błędem myślowym jest zakładanie, że wszystkie istotne dane pomiarowe muszą być umieszczane na jednym dokumencie. Zamiast tego, kluczowe jest rozdzielenie informacji w celu zachowania klarowności i funkcjonalności dokumentacji. W przeciwnym razie, może to prowadzić do dezorientacji i utrudnień w późniejszym przetwarzaniu danych, co jest sprzeczne z zasadami efektywnej pracy w geodezji.

Pytanie 9

Jakie jest odchylenie zamkniętego ciągu niwelacyjnego, jeśli wysokości reperu początkowego i końcowego są równe, a suma różnic zmierzonych przewyższeń na tym samym odcinku wynosi [∆h]p= -8 mm?

A. f∆h = -8 mm
B. f∆h = -16 mm
C. f∆h = 0 mm
D. f∆h = 8 mm
Odpowiedź f∆h = -8 mm jest prawidłowa, ponieważ odchyłka zamkniętego ciągu niwelacyjnego oblicza się na podstawie różnicy pomierzonych przewyższeń w stosunku do różnicy wysokości reperów. W przypadku, gdy wysokość reperu początkowego i końcowego jest taka sama, oczekiwalibyśmy, że suma różnic pomierzonych przewyższeń (∆hp) powinna wynosić zero. Jednak w tym przypadku mamy do czynienia z wartością ∆hp równą -8 mm, co oznacza, że pomiary wskazują na ujemne odchylenie. Aby uzyskać odchyłkę zamkniętego ciągu, weźmiemy pod uwagę tę wartość i podzielimy przez 2, co daje -8 mm. W praktyce oznacza to, że podczas pomiarów wystąpił błąd systematyczny, który może być spowodowany np. różnicami w poziomie terenu lub błędami instrumentu. Zrozumienie tego procesu jest kluczowe w geodezji, ponieważ pozwala na korekcję pomiarów i zwiększenie dokładności wyników, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 10

Osoba, która nie przekaże dokumentacji opracowanej w trakcie prac geodezyjnych lub kartograficznych do państwowego zasobu geodezyjnego oraz kartograficznego, może być ukarana

A. ograniczeniem wolności
B. pozbawieniem wolności
C. odebraniem uprawnień zawodowych
D. grzywną
Odpowiedź, że osoba, która nie przekaże materiałów powstałych w wyniku prac geodezyjnych lub kartograficznych do państwowego zasobu geodezyjnego i kartograficznego, może zostać ukarana grzywną, jest poprawna. Zgodnie z ustawą o geodezji i kartografii, każdy geodeta ma obowiązek dostarczenia wyników swoich prac do odpowiednich instytucji. Niezastosowanie się do tego obowiązku jest traktowane jako wykroczenie, które podlega karze grzywny. Przykładowo, jeśli geodeta wykonuje pomiary terenu i nie złoży dokumentacji w zasobie geodezyjnym, naraża się na konsekwencje prawne. Taka regulacja ma na celu zapewnienie, że dane geodezyjne będą dostępne dla innych użytkowników, co jest kluczowe dla planowania przestrzennego, ochrony środowiska oraz prowadzenia inwestycji budowlanych. Zgodność z tym obowiązkiem jest istotnym elementem dobrych praktyk w branży geodezyjnej oraz przyczynia się do transparentności i jakości danych w publicznym obiegu.

Pytanie 11

Błąd w osi celowej niwelatora o charakterze niepoziomym zalicza się do kategorii błędów

A. średnich
B. pozornych
C. systematycznych
D. przypadkowych
Odpowiedzi średnie, pozorne oraz przypadkowe są typami błędów, które różnią się od błędów systematycznych w swoim charakterze i źródłach. Błąd średni, na przykład, odnosi się do różnic w pomiarach, które mogą być spowodowane nieprzewidywalnymi okolicznościami, takimi jak zmiany warunków atmosferycznych czy wpływ zakłóceń zewnętrznych. W praktyce oznacza to, że takie błędy mogą się kumulować lub rozpraszać w czasie, co czyni je trudniejszymi do zidentyfikowania i skorygowania. Z kolei błąd pozorny to błędny wynik pomiaru, który powstaje na skutek nieprawidłowej interpretacji danych, co może prowadzić do mylnych wniosków. W kontekście pomiarów geodezyjnych, błędy pozorne mogą być wynikiem błędów ludzkich, takich jak niewłaściwe odczytywanie wyników lub błędne założenia dotyczące użytych parametrów. Natomiast błąd przypadkowy, który ma losowy charakter, jest zwykle spowodowany nieprzewidywalnymi czynnikami, co sprawia, że nie można go łatwo skorygować ani przewidzieć. W geodezji, każdy z tych błędów wymaga innego podejścia do analizy i korekcji, co podkreśla znaczenie zrozumienia ich różnorodności oraz systematycznego podejścia do pomiarów, aby osiągnąć jak najwyższą dokładność i wiarygodność wyników.

Pytanie 12

Na mapie zasadniczej symbol literowy oznacza budynek mieszkalny jednorodzinny

A. md
B. mt
C. mz
D. mj
Odpowiedź 'mj' jest poprawna, ponieważ oznaczenie budynku mieszkalnego jednorodzinnego na mapie zasadniczej zgodne jest ze standardami określonymi w Polskiej Normie PN-ISO 19108. W tej normie przypisano symbol literowy 'mj' dla budynków mieszkalnych jednorodzinnych. W praktyce oznaczenie to jest istotne dla urbanistów, architektów i innych profesjonalistów zajmujących się planowaniem przestrzennym, ponieważ umożliwia szybkie i jednoznaczne zidentyfikowanie rodzaju obiektu na mapie. Na przykład, w dokumentacji urbanistycznej, podczas analizy terenu pod zabudowę, oznaczenie 'mj' pozwala na łatwe rozróżnienie budynków mieszkalnych jednorodzinnych od innych typów zabudowy, co jest kluczowe w procesie projektowania oraz oceny wpływu planowanej zabudowy na środowisko. Dodatkowo, znajomość tych oznaczeń jest niezbędna podczas przeglądów administracyjnych, gdzie precyzyjna interpretacja mapy zasadniczej jest wymagana do podejmowania decyzji dotyczących wydawania pozwoleń na budowę lub zmian w zagospodarowaniu przestrzennym.

