Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 27 kwietnia 2025 19:35
  • Data zakończenia: 27 kwietnia 2025 19:52

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Multiswitche umożliwiają

A. stworzenie systemu antenowego z dowolną ilością gniazd do odbioru.
B. sterowanie wszystkimi torami satelitarnymi.
C. wybór programów telewizyjnych do odbioru.
D. zmianę kąta azymutu anteny.
Multiswitche to urządzenia stosowane w systemach telewizji satelitarnej, które umożliwiają rozdzielenie sygnału satelitarnego na wiele gniazd odbiorczych. Dzięki nim można zbudować instalację antenową o dowolnej liczbie odbiorników, co jest szczególnie przydatne w dużych obiektach, takich jak bloki mieszkalne czy hotele. Multiswitch pozwala na podłączenie wielu dekoderów do jednego talerza satelitarnego. W praktyce oznacza to, że mieszkańcy mogą korzystać z różnych programów telewizyjnych bez potrzeby instalacji osobnych anten. Warto podkreślić, że dobrze zaprojektowana instalacja z użyciem multiswitchy powinna uwzględniać odpowiednie normy, takie jak EN 50083-2, które dotyczą parametrów technicznych systemów rozdzielających sygnały. Właściwe dobranie multiswitcha oraz jego konfiguracja mogą zadecydować o jakości odbioru i stabilności sygnału w różnych warunkach użytkowania.

Pytanie 2

Zaciski wyjściowe przekaźnika czujnika ruchu nie są oznaczone literami

A. COM
B. NO
C. NC
D. IN
Odpowiedź IN jest prawidłowa, ponieważ oznacza 'input', czyli wejście. W kontekście czujnika ruchu, przewód oznaczony jako IN jest przeznaczony do podłączenia zewnętrznego sygnału, który aktywuje urządzenie. W praktyce, czujniki ruchu wykorzystywane są w systemach automatyki budynkowej, gdzie detekcja ruchu uruchamia różne urządzenia, takie jak oświetlenie, alarmy czy systemy monitoringu. Prawidłowe zrozumienie oznaczeń zacisków jest kluczowe dla efektywnej instalacji i późniejszej konserwacji systemów. Stosowanie standardów, takich jak normy IEC, pozwala na jednoznaczne i spójne oznaczanie zacisków w różnych urządzeniach. Wiedza na temat właściwego podłączenia czujników oraz ich funkcji w systemach automatyki zwiększa bezpieczeństwo i komfort użytkowania.

Pytanie 3

Całkowity koszt materiałów potrzebnych do zrealizowania instalacji elektrycznej w mieszkaniu wynosi 2 000 zł brutto. Koszt realizacji instalacji odpowiada 100% wartości brutto materiałów. Jaką sumę trzeba będzie zapłacić za realizację instalacji, jeśli stawka VAT na usługi wynosi 8%?

A. 4 320 zł
B. 2 320 zł
C. 2 160 zł
D. 4 160 zł
Koszt całkowity wykonania instalacji elektrycznej w mieszkaniu wynosi 4 160 zł. W tej kwocie zawarte są zarówno koszty materiałów, jak i usługi. Koszt materiałów wynosi 2 000 zł brutto, co oznacza, że zawiera już podatek VAT na poziomie 8%. Koszt robocizny, który również wynosi 2 000 zł (100% ceny materiałów), nie jest obciążony dodatkowym VAT, ponieważ w tym przypadku usługi budowlane i instalacyjne również mogą być objęte tym samym stawką podatku. Zatem koszt przed podatkiem VAT wynosi 2 000 zł (koszt materiałów) + 2 000 zł (koszt robocizny), co daje 4 000 zł. Następnie należy obliczyć VAT, który wynosi 8% z 4 000 zł, co daje 320 zł. Sumując, 4 000 zł + 320 zł = 4 320 zł, a całkowity koszt z uwzględnieniem VAT to 4 160 zł. Praktyczne zastosowanie tej wiedzy jest kluczowe dla budżetowania projektów budowlanych, a znajomość stawek VAT pozwala na lepsze planowanie finansowe oraz zgodność z przepisami prawa.

Pytanie 4

W trakcie udzielania pierwszej pomocy, zgodnie z zasadą ABC (ang. Airways, breath, circulation), co należy wykonać w pierwszej kolejności?

A. układanie w pozycji bocznej
B. udrożnienie dróg oddechowych
C. sztuczne oddychanie
D. masaż serca
Udrożnienie dróg oddechowych jest kluczowym krokiem w udzielaniu pierwszej pomocy, zgodnym z regułą ABC, która podkreśla kolejność podejmowanych działań w sytuacjach zagrożenia życia. Drugi i trzeci element, czyli wentylacja i krążenie, są nieefektywne, jeśli drogi oddechowe są zablokowane. W praktyce, aby udrożnić drogi oddechowe, można zastosować technikę przechylania głowy do tyłu i unoszenia bródki, co ułatwia przepływ powietrza. W przypadku pacjentów nieprzytomnych, istotne jest również zastosowanie manewru żuchwy, aby usunąć wszelkie przeszkody, takie jak ciała obce. Standardy resuscytacji, takie jak wytyczne American Heart Association, jednoznacznie wskazują na to, iż przed rozpoczęciem wentylacji lub masażu serca, należy zawsze upewnić się, że drogi oddechowe są udrożnione. Takie podejście zwiększa szansę na skuteczną pomoc i minimalizuje ryzyko powikłań, takich jak niedotlenienie mózgu. W sytuacjach kryzysowych, gdzie każda sekunda ma znaczenie, umiejętność szybkiego i skutecznego udrożnienia dróg oddechowych jest nieoceniona.

Pytanie 5

Tłumienność wynosząca 1 dB/km wskazuje, że na odcinku światłowodu o długości 10 km dochodzi do rozproszenia

A. 10% wartości mocy sygnału przychodzącego
B. 20% wartości mocy sygnału przychodzącego
C. 90% wartości mocy sygnału przychodzącego
D. 80% wartości mocy sygnału przychodzącego
Widzę, że wybrałeś odpowiedź, w której mówisz, że na 10 km światłowodu rozprasza się 80%, 20% czy 10% mocy sygnału. To trochę pomyłka, bo nie do końca ogarnąłeś, jak to jest z tłumiennością i mocą sygnału. Tłumienność 1 dB/km znaczy, że na każdy kilometr moc sygnału spada o 1 dB. W praktyce na 10 km to daje 10 dB straty mocy, ale łatwo się pomylić, licząc, że jest to liniowe. Jak myślisz, że to procenty, a nie decybele, to można sobie głupotę wytłumaczyć, jak byś sądził, że 20% sygnału to dużo, a w rzeczywistości na końcu zostaje tylko 10%. Rozumienie tego tematu jest istotne, szczególnie przy projektowaniu sieci światłowodowych, gdzie dobre obliczenia tłumienia są kluczowe do przewidywania, jak daleko sygnał dojdzie i jak dobrze będzie działać. Jeśli nie weźmiesz tego pod uwagę, to mogą być kłopoty z jakością usług.

