Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 26 maja 2025 16:29
  • Data zakończenia: 26 maja 2025 16:33

Egzamin niezdany

Wynik: 5/40 punktów (12,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakiej informacji nie jest konieczne zawarcie w instrukcji użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowo-prądowymi?

A. Zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
B. Danych technicznych instalacji
C. Wybory i konfiguracji urządzeń zabezpieczających
D. Terminów dotyczących prób oraz kontrolnych pomiarów
W dokumentacji eksploatacyjnej musisz mieć charakterystykę techniczną instalacji, bo to pozwala zrozumieć, jak działa system i co trzeba robić, aby działał dobrze. Generalnie, znajomość parametrów technicznych instalacji, takich jak napięcie robocze czy rodzaj urządzeń plus ich maksymalne obciążenie, jest mega ważna, jeśli chcesz dobrze ocenić ryzyko i zaplanować konserwację. Z drugiej strony, masz terminy i zakresy prób oraz pomiarów kontrolnych, które są potrzebne, żeby wszystko działało jak należy i było bezpieczne. Regularne pomiary i kontrole pomogą ci zauważyć problemy zanim się powiększą, a ich zakres powinien być zgodny z normami, jak na przykład PN-IEC 61557-1. Musisz też zwracać uwagę na zasady bezpieczeństwa podczas prac eksploatacyjnych, bo to dotyczy ochrony ludzi i zmniejszenia ryzyka wypadków. Dobre przestrzeganie zasad BHP to podstawa w każdej pracy z instalacjami elektrycznymi. Jak lekceważysz te sprawy, to możesz podjąć złe decyzje, a to prowadzi do poważnych problemów, zarówno dla ludzi, jak i dla sprzętu.

Pytanie 2

Jakie wymagania muszą być spełnione podczas pomiaru rezystancji izolacyjnej w instalacji elektrycznej po wcześniejszym odłączeniu zasilania?

A. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
B. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
C. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
D. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
Udzielenie odpowiedzi, w której odbiorniki pozostają włączone lub źródła światła są zamontowane, wskazuje na zrozumienie tematu, które nie uwzględnia podstawowych zasad bezpieczeństwa i dokładności pomiarów w instalacjach elektrycznych. Pozostawienie włączonych odbiorników może prowadzić do sytuacji, w której prąd płynie przez obwód, co z kolei może spowodować zwarcia lub inne niebezpieczeństwa. W kontekście pomiaru rezystancji izolacji istotne jest, aby wszystkie odbiorniki były odłączone, co zapobiega niespodziewanym skutkom ubocznym, a także minimalizuje ryzyko uszkodzenia cennych urządzeń elektronicznych. Wyposażenie w instalacje elektryczne powinno być zgodne z normami, które wymagają przeprowadzenia pomiarów w warunkach minimalizujących ryzyko. Zamontowane źródła światła mogą również zakłócić pomiary, ponieważ ich obwody mogą mieć różne charakterystyki oraz wpływ na wyniki rezystancji. Dlatego zasada, aby przed pomiarami izolacji usunąć wszystkie aktywne elementy z obwodu, jest nie tylko praktyką zalecaną, ale wręcz niezbędną do osiągnięcia wiarygodnych i bezpiecznych wyników.

Pytanie 3

Aby zweryfikować poprawność funkcjonowania wyłączników różnicowoprądowych, zmierzono ich różnicowe prądy zadziałania i wyniki umieszczono w poniższej tabeli. Który z wyłączników spełnia kryterium prądu zadziałania IA = (0,5÷1,00) IN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC30 mA
P202 25-30-AC25 mA
P304 40-30-AC40 mA
P304 40-100-AC40 mA

A. P304 40-100-AC
B. P202 25-30-AC
C. P302 25-10-AC
D. P304 40-30-AC
Wyłącznik różnicowoprądowy P202 25-30-AC jest poprawnym wyborem, ponieważ jego zmierzony prąd zadziałania wynosi 25 mA, co plasuje go w przedziale od 15 mA do 30 mA, zgodnym z wymaganiami prądu zadziałania IA = (0,5÷1,00) IN. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe muszą działać w określonym zakresie prądów zadziałania, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz ochrony instalacji elektrycznych. Przykładem praktycznego zastosowania tego wyłącznika jest jego instalacja w budynkach mieszkalnych, gdzie chroni przed porażeniem prądem elektrycznym w przypadku uszkodzenia izolacji. Odpowiedni dobór wyłącznika do wartości znamionowych instalacji jest kluczowy, aby zapewnić skuteczną ochronę i minimalizować ryzyko uszkodzeń, a P202 25-30-AC spełnia te normy, co czyni go odpowiednim wyborem.

Pytanie 4

Którą z poniższych czynności pracownik ma prawo wykonać bez zlecenia osób nadzorujących jego pracę?

A. Renowacja rozdzielnicy po likwidacji pożaru
B. Zlokalizowanie uszkodzeń w linii kablowej nn
C. Gaszenie pożaru urządzenia elektrycznego
D. Zamiana izolatora na linii napowietrznej nn
Gaszenie pożaru urządzenia elektrycznego jest jedyną czynnością, którą pracownik może wykonać bez wcześniejszego polecenia osób dozorujących, gdyż w sytuacjach awaryjnych priorytetem jest ochrona życia oraz mienia. Standardy BHP wskazują, że w razie pożaru, każdy pracownik ma prawo i obowiązek podjąć działania mające na celu jego ugaszenie, o ile to możliwe i bezpieczne. W praktyce, jeśli pracownik zauważy pożar, powinien niezwłocznie podjąć próbę ugaszenia go przy użyciu odpowiednich środków gaśniczych, takich jak gaśnice lub urządzenia automatycznego gaszenia. Tego rodzaju działanie jest zgodne z zasadą „zatrzymaj ogień, zanim on się rozprzestrzeni”, co jest kluczowe w minimalizowaniu szkód i zagrożeń. Zwracając uwagę na procedury zawarte w przepisach, takich jak Rozporządzenie Ministra Spraw Wewnętrznych i Administracji w sprawie ochrony przeciwpożarowej, można zauważyć, że pracownicy są odpowiednio szkoleni i przygotowani do działania w sytuacjach kryzysowych.

Pytanie 5

Który z poniższych rodzajów silników wyróżnia się najlepszą kontrolą prędkości obrotowej poprzez modyfikację wartości napięcia zasilającego?

A. Asynchroniczny pierścieniowy
B. Prądu stałego
C. Asynchroniczny klatkowy
D. Synchroniczny jawnobiegunowy
Silniki asynchroniczne, zarówno pierścieniowe, jak i klatkowe, mają swoje unikalne właściwości, ale nie są one idealne do precyzyjnej regulacji prędkości obrotowej poprzez zmianę napięcia zasilającego. W przypadku silników klatkowych, prędkość obrotowa jest głównie uzależniona od częstotliwości zasilania, co oznacza, że zmiana napięcia nie ma znaczącego wpływu na ich prędkość. Silniki te są bardziej efektywne w zastosowaniach, gdzie prędkość ma być stała, a zmiany wymagają stosowania bardziej skomplikowanych systemów regulacji, takich jak falowniki. Silniki pierścieniowe z kolei oferują pewne możliwości regulacji prędkości, ale są zazwyczaj bardziej złożone i kosztowne, co ogranicza ich zastosowanie w mniej wymagających aplikacjach. Silniki synchroniczne jawne polegają na synchronizacji z siecią zasilającą, co dodatkowo komplikuje regulację prędkości. Zatem, często błędnie uznaje się, że silniki asynchroniczne mogą konkurować z silnikami prądu stałego w zakresie regulacji prędkości. Kluczowym błędem jest myślenie, że zmiana napięcia w tych silnikach może równoważyć zmiany prędkości, co jest niezgodne z zasadami ich działania. W praktyce, wymaga to zastosowania bardziej skomplikowanych układów sterujących i nie zapewnia takiej elastyczności jak w przypadku silników prądu stałego.