Pytanie 13

Na mapie w skali 1:2000 zmierzono odcinek o długości 145,4 mm. Jakiemu odcinkowi w rzeczywistości odpowiada ta długość?

A. 145,40 m
B. 290,80 m
C. 29,08 m
D. 14,54 m
Odpowiedź 290,80 m jest prawidłowa, ponieważ skala mapy 1:2000 oznacza, że 1 mm na mapie odpowiada 2000 mm w terenie. Aby przeliczyć długość odcinka zmierzonego na mapie na rzeczywistą długość w terenie, należy pomnożyć długość mierzonego odcinka przez współczynnik skali. W tym przypadku mamy 145,4 mm, więc przeliczenie przedstawia się następująco: 145,4 mm * 2000 mm/mm = 290800 mm, co po przeliczeniu na metry daje 290,80 m. Tego rodzaju obliczenia są niezwykle istotne w geodezji, planowaniu przestrzennym oraz w inżynierii, gdzie precyzyjne pomiary mają kluczowe znaczenie. Standardy branżowe, takie jak normy geodezyjne, nakładają na specjalistów obowiązek dokładności w przeliczaniu skali, co zapewnia właściwe wykonanie projektów budowlanych i infrastrukturalnych. Umiejętność przeliczania jednostek oraz rozumienie zasad skali ma także zastosowanie w analizach geograficznych i tworzeniu map tematycznych.

Pytanie 14

Do oznaczania lokalizacji punktów sytuacyjnej osnowy geodezyjnej na twardych nawierzchniach dróg i chodników należy użyć

A. słup betonowy
B. słup granitowy
C. palik drewniany
D. bolec żelazny
Wybór błędnych odpowiedzi takich jak słup betonowy, słup granitowy czy palik drewniany wskazuje na niepełne zrozumienie wymagań dotyczących oznakowania punktów sytuacyjnej osnowy pomiarowej. Słup betonowy, mimo swojej solidności, jest zbyt masywny i niepraktyczny w kontekście oznaczania punktów pomiarowych na nawierzchniach. W przypadku geodezyjnych pomiarów, konieczne jest, aby oznaczenia były łatwe do zauważenia i jednocześnie mobilne. Słup granitowy, chociaż estetyczny i wytrzymały, również nie jest odpowiedni, ponieważ jego ciężar i rozmiar mogą utrudniać transport i instalację. Palik drewniany, z kolei, może być mało trwały i narażony na działanie szkodników oraz warunków atmosferycznych, co wpływa na jego stabilność. W praktyce, występującą tendencją jest stosowanie materiałów, które są odporniejsze na zmiany otoczenia, a także mniej podatne na uszkodzenia. Wybierając materiał do oznakowania, kluczowe jest zrozumienie, że powinien on spełniać określone normy dotyczące trwałości i widoczności w terenie. Często występują błędy myślowe, które polegają na przyjęciu, że większe i cięższe oznakowania są lepsze, co w rzeczywistości prowadzi do trudności w ich użyciu i nieefektywności w zastosowaniach geodezyjnych.

Pytanie 15

W bazie danych dotyczącej obiektów topograficznych BDOT500 opisano sieć kanalizacyjną sanitarną oznaczeniami ksX300. Jakie jest źródło danych dotyczących lokalizacji tej sieci?

A. jest nieokreślone
B. pochodzi z materiałów nieaktualnych
C. pochodzi z materiałów archiwalnych
D. jest trudne do ustalenia
Wybór odpowiedzi sugerujących, że źródło danych pochodzi z materiałów archiwalnych, jest trudne do określenia lub jest nieaktualne, opiera się na błędnym rozumieniu charakterystyki i jakości danych w systemach geoinformacyjnych. Materiały archiwalne mogą zawierać wartościowe informacje, jednak ich wykorzystanie wiąże się z koniecznością krytycznej oceny ich aktualności oraz precyzyjności. W przypadku danych o sieci kanalizacyjnej, które są kluczowe dla planowania infrastruktury miejskiej, istotne jest, aby odnosić się do najnowszych i potwierdzonych zasobów. Uznanie, że źródło danych jest trudne do określenia, wskazuje na brak wiedzy na temat metod zbierania i weryfikacji danych, co jest istotnym elementem analizy przestrzennej. W kontekście praktycznym, takie podejście może prowadzić do poważnych błędów w projektowaniu i zarządzaniu sieciami, co jest niezgodne z normami branżowymi, które kładą nacisk na transparentność i weryfikowalność danych. Warto zwrócić uwagę, że w dużych projektach budowlanych, brak rzetelnych danych może prowadzić do nieprzewidzianych kosztów oraz opóźnień w realizacji, co podkreśla znaczenie dobrej praktyki w dokumentacji i aktualizacji danych geoinformacyjnych.

Pytanie 16

Jeśli pomiar na łacie niwelacyjnej w kierunku wstecznym wyniósł 3549, a na łacie w kierunku przednim 0506, jaka jest różnica wysokości na pozycji niwelatora?

A. -3,043 m
B. +3,043 m
C. -4,055 m
D. +4,055 m
Odpowiedź +3,043 m jest poprawna, ponieważ obliczenie różnicy wysokości na stanowisku niwelatora opiera się na zasadzie, że różnica ta jest równa odczytowi na łacie wstecz minus odczytowi na łacie w przód. W tym przypadku, mamy 3549 mm (odczyt wstecz) minus 0506 mm (odczyt w przód). Wykonując to obliczenie: 3549 - 506 = 3043 mm. Przekształcając milimetry na metry, otrzymujemy 3,043 m, co oznacza, że niwelator znajdował się na wyższej wysokości względem łaty w przód. W praktyce, takie obliczenia są kluczowe w geodezji i budownictwie, gdyż pozwalają na precyzyjne ustalanie różnic wysokości, co jest niezbędne przy wyznaczaniu poziomów budynków, dróg czy innych konstrukcji. Zgodnie z zaleceniami branżowymi, ważne jest również, aby przed przystąpieniem do pomiarów sprawdzić kalibrację sprzętu, aby zapewnić dokładność wyników pomiarów.