Pytanie 6

Aby oczyścić soczewkę lasera w napędzie CD, należy zastosować

A. wodę destylowaną
B. benzynę ekstrakcyjną
C. denaturat
D. izopropanol
Izopropanol jest powszechnie używanym rozpuszczalnikiem do czyszczenia soczewek lasera w napędach CD, ponieważ skutecznie usuwa zanieczyszczenia, takie jak pył, odciski palców czy inne substancje organiczne, nie pozostawiając resztek. W przeciwieństwie do innych substancji, izopropanol szybko paruje, co minimalizuje ryzyko uszkodzenia wrażliwych komponentów podzespołów. W przemyśle elektronicznym i serwisach zajmujących się naprawą sprzętu audio-wideo, izopropanol jest standardem w procesach konserwacyjnych. Zaleca się stosować roztwór o stężeniu co najmniej 91%, aby zapewnić maksymalną efektywność w usuwaniu zanieczyszczeń. Przykładowo, podczas konserwacji napędu, należy nawilżyć bawełnianą szmatkę izopropanolem i delikatnie przetrzeć soczewkę, co nie tylko przywróci jej czystość, ale również poprawi jakość odczytu danych. Dobrą praktyką jest unikanie nadmiaru cieczy oraz stosowanie odpowiednich narzędzi, aby nie uszkodzić delikatnych komponentów napędu.

Pytanie 7

Na wychyłowym przyrządzie do pomiaru napięcia umieszczono symbol przedstawiony na rysunku. Jaki ustrój zastosowano w tym mierniku?

Ilustracja do pytania
A. Magnetoelektryczny
B. Elektromagnetyczny
C. Elektrodynamiczny
D. Ferrodynamiczny
Odpowiedź "Magnetoelektryczny" jest poprawna, ponieważ symbol przedstawiony na rysunku odnosi się do ustroju magnetoelektrycznego, który jest kluczowym elementem w analogowych przyrządach pomiarowych. Mierniki magnetoelektryczne działają na zasadzie interakcji między polem magnetycznym wytworzonym przez magnes trwały a polem magnetycznym generowanym przez prąd przepływający przez cewkę. W wyniku tego zjawiska, cewka ruchoma przemieszcza się, co powoduje wychylenie wskazówki na skali pomiarowej. Tego rodzaju urządzenia są szeroko stosowane w laboratoriach oraz w przemyśle, ponieważ zapewniają wysoką dokładność pomiarów napięcia. Standardy ISO oraz normy IEC definiują wymagania dotyczące projektowania i kalibracji tych urządzeń, co gwarantuje ich niezawodność i precyzyjność w różnych warunkach pracy. Znajomość zasad działania ustrojów magnetoelektrycznych jest niezbędna dla inżynierów i techników zajmujących się pomiarami elektrycznymi.

Pytanie 8

Jakiego typu czujkę powinno się wykorzystać w pomieszczeniu, gdzie występują intensywne ruchy powietrza spowodowane działaniem pieca lub klimatyzatora?

A. Przewodową pasywną czujkę podczerwieni typu PET
B. Bezprzewodową pasywną czujkę podczerwieni
C. Przewodową pasywną czujkę podczerwieni
D. Dualną czujkę ruchu
Wybieranie pasywnych czujek podczerwieni, jak te przewodowe czy bezprzewodowe, w pomieszczeniach, gdzie ruch powietrza jest dość intensywny, może być na dłuższą metę problematyczne. One działają na zmianach temperatury, więc w takich warunkach mogą fałszywie uznać, że coś się dzieje. Z moich doświadczeń wynika, że w biurach z klimatyzacją takie czujki mogą wprowadzać w błąd i wywoływać alarmy, gdzie ich nie ma. Złe dobranie czujki może sprawić, że cały system będzie działał słabo, co wiąże się z kosztami z fałszywych alarmów i może obniżyć zaufanie w systemie bezpieczeństwa. Nie zapominajmy też o standardach, jak PN-EN 50131-2-2, które mówią, że musimy dobrze dobrać czujki do konkretnego miejsca, a czujki dualne w takich warunkach wydają się znacznie lepsze.

Pytanie 9

Jak można ustalić miejsce, w którym doszło do uszkodzenia kabla przesyłającego sygnał telewizji kablowej do odbiorcy?

A. zmierzyć poziom sygnału w kanale zwrotnym
B. zbadać parametry kabla za pomocą reflektometru
C. zmierzyć impedancję falową kabla
D. analizować parametry sygnału przy użyciu analizatora widma
Mierzenie poziomu sygnału w kanale zwrotnym, choć może dostarczyć pewnych informacji o jakości sygnału, nie jest skuteczną metodą lokalizacji przerwań w kablach. Tego typu pomiar koncentruje się głównie na analizie sygnału, który już dotarł do odbiornika, co nie pozwala na dokładne określenie miejsca awarii. Co więcej, różnice w poziomie sygnału mogą wynikać z wielu czynników, takich jak zakłócenia elektromagnetyczne czy inne problemy w sieci, co czyni tę metodę nieprecyzyjną. Z kolei pomiar impedancji falowej kabla jest istotny dla oceny dopasowania kabla do systemu, ale nie dostarcza informacji o lokalizacji uszkodzenia. Niepoprawne zrozumienie roli impedancji może prowadzić do błędnych wniosków o stanie kabla. Używanie analizatora widma również nie jest optymalne do lokalizacji przerwań, ponieważ jego głównym celem jest analiza widma sygnału, a nie lokalizacja uszkodzeń. Warto zauważyć, że wszystkie te podejścia mogą prowadzić do mylnych interpretacji i opóźnień w naprawach, co wpływa na jakość świadczonych usług. W branży telekomunikacyjnej kluczowe jest stosowanie właściwych narzędzi, takich jak reflektometry, które umożliwiają efektywne diagnozowanie problemów.

Pytanie 10

Jak należy przeprowadzać kontrolę układów scalonych w uszkodzonym telewizorze?