Pytanie 6

Jakie skutki spowoduje podłączenie baterii kondensatorów równolegle do końcówek silnika asynchronicznego?

A. Napięcie na końcówkach silnika się zmniejszy
B. Pobór mocy biernej z sieci będzie mniejszy
C. Pobór mocy czynnej z sieci ulegnie zwiększeniu
D. Częstotliwość prądu w silniku wzrośnie
Założenia sugerujące, że pobór mocy czynnej z sieci wzrośnie, napięcie na zaciskach silnika spadnie lub częstotliwość prądu w silniku się zwiększy, są błędne i opierają się na nieprecyzyjnym rozumieniu zasad działania silników asynchronicznych oraz kondensatorów. Pobór mocy czynnej jest ściśle związany z pracą silnika, a włączenie kondensatorów ma na celu poprawę współczynnika mocy, co prowadzi do zmniejszenia poboru mocy biernej, a nie czynnej. W przypadku spadku napięcia na zaciskach silnika, takie zjawisko występuje jedynie w sytuacji, gdy obciążenie jest zbyt duże w porównaniu do możliwości zasilania, co jest odwrotnością efektu uzyskanego przez kondensatory. Co więcej, zwiększenie częstotliwości prądu nie jest możliwe przez dodanie kondensatorów, ponieważ częstotliwość prądu w systemie zasilania jest stała i zadana przez dostawcę energii. Zrozumienie tych zasad jest kluczowe do poprawnej analizy systemów elektroenergetycznych oraz minimalizacji strat energii i poprawy efektywności operacyjnej. W praktyce, nieodpowiednie podejście do kompensacji mocy biernej może prowadzić do poważnych problemów, w tym do obniżenia jakości zasilania i zwiększenia kosztów eksploatacji.

Pytanie 7

Która z podanych przyczyn jest odpowiedzialna za ocieranie wirnika o stojan w silniku indukcyjnym klatkowym podczas jego działania?

A. Poluzowanie tabliczki zaciskowej
B. Pęknięcie pierścieni zwierających pręty wirnika
C. Nagle zmniejszone napięcie zasilające
D. Nagle zwiększone napięcie zasilające
Pęknięcie pierścieni zwierających pręty wirnika to istotny problem, który może prowadzić do ocierania wirnika o stojan w silniku indukcyjnym klatkowym. Pierścienie te mają na celu zapewnienie stabilności wirnika podczas jego obrotu, a ich integralność strukturalna jest kluczowa dla poprawnej pracy silnika. Kiedy pierścienie ulegają uszkodzeniu, wirnik może zacząć się przemieszczać zbyt blisko stojana, co doprowadza do tarcia i potencjalnych uszkodzeń obu komponentów. W kontekście praktycznym, regularne przeglądy i testy wizualne silników, w tym kontrola stanu pierścieni zwierających, są kluczowe dla zapobiegania takim awariom. Zgodnie z najlepszymi praktykami w branży, każda usterka powinna być diagnozowana i usuwana natychmiastowo, aby uniknąć dalszych uszkodzeń oraz kosztownych przestojów. Warto również zaznaczyć, że ogólny stan wirnika i jego osprzętu powinien być systematycznie monitorowany na podstawie standardów, takich jak IEC 60034, które szczegółowo określają wymagania dotyczące silników elektrycznych.

Pytanie 8

Jakie środki ochrony przed porażeniem stosuje się w przypadku dotyku bezpośredniego w urządzeniach pracujących do 1 kV?

A. Wykorzystanie izolacji podwójnej lub wzmocnionej.
B. Usytuowanie części czynnych poza zasięgiem dłoni.
C. Automatyczne odłączenie zasilania.
D. Izolacja elektryczna obwodu pojedynczego odbiornika.
Umieszczenie części czynnych poza zasięgiem ręki stanowi jedną z kluczowych metod zapobiegania porażeniom prądem, szczególnie w instalacjach niskonapięciowych do 1 kV. Ta strategia opiera się na zasadzie, że fizyczne oddalenie od elementów pod napięciem skutecznie eliminują ryzyko przypadkowego kontaktu. Przykładem takiego rozwiązania są obudowy urządzeń elektrycznych, które są projektowane w sposób, aby niebezpieczne części były niedostępne dla użytkownika. Zgodnie z normami, takimi jak PN-EN 61140, wymagane jest, aby części czynne były umieszczone w miejscach, które są trudne do osiągnięcia bez specjalnych narzędzi lub wiedzy. Dodatkowo, ta metoda ma zastosowanie w wielu obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników jest priorytetem. W praktyce, umieszczając elementy elektryczne w trudno dostępnych miejscach, minimalizuje się możliwość przypadkowego dotyku, co jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 9

Przy badaniu uszkodzonego silnika trójfazowego połączonego w gwiazdę zmierzono rezystancje uzwojeń i rezystancje izolacji. Zamieszczone w tabeli wyniki pomiarów pozwalają stwierdzić, że możliwe jest

Wielkość mierzonaWartość, Ω
Rezystancja uzwojeń między zaciskami silnika:
U1 – V110,0
V1 – W1
W1 – U1
Rezystancja izolacji między zaciskami a obudową silnika:Wartość, MΩ
U1 – PE15,5
V1 – PE15,5
W1 – PE0

Ilustracja do pytania
A. przerwanie uzwojenia V1 - V2
B. odkręcenie się i dotknięcie obudowy przez przewód spod zacisku Wl
C. odkręcenie się i dotknięcie obudowy przez przewód spod zacisku V1
D. przerwanie uzwojenia Ul - U2
Odpowiedź dotycząca odkręcenia się i dotknięcia obudowy przez przewód spod zacisku W1 jest poprawna, ponieważ wyniki pomiarów rezystancji wykazują, że rezystancja izolacji między tym zaciskiem a obudową (PE) wynosi 0 MΩ. Oznacza to, że istnieje bezpośrednie połączenie między przewodem W1 a obudową, co prowadzi do zwarcia oraz ryzyka wystąpienia uszkodzenia sprzętu. W przypadku silników trójfazowych, ważne jest zachowanie odpowiednich wartości rezystancji izolacji, aby zapewnić prawidłowe działanie oraz bezpieczeństwo. Dobrą praktyką jest regularne wykonywanie pomiarów rezystancji izolacji przed uruchomieniem urządzenia, co pozwoli na wczesne wykrycie potencjalnych problemów. Ponadto, stosowanie odpowiednich zabezpieczeń, jak wyłączniki różnicowoprądowe, może pomóc w zminimalizowaniu ryzyka uszkodzenia obwodów oraz zapewnieniu bezpieczeństwa użytkowników. Warto również zaznaczyć, że w przypadku wykrycia niskiej rezystancji izolacji, należy jak najszybciej zidentyfikować i usunąć źródło problemu, aby uniknąć poważniejszych awarii.

Pytanie 10

które z poniższych stwierdzeń dotyczących działania silnika bocznikowego prądu stałego wskazuje na występującą w nim nieprawidłowość?