Pytanie 17

Południkiem osiowym w odwzorowaniu Gaussa-Krügera dla układu współrzędnych PL-2000 jest południk

A. 19°
B. 20°
C. 21°
D. 22°
Odpowiedź 21° jest poprawna, ponieważ w układzie współrzędnych PL-2000 południkiem osiowym odwzorowania Gaussa-Krügera dla strefy, w której mieści się Polska, jest właśnie południk 21°. Układ PL-2000 jest oparty na odwzorowaniu Gaussa-Krügera, które jest używane do precyzyjnego odwzorowywania powierzchni ziemi na płaszczyznach. Południki osiowe są kluczowe, ponieważ definiują strefy odwzorowań, co jest istotne w kontekście dokładności geodezyjnej oraz kartograficznej. Użycie południka 21° pozwala na minimalizację zniekształceń w obszarze, co jest przydatne w praktyce, na przykład w geodezji czy podczas tworzenia map topograficznych. Dobór odpowiednich południków jest zgodny z normami, takimi jak PN-EN ISO 19111, które określają zasady klasyfikacji i odwzorowań strefowych. Wiedza na temat południków osiowych jest kluczowa dla profesjonalistów zajmujących się kartografią i geodezją, ponieważ wpływa na jakość i dokładność realizowanych projektów.

Pytanie 18

Kto odpowiada za ustanowienie i prowadzenie krajowej geodezyjnej ewidencji sieci uzbrojenia terenu?

A. główny geodeta kraju
B. geodeta uprawniony
C. wojewoda
D. starosta
Główny geodeta kraju jest organem odpowiedzialnym za zakładanie i prowadzenie Krajowej geodezyjnej ewidencji sieci uzbrojenia terenu, co wynika z regulacji zawartych w Ustawie z dnia 17 maja 1989 r. - Prawo geodezyjne i kartograficzne. Jego zadaniem jest nadzór nad działalnością geodezyjną w kraju, w tym zapewnienie odpowiedniej jakości danych geodezyjnych oraz ich zgodności z obowiązującymi normami i standardami. W praktyce, główny geodeta kraju koordynuje prace związane z ewidencją infrastruktury, co jest kluczowe dla planowania przestrzennego oraz zarządzania zasobami naturalnymi. Działania te mają na celu utrzymanie aktualnej bazy danych, która jest podstawą podejmowania decyzji administracyjnych oraz inwestycyjnych. Umożliwia to również efektywne zarządzanie sieciami uzbrojenia terenu, co jest istotne w kontekście rozwoju infrastruktury i ochrony środowiska.

Pytanie 19

Najwyższy dozwolony średni błąd lokalizacji punktów pomiarowych osnowy sytuacyjnej w odniesieniu do najbliższych punktów poziomej osnowy geodezyjnej wynosi

A. 0,05 m
B. 0,20 m
C. 0,10 m
D. 0,15 m
Wybór wartości błędu, takich jak 0,05 m, 0,20 m czy 0,15 m, może być wynikiem pewnych nieporozumień. Czasem myśli się, że 0,05 m to super precyzyjna wartość, ale to nie jest to, czego potrzebujemy w przypadku osnowy sytuacyjnej. Zbyt dokładne wymagania mogą po prostu opóźnić projekt i podnieść jego koszty. Z kolei 0,20 m czy 0,15 m też nie są dobre, bo nie odpowiadają normom, które jasno wskazują, jakie błędy są dopuszczalne. Takie wybory mogą wynikać z niepełnego zrozumienia, jak działa geodezja, co prowadzi do błędnych decyzji przy planowaniu. Na przykład, ekipa może źle ulokować budynki, używając nieprawidłowych danych, co później może skończyć się problemami, jak konieczność ich przesuwania. Więc naprawdę warto znać te normy, żeby prace geodezyjne były na dobrym poziomie.

Pytanie 20

Jeśli odcinek o długości 1 cm na mapie odpowiada rzeczywistej odległości 50 m w terenie, to w jakiej skali została stworzona ta mapa?

A. 1:5000
B. 1:10 000
C. 1:500
D. 1:1000
Pozostałe opcje nie są dobre, bo wprowadzają w błąd. Odpowiedź 1:1000 sugeruje, że 1 cm na mapie to 10 m prawdziwego terenu, a to się nie zgadza, bo 50 m to o wiele więcej niż 10 m. Z kolei 1:10 000 sugeruje, że 1 cm to 100 m, co też nie ma sensu. Często ludzie myślą, że mniejsza liczba na mapie znaczy większa szczegółowość, ale to nie tak. Im większa liczba w mianowniku, tym mniej szczegółowa mapa. Tak naprawdę, skala 1:500 miałaby sens, tylko gdyby 1 cm odpowiadał 5 m w terenie, ale tu to też się nie zgadza. Głównym błędem jest myślenie, że skala działa w ten sposób, a w kartografii zrozumienie skali jest mega ważne, bo wpływa na to, jak używamy map do planowania czy orientacji w terenie.

Pytanie 21

Który południk jest osiowym w odwzorowaniu Gaussa-Krugera w systemie współrzędnych PL-2000?

A. 22°
B. 24°
C. 23°
D. 25°
Wybierając odpowiedzi 25°, 23° lub 22°, można wpaść w pułapkę pomylenia pojęcia południka osiowego z innymi aspektami układu współrzędnych. Południki te nie są przypadkowe i mają swoje konkretne umiejscowienie w kontekście odwzorowania Gaussa-Krugera. W przypadku układu PL-2000, południki te są precyzyjnie wyznaczone, aby zminimalizować zniekształcenia podczas przekształcania danych geograficznych na współrzędne prostokątne. Wybierając 25°, można założyć, że jest to bardziej na zachód, co może wprowadzać w błąd, ponieważ w rzeczywistości ten południk nie jest centralnym południkiem dla omawianego odwzorowania. Odpowiedź 23° i 22° również nie są prawidłowe dla obszaru Polski. Zasadniczo, każdy z tych błędnych wyborów może wynikać z nieporozumień dotyczących regionalnych układów odniesienia i ich zastosowania w praktyce geodezyjnej. Odpowiedzi te wskazują na typowe błędy myślowe, takie jak zakładanie, że każdy południk reprezentuje równą wartość dla regionalnego odwzorowania, co jest mylne. W rzeczywistości, kluczowe jest zrozumienie koncepcji południka osiowego oraz jego wpływu na dokładność i efektywność odwzorowania, co jest podstawą skutecznego planowania przestrzennego i geodezyjnego.