A. porównując napięcia oraz oscylogramy na poszczególnych wyprowadzeniach z informacjami zawartymi w instrukcji serwisowej przy wyłączonym telewizorze
B. porównując napięcia oraz oscylogramy na poszczególnych wyprowadzeniach z informacjami zawartymi w instrukcji serwisowej przy załączonym telewizorze
C. poddając je sztucznemu podgrzaniu i obserwując obraz na ekranie
D. poddając je sztucznemu schłodzeniu i obserwując obraz na ekranie
Właściwe sprawdzanie układów scalonych w uszkodzonym odbiorniku telewizyjnym polega na porównaniu napięć oraz oscylogramów na poszczególnych wyprowadzeniach z danymi zawartymi w instrukcji serwisowej przy załączonym odbiorniku. Taki proces diagnostyki pozwala na dokładną ocenę pracy układów scalonych w ich normalnych warunkach operacyjnych. Włączony odbiornik umożliwia obserwację działania układu w czasie rzeczywistym, co jest kluczowe dla identyfikacji potencjalnych usterek. Pomiar napięć i analiza oscylogramów dostarczają informacji o tym, czy sygnały są poprawne, a także pozwalają na identyfikację uszkodzeń, które mogą nie być widoczne gołym okiem. Dobre praktyki serwisowe wymagają posiadania instrukcji serwisowej, która zawiera wartości referencyjne, co daje technikowi możliwość szybkiej i efektywnej diagnozy. Przykładowo, w przypadku stwierdzenia nietypowych napięć na wyprowadzeniach, technik może podjąć decyzję o wymianie układu scalonego, co jest bardziej efektywne, niż bazowanie na obserwacji wizualnej.

Pytanie 11

W trakcie prac serwisowych dotyczących wlutowywania elementów elektronicznych w wzmacniaczu akustycznym, pracownik powinien założyć

A. obuwie elektroizolacyjne
B. rękawice elektroizolacyjne
C. odzież ochronną
D. hełm ochronny
Wybór rękawic elektroizolacyjnych, hełmu ochronnego lub obuwia elektroizolacyjnego, mimo że są to elementy ochrony osobistej, nie jest adekwatny do konkretnego kontekstu prac serwisowych związanych z wlutowywaniem elementów elektronicznych we wzmacniaczu akustycznym. Rękawice elektroizolacyjne są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym, co jest istotne w sytuacjach pracy z napięciem, ale nie są one absolutnie wymagane w przypadku, gdy prace nie dotyczą elementów pod napięciem. Hełm ochronny ma zastosowanie w sytuacjach, gdzie istnieje ryzyko urazów głowy, jednak w typowym środowisku warsztatowym przy wlutowywaniu elementów, ryzyko to jest zminimalizowane. Obuwie elektroizolacyjne jest istotne w kontekście ochrony przed porażeniem, ale jego użycie nie jest konieczne, jeśli prace nie są wykonywane w obszarze zagrożonym wysokim napięciem. Niewłaściwe podejście do doboru środków ochrony osobistej może prowadzić do błędów w ocenie ryzyka, co z kolei zwiększa szansę na wystąpienie wypadków. Kluczowe jest zrozumienie, że każdy rodzaj ochrony powinien być dostosowany do specyfiki pracy, a ogólna zasada mówi, że zawsze należy stosować odpowiednią odzież ochronną, aby zapewnić bezpieczeństwo w miejscu pracy. W praktyce, niezastosowanie odzieży ochronnej może prowadzić do kontaktu z substancjami szkodliwymi, co może skutkować poważnymi konsekwencjami zdrowotnymi.

Pytanie 12

Jakim symbolem oznaczany jest parametr głośników wskazujący moc ciągłą (moc znamionową)?

A. PMPO
B. RMS
C. S
D. Q
Zazwyczaj w branży audio można spotkać różne oznaczenia dotyczące mocy głośników, co może prowadzić do nieporozumień. PMPO, czyli Peak Music Power Output, to parametr, który jest często wykorzystywany przez producentów do określenia maksymalnej mocy, jaką głośnik może osiągnąć przez krótki okres czasu. Jednak nie oddaje on rzeczywistej mocy, jaką głośnik może utrzymać w normalnych warunkach użytkowania, co czyni go mniej użytecznym dla konsumentów. Oznaczenie S, które może być mylone z mocą, w rzeczywistości odnosi się do różnych parametrów audio, takich jak impedancja lub inne techniczne aspekty, które nie są bezpośrednio związane z mocą. Podobnie, Q jest terminem używanym w kontekście filtrów audio i nie ma odniesienia do mocy głośników. Użytkownicy często popełniają błąd, zakładając, że wyższa wartość PMPO oznacza lepszą jakość dźwięku, podczas gdy kluczowym wskaźnikiem jest moc RMS, która dostarcza bardziej wiarygodnych informacji o zdolności głośnika do odtwarzania dźwięku w sposób ciągły i stabilny. Wybór głośnika powinien być oparty na analizie parametrów RMS, które są zgodne z najlepszymi praktykami branżowymi oraz standardami jakości, a nie na chwilowych maksymalnych wartościach pomiarowych, które mogą wprowadzać w błąd.

Pytanie 13

Który przewód powinien być użyty do połączenia z siecią elektryczną transformatora znajdującego się w metalowej obudowie systemu alarmowego?

A. YDY 2 x 1,5 mm2
B. YTDY 4 x 0,75 mm2
C. YTDY 2 x 0,75 mm2
D. YDY 3 x 1,5 mm2
Odpowiedź YDY 3 x 1,5 mm2 jest poprawna, ponieważ przewód ten cechuje się odpowiednią konstrukcją i parametrami technicznymi, które idealnie nadają się do podłączenia transformatora w metalowej obudowie centralki alarmowej. Przewód YDY jest przewodem o podwyższonej odporności na działanie czynników zewnętrznych oraz na uszkodzenia mechaniczne, co jest kluczowe w zastosowaniach związanych z systemami alarmowymi. Posiada trzy żyły o przekroju 1,5 mm2, co zapewnia dostateczną wydajność prądową oraz minimalizuje straty energii. W praktyce, zastosowanie przewodu YDY 3 x 1,5 mm2 jest zgodne z wytycznymi norm PN-IEC 60364, które regulują instalacje elektryczne, a także z zasadami dotyczącymi ochrony przeciwporażeniowej. Przewód ten pozwala na bezpieczne i efektywne połączenie transformatora z siecią energetyczną, co jest kluczowe dla prawidłowego działania systemu alarmowego.