A. Natężenie prądu w obwodzie wzbudzenia przekracza to w obwodzie twornika
B. Prędkość obrotowa wirnika rośnie przy osłabieniu wzbudzenia
C. Natężenie prądu w obwodzie wzbudzenia jest niższe niż w obwodzie twornika
D. Prędkość obrotowa wirnika na biegu jałowym jest wyższa od prędkości znamionowej
W analizowanych stwierdzeniach, błędne odpowiedzi mogą wynikać z nieporozumień dotyczących podstawowych zasad działania silników bocznikowych prądu stałego. Prąd w obwodzie wzbudzenia nie powinien być mniejszy niż w obwodzie twornika, ponieważ może to sugerować niedostateczne wzbudzenie, co prowadzi do zmniejszenia momentu obrotowego i osłabienia pracy silnika. Prędkość obrotowa wirnika wzrasta przy osłabieniu wzbudzenia, co jest zjawiskiem typowym dla silników prądu stałego, ale nie powinno być to mylone z normalnym działaniem. W rzeczywistości, obniżenie wzbudzenia prowadzi do zwiększenia prędkości obrotowej, ale również może prowadzić do niestabilności w pracy silnika i zwiększonego ryzyka przegrzania. Jednocześnie prędkość obrotowa na biegu jałowym nie powinna przekraczać prędkości znamionowej, ponieważ może to skutkować niewłaściwym działaniem silnika i potencjalnym uszkodzeniem komponentów. Kluczowe jest, aby operatorzy silników elektrycznych zrozumieli te zależności oraz systematycznie monitorowali parametry silnika, aby unikać sytuacji mogących prowadzić do awarii. Zrozumienie tych zasad jest niezbędne dla uzyskania efektywności oraz długowieczności systemów napędowych.

Pytanie 11

Która z podanych czynności nie zalicza się do weryfikacji stanu technicznego podczas przeglądu układu napędowego z energoelektronicznym przekształtnikiem?

A. Ocena czystości filtrów powietrza chłodzącego
B. Pomiar natężenia oświetlenia na stanowisku obsługi układu napędowego
C. Weryfikacja połączeń stykowych
D. Sprawdzenie jakości zabezpieczeń nadprądowych i zmiennozwarciowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie oświetlenia na stanowisku obsługi układu napędowego nie jest tak naprawdę częścią ogólnej oceny stanu technicznego tego układu, szczególnie jeśli chodzi o przekształtniki energoelektroniczne. Większość przeglądów skupia się na tym, czy wszystkie elementy mechaniczne i elektryczne są w porządku. To znaczy, trzeba porządnie sprawdzić połączenia stykowe, upewnić się, że filtry powietrza chłodzącego są czyste, a także kontrolować zabezpieczenia nadprądowe i zmiennozwarciowe. Oświetlenie jest ważne dla bezpieczeństwa ludzi pracujących przy tych urządzeniach, ale nie ma bezpośredniego wpływu na to, jak wydajnie układ działa. Na przykład, jeśli mówimy o przekształtnikach, kluczowe jest zapewnienie właściwego chłodzenia, co możemy kontrolować poprzez te filtry powietrza. Dobre połączenia stykowe i odpowiednie zabezpieczenia są także bardzo ważne, żeby uniknąć awarii. Warto pamiętać, że istnieją normy, jak IEC czy ISO, które podkreślają, jak istotne są regularne przeglądy komponentów elektrycznych dla bezpieczeństwa w pracy.

Pytanie 12

Podczas przeglądu silnika elektrycznego stwierdzono nieprawidłowe działanie łożysk. Jakie mogą być tego skutki?

A. Zmniejszenie momentu obrotowego
B. Zmniejszenie napięcia zasilania
C. Zwiększenie poziomu hałasu
D. Zmniejszenie częstotliwości prądu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nieprawidłowe działanie łożysk w silniku elektrycznym często prowadzi do zwiększenia poziomu hałasu. W praktyce, kiedy łożyska są uszkodzone lub zużyte, mogą generować dźwięki takie jak szumy, stukoty czy metaliczne odgłosy. Hałas ten jest wynikiem zwiększonego tarcia oraz nieprawidłowego ruchu elementów łożyska, co jest bezpośrednim skutkiem mechanicznych nieprawidłowości. W branży technicznej powszechnie uznaje się, że regularne monitorowanie poziomu hałasu jest istotnym elementem diagnostyki stanu technicznego łożysk. Moim zdaniem, to zwiększenie hałasu jest jednym z najbardziej oczywistych sygnałów, że coś niedobrego dzieje się z łożyskami. Dlatego też, standardy utrzymania maszyn, takie jak TPM (Total Productive Maintenance), kładą duży nacisk na regularne przeglądy i konserwację łożysk, by zapobiec poważniejszym awariom. Uwzględniając te praktyki, można znacznie wydłużyć żywotność maszyn i uniknąć kosztownych napraw czy przestojów produkcyjnych.

Pytanie 13

Jaką wartość powinno mieć napięcie pomiarowe przy pomiarze rezystancji izolacji kabla umieszczonego w gruncie?

A. 250 V
B. 1 000 V
C. 2 500 V
D. 500 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 2 500 V jest prawidłowa, ponieważ podczas pomiarów rezystancji izolacji kabli ułożonych w ziemi, stosowanie napięcia rzędu 2 500 V jest standardem uznawanym w branży elektroenergetycznej. Taki poziom napięcia zapewnia wystarczającą siłę do wykrycia potencjalnych uszkodzeń izolacji, które mogą nie być widoczne przy niższych napięciach. W praktyce, zastosowanie wyższego napięcia pozwala na dokładniejsze określenie stanu izolacji, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności sieci zasilającej. Dobre praktyki zalecają, aby przed przystąpieniem do pomiarów, upewnić się, że kabel jest odłączony od źródła zasilania, co pozwoli na uzyskanie wiarygodnych wyników. Dodatkowo, pomiary powinny być przeprowadzane z użyciem odpowiednich narzędzi pomiarowych, które są przystosowane do pracy z takimi napięciami. Warto również zauważyć, że normy, takie jak PN-EN 61557-2, wskazują na znaczenie pomiaru rezystancji izolacji w celu zapobiegania awariom i zapewniania ciągłości dostaw energii.

Pytanie 14

Podczas użytkowania standardowej instalacji z żarowym źródłem światła zaobserwowano po kilku minutach działania częste wahania natężenia oświetlenia (migotanie światła). Najrzadziej występującą przyczyną usterki może być

A. zwarcie między przewodem ochronnym a neutralnym
B. zwarcie między przewodem fazowym a neutralnym
C. wypalenie styków w łączniku
D. wilgotna izolacja przewodów zasilających

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wypalenie styków w łączniku jest najczęstszą przyczyną migania światła w instalacjach oświetleniowych. W trakcie pracy instalacji, styk łącznika może podlegać znacznym obciążeniom elektrycznym, co prowadzi do przegrzewania i wypalania się materiału styku. W takich przypadkach pojawiają się przerwy w przewodzeniu prądu, co skutkuje wahań natężenia oświetlenia. Zastosowanie wysokiej jakości łączników oraz regularna ich konserwacja mogą znacząco wpłynąć na niezawodność instalacji. Dobrze zaprojektowane instalacje elektryczne powinny uwzględniać dobór odpowiednich komponentów, które są zgodne z normami PN-EN 60669-1. Przykładowo, w instalacjach o wysokim natężeniu prądu warto stosować łączniki o zwiększonej odporności na wypalanie. Warto również regularnie kontrolować stan łączników, aby uniknąć sytuacji, które mogą prowadzić do awarii, co z kolei wpływa na bezpieczeństwo użytkowania i komfort oświetlenia.