Pytanie 22

Kiedy oznaczenia geodezyjne uległy zniszczeniu, rekonstruowanie punktów szczegółowej osnowy poziomej należy przeprowadzić na podstawie zarejestrowanych w opisie topograficznym zmierzonych odległości do

A. punktów określanych jako poboczniki
B. elementów terenowych z I kategorii dokładnościowej
C. sąsiednich funkcjonujących punktów osnowy
D. najbliższych elementów terenu
Odpowiedź "punkty zwane pobocznikami" jest prawidłowa, ponieważ w geodezji poboczniki odgrywają kluczową rolę w procesie odtwarzania zniszczonych punktów osnowy. Poboczniki, jako znane punkty geodezyjne, mogą być używane jako odniesienie podczas rekonstrukcji siatki punktów osnowy. W praktyce, w przypadku zniszczenia znaków geodezyjnych, geodeta powinien najpierw zidentyfikować i wykorzystać dostępne poboczniki, które były wcześniej pomierzone i opisane w dokumentacji topograficznej. Przykładowo, gdy istniejące punkty osnowy są usunięte, poboczniki mogą zapewnić niezbędne odniesienie do precyzyjnego przywrócenia punktów osnowy. Zgodnie z obowiązującymi regulacjami geodezyjnymi, przy odtwarzaniu punktów osnowy poziomej niezbędne jest zachowanie wysokiej dokładności, co można osiągnąć właśnie poprzez odniesienie do stabilnych punktów, takich jak poboczniki. Dobrą praktyką jest regularne aktualizowanie i weryfikowanie stanu poboczników, aby zapewnić ich wiarygodność jako odniesienia w procesach geodezyjnych.

Pytanie 23

Jakie jest przyrost współrzędnej ∆x1-2, przy pomiarze długości d1-2 = 100,00 m oraz sinAz1-2 = 0,7604 i cosAz1-2 = 0,6494?

A. 7,60 m
B. 76,04 m
C. 6,49 m
D. 64,94 m
Podczas analizy dostępnych odpowiedzi pojawia się wiele typowych pułapek związanych z obliczeniami trygonometrycznymi, które mogą prowadzić do błędnych wniosków. W przypadku przyrostu współrzędnej ∆x1-2 nie można mylić wartości sinus i cosinus azymutu. Odpowiedzi sugerujące wartości 6,49 m, 7,60 m oraz 76,04 m są wynikiem błędnej aplikacji wzorów trygonometrycznych. Typowym błędem jest mylenie zastosowania funkcji trygonometrycznych. Wartość 76,04 m może wynikać z nieprawidłowego pomnożenia długości przez sinus, co skutkuje zawyżeniem wyniku. Długość d1-2 mnożona przez sinus azymutu daje przyrost wysokości, a nie współrzędnej x. Natomiast wartości 6,49 m i 7,60 m mogą wskazywać na zbyt małe mnożenie d1-2 przez cosinus, co również jest konsekwencją niewłaściwego zastosowania wzoru. Kluczem do prawidłowych obliczeń jest zrozumienie, że przyrost współrzędnej x zależy od wartości cosAz, a przyrost współrzędnej y (wysokości) od sinAz. Używanie nieodpowiednich wartości do obliczeń w geodezji może prowadzić do poważnych błędów projektowych, dlatego tak ważne jest przestrzeganie standardów oraz dobrych praktyk w obliczeniach geodezyjnych.

Pytanie 24

W której ćwiartce geodezyjnego układu współrzędnych prostokątnych ma miejsce azymut o wartości 375g55c60cc?

A. III
B. I
C. IV
D. II
Azymut o wartości 375°55'60'' oznacza kąt mierzony w kierunku zgodnym z ruchem wskazówek zegara od północy. Aby określić, w której ćwiartce geodezyjnego układu współrzędnych prostokątnych znajduje się ten azymut, należy zauważyć, że wartości azymutu powyżej 360° są często interpretowane poprzez odjęcie 360°. W naszym przypadku 375°55'60'' - 360° = 15°55'60''. Kąt ten jest zatem mierzony w kierunku wschodnim, co wskazuje na to, że znajduje się w pierwszej ćwiartce. Jednakże, z uwagi, że oszacowaliśmy to już na podstawie wartości kątowej i zrozumienia ćwiartek, 375°57'60'' przywraca nas do wartości, która jest w IV ćwiartce. Dlatego prawidłowa odpowiedź to IV. W praktyce azymut jest kluczowym elementem w nawigacji, geodezji oraz kartografii, gdzie precyzyjne określenie kierunku ma fundamentalne znaczenie dla dokładności pomiarów i analiz przestrzennych. Standardy takie jak ISO 19111 definiują metody pomiaru i reprezentacji azymutów w kontekście systemów informacji geograficznej.

Pytanie 25

Gdzie umieszczane są punkty odniesienia do pomiaru przemieszczeń w kierunku pionowym?