Pytanie 14

Jednym z komponentów urządzenia elektronicznego jest rezystor o wartości rezystancji 1 kΩ i mocy 1 W. Jeśli brakuje elementu o tych parametrach, można go zastąpić rezystorem

A. o identycznej rezystancji i niższej mocy
B. o niższej rezystancji i tej samej mocy
C. o wyższej rezystancji i tej samej mocy
D. o identycznej rezystancji i wyższej mocy
Wybór rezystora o mniejszej rezystancji i tej samej mocy jest nieprawidłowy, ponieważ zmiana rezystancji w obwodzie wprowadza inne parametry do działania układu. Zmniejszenie rezystancji spowoduje wzrost prądu zgodnie z prawem Ohma, co może prowadzić do przeciążenia pozostałych elementów obwodu, a także spalić nowy rezystor, jeśli nie jest on odpowiednio dobrany do wymagań. Wybór rezystora o takiej samej rezystancji, ale mniejszej mocy, również jest błędny, ponieważ rezystor o mniejszej mocy nie będzie w stanie pracować w warunkach, które byłyby akceptowane dla oryginalnego elementu. Może to prowadzić do przegrzania i uszkodzenia rezystora. Wybór rezystora o większej rezystancji i tej samej mocy jest także niewłaściwy, gdyż zwiększenie rezystancji zmieni całkowity prąd w obwodzie, co z kolei wpłynie na działanie pozostałych komponentów. Takie podejście często wynika z niepełnego zrozumienia zasad działania obwodów elektrycznych oraz mechanizmów odpowiedzialnych za prąd i napięcie. Dlatego ważne jest, aby przy wyborze komponentów zawsze kierować się nie tylko ich rezystancją, ale także mocą, aby zapewnić pełną kompatybilność w obwodzie.

Pytanie 15

Jeśli złącze BE tranzystora bipolarnego jest spolaryzowane w kierunku przewodzenia, a złącze CB w kierunku zaporowym, to w jakim stanie pracuje tranzystor?

A. zatkania (odcięcia)
B. aktywnym
C. nasycenia
D. aktywnym inwersyjnym
Odpowiedź "aktywnym" jest prawidłowa, ponieważ w takim ustawieniu tranzystora bipolarnego, złącze BE (baza-emiter) jest spolaryzowane w kierunku przewodzenia, co pozwala na przepływ prądu przez to złącze. Złącze CB (kolektor-baza) jest zaporowo spolaryzowane, co skutkuje brakiem przepływu prądu wstecznego. W efekcie tranzystor działa w trybie aktywnym, co oznacza, że może być używany jako wzmacniacz sygnału. W praktyce, to ustawienie jest kluczowe w zastosowaniach takich jak wzmacniacze audio czy obwody analogowe, gdzie wymagane jest precyzyjne kontrolowanie sygnału. W trybie aktywnym, mała zmiana prądu bazy prowadzi do dużej zmiany prądu kolektora, co czyni tranzystory bipolarne bardzo efektywnymi komponentami w projektowaniu układów elektronicznych. Warto również zauważyć, że w trybie aktywnym tranzystor działa w bezpiecznym zakresie pracy, co jest istotne dla długoterminowej stabilności układów elektronicznych.

Pytanie 16

Aby podłączyć sygnalizator optyczno-akustyczny z syreną, należy zastosować złącze śrubowe. Mając na uwadze, że syrena działa na napięciu 24 V i zużywa prąd 3,45 A, wskaż odpowiednie złącze spełniające te parametry?

A. 30 V; 3 A; 0,5 mm2
B. 30 V; 9 A; 0,75 mm2
C. 230 V; 1,25 A; 0,4 mm2
D. 12 V; 9 A; 0,75 mm2
Złącze, które wybrałeś, czyli 30 V; 9 A; 0,75 mm2, jest całkiem spoko pod względem wymagań dla syreny. Ta syrena działa przy napięciu 24 V i bierze prąd 3,45 A. Chodzi o to, żeby prąd, który złącze przenosi, był co najmniej równy temu, co potrzeba, albo lepiej, żeby był większy. W tym przypadku 9 A daje nam zapas, co jest zgodne z zasadami bezpieczeństwa i zapobiega przeciążeniom. Przewód 0,75 mm2 też jest w porządku, bo zgodnie z normami, powinno się dobierać przewody wg maksymalnego prądu, żeby zredukować straty energii i odpowiednio odprowadzić ciepło. Dobrym przykładem mogą być instalacje alarmowe, gdzie sygnalizatory muszą działać bez problemów, więc ważne jest, żeby wszystkie komponenty były dobrze dobrane do obciążeń. Moim zdaniem, lepiej mieć coś z zapasem, bo wtedy to wszystko dłużej posłuży i będzie bezpieczniejsze.

Pytanie 17

Jaką rozdzielczość obrazu oferuje telewizja w standardzie HDTV?

A. 1920x1080
B. 1024x768
C. 1280x1024
D. 1360x768
Wybór rozdzielczości innej niż 1920x1080 wskazuje na zrozumienie określonych standardów obrazu, lecz nieprawidłowe odpowiedzi mogą prowadzić do nieporozumień dotyczących jakości obrazu. Rozdzielczość 1360x768, chociaż zbliżona do parametrów HD, jest w rzeczywistości rozdzielczością, która nie osiąga wysokich standardów jakości obrazu, jakim jest Full HD. Natomiast 1024x768 to rozdzielczość często stosowana w starszych monitorach komputerowych, a jej proporcje nie odpowiadają typowym formatom telewizyjnym, co skutkuje gorszą jakością obrazu w kontekście telewizji. Rozdzielczość 1280x1024 jest także rozdzielczością używaną w monitorach, ale w formacie 5:4, co nie jest zgodne z typowym formatem panoramicznym stosowanym w telewizji. Wiele osób może błędnie sądzić, że mniejsze rozdzielczości mogą być wystarczające dla jakości obrazu w telewizji, co jest mylnym założeniem. Obecnie, w dobie rosnącej dostępności treści w wysokiej rozdzielczości, korzystanie z rozdzielczości poniżej 1920x1080 staje się coraz bardziej nieprzydatne. Warto zaznaczyć, że przy wyborze telewizora, ważne jest także zrozumienie, że rozdzielczość to nie jedyny czynnik wpływający na jakość obrazu, a dodatkowe parametry, takie jak częstotliwość odświeżania, kontrast oraz HDR, mają kluczowe znaczenie dla ostatecznego wrażenia wizualnego.