Pytanie 15

Podczas wymiany trójfazowego wyłącznika różnicowoprądowego należy mieć na uwadze, że do wyłącznika nie może być podłączony przewód

A. ochronny PE
B. fazowy LI
C. neutralny N
D. fazowy L2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca przewodu ochronnego PE jako nieodpowiedniego do podłączenia do trójfazowego wyłącznika różnicowoprądowego jest poprawna. Przewód ochronny PE ma za zadanie zapewnienie bezpieczeństwa użytkowników poprzez odprowadzenie prądu w przypadku awarii do ziemi, co zmniejsza ryzyko porażenia prądem elektrycznym. Wyłącznik różnicowoprądowy jest zaprojektowany do monitorowania różnicy prądów między przewodami fazowymi a neutralnym. Podłączenie przewodu PE do tego urządzenia nie tylko jest niezgodne z jego przeznaczeniem, ale również może prowadzić do niebezpiecznych sytuacji, w których wyłącznik nie zadziała w przypadku wykrycia różnicy prądu. Zgodnie z normami PN-IEC 61008-1, wyłączniki różnicowoprądowe powinny być podłączane w sposób, który umożliwia ich prawidłowe działanie i spełnienie wymogów związanych z ochroną przeciwporażeniową. Przykładem poprawnej instalacji jest wykorzystanie wyłącznika różnicowoprądowego w połączeniu z przewodami fazowymi i neutralnym, co zapewnia skuteczną ochronę i minimalizuje ryzyko uszkodzeń.

Pytanie 16

Podczas naprawy obwodu zasilania silnika indukcyjnego trójfazowego o mocy 7,5 kW technik ma wymienić uszkodzony przewód OWY 4×4 mm2 450 V/750 V na nowy. Która z poniższych właściwości przewodu H03RR-F 4G4 uniemożliwia jego wykorzystanie w miejsce dotychczasowego?

A. Zbyt mały przekrój znamionowy żył przewodu
B. Zbyt niskie napięcie znamionowe przewodu
C. Niewłaściwy materiał izolacji przewodu
D. Brak żyły izolowanej w kolorze żółtozielonym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zastosowanie przewodu H03RR-F 4G4 w miejsce przewodu OWY 4×4 mm² 450 V/750 V jest niewłaściwe, ponieważ jego napięcie znamionowe wynosi zaledwie 300 V/500 V, co jest zbyt niskie w kontekście wymagań dla obwodu zasilania silnika indukcyjnego o mocy 7,5 kW. Przewody muszą być dobierane zgodnie z maksymalnym napięciem, jakie mogą występować w danej instalacji. Standardy, takie jak PN-IEC 60228, określają dopuszczalne wartości dla przewodów, a dla silników często rekomendowane jest używanie przewodów o wyższym napięciu znamionowym, aby zapewnić nie tylko sprawność, ale również bezpieczeństwo użytkowania. W praktyce, stosowanie przewodów o adekwatnym napięciu znamionowym chroni przed ryzykiem przebicia izolacji, co mogłoby prowadzić do awarii urządzeń oraz potencjalnie niebezpiecznych sytuacji. W przypadku, gdyby przewód uległ uszkodzeniu, niskie napięcie znamionowe mogłoby nie zapewnić odpowiedniej ochrony, dlatego kluczowe jest przestrzeganie norm branżowych przy doborze materiałów. Właściwy dobór przewodów nie tylko wpływa na wydajność instalacji, ale również na bezpieczeństwo operacyjne, co jest priorytetem w każdej branży związanej z instalacjami elektrycznymi.

Pytanie 17

Jakim skrótem literowym określamy system automatyki energetycznej, który umożliwia przywrócenie normalnej pracy linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające?

A. SPZ
B. SRN
C. SZR
D. SCO

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Skrót SPZ (samoczynne przywracanie zasilania) odnosi się do systemu automatyki energetycznej, który ma na celu przywrócenie normalnego funkcjonowania linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające. System ten jest kluczowy dla zapewnienia ciągłości dostaw energii elektrycznej oraz minimalizacji przerw w zasilaniu. W praktyce, SPZ działa na zasadzie wykrywania awarii lub przeciążeń, co inicjuje proces odłączenia danego obwodu. Po ustabilizowaniu warunków pracy i wykryciu, że awaria została usunięta, system automatycznie przywraca zasilanie. Przykładowo, w przypadku chwilowego wzrostu zapotrzebowania, SPZ może zresetować wyłącznik, co pozwala uniknąć niepotrzebnych przerw w zasilaniu. Praktyczna implementacja SPZ znajduje zastosowanie w różnych sektorach, od przemysłu, przez sieci dystrybucji, aż po systemy energetyczne w budynkach. Wiele krajowych standardów, takich jak PN-EN 50160, podkreśla znaczenie takich rozwiązań dla jakości dostaw energii elektrycznej oraz bezpieczeństwa systemu energetycznego.

Pytanie 18

Jaką czynność powinno się wykonać w trakcie oględzin urządzenia napędowego z silnikiem pierścieniowym podczas jego pracy?

A. Sprawdzenie poziomu drgań
B. Ocena stanu pierścieni ślizgowych
C. Sprawdzenie połączeń elementów urządzenia
D. Ocena stanu szczotek i szczotkotrzymaczy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie poziomu drgań jest kluczowym elementem oceny stanu technicznego urządzenia napędowego z silnikiem pierścieniowym. Drgania mogą być wskaźnikiem wielu problemów, takich jak niewyważenie wirnika, luzy w łożyskach czy nieprawidłowe ustawienie osi. Monitorowanie drgań podczas pracy urządzenia pozwala na wczesne wykrycie tych problemów i podjęcie działań naprawczych, co może znacznie wydłużyć żywotność maszyny. W praktyce, stosuje się różne metody pomiaru drgań, w tym analizatory drgań, które mogą dostarczyć szczegółowych informacji na temat amplitudy, częstotliwości oraz charakterystyki drgań. Zgodnie z normami ISO 10816, ocena drgań powinna być wykonywana regularnie, a wyniki należy porównywać z wartościami granicznymi, aby określić stan techniczny urządzenia. Dobra praktyka w branży mechanicznej zaleca prowadzenie dokumentacji pomiarów, co umożliwia śledzenie zmian w czasie i diagnozowanie potencjalnych usterek.

Pytanie 19

Ile minimum osób powinno zajmować się pracami w warunkach szczególnego zagrożenia?

A. Jedna osoba
B. Dwie osoby
C. Trzy osoby
D. Cztery osoby

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że co najmniej dwie osoby powinny wykonywać prace w warunkach szczególnego zagrożenia, jest zgodna z zasadami bezpieczeństwa i higieny pracy (BHP). W praktyce oznacza to, że w sytuacjach stwarzających ryzyko dla zdrowia lub życia, konieczne jest, aby jedna osoba mogła nie tylko wykonać dane zadanie, ale także zapewnić wsparcie oraz interwencję w przypadku nagłego wypadku. Taka zasada jest szczególnie ważna w środowiskach, gdzie występują czynniki niebezpieczne, takie jak substancje chemiczne, prace na wysokości czy w zamkniętych przestrzeniach. W odniesieniu do standardów OSHA (Occupational Safety and Health Administration) oraz normy ISO 45001, które dotyczą zarządzania bezpieczeństwem i zdrowiem w pracy, posiadanie co najmniej dwóch pracowników przy takich zadaniach jest kluczowe dla zapewnienia odpowiedniej reakcji na potencjalne zagrożenia. Przykładem może być sytuacja, w której jeden pracownik może doznać kontuzji lub stracić przytomność, a drugi będzie w stanie wezwać pomoc lub udzielić pierwszej pomocy, co może uratować życie. Dwuosobowa obsada w trudnych warunkach stanowi także dodatkowy element kontroli i bezpieczeństwa, co jest zalecane w wielu branżach, takich jak budownictwo czy przemysł chemiczny.

Pytanie 20

Jaka powinna być minimalna wartość znamionowego prądu wyłącznika nadprądowego chroniącego obwód zasilający jednofazowy piekarnik oporowy, aby przy napięciu 230 V mógł on pobierać moc elektryczną równą 2 kW?