A. na monitorowanym obiekcie
B. w sąsiedztwie monitorowanego obiektu
C. w obszarze wpływu monitorowanego obiektu
D. poza obszarem wpływu monitorowanego obiektu
Wybór punktów odniesienia w strefie oddziaływania monitorowanego obiektu nie jest właściwy z kilku powodów. Umiejscowienie punktów referencyjnych w bezpośredniej bliskości obiektu naraża je na wpływ wszelkich przemieszczeń lub drgań generowanych przez obiekt, co może prowadzić do błędnych pomiarów. Istnieje ryzyko, że zmiany, które mierzysz, będą wynikiem lokalnych efektów, takich jak osiadanie podłoża czy wibracje spowodowane ruchem pojazdów, zamiast rzeczywistych przemieszczeń obiektu. Ponadto, punkty odniesienia w pobliżu mogą być również narażone na zmiany warunków otoczenia, takie jak opady deszczu, co dodatkowo wpływa na ich stabilność. Często wyniki pomiarów z takich lokalizacji są nieprzewidywalne i mogą prowadzić do błędnych wniosków. Dobrą praktyką jest stosowanie lokalizacji referencyjnych, które są dobrze zabezpieczone, nie podlegają wpływom zewnętrznym i są zgodne z obowiązującymi normami, takimi jak ISO 17123 dotyczące metod pomiarowych w geodezji. Na przykład, w monitorowaniu budowli obiektów inżynieryjnych, w zależności od specyfiki projektu, należy umieścić punkty odniesienia w miejscach, które są geologicznie stabilne i nie są narażone na ruchy związane z działalnością budowlaną.

Pytanie 26

Określ wartość poziomu odniesienia profilu podłużnego, jeśli maksymalna wysokość zaznaczonego na tym profilu punktu wynosi 225,85 m, a minimalna 185,20 m?

A. 230,00 m
B. 225,00 m
C. 200,00 m
D. 180,00 m
Wybór błędnych odpowiedzi wynika z nieprawidłowej interpretacji koncepcji poziomu porównawczego w kontekście profilu podłużnego. Odpowiedzi takie jak 225,00 m, 200,00 m i 230,00 m opierają się na założeniu, że poziom porównawczy musi być zbliżony do najwyższego punktu, co nie jest zgodne z zasadami praktyki inżynieryjnej. W rzeczywistości, poziom porównawczy powinien być ustalony w sposób, który sprzyja analizie terenu i dalszym pracom inżynieryjnym, a nie być jedynie odzwierciedleniem najwyższej wartości. Dążenie do ustalenia wartości powyżej maksimum prowadzi do poważnych błędów projektowych, które mogą skutkować problemami, takimi jak niewłaściwe odwodnienie lub nieoptymalna konstrukcja. Ponadto, wartość 230,00 m jest znacząco wyższa od rzeczywistych pomiarów, co oznacza, że projektowanie obiektów na takim poziomie mogłoby prowadzić do nieefektywności i zwiększonych kosztów budowy, a także stwarzać ryzyko dla bezpieczeństwa obiektów. Zrozumienie właściwego poziomu porównawczego jest kluczowe dla skutecznego zarządzania projektami budowlanymi, a wybór 180,00 m jako optymalnego poziomu ilustruje, jak ważne jest zrozumienie tego zagadnienia w praktyce inżynieryjnej.

Pytanie 27

Dokonano pomiaru kąta pionowego w dwóch ustawieniach lunety, uzyskując rezultaty: OI= 101g80c70cc, OII= 298g17c00cc. Jaki jest kąt zenitalny?

A. 298g18c15cc
B. 196g36c30cc
C. 199g98c85cc
D. 101g81c85cc
Żeby obliczyć kąt zenitalny w oparciu o pomiary kątów pionowych zrobione w dwóch różnych położeniach lunety, trzeba skorzystać z wzoru: Kąt zenitalny = OI + OII - 200g. W naszym przypadku mamy OI = 101g80c70cc i OII = 298g17c00cc. Jak to zsumujemy: 101g80c70cc + 298g17c00cc wychodzi 399g97c70cc. Następnie odejmujemy 200g: 399g97c70cc - 200g = 199g97c70cc. Jak przeliczymy te części kątowe, dostajemy kąt zenitalny równy 101g81c85cc. Takie obliczenia są mega ważne w geodezji i inżynierii lądowej, gdzie precyzyjne pomiary kątów i wysokości są kluczowe do określania pozycji punktów w przestrzeni. W praktyce znajomość kątów zenitalnych to podstawa, jeśli chodzi o ustalanie ukształtowania terenu i związane z tym obliczenia przy budowie i projektowaniu różnych rzeczy.

Pytanie 28

Kontrolę numeracji pikiet na szkicu oraz w dzienniku pomiarowym wykonuje się podczas pomiarów terenowych, aby zapewnić

A. poprawność przy kartowaniu pikiet na mapę
B. poprawność prowadzenia dziennika pomiarowego
C. zgodność prowadzenia szkicu polowego i dziennika pomiarowego
D. poprawność prowadzenia szkicu polowego
Zgodność prowadzenia szkicu polowego i dziennika pomiarowego jest kluczowym aspektem w procesie pomiarów terenowych, ponieważ obie te formy dokumentacji muszą odzwierciedlać te same dane pomiarowe i ich układ w terenie. Utrzymanie spójności między szkicem a dziennikiem pomiarowym pozwala na skuteczne śledzenie postępu prac oraz zapewnia, że późniejsza analiza danych będzie oparta na rzetelnych informacjach. Przykładowo, w przypadku wykrycia błędów w jednej z form dokumentacji, ich identyfikacja i korekta będą znacznie łatwiejsze, gdy obie dokumentacje będą ze sobą zgodne. W branży geodezyjnej istnieją ustalone standardy, które nakładają obowiązek prowadzenia takich dokumentów w sposób ułatwiający ich wzajemne weryfikowanie. W praktyce, podczas realizacji pomiarów, geodeta powinien regularnie sprawdzać, czy numery pikiet w szkicu odpowiadają tym wpisanym w dzienniku, co minimalizuje ryzyko błędów oraz ułatwia dalsze etapy pracy, takie jak kartowanie czy przygotowanie mapy. Właściwe utrzymanie zgodności dokumentacji jest nie tylko kwestią organizacyjną, ale również wpływa na jakość końcowych rezultatów pracy geodezyjnej.

Pytanie 29

W jakim rodzaju ciągu niwelacyjnym zakłada się, że teoretyczna suma różnic wysokości pomiędzy punktem startowym a końcowym wynosi 0 mm?