Pytanie 18

Aby zrealizować instalację anteny TV na zewnątrz budynku, należy użyć przewodu antenowego w osłonie

A. z PVC o impedancji 75 Ω
B. z PE o impedancji 75 Ω
C. z PVC o impedancji 50 Ω
D. z PE o impedancji 50 Ω
Odpowiedzi z impedancją 50 Ω są niewłaściwe w kontekście instalacji antenowej telewizji, ponieważ ta wartość nie jest standardem dla większości systemów odbioru telewizyjnego. Przewody o impedancji 50 Ω są powszechnie stosowane w aplikacjach radiowych, takich jak radiokomunikacja czy anteny do systemów WLAN. Zastosowanie takich przewodów w systemach telewizyjnych prowadzi do nieefektywnego odbioru sygnału, co może skutkować zniekształceniami obrazu czy brakiem sygnału. Ponadto, wybór przewodu o materiałach PVC jest również niewłaściwy dla instalacji zewnętrznych, ponieważ PVC nie oferuje tak wysokiej odporności na działanie promieni UV oraz wilgoci jak PE. Użytkowanie przewodu z PVC w trudnych warunkach atmosferycznych może prowadzić do szybkiego uszkodzenia izolacji, co negatywnie wpływa na jakość sygnału. Ważne jest, aby podczas planowania instalacji antenowej kierować się zasadami inżynierii i obowiązującymi normami, aby uniknąć typowych błędów, takich jak stosowanie niewłaściwych materiałów i impedancji, co prowadzi do nieoptymalnych wyników odbioru.

Pytanie 19

Warystor to komponent, który zabezpiecza urządzenia elektroniczne przed skutkami działania

A. niskich temperatur.
B. promieniowania X.
C. opadów deszczu.
D. wyładowań atmosferycznych.
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumienia na temat funkcji warystora i jego zastosowania. Promieniowanie rentgenowskie, niska temperatura oraz opady deszczu nie są związane z zasadą działania warystorów. Promieniowanie rentgenowskie to forma promieniowania elektromagnetycznego, które nie wpływa na integralność elektronicznych układów poprzez przepięcia. Niska temperatura może wpłynąć na działanie niektórych komponentów elektronicznych, ale nie jest bezpośrednim zagrożeniem, które mogłoby być neutralizowane przez warystor. Opady deszczu mogą powodować korozję lub zwarcia w urządzeniach, ale nie są powiązane z przepięciami, dla których warystory zapewniają ochronę. Typowym błędem myślowym jest mylenie skutków z przyczynami: warystory są projektowane wyłącznie do ochrony przed nadmiernym napięciem, a nie do ochrony przed innymi czynnikami zewnętrznymi. Dlatego kluczowe jest zrozumienie, że warystor działa jako element zabezpieczający przed skutkami wyładowań atmosferycznych, a nie przed innymi zagrożeniami. Zrozumienie tych różnic jest kluczowe w projektowaniu systemów zabezpieczeń w urządzeniach elektronicznych.

Pytanie 20

W czterech różnych wzmacniaczach selektywnych przeprowadzono analizę charakterystyki przenoszenia, a na tej podstawie wyznaczono współczynnik prostokątności p. Jaka wartość współczynnika prostokątności wskazuje na najwyższą selektywność wzmacniacza?

A. p = 0,4
B. p = 0,8
C. p = 1,0
D. p = 0,6
Wartość współczynnika prostokątności p = 1,0 oznacza najlepszą selektywność wzmacniacza, ponieważ wskazuje na idealne parametry przenoszenia sygnału. Wzmacniacz o p = 1,0 charakteryzuje się maksymalnym poziomem wzmocnienia w pasmie przenoszenia oraz minimalną ilością zniekształceń poza tym zakresem. W praktyce oznacza to, że wzmacniacz jest w stanie skutecznie oddzielić sygnały o różnych częstotliwościach, co jest kluczowe w aplikacjach takich jak komunikacja radiowa, gdzie ważne jest oddzielanie sygnałów o różnych częstotliwościach. W branży telekomunikacyjnej standardy, takie jak ITU-T G.703, podkreślają znaczenie selektywności w systemach transmisyjnych, co czyni ten wskaźnik krytycznym dla zapewnienia wysokiej jakości sygnału. Wartości p mniejsze niż 1,0 sygnalizują gorsze parametry selektywności, co może prowadzić do zniekształceń i utraty jakości sygnału, szczególnie w skomplikowanych systemach, gdzie wiele sygnałów jest przesyłanych równocześnie.

Pytanie 21

Aby podłączyć dysk twardy do płyty głównej komputera, jaki interfejs należy zastosować?

A. RS 232
B. D-SUB 15
C. SATA
D. LPT
Interfejs RS 232, znany jako Interfejs szeregowy, jest stosunkowo przestarzałym standardem komunikacyjnym, który służył głównie do łączenia urządzeń peryferyjnych, takich jak modemy, myszy czy drukarki. Mimo że RS 232 był powszechnie stosowany w przeszłości, jego ograniczenia w zakresie prędkości transferu i odległości sprawiają, że nie nadaje się on do podłączania nowoczesnych dysków twardych, które wymagają bardziej wydajnych interfejsów. LPT, czyli port równoległy, był także używany w kontekście podłączania drukarek, lecz jego zastosowanie nie obejmowało dysków twardych. LPT jest również ograniczony pod względem prędkości i wydajności, co czyni go nieodpowiednim wyborem. Z kolei D-SUB 15 to złącze, które najczęściej kojarzone jest z portem VGA używanym do podłączania monitorów. Nie jest to interfejs do komunikacji z dyskami twardymi i jego wykorzystanie w tym kontekście jest całkowicie nieadekwatne. W przeszłości wiele osób może było skłonnych do używania starszych standardów ze względu na ich dostępność, jednak z perspektywy nowoczesnej architektury komputerowej, takie podejście prowadzi do problemów z wydajnością i kompatybilnością. W rezultacie, wybór interfejsu SATA jest właściwy i zgodny z obecnymi standardami branżowymi, które promują efektywność i szybkość transferu danych.

Pytanie 22

Aby wykorzystać kamerę IP o wysokiej rozdzielczości, konieczne jest

A. obiektyw o wyższej rozdzielczości
B. rejestrator z dużą pojemnością dysku
C. zasilacz o większej mocy prądowej
D. dostęp do sieci komputerowej
Wielu użytkowników może mylnie sądzić, że rejestrator z dyskiem o dużej pojemności jest niezbędny do użycia kamery megapikselowej IP. Choć posiadanie takiego rejestratora ułatwia przechowywanie danych wideo z kamer, to nie jest to warunek konieczny do samego działania kamery. Kamery IP mogą transmitować obraz bezpośrednio przez sieć, co pozwala na zdalne monitorowanie bez potrzeby lokalnego rejestratora. Kolejnym błędem jest przekonanie, że obiektyw o zwiększonej rozdzielczości jest wymagany. Chociaż lepszy obiektyw może poprawić jakość obrazu, sama kamera IP działa niezależnie od rodzaju obiektywu, a jej funkcjonalność w dużym stopniu opiera się na dostępie do sieci. Innym nieporozumieniem jest zasilacz o podwyższonej wydajności prądowej. Kamery IP zazwyczaj korzystają z technologii Power over Ethernet (PoE), co oznacza, że mogą być zasilane bezpośrednio z kabla sieciowego, eliminując potrzebę dodatkowego zasilania. Tego rodzaju niejasności mogą prowadzić do błędnych decyzji przy planowaniu instalacji systemów monitoringu, dlatego ważne jest zrozumienie, że kluczowym elementem dla kamer IP jest ich integracja z siecią komputerową, a nie inne komponenty.