A. 16 A
B. 20 A
C. 13 A
D. 10 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć minimalną wartość znamionowego prądu wyłącznika nadprądowego, należy zastosować wzór na moc elektryczną, który łączy moc (P), napięcie (U) oraz prąd (I). Wzór ten można przedstawić jako P = U * I. Z naszej sytuacji mamy moc 2 kW (2000 W) oraz napięcie 230 V. Przekształcając wzór, otrzymujemy I = P / U. Podstawiając wartości, otrzymujemy I = 2000 W / 230 V, co daje około 8,7 A. Jabłko z tej wartości, zgodnie z normami i zaleceniami stosuje się wyłączniki nadprądowe o wartościach znamionowych, które są standardowo dostępne w sklepach. Wyłączniki te są dostępne w wartościach 6 A, 10 A, 16 A, 20 A i wyższych. Zatem, aby zapewnić odpowiedni margines bezpieczeństwa oraz zgodność z przepisami, minimalna wartość wyłącznika powinna wynosić 10 A. Dobrym przykładem zastosowania tego wyłącznika jest jego użycie w domowych instalacjach elektrycznych, gdzie piekarniki oporowe są powszechnie używane. Wybór wyłącznika o wartości znamionowej 10 A chroni obwód przed przeciążeniem oraz awarią sprzętu.

Pytanie 21

Jakim skrótem określa się w obowiązujących normach odnoszących się do instalacji elektrycznych systemy ochrony od piorunów?

A. SPZ
B. LPL
C. LPS
D. SPD

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'LPS' oznacza 'Lightning Protection System', co w języku polskim można przetłumaczyć jako 'system ochrony odgromowej'. Jest to termin określający zestaw rozwiązań technicznych mających na celu zabezpieczenie obiektów przed skutkami wyładowań atmosferycznych. W kontekście aktualnych norm, takich jak norma PN-EN 62305, systemy LPS są projektowane i instalowane w celu minimalizacji ryzyka uszkodzeń strukturalnych oraz zapewnienia bezpieczeństwa ludzi i mienia. Przykładem zastosowania LPS może być budynek użyteczności publicznej, gdzie zainstalowane są przewody odgromowe, złącza uziemiające oraz elementy ochrony wewnętrznej, które współpracują w celu skutecznego odprowadzania energii odgromowej w sposób kontrolowany. Dodatkowo, zgodność z normami międzynarodowymi, takimi jak IEC 62305, zapewnia, że systemy te wykonane są zgodnie z najlepszymi praktykami inżynieryjnymi, co zwiększa ich efektywność oraz bezpieczeństwo eksploatacji.

Pytanie 22

Korzystając z danych zamieszczonych w tabeli wyznacz, wartość rezystancji jednej żyły przewodu YDY 3×2,5 mm2 o długości 100 m.

Dane techniczne przewodu YDY
Ilość i przekrój znamionowy żyłGrubość znamionowa izolacjiMax. rezystancja żyłOrientacyjna masa przewodu o długości 1 km
mm²mmΩ/kmkg/km
2x10,818,181
2x1,50,812,197
2x2,50,87,41125
2x40,94,61176
2x60,93,08228
3x10,918,196
3x1,50,912,1116
3x2,50,97,41153

A. 741,0 Ω
B. 0,741 Ω
C. 7,410 Ω
D. 74,10 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź '0,741 Ω' jest jak najbardziej trafna! Dobrze, że wziąłeś pod uwagę długość przewodu, bo 100 m to tak naprawdę 1/10 km. Obliczenia rezystancji dla przewodów miedzianych można znaleźć w normach, a te mówią, że dla 2,5 mm² rezystancja na kilometr to około 7,41 Ω. Wiadomo, że jeśli mamy 100 m, to musimy to przeliczyć na 0,741 Ω. W inżynierii elektrycznej takie obliczenia są mega ważne, bo pomagają zrozumieć, jak minimalizować straty energii i dobierać odpowiednie zabezpieczenia. Właściwe przeliczenia pomagają w efektywności energetycznej. Formuła R = ρ * (L / A) to standardowy sposób podejścia, który powinien być znany każdemu, kto projektuje instalacje elektryczne. Dzięki temu cały system działa lepiej.

Pytanie 23

Jakim przyrządem należy przeprowadzić bezpośredni pomiar mocy biernej?

A. Częstościomierza
B. Waromierza
C. Fazomierza
D. Watomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Waromierz jest specjalistycznym przyrządem pomiarowym, który umożliwia bezpośredni pomiar mocy biernej w obwodach prądu zmiennego. Działa na zasadzie pomiaru wartości mocy w układzie, w którym występuje przesunięcie fazowe między napięciem a prądem. Odpowiednią wartość mocy biernej można określić, wykorzystując wzór P = V * I * cos(ϕ), gdzie P to moc pozorna, a ϕ to kąt przesunięcia fazowego. Waromierz jest szczególnie przydatny w zastosowaniach przemysłowych, gdzie występują silniki elektryczne i inne urządzenia indukcyjne, które generują moc bierną. W praktyce, pomiar mocy biernej jest kluczowy dla optymalizacji efektywności energetycznej oraz dla zapobiegania nadmiernym kosztom związanym z opłatami za moc bierną. Przykładem zastosowania waromierza może być analiza obciążeń w zakładzie produkcyjnym, gdzie identyfikacja mocy biernej pozwala na odpowiednie dostosowanie charakterystyk urządzeń do potrzeb sieci energetycznej.

Pytanie 24

Przed rozpoczęciem pomiaru rezystancji izolacji uzwojeń wirnika silnika z pierścieniem w pierwszej kolejności należy

A. odłączyć rezystory rozruchowe
B. sprawdzić ciągłość obwodu wirnika
C. wymienić szczotki
D. zwierać uzwojenie stojana

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odłączenie rezystorów rozruchowych przed pomiarem rezystancji izolacji uzwojeń wirnika silnika pierścieniowego jest kluczowym krokiem, aby uniknąć uszkodzeń sprzętu oraz zapewnić dokładność pomiarów. Rezystory rozruchowe są stosowane w obwodach silników w celu kontroli prądu rozruchowego, co oznacza, że są one podłączone do układu w momencie uruchamiania silnika. Jeśli nie zostaną odłączone, mogą powstać niepożądane połączenia, które zakłócą wyniki pomiarów rezystancji izolacji oraz mogą spowodować uszkodzenie miernika. Zgodnie z normą IEC 61557-1 dotyczącą pomiarów ochronnych w instalacjach elektrycznych, należy zawsze dbać o bezpieczeństwo i dokładność pomiarów, co obliguje do odpowiedniego przygotowania układów przed ich wykonaniem. Działania takie są istotne w kontekście zapobiegania awariom, które mogą prowadzić do kosztownych napraw lub przestojów w pracy maszyn. W praktyce, przed każdym pomiarem izolacji, zaleca się także sprawdzenie stanu szczotek i wirnika, ale najpierw kluczowe jest odłączenie obwodów, które mogłyby wpłynąć na pomiar.

Pytanie 25

Jakie z wymienionych urządzeń, przy zastosowaniu przekaźnika termicznego oraz stycznika, umożliwia zapewnienie pełnej ochrony przed zwarciem i przeciążeniem silnika trójfazowego o parametrach: Pn = 5,5 kW, Un = 400/690 V?