A. Zawieszonym
B. Zamkniętym
C. Otwarty
D. Obliczeniowym
Ciąg niwelacyjny zamknięty to taki, w którym pomiar wysokości rozpoczyna się w punkcie, a po wykonaniu pomiarów wraca się do punktu początkowego. Teoretyczna suma różnic wysokości między punktem początkowym i końcowym wynosi 0 mm, co oznacza, że w idealnych warunkach nie występują błędy pomiarowe ani różnice w terenie, które mogłyby wpłynąć na wyniki. Praktyczne zastosowanie ciągów zamkniętych jest szczególnie widoczne w inżynierii lądowej, gdzie precyzyjne pomiary wysokości są kluczowe dla projektów budowlanych i infrastrukturalnych. Wykonywanie niwelacji w cyklu zamkniętym pozwala na wykrycie błędów systematycznych, które mogą wystąpić w trakcie pomiarów, a także na ich korekcję, co jest zgodne z zasadami obowiązującymi w normach takich jak PN-EN ISO 17123. Ważnym aspektem jest również to, że stosowanie ciągów zamkniętych zwiększa wiarygodność uzyskanych wyników, co jest niezbędne w pracach geodezyjnych i w kontekście odpowiedzialności zawodowej geodetów.

Pytanie 30

Jaki zapis, używany na mapie zasadniczej, odnosi się do przewodu kanalizacyjnego sanitarnego o średnicy 20 cm, zmierzonego na osnowę?

A. ksB20
B. ksP200
C. ks200
D. ks20
Wybór odpowiedzi ksB20, ks20 oraz ksP200 niestety pokazuje pewne nieporozumienia z systemem oznaczeń przewodów kanalizacyjnych. Odpowiedź ksB20 ma dodatkową literę 'B', co jest w tym kontekście mylące i sugeruje błędną klasyfikację. Przewody nie powinny mieć dodatkowych liter, bo to może prowadzić do zamieszania. Jeśli chodzi o ks20, to średnica 20 mm to pomyłka, bo rzeczywista średnica to 200 mm. Z mojego doświadczenia, takie błędne rozumienie jednostek może prowadzić do problemów w projektowaniu, jak na przykład złe dobranie średnicy, co wpłynie na wydajność. A jeśli chodzi o ksP200, to litera 'P' może sugerować inny typ przewodu, co wprowadza dodatkowe zamieszanie. Warto znać te oznaczenia, ponieważ wszelkie nieścisłości mogą później prowadzić do problemów w eksploatacji systemów kanalizacyjnych.

Pytanie 31

Który z wymienionych obiektów przestrzennych zalicza się do pierwszej kategorii szczegółów terenowych?

A. Plac zabaw
B. Tama
C. Boisko sportowe
D. Most
Most jest obiektem przestrzennym, który pełni kluczową rolę w infrastrukturze transportowej. Jest to konstrukcja, która umożliwia przemieszczanie się ludzi oraz pojazdów nad przeszkodami, takimi jak rzeki, doliny czy inne drogi. Z perspektywy planowania przestrzennego i urbanistyki, mosty są niezwykle istotne, ponieważ łączą różne obszary geograficzne, co wpływa na rozwój społeczno-gospodarczy regionów. Przykładem zastosowania mostów mogą być mosty wiszące, które charakteryzują się dużą wytrzymałością i mogą być budowane w miejscach, gdzie inne rodzaje mostów byłyby niepraktyczne. Wzorcowe projekty mostów powinny odnosić się do norm, takich jak Eurokod, które definiują wymagania dotyczące bezpieczeństwa, użyteczności i trwałości tego typu infrastruktury. Ponadto, mosty mogą wpływać na ekosystemy rzeczne, dlatego ich projektowanie powinno uwzględniać zasady zrównoważonego rozwoju, co oznacza minimalizowanie wpływu na środowisko.

Pytanie 32

Mapy związane z regulacją stanu prawnego nieruchomości to opracowania kartograficzne określane mianem

A. do celów projektowych
B. uzupełniających
C. katastralnych
D. do celów prawnych
Odpowiedzi katastralne, uzupełniające oraz do celów projektowych, mimo iż mogą wydawać się związane z kartografią nieruchomości, nie odpowiadają na pytanie o regulację stanu prawnego. Mapy katastralne są narzędziem administracyjnym służącym do ewidencji gruntów i budynków, jednak ich głównym celem nie jest bezpośrednia regulacja stanu prawnego, lecz zapewnienie dostępu do informacji o nieruchomościach dla celów podatkowych i planistycznych. Mapy uzupełniające z kolei mają charakter pomocniczy, służąc do dostarczania dodatkowych informacji kontekstowych, ale nie są kluczowe w kontekście formalnego stanu prawnego nieruchomości. Natomiast mapy do celów projektowych skupiają się na planowaniu i projektowaniu przestrzennym, co również nie odnosi się bezpośrednio do regulacji stanu prawnego. Często błędne jest utożsamianie map katastralnych i projektowych z mapami do celów prawnych, co może prowadzić do nieporozumień w kontekście ich użycia w obrocie nieruchomościami. Zrozumienie różnicy między tymi rodzajami map jest istotne dla prawidłowego działania w dziedzinie geodezji i kartografii.

Pytanie 33

Który z poniższych dokumentów jest wymagany przy wykonywaniu inwentaryzacji powykonawczej budowli?

A. Projekt budowlany
B. Mapa zasadnicza
C. Instrukcja obsługi tachimetru
D. Mapa topograficzna
Pozostałe dokumenty wymienione w pytaniu, choć mogą być przydatne w różnych etapach pracy geodezyjnej, nie są kluczowe dla samej inwentaryzacji powykonawczej budowli. Mapa zasadnicza jest używana przede wszystkim do celów ogólnego planowania przestrzennego oraz jako podstawa do tworzenia różnego rodzaju planów miejscowych. Zawiera ona informacje o sieciach uzbrojenia terenu, granicach działek czy ukształtowaniu terenu, ale nie dostarcza szczegółowych danych na temat samej budowli, które są niezbędne do przeprowadzenia inwentaryzacji powykonawczej. Mapa topograficzna natomiast, jest bardziej szczegółowa i obejmuje większe obszary, ale jej głównym celem jest odwzorowanie ukształtowania terenu oraz elementów krajobrazu, co nie jest bezpośrednio związane z dokumentacją budowlaną konkretnej budowli. Instrukcja obsługi tachimetru, choć istotna z punktu widzenia samego procesu pomiarowego, nie odnosi się do dokumentacji budowlanej ani do wymogów formalnych związanych z inwentaryzacją powykonawczą. Jest to raczej techniczny dokument pomocniczy, który zapewnia poprawne użytkowanie sprzętu pomiarowego, ale nie wpływa bezpośrednio na zgodność budowli z projektem budowlanym. W kontekście inwentaryzacji powykonawczej, kluczowe jest porównanie rzeczywistego stanu budowli z zapisami w projekcie budowlanym, co czyni ten dokument niezbędnym, podczas gdy inne mogą być jedynie wspomagające.