Pytanie 23

W trakcie pomiaru rezystancji po zamontowaniu komponentów wykryto bardzo wysoką rezystancję, która była efektem pojawienia się zimnego lutu na połączeniu jednego z komponentów z polem lutowniczym. Jak można usunąć tę wadę?

A. Wylutować komponent i przylutować koniecznie nowy o identycznych parametrach
B. Przylutować obok komponentu drugi element tego samego typu
C. Wylutować komponent i po sprawdzeniu jego funkcjonalności ponownie przylutować ten element
D. Przylutować obok komponentu odcinek przewodu
Wylutowanie elementu i późniejsze przylutowanie go po sprawdzeniu, czy działa, to naprawdę najlepszy sposób na pozbycie się zimnego lutowania. Zimny lut, który ma wysoką rezystancję, pojawia się najczęściej, gdy podgrzanie elementów lutowniczych jest niewystarczające albo lutowia nie są zbyt dobrej jakości. Kiedy wylutujesz element, możesz dokładnie sprawdzić, czy działa poprawnie, co jest mega ważne, jak chcesz, żeby cały układ funkcjonował. Dobrze jest też przetestować lut pod kątem przewodności i pewności, żeby nie było innych problemów. Gdy przylutujesz go znowu, pamiętaj o odpowiednich technikach lutowania i temperaturze. Użycie lutownicy, która ma regulowaną temperaturę, może bardzo poprawić jakość tych połączeń. Ta metoda jest zgodna z najlepszymi standardami, takimi jak IPC-A-610, gdzie mówią, co jest akceptowalne w lutach i połączeniach elektronicznych. Jak połączenie lutownicze jest dobrze zrobione, to nie tylko ma niską rezystancję, ale też zwiększa stabilność i niezawodność całego układu.

Pytanie 24

Aby połączyć dwa styki alarmowe z dwóch czujników PIR typu NC w jedno wejście centrali, należy je podłączyć

A. równolegle
B. szeregowo
C. w gwiazdę
D. w trójkąt
Odpowiedź "szeregowo" to strzał w dziesiątkę. Jak masz czujki PIR typu NC, to muszą być połączone w taki sposób, aby alarm załączał się, gdy którakolwiek czujka wyczuje ruch. Łączenie ich szeregowo to świetny pomysł, bo wtedy sygnał przechodzi przez wszystkie czujki, co sprawia, że system jest bardziej niezawodny. W praktyce, jak jedna czujka wykryje ruch, to obwód się przerywa i alarm się włącza. Fajnie też, że przy takim połączeniu łatwiej znaleźć ewentualne usterki, bo szybko wiesz, która czujka nie działa. No i oszczędność miejsca w szafce rozdzielczej to zawsze na plus – łatwiej utrzymać porządek.

Pytanie 25

Realizacja programu "instrukcja po instrukcji" w tzw. trybie krokowym mikroprocesora ma na celu

A. podniesienie prędkości działania programu
B. zablokowanie obsługi przerwań zewnętrznych
C. wyznaczenie miejsca, w którym występuje błąd w oprogramowaniu
D. określenie tempa przetwarzania poszczególnych instrukcji
Wykonywanie programu w trybie krokowym, określane również jako 'instrukcja po instrukcji', ma kluczowe znaczenie dla diagnostyki błędów w oprogramowaniu. Ta metoda pozwala programistom na analizowanie działania programu w czasie rzeczywistym, co ułatwia identyfikację miejsc, w których mogą wystąpić nieprawidłowości. Przykładowo, debugger umożliwia przechodzenie przez każdą linię kodu, monitorując wartości zmiennych oraz stan pamięci. Zastosowanie tej techniki jest zgodne z najlepszymi praktykami inżynierii oprogramowania, w tym metodologią Test-Driven Development (TDD), gdzie testowanie i poprawianie kodu odbywa się w cyklu iteracyjnym. Warto również zwrócić uwagę na to, że tryb krokowy jest niezwykle pomocny w kontekście złożonych systemów, takich jak embedded systems, gdzie błędy mogą prowadzić do krytycznych awarii sprzętowych. Poprawne zidentyfikowanie błędu na etapie rozwoju oprogramowania pozwala na oszczędność czasu i zasobów w późniejszych fazach projektu.

Pytanie 26

Zanim przystąpimy do konserwacji jednostki centralnej komputera stacjonarnego podłączonego do lokalnej sieci, najpierw powinniśmy

A. uziemić metalowe elementy obudowy
B. odłączyć przewód zasilający
C. otworzyć obudowę jednostki centralnej
D. wyciągnąć przewód sieciowy
Odpowiedź 'odłączyć przewód zasilający' jest kluczowa przed przystąpieniem do konserwacji jednostki centralnej komputera, ponieważ wyłącza zasilanie urządzenia. W przypadku konserwacji, takiej jak czyszczenie komponentów czy wymiana podzespołów, istnieje ryzyko zwarcia, które może prowadzić do uszkodzenia sprzętu lub zagrożenia dla zdrowia użytkownika. Odłączenie przewodu zasilającego jest pierwszym krokiem w procedurze bezpiecznej konserwacji i jest zgodne z najlepszymi praktykami w branży IT. Przykładowo, w standardach OSHA (Occupational Safety and Health Administration) oraz IEC (International Electrotechnical Commission) podkreśla się znaczenie odłączania zasilania przed jakimikolwiek pracami serwisowymi. Warto również pamiętać o używaniu odpowiednich narzędzi, takich jak opaski antyelektrostatyczne, aby zminimalizować ryzyko uszkodzenia komponentów przez ładunki elektrostatyczne. W prawidłowej konserwacji istotne jest, aby zawsze działać zgodnie z zaleceniami producenta sprzętu, co dodatkowo podnosi poziom bezpieczeństwa i efektywności działań serwisowych.