A. Bezpiecznik typu aM
B. Wyłącznik nadprądowy typu B
C. Wyłącznik nadprądowy typu Z
D. Bezpiecznik typu aR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bezpiecznik typu aM jest właściwym wyborem do zabezpieczenia silnika trójfazowego o mocy 5,5 kW i napięciu 400/690 V. Ten typ bezpiecznika został zaprojektowany do ochrony przed przeciążeniem i zwarciem w aplikacjach silnikowych. Charakteryzuje się on wydłużonym czasem reakcji na prąd przeciążeniowy, co pozwala na chwilowe przekroczenie prądu nominalnego bez wyzwolenia, co jest niezbędne w przypadku rozruchu silnika. Dzięki temu zabezpieczenie jest w stanie tolerować wyższe prądy startowe, co jest kluczowe w praktycznych zastosowaniach, takich jak uruchamianie maszyn w zakładach przemysłowych. Dodatkowo, zastosowanie przekaźnika termicznego oraz stycznika umożliwia pełne zabezpieczenie silnika, zapewniając nie tylko ochronę przed zwarciem, ale również przed długotrwałym przeciążeniem. Przykłady poprawnych zastosowań obejmują silniki napędowe w pompach, wentylatorach czy kompresorach, gdzie wymagane jest niezawodne zabezpieczenie przed uszkodzeniem. Wysoka jakość wykonania i zgodność z normami IEC 60269 sprawiają, że bezpieczniki typu aM są często preferowane w profesjonalnych instalacjach.

Pytanie 26

Jak wymiana uzwojenia pierwotnego na inne, wykonane z drutów nawojowych o podwójnym przekroju i tej samej liczbie zwojów, wpłynie na działanie transformatora, przy zachowanym uzwojeniu wtórnym?

A. Zredukuje się moc pobierana z transformatora
B. Zmaleje napięcie na końcówkach uzwojenia wtórnego
C. Zwiększy się efektywność transformatora
D. Wzrasta napięcie na końcówkach uzwojenia wtórnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana uzwojenia pierwotnego na druty o większym przekroju, przy tej samej liczbie zwojów, wpływa korzystnie na sprawność transformatora. Zwiększenie przekroju drutów prowadzi do obniżenia oporu elektrycznego uzwojenia, co w efekcie zmniejsza straty mocy na skutek efektu Joule'a (straty I²R). To oznacza, że przy tej samej wartości prądu, straty ciepła w uzwojeniu pierwotnym będą mniejsze, co przekłada się na wyższą sprawność całego urządzenia. W praktyce, zastosowanie drutów o większym przekroju jest zgodne z zasadami inżynierii, gdzie dąży się do minimalizacji strat energii oraz poprawy efektywności energetycznej urządzeń. W przemyśle energetycznym, efektywność transformatorów jest kluczowa, ponieważ ma bezpośredni wpływ na zużycie energii i koszty operacyjne. Na przykład, w elektrowniach i stacjach transformacyjnych stosuje się takie rozwiązania, aby zminimalizować straty energii i poprawić parametry pracy urządzeń.

Pytanie 27

Który z wymienionych rozwiązań powinien być zastosowany w warsztacie remontowym, aby zapewnić podstawową ochronę przed porażeniem prądem elektrycznym?

A. Wyłączniki różnicowoprądowe
B. Obudowy i osłony
C. Miejscowe połączenia wyrównawcze
D. Separacja elektryczna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obudowy i osłony to kluczowe elementy zabezpieczeń elektrycznych, które mają na celu ochronę użytkowników przed niebezpieczeństwem porażenia prądem elektrycznym. Ich głównym zadaniem jest zapobieganie bezpośredniemu kontaktowi z elementami pod napięciem, co minimalizuje ryzyko wypadków. Standardy takie jak PN-EN 61140 określają wymagania dotyczące ochrony przed porażeniem prądem, a zastosowanie odpowiednich obudów, które są wykonane z materiałów odpornych na działanie prądu, jest jedną z podstawowych zasad. Przykładowo, w warsztatach remontowych, gdzie często używane są narzędzia elektryczne, zastosowanie obudów ochronnych na gniazdka i urządzenia jest konieczne. Dzięki temu, nawet w przypadku uszkodzenia izolacji, ryzyko porażenia prądem zostaje znacząco ograniczone. Dodatkowo, stosowanie osłon na kable i urządzenia może przyczynić się do zmniejszenia uszkodzeń mechanicznych, co jest istotne w kontekście długoterminowej niezawodności oraz bezpieczeństwa pracy.

Pytanie 28

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT-00 gF
B. WT/NHaM
C. WT-2gTr
D. WT/NH DC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładka topikowa WT/NHaM została zaprojektowana specjalnie do ochrony silników indukcyjnych przed skutkami zwarć. Posiada ona właściwości, które pozwalają na szybkie odłączenie obwodu w przypadku wystąpienia zwarcia, co jest kluczowe dla ochrony zarówno samego silnika, jak i całej instalacji elektrycznej. Zastosowanie tej wkładki jest zgodne z normami IEC 60269, które definiują wymagania dotyczące wkładek bezpiecznikowych. W praktyce, wkładki WT/NHaM charakteryzują się niskimi wartościami prądu zwarciowego, co zapewnia ich efektywność w przypadku krótkotrwałych przeciążeń, typowych dla pracy silników. W przypadku, gdy w silniku dojdzie do zwarcia, wkładka ta reaguje w sposób błyskawiczny, co minimalizuje ryzyko uszkodzenia komponentów. Przykładem zastosowania może być przemysł, w którym silniki napędzają maszyny, a ich bezpieczne i niezawodne funkcjonowanie jest kluczowe dla ciągłości produkcji.

Pytanie 29

Które z poniższych stwierdzeńnie jest rezultatem przeglądu instalacji elektrycznej?

A. Elementy instalacji zostały odpowiednio dobrane i poprawnie zainstalowane
B. Zachowana jest ciągłość przewodów ochronnych oraz połączeń wyrównawczych
C. Na podstawie danych dostarczonych przez producenta, oznaczeń oraz certyfikatów, elementy instalacji są zgodne z normami bezpieczeństwa
D. W instalacji nie stwierdzono widocznych uszkodzeń, które mogłyby deteriorować bezpieczeństwo

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zachowanie ciągłości przewodów ochronnych oraz połączeń wyrównawczych jest kluczowym elementem zapewnienia bezpieczeństwa w instalacjach elektrycznych. Dobrze zaprojektowane i wykonane połączenia ochronne są niezbędne do skutecznego odprowadzenia prądów zwarciowych do ziemi, co minimalizuje ryzyko porażenia elektrycznego oraz pożaru. W praktyce, ciągłość tych połączeń można zweryfikować za pomocą pomiarów rezystancji, które powinny wykazywać wartości zgodne z normami, np. PN-EN 61557-4. W przypadku ich braku, nawet jeśli inne elementy instalacji wydają się być w dobrym stanie, istnieje realne niebezpieczeństwo wystąpienia awarii, co podkreśla znaczenie regularnych inspekcji i pomiarów. Działania te są zgodne z najlepszymi praktykami zawartymi w dokumentach normatywnych, co pozwala na prewencję oraz zapewnienie wysokiego poziomu bezpieczeństwa użytkowników instalacji elektrycznej.

Pytanie 30

Jakie powinno być napięcie pomiarowe przy ocenie rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V, w których brak jest ochrony przed przepięciami?