Pytanie 34

Gdy różnice współrzędnych między początkiem a końcem boku AB wynoszą ΔxAB = 0, ΔyAB > 0, to jaki jest azymut AzAB boku AB?

A. 400g
B. 200g
C. 100g
D. 300g
W przypadku błędnych odpowiedzi należy zwrócić uwagę na istotne aspekty związane z obliczaniem azymutów. Odpowiedzi takie jak 200g, 300g czy 400g nie uwzględniają faktu, że różnice współrzędnych wskazują na bezpośredni ruch w górę wzdłuż osi y, bez zmiany wartości na osi x. Typowym błędem myślowym jest założenie, że niezerowa wartość na osi y automatycznie implikuje, że azymut boku AB musi być większy niż 100g. Oczywiście, w rzeczywistości, azymut jest mierzony od kierunku północnego, a w przypadku, gdy różnica w osi x wynosi 0, cały kierunek wektora ruchu wskazuje na północny wschód. Ważne jest, aby pamiętać, że azymut nie może przekraczać wartości 400g, co byłoby błędnym założeniem w kontekście tego pytania. Zrozumienie zasadniczych koncepcji geometrii analitycznej oraz ich zastosowania w systemach współrzędnych jest kluczowe dla poprawnego obliczania azymutów. Poprawne metody obliczeniowe oraz umiejętność interpretacji wyników są niezbędne w geodezji i inżynierii, gdzie precyzyjne pomiary mają fundamentalne znaczenie dla sukcesu projektów budowlanych oraz infrastruktur.

Pytanie 35

Wykonano pomiary niwelacyjne w celu utworzenia punktu szczegółowego osnowy wysokościowej. Jaka jest maksymalna długość tego ciągu, jeśli składa się z 4 stanowisk i nie zostały przekroczone dozwolone długości celowych?

A. 400 m
B. 250 m
C. 600 m
D. 150 m
Maksymalna długość ciągu niwelacyjnego wynosząca 400 m jest zgodna z powszechnie przyjętymi normami w geodezji, które określają dopuszczalne długości dla różnych technik niwelacji. Przy niwelacji precyzyjnej, długość jednego stanowiska nie powinna przekraczać 200 m, co oznacza, że w przypadku czterech stanowisk maksymalna długość ciągu wynosi 4 x 100 m = 400 m. Taki układ zapewnia wystarczającą dokładność pomiarów, umożliwiając redukcję błędów systematycznych i losowych. W praktyce, długość ta jest również dostosowywana do warunków terenowych, rodzaju używanego sprzętu niwelacyjnego oraz wymagań projektu. Standardy, takie jak PN-EN 28720, podkreślają znaczenie dokładności w niwelacji, co ma kluczowe znaczenie w budownictwie, tworzeniu map czy projektowaniu infrastruktury. Dodatkowo, planując pomiary, warto uwzględnić warunki atmosferyczne oraz potencjalne przeszkody, co może mieć wpływ na jakość pomiarów. 400 m to optymalna długość, która przy odpowiednich technikach pomiarowych zapewnia precyzyjne wyniki.

Pytanie 36

Wykonano pomiar kąta: w pierwszym położeniu lunety KP = 299,8850g oraz w drugim położeniu lunety KL = 100,1130g. Oblicz wartość mo

A. -0,0020g
B. +0,0010g
C. -0,0010g
D. +0,0020g
Wybór odpowiedzi innych niż -0,0010g często wynika z nieporozumienia dotyczącego właściwego obliczania różnicy kątów, a także z niewłaściwego zrozumienia konwencji stosowanych w geodezji. Często błędne podejścia opierają się na pomyłkach przy odejmowaniu wartości kątowych, gdzie zamiast prawidłowego obliczenia różnicy, użytkownicy mogą mylnie utożsamiać wartości bez uwzględnienia ich kontekstu. Na przykład, obliczenia takie jak -0,0020g lub +0,0010g pojawiają się, gdy ktoś niepoprawnie interpretuje wzory lub wprowadza nieprawidłowe założenia dotyczące kierunku pomiaru. Dodatkowo, w geodezyjnych odczytach, ważne jest, aby pamiętać o kierunku pomiaru i standardowych korekcjach, które mogą wpłynąć na ostateczne wyniki. Użytkownicy mogą również nie dostrzegać, że pomiary kątowe są relatywne, a ich interpretacja wymaga uwzględnienia pełnego obiegu kątowego, co prowadzi do typowych błędów przy zliczaniu kątów przekraczających 360 stopni. Ostatecznie, kluczowe jest, aby przy obliczeniach kątów stosować zasady obowiązujące w danym kontekście geodezyjnym, co pozwala na dokładne i zgodne z normami wyniki.

Pytanie 37

Gdy geodeta zmierzył kąt poziomy w jednej serii, co to oznacza w kontekście prac geodezyjnych?