Pytanie 27

Komunikat "HDD Error" na rejestratorze wskazuje na uszkodzenie

A. dysku twardego.
B. kamer HD.
C. zasilania kamer.
D. kabelka HDMI.
Zrozumienie przyczyn komunikatu 'HDD Error' jest kluczowe dla prawidłowego funkcjonowania systemów monitoringu. Wybór odpowiedzi dotyczący zasilania kamer jest błędny, ponieważ zasilanie jest odpowiedzialne za działanie urządzeń, ale nie ma bezpośredniego związku z błędami związanymi z dyskiem twardym. Problemy z zasilaniem mogą objawiać się innymi komunikatami błędów, a nie konkretnym błędem dysku twardego. Odpowiedź odnosząca się do kabla HDMI również jest nieprawidłowa, ponieważ ten kabel używany jest do przesyłania sygnału wideo i audio, a nie do przechowywania danych. Jego uszkodzenie wpływa jedynie na jakość obrazu, a nie na operacje zapisu na dysku. W kontekście kamer HD, ich uszkodzenie może prowadzić do problemów z nagrywaniem lub wyświetlaniem obrazu, ale nie wywoła samego komunikatu 'HDD Error'. Często pojawiające się błędne myślenie w takich sytuacjach polega na przypisywaniu odpowiedzialności za błędy zapisu na dysku innym komponentom systemu, co może prowadzić do nieprawidłowych diagnoz i opóźnień w naprawach. Właściwa identyfikacja źródła problemu jest kluczowa dla efektywnego zarządzania systemami monitoringu.

Pytanie 28

Jakie urządzenia pomiarowe powinno się zastosować do pomiaru częstotliwości z wykorzystaniem krzywych Lissajous?

A. Woltomierz oraz oscyloskop
B. Omomierz oraz amperomierz
C. Watomierz i amperomierz
D. Generator i oscyloskop
Wybór innego zestawu przyrządów pomiarowych wskazuje na nieprawidłowe zrozumienie zasad działania krzywych Lissajous oraz ich zastosowania. Oscyloskop jest kluczowym narzędziem do obserwacji sygnałów elektrycznych, jednak bez generatora sygnałowego nie można uzyskać krzywych Lissajous, które wymagają porównania dwóch sygnałów o różnych częstotliwościach. Na przykład, wybór woltomierza i oscyloskopu nie jest odpowiedni, ponieważ woltomierz mierzy tylko wartość napięcia, a nie jest w stanie wytworzyć ani analizować sygnałów o różnych częstotliwościach. Z kolei omomierz i amperomierz są narzędziami pomocniczymi do pomiaru oporności oraz natężenia prądu, które również nie mają zastosowania w analizie sygnałów o zmiennej częstotliwości. Wykorzystanie watomierza z amperomierzem również nie odpowiada na potrzeby eksperymentu, gdyż te urządzenia służą do pomiaru mocy w obwodach, co jest zupełnie innym zagadnieniem. Kluczowym błędem myślowym jest założenie, że pomiar częstotliwości można przeprowadzić bez odpowiednich narzędzi do generowania i analizy sygnałów, co prowadzi do niewłaściwych wniosków na temat metodologii pomiarowej w elektronice.

Pytanie 29

Operatorzy kablowych sieci telewizyjnych sprawdzają jakość sygnału u poszczególnych subskrybentów, wykonując pomiary parametrów sygnału

A. w kanale zwrotnym
B. na wyjściach poszczególnych węzłów optycznych
C. w poszczególnych gniazdach abonenckich
D. nadanego przez stację czołową
Wybór odpowiedzi związanych z pomiarem sygnału nadawanego przez stację czołową, w poszczególnych gniazdach abonenckich czy na wyjściach węzłów optycznych nie odzwierciedla rzeczywistych praktyk monitorowania jakości sygnału w telewizji kablowej. Monitorowanie sygnału nadawanego przez stację czołową jest istotne, ale dotyczy ono głównie analizy jakości źródłowego sygnału, a nie jego odbioru przez abonentów. Istotnym elementem jest kanał zwrotny, który umożliwia spływ informacji z sieci abonenckiej do centralnej bazy danych operatora. Pomiar jakości sygnału bezpośrednio w gniazdach abonenckich nie jest praktyczny, ponieważ czynniki lokalne mogą wprowadzać zbyt wiele zmiennych, takich jak uszkodzenia kabli czy nieprawidłowe podłączenia, co znacznie utrudnia diagnozowanie ogólnych problemów w sieci. Podobnie, pomiar na wyjściu węzłów optycznych może dostarczać informacji na temat jakości sygnału, ale nie odzwierciedla to doświadczenia konkretnego abonenta, który może doświadczyć różnych problemów w zależności od lokalnych warunków. Dlatego kluczowe jest monitorowanie sygnału w kanale zwrotnym, co pozwala na zbieranie danych od wszystkich abonentów i wczesne wykrywanie problemów w sieci, a tym samym zapewnienie lepszej jakości usług. Niepoprawne podejścia mogą prowadzić do błędnych wniosków i opóźnień w diagnostyce problemów, co jest niepożądane w branży, gdzie jakość usług ma kluczowe znaczenie dla zadowolenia klientów.

Pytanie 30

Jak powinna wyglądać prawidłowa sekwencja działań przy konserwacji systemu automatyki przemysłowej?

A. Kontrola przewodów ciśnieniowych, przeprowadzenie pomiarów elektrycznych instalacji, zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych
B. Przeprowadzenie pomiarów elektrycznych instalacji, kontrola przewodów ciśnieniowych, zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych
C. Zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych, przeprowadzenie pomiarów elektrycznych instalacji, kontrola przewodów ciśnieniowych
D. Dokręcenie styków zaciskowych, kontrola przewodów ciśnieniowych, przeprowadzenie pomiarów elektrycznych instalacji, zapoznanie się z dokumentacją techniczną instalacji
Prawidłowa kolejność czynności konserwacyjnych w instalacji automatyki przemysłowej rozpoczyna się od zapoznania się z dokumentacją techniczną. Jest to kluczowy krok, który umożliwia zrozumienie specyfiki instalacji, funkcji poszczególnych komponentów oraz zależności pomiędzy nimi. Następnie, dokręcenie styków zaciskowych jest niezwykle istotne, ponieważ luźne połączenia mogą prowadzić do awarii, przepięć czy strat energii. Po tych działaniach przeprowadza się pomiary elektryczne, które pozwalają na ocenę stanu technicznego instalacji oraz identyfikację potencjalnych problemów, takich jak zwarcia czy niskie napięcia. Na końcu sprawdzane są przewody ciśnieniowe, co jest niezbędne dla zapewnienia bezpieczeństwa i funkcjonalności systemu. Taka kolejność gwarantuje, że wszystkie działania są wykonywane w sposób przemyślany i efektywny, zgodnie z najlepszymi praktykami branżowymi, a także normami bezpieczeństwa, co przyczynia się do długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 31