A. 500 V
B. 1 000 V
C. 750 V
D. 250 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wynik 500 V jako wymagane napięcie pomiarowe przy badaniu rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V bez ochrony przeciwprzepięciowej jest zgodny z zaleceniami normy PN-EN 61557-2, która określa metody pomiaru rezystancji izolacji. Użycie napięcia 500 V pozwala na uzyskanie wiarygodnych wyników pomiarów, ponieważ jest wystarczające do wykrycia potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć lub innych awarii. W praktyce, pomiar 500 V jest standardowo stosowany zarówno w budynkach mieszkalnych, jak i przemysłowych, co zapewnia bezpieczeństwo użytkowników oraz niezawodność instalacji. Ważne jest, aby pomiar był przeprowadzany w odpowiednich warunkach, a urządzenia pomiarowe były regularnie kalibrowane. Przykładem zastosowania może być ocena stanu izolacji w trakcie przeglądów okresowych instalacji, co pozwala na wczesne wykrycie problemów, zanim dojdzie do poważnych awarii lub zagrożeń.

Pytanie 31

Jak można podnieść moc bierną indukcyjną oddawaną do sieci przez działającą w elektrowni prądnicę synchroniczną przy niezmiennej mocy czynnej?

A. Zwiększając prąd wzbudzenia
B. Zwiększając moment napędowy
C. Zmniejszając moment napędowy
D. Zmniejszając prąd wzbudzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwiększając prąd wzbudzenia prądnicy synchronicznej, można zwiększyć moc bierną indukcyjną wydawaną do sieci, zachowując stałą moc czynną. Prąd wzbudzenia kontroluje strumień magnetyczny w wirniku maszyny, a większy prąd wzbudzenia prowadzi do wzrostu tego strumienia. W rezultacie maszyna może wytwarzać więcej mocy biernej, co jest istotne w kontekście stabilności systemu elektroenergetycznego, szczególnie w przypadku dużych odbiorników mocy biernej. W praktyce, zwiększenie prądu wzbudzenia jest standardową metodą wykorzystywaną w elektrowniach, aby dostosować poziom mocy biernej do wymagań sieci. To podejście jest zgodne z zasadami zarządzania mocą bierną, które są kluczowe dla utrzymania równowagi energetycznej oraz jakości dostarczanej energii elektrycznej. Warto również zauważyć, że nadmierne zwiększenie prądu wzbudzenia może prowadzić do zjawiska nasycenia, dlatego operatorzy muszą starannie monitorować i regulować wartość wzbudzenia.

Pytanie 32

Podczas pracy urządzeń napędowych, oględziny nie obejmują oceny

A. wskazań aparatury kontrolno-pomiarowej
B. poziomu drgań
C. stanu szczotek
D. stanu osłon części wirujących

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "stanu szczotek" jest poprawna, ponieważ podczas oględzin urządzeń napędowych w czasie ich pracy koncentrujemy się na aspektach, które bezpośrednio wpływają na ich funkcjonowanie oraz bezpieczeństwo. Stan szczotek, które są zwykle elementami wykonawczymi w silnikach elektrycznych, nie jest kontrolowany podczas pracy, gdyż ich ocena wymaga zatrzymania urządzenia. Oględziny skupiają się na monitorowaniu parametrów pracy, takich jak poziom drgań, które mogą wskazywać na nieprawidłowości w pracy łożysk lub wirników, oraz na wskazaniach aparatury kontrolno-pomiarowej, które dostarczają kluczowych informacji o stanie technicznym urządzenia. Przykładem praktycznym są procedury dotyczące diagnostyki i konserwacji silników elektrycznych, gdzie regularne sprawdzanie poziomu drgań i temperatury ma na celu zapobieganie awariom oraz optymalizację pracy maszyn. Zgodnie z normami ISO 10816, monitorowanie drgań jest niezbędne dla zapewnienia ciągłości produkcji oraz minimalizacji kosztów związanych z naprawami i przestojami.

Pytanie 33

Ile maksymalnie gniazd wtykowych można zainstalować w jednym obwodzie w instalacjach elektrycznych w budynkach mieszkalnych?

A. 6
B. 4
C. 10
D. 12

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 10 gniazd wtyczkowych na jedno gniazdo obwodowe jest zgodna z normami oraz praktykami stosowanymi w instalacjach elektrycznych. Zgodnie z Polskimi Normami, a także wytycznymi zawartymi w normach europejskich, maksymalna liczba gniazd wtyczkowych, które można podłączyć do jednego obwodu, powinna wynosić 10. To ograniczenie wynika z konieczności zapewnienia bezpieczeństwa użytkowników oraz ochrony instalacji przed przeciążeniem. Zbyt duża liczba gniazd wtyczkowych podłączonych do jednego obwodu może prowadzić do przegrzewania się przewodów, a co za tym idzie, do ryzyka pożaru. Przykładem może być sytuacja, w której użytkownik podłącza wiele urządzeń o dużym poborze mocy, takich jak czajniki, mikrofalówki czy komputery, co może przekroczyć dopuszczalny prąd obwodu. Dlatego ważne jest przestrzeganie zasad bezpieczeństwa oraz odpowiednie projektowanie instalacji elektrycznych, aby uniknąć niebezpieczeństw związanych z przeciążeniem.

Pytanie 34

Jakiego rodzaju pracy powinien być przystosowany silnik elektryczny, który ma napędzać wentylator wyciągowy w procesie obróbki drewna?

A. S3 - praca okresowa przerywana
B. S1 - praca ciągła
C. S9 - praca z nieokresowymi zmianami obciążenia i prędkości obrotowej
D. S7 - praca okresowa długotrwała z hamowaniem elektrycznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik elektryczny do wentylatora wyciągowego w obróbce drewna powinien być przystosowany do pracy ciągłej. To znaczy, że powinien działać bez przerwy, co jest bardzo ważne w kontekście wentylacji. Wentylatory wyciągowe często są używane tam, gdzie potrzebne jest ciągłe usuwanie powietrza z miejsca pracy. Przykładem mogą być hale produkcyjne, gdzie trzeba na bieżąco pozbywać się pyłów i szkodliwych oparów. Z mojego doświadczenia wynika, że takie warunki są kluczowe, by zapewnić zdrowie pracowników. Silniki do pracy ciągłej są też tak projektowane, żeby uniknąć przegrzewania. To z kolei przekłada się na ich wydajność i niezawodność. W branży są normy, jak IEC 60034, które określają, jak powinny działać silniki w różnych sytuacjach, co zapewnia bezpieczeństwo i efektywność.

Pytanie 35

Jaki jest maksymalny czas automatycznego wyłączenia zasilania w celu zapewnienia ochrony przed porażeniem elektrycznym w przypadku awarii w obwodach odbiorczych o prądzie nominalnym I < 32 A w jednofazowym układzie sieciowym TN przy napięciu 230 V?

A. 5,0 s
B. 0,2 s
C. 0,4 s
D. 0,1 s

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalny czas samoczynnego wyłączenia zasilania w przypadku uszkodzenia w obwodach odbiorczych o prądzie znamionowym I < 32 A w układzie sieciowym TN jednofazowym przy napięciu 230 V wynosi 0,4 s. Zgodnie z normą PN-EN 61140, czas wyłączenia zasilania w przypadku wystąpienia uszkodzenia izolacji jest kluczowy dla zapewnienia ochrony przeciwporażeniowej. W obwodach jednofazowych z prądem znamionowym niższym niż 32 A wymóg ten został określony jako 0,4 s, co ma na celu minimalizację ryzyka porażenia prądem w przypadku awarii. Przykładem zastosowania tej zasady może być instalacja elektryczna w domach mieszkalnych, gdzie zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), muszą działać w określonym czasie, by zapewnić bezpieczeństwo użytkowników. Długotrwałe wystawienie na działanie prądu może prowadzić do poważnych obrażeń, dlatego tak ważne jest przestrzeganie tych norm. W praktyce oznacza to, że w przypadku uszkodzenia urządzenia lub przewodów, odcięcie zasilania musi nastąpić w krótkim czasie, aby zminimalizować ryzyko dla użytkowników.