A. zmierzył kąt w dwóch ustawieniach lunety.
B. wykonał średnią arytmetyczną z dwóch odczytów.
C. wykonał średnią arytmetyczną z dwóch pomiarów.
D. zmierzył kąt w jednym ustawieniu lunety.
Pomiar kąta w jednym położeniu lunety sugeruje, że geodeta wykonał pomiar bez zmiany ustawienia instrumentu, co prowadzi do niepełnych lub nieprecyzyjnych wyników. Zastosowanie jednego położenia lunety nie uwzględnia potencjalnych błędów, które mogą wyniknąć zarówno z warunków atmosferycznych, jak i z ewentualnych niedoskonałości w konstrukcji instrumentu. W geodezji kluczowe jest dążenie do minimalizacji błędów, a pomiar tylko jeden raz nie zapewnia tego. Ponadto, odpowiedź sugerująca obliczanie średniej arytmetycznej z dwóch pomiarów (co może wydawać się logiczne), w rzeczywistości odnosi się do sytuacji, w której pomiary te są wykonane w różnych położeniach lunety. Zbieranie danych w dwóch różnych położeniach nie tylko pozwala na detekcję błędów systematycznych, ale również umożliwia ich kompensację. Użycie tylko jednego pomiaru może prowadzić do błędów i nieprawidłowych wniosków, co jest szczególnie problematyczne w ważnych projektach budowlanych lub inżynieryjnych, gdzie precyzja pomiarów jest kluczowa. Dlatego też, stosowanie pomiarów w dwóch położeniach lunety jest nie tylko standardem, ale również wymogiem dla uzyskania wiarygodnych wyników. Pomiar w jednym położeniu lunety, a następnie obliczanie średniej z jednego pomiaru jest nieprawidłowe, ponieważ nie dostarcza całkowitego obrazu sytuacji, co jest nieakceptowalne w profesjonalnych praktykach geodezyjnych.

Pytanie 38

Która technika pomiaru kątów poziomych jest najkorzystniejsza, gdy planowane jest obserwowanie pięciu celów?

A. Sektorowa
B. Kierunkowa
C. Reiteracyjna
D. Repetycyjna
Zastosowanie metod innych niż kierunkowa w sytuacji z pięcioma celami prowadzi do nieefektywności i potencjalnych błędów pomiarowych. Metoda sektorowa, polegająca na pomiarze kątów w określonych sektorach, może być użyteczna w niektórych zastosowaniach, jednak w kontekście pięciu celów nie zapewnia tak precyzyjnych danych, jak metoda kierunkowa. Sektorowe podejście wiąże się z większą ilością pomiarów i zwiększa ryzyko błędów, co czyni je mniej korzystnym w tej konkretnej sytuacji. Metoda reiteracyjna opiera się na powtarzaniu pomiarów, co również może wprowadzać dodatkowe złożoności i niepewności, zwłaszcza gdy mamy do czynienia z wieloma celami. W tym przypadku, z uwagi na wymóg dokładności i efektywności, podejście to nie jest zalecane. Natomiast metoda repetycyjna, koncentrująca się na powtarzaniu tego samego pomiaru w celu uzyskania uśrednionych rezultatów, może być użyteczna w pewnych kontekstach, ale nie jest optymalna, gdy zachodzi potrzeba szybkiego zbadania pięciu celów. Stosowanie tych metod może prowadzić do mylnych wniosków i nieefektywnego wykorzystania zasobów, co w praktyce geodezyjnej jest niedopuszczalne. Wybór metody pomiarowej powinien być przemyślany z uwagi na liczbę celów oraz wymagany poziom precyzji, co podkreśla znaczenie znajomości i umiejętności stosowania odpowiednich technik.

Pytanie 39

Jakie metody powinny być wykorzystane do przeprowadzenia pomiaru tachimetrycznego?

A. Ortogonalną oraz niwelacji trygonometrycznej
B. Biegunową oraz niwelacji geometrycznej
C. Ortogonalną oraz niwelacji geometrycznej
D. Biegunową oraz niwelacji trygonometrycznej
W analizie błędnych odpowiedzi na pytanie o metody pomiaru tachimetrycznego istotne jest zrozumienie, że każda z nich zawiera niepoprawne koncepcje dotyczące zastosowania i łączenia metod. W szczególności, metoda niwelacji geometrycznej, na którą wskazują niektóre odpowiedzi, jest ograniczona w kontekście pomiarów w terenie, gdyż opiera się głównie na pomiarze różnic wysokości pomiędzy punktami przy zachowaniu linii poziomej. Ta technika nie może być skutecznie używana w połączeniu z pomiarem kątów, co jest kluczowe dla uzyskania dokładnych wyników w tachimetrycznym pomiarze. Ortogonalna metoda również nie jest odpowiednia, gdyż zakłada, że pomiar jest wykonywany w kierunku prostym do linii podstawowej, co nie pozwala na efektywne zbieranie danych w trudnych warunkach terenowych. Typowe błędy myślowe, które prowadzą do takich wniosków, często wynikają z niedostatecznej znajomości różnic między metodami oraz ich specyfiką zastosowania. Kluczowe znaczenie ma zrozumienie, że pomiar tachimetryczny wymaga zintegrowania pomiarów kątów i odległości w jeden proces, co w przypadku zaproponowanych odpowiedzi nie zostało spełnione. Zatem nieprawidłowe połączenie metod prowadzi do niespójności i obniża jakość uzyskiwanych wyników.

Pytanie 40

Długość odcinka zmierzonego na mapie o skali 1:500 wynosi 11,1 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 55,50 m
B. 22,20 m
C. 2,22 m
D. 5,55 m
Odpowiedź 55,50 m to dobry wybór. Jeśli popatrzysz na scale 1:500, to każdy centymetr na mapie oznacza 500 centymetrów w rzeczywistości. Czyli, żeby znaleźć długość w terenie, wystarczy pomnożyć długość na mapie, czyli 11,1 cm przez 500. Jak to zrobimy, to wychodzi 11,1 cm * 500 = 5550 cm, co daje nam 55,50 m. Rozumienie, jak działa skala, jest mega ważne w geodezji i kartografii, bo precyzyjne pomiary to podstawa przy wszelkich projektach budowlanych czy drogowych. Na przykład, przy projektowaniu jakiejś infrastruktury miejskiej, znajomość skali mapy pozwala lepiej przenieść to, co zaplanowaliśmy na rzeczywistość. To ma spore znaczenie, żeby wszystko było zgodne z planami zagospodarowania i innymi standardami, jak normy geodezyjne. Generalnie, umiejętność przeliczania wymiarów z map na rzeczywiste odległości to coś, co powinien umieć każdy inżynier czy geodeta.