Pytanie 36

Korzystając z tabeli oceń, który wynik badania pozwala wyciągnąć pozytywny wniosek o stanie izolacji jednofazowej instalacji elektrycznej 230 V, 50 Hz.

Napięcie nominalne obwoduNapięcie pomiarowe prądu stałego d.c.Wymagana rezystancja izolacji
V
SELV i PELV250≥ 0,5
do 500 V włącznie, w tym FELV500≥ 1,0
powyżej 500 V1000≥ 1,0

Wynik badaniaNapięcie pomiarowe prądu stałego, kVRezystancja izolacji, kΩ
A.2301050
B.250500
C.4001100
D.5001000

A. A.
B. D.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź D jest prawidłowa, ponieważ zgodnie z obowiązującymi normami, szczególnie normą PN-EN 60204-1, rezystancja izolacji dla instalacji jednofazowych o napięciu nominalnym do 500 V powinna wynosić co najmniej 1,0 MΩ. W przypadku badania przedstawionego w odpowiedzi D, rezystancja izolacji wynosi 1000 kΩ, co jest równoważne 1 MΩ, a więc spełnia wymagania normatywne. W praktyce oznacza to, że instalacja elektryczna jest w dobrym stanie, a ryzyko wystąpienia awarii izolacji lub porażenia prądem jest zminimalizowane. Istotne jest, aby regularnie przeprowadzać pomiary rezystancji izolacji, aby zapewnić bezpieczeństwo użytkowników oraz prawidłowe funkcjonowanie urządzeń elektrycznych. Normy te mają na celu nie tylko ochronę przed porażeniem prądem, ale także zapobieganie uszkodzeniom sprzętu w wyniku niewłaściwej izolacji. Utrzymywanie odpowiedniej izolacji w instalacjach elektrycznych jest kluczowym elementem zarządzania bezpieczeństwem w każdym obiekcie.

Pytanie 37

Której z poniższych czynności nie da się zrealizować podczas próbnego uruchamiania zgrzewarki oporowej?

A. Sprawdzenia działania przełącznika do zgrzewania pojedynczego oraz ciągłego
B. Pomiaru czasu poszczególnych etapów zgrzewania: docisku i przerwy
C. Sprawdzenia stanu oraz prawidłowości ustawienia elektrod
D. Pomiaru rezystancji izolacji pomiędzy uzwojeniem pierwotnym transformatora a obudową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji między uzwojeniem pierwotnym transformatora a obudową jest kluczowym krokiem w zapewnieniu bezpieczeństwa i niezawodności zgrzewarki oporowej. Wykonanie tego pomiaru przed rozpoczęciem użytkowania urządzenia pozwala na wykrycie ewentualnych uszkodzeń izolacji, co może prowadzić do zwarć elektrycznych czy porażenia prądem użytkowników. W praktyce, standardowe normy dotyczące bezpieczeństwa elektrycznego, takie jak IEC 60204-1, nakładają na producentów i operatorów obowiązek regularnego sprawdzania stanu izolacji urządzeń. Pomiar rezystancji izolacji można przeprowadzić za pomocą specjalistycznych mierników, które umożliwiają określenie wartości rezystancji w stosunku do wymaganych norm. Przykładowo, minimalna wartość rezystancji izolacji powinna wynosić co najmniej 1 MΩ w urządzeniach przemysłowych, co zapewnia odpowiedni poziom bezpieczeństwa. Regularne kontrole i pomiary takich parametrów, jak rezystancja izolacji, są częścią dobrych praktyk konserwacyjnych, które zapewniają długotrwałą sprawność i bezpieczeństwo urządzenia.

Pytanie 38

Jakiego przewodu należy użyć, aby zastąpić uszkodzony kabel zasilający silnik trójfazowy zainstalowany w urządzeniu mobilnym?

A. YDY 4x2,5 mm2
B. SM 3x2,5 mm2
C. YLY 3x2,5 mm2
D. OP 4x2,5 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź OP 4x2,5 mm2 jest prawidłowa, ponieważ ten typ przewodu jest odpowiedni do zasilania silników trójfazowych, zwłaszcza w aplikacjach, gdzie przewód ma być elastyczny i odporny na różne warunki pracy. Przewód OP (Ochronny Przewód) charakteryzuje się podwyższoną odpornością na działanie czynników zewnętrznych, co czyni go idealnym do zastosowań w odbiornikach ruchomych, gdzie przewód może być narażony na zginanie i tarcie. Zastosowanie przewodu o przekroju 4x2,5 mm2 oznacza, że mamy do czynienia z czterema żyłami, co jest typowe dla instalacji trójfazowych, gdzie potrzebne są trzy żyły fazowe i jedna żyła ochronna. Wybór odpowiedniego przewodu jest kluczowy dla zapewnienia bezpieczeństwa i efektywności działania silnika, a także minimalizowania ryzyka awarii. Przewody OP są zgodne z normami PN-EN 60228 oraz PN-EN 50525, co potwierdza ich wysoką jakość i odpowiednie parametry elektryczne w zastosowaniach przemysłowych.

Pytanie 39

Jaką wielkość należy zmierzyć, aby ocenić skuteczność zabezpieczeń podstawowych w elektrycznej instalacji o napięciu znamionowym do 1 kV?

A. Rezystancji uziomu
B. Napięcia krokowego
C. Impedancji zwarciowej
D. Rezystancji izolacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony podstawowej w instalacjach elektrycznych, szczególnie w tych o napięciu znamionowym do 1 kV. Odpowiedni poziom rezystancji izolacji zapewnia, że nie występują niepożądane przepływy prądu do ziemi, co mogłoby prowadzić do porażenia prądem lub uszkodzenia urządzeń. Zgodnie z normą PN-EN 60364-6, minimalna rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla systemów o napięciu do 1 kV, co gwarantuje odpowiednie bezpieczeństwo. Przykładem zastosowania tego pomiaru jest przeprowadzanie testów przed oddaniem do użytkowania nowej instalacji, a także regularne kontrole w celu wykrycia degradacji izolacji na skutek starzenia się materiałów, wilgoci czy innych czynników zewnętrznych. Dzięki tym pomiarom można zminimalizować ryzyko awarii, co jest szczególnie istotne w obiektach użyteczności publicznej oraz w środowiskach przemysłowych, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 40

Jakie grupy połączeń transformatorów trójfazowych działających w konfiguracji trójkąt-gwiazda są rekomendowane przez PN do zastosowań praktycznych?

A. Dy7 i Dy11
B. Dy1 i Dy5
C. Dy5 i Dy11
D. Dy3 i Dy9

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź Dy5 i Dy11 jest prawidłowa, ponieważ te konfiguracje transformatorów trójfazowych są rekomendowane w Polskich Normach (PN) ze względu na swoje korzystne właściwości eksploatacyjne. Konfiguracja Dy5, czyli połączenie w gwiazdę z przesunięciem fazowym o 180°, jest często stosowana w systemach zasilających, ponieważ minimalizuje straty mocy i pozwala na stabilne zasilanie odbiorników w układzie nieuzwojonym. Z kolei Dy11, czyli połączenie w trójkąt z przesunięciem fazowym o 30°, jest powszechnie wykorzystywane w aplikacjach wymagających dużych wydajności oraz dobrej jakości energii. Oba połączenia zapewniają optymalne parametry pracy transformatorów, co przekłada się na ich długowieczność i niezawodność. Zastosowanie tych konfiguracji jest szczególnie ważne w przemysłowych systemach zasilających oraz w energetyce, gdzie skutkuje to obniżeniem harmonik prądu i poprawą jakości energii. Dlatego ich wybór jest zgodny z najlepszymi praktykami branżowymi oraz normami, co czyni je zalecanymi w projektach elektrycznych.