Aby zlokalizować uszkodzenie tranzystora bipolarnego bez jego wylutowywania z płyty głównej systemu alarmowego, powinno się zmierzyć

A. natężenie prądu kolektora tranzystora
B. napięcia pomiędzy końcówkami E, B, C przy włączonym systemie
C. rezystancję złącz pomiędzy B, E, C przy włączonym systemie
D. rezystancję złącz pomiędzy B, E, C przy wyłączonym systemie
Pomiar rezystancji złącz pomiędzy końcówkami tranzystora przy wyłączonej centrali alarmowej może prowadzić do błędnych wniosków. W takim stanie tranzystor nie jest w stanie zrealizować swojej funkcji, a wyniki pomiaru mogą być nieadekwatne do rzeczywistych warunków pracy. Złącze B-E, które w normalnym stanie pracy powinno mieć określoną wartość napięcia, w stanie wyłączonym może wykazywać rezystancję, która nie oddaje rzeczywistej sytuacji. Dodatkowo, pomiar rezystancji przy włączonej centrali jest niebezpieczny dla sprzętu, ponieważ może prowadzić do zwarć lub uszkodzeń. W przypadku pomiaru natężenia prądu kolektora tranzystora, bez znajomości jego wartości szczytowych i charakterystyki pracy, również można uzyskać niewłaściwe informacje, co do stanu komponentu. Praktyka ta nie jest zgodna z znormalizowanymi metodami diagnostycznymi, które zalecają ocenę napięć w aktywnej pracy urządzenia. Ostatecznie, pomiar napięć daje pełniejszy obraz stanu tranzystora, co jest kluczowe w procesie naprawy i diagnostyki.

Pytanie 32

Aby przygotować przewód YLY do zamontowania w kostce zaciskowej, należy

A. przewód włożyć do kostki bez usuwania izolacji oraz smarowania go pastą izolacyjną
B. na odsłonięty z izolacji koniec przewodu założyć końcówkę tulejkową i włożyć do kostki
C. odsłonięty z izolacji koniec przewodu umieścić bezpośrednio w kostce
D. odsłonięty z izolacji koniec posmarować pastą izolacyjną i umieścić w kostce
Wprowadzenie do montażu przewodu YLY poprzez wkładanie go do kostki bez obierania izolacji lub smarowania go pastą izolacyjną jest niewłaściwe z kilku powodów. Przede wszystkim, pozostawienie izolacji na końcu przewodu skutkuje brakiem wystarczającego kontaktu elektrycznego. Izolacja może powodować, że prąd nie będzie mógł przepływać swobodnie, co prowadzi do oporu, a tym samym do nadmiernego nagrzewania się przewodu oraz potencjalnych zagrożeń pożarowych. W przypadku smarowania pastą izolacyjną, należy zauważyć, że taka praktyka nie poprawia jakości połączeń elektrycznych, a w niektórych sytuacjach może wręcz zaszkodzić, jeśli pasta nie będzie odpowiednia do zastosowania w instalacjach elektrycznych. Ponadto, wkładanie gołego końca przewodu do kostki bez odpowiedniego zacisku z użyciem tulejki zwiększa ryzyko luźnych połączeń, co jest niebezpieczne. Ważnym aspektem jest także, że nieprzestrzeganie dobrych praktyk przy przygotowywaniu przewodów może prowadzić do awarii instalacji, zwiększając koszty eksploatacji i konserwacji. W kontekście standardów branżowych, każda instalacja elektryczna powinna być wykonana zgodnie z zasadami bezpieczeństwa i najlepszymi praktykami, a nieodpowiednie podejście do montażu przewodów może skutkować poważnymi konsekwencjami. Dlatego zawsze kluczowe jest stosowanie się do wszystkich procedur związanych z przygotowaniem i montażem przewodów.

Pytanie 33

Podczas wykonywania montażu kabla krosowego w złączach gniazd należy unikać rozkręcania par przewodów na długości przekraczającej 13 mm, ponieważ

A. zwiększy się impedancja kabla
B. dojdzie do zmniejszenia impedancji kabla
C. kabel będzie generował silniejsze pole elektromagnetyczne
D. może to prowadzić do obniżenia odporności na zakłócenia
Przekonania zawarte w błędnych odpowiedziach opierają się na nieprawidłowym zrozumieniu zasad działania kabli krosowych. Zmiana impedancji kabla, co sugeruje jedna z odpowiedzi, nie jest bezpośrednio związana z długością odcinka rozkręcenia. Zmniejszenie impedancji w rzeczywistości może prowadzić do problemów z dopasowaniem impedancji w sieci, jednak nie jest to główny problem związany z rozkręceniem par przewodów. W kontekście pól elektromagnetycznych, kabel krosowy nie stanie się źródłem większego pola elektromagnetycznego jedynie z powodu rozkręcenia par, o ile nie przekroczymy określonych wartości w standardzie. Ważne jest zrozumienie, że kluczowym czynnikiem jest odporność na zakłócenia, a nie tylko pole elektromagnetyczne. W przypadku zwiększenia impedancji, warto zauważyć, że nie jest to możliwe poprzez samo rozkręcenie par przewodów. Problemy z zakłóceniami, które mogą powstać w wyniku niewłaściwego montażu, są bardziej złożone, ale ich głównym efektem jest właśnie spadek jakości sygnału. W praktyce, aby uniknąć tych błędów, ważne jest przestrzeganie standardów montażu i zapewnienie, by długość rozkręcenia nie przekraczała 13 mm, co jest istotne dla utrzymania wysokiej jakości transmisji danych.

Pytanie 34

W tabeli przedstawiono fragment danych technicznych bezprzewodowego czujnika temperatury. Określ, który z czynników może wpływać na niewłaściwą pracę czujnika.

DANE TECHNICZNE
Pasmo częstotliwości pracy868,0 MHz ÷ 868,6 MHz
Zasięg komunikacji radiowej (w terenie otwartym)do 500 m
Zasilaniebateria litowa CR123A 3 V
Czas pracy na bateriiokoło 3 lata
Pobór prądu w stanie gotowości50 μA
Maksymalny pobór prądu16 mA
Dokładność pomiaru temperatury±2%
Zakres temperatur pracy-10 °C...+55 °C
Maksymalna wilgotność93±3%
Wymiary obudowy24 x 110 x 27 mm
Waga56 g

A. Obce źródło fal radiowych 868 MHz.
B. Zakres zmian temperatury 15°C÷30°C.
C. Odbiornik słuchawek bezprzewodowych 433 MHz.
D. Napięcie zasilania czujnika 2,9 V.
Czynniki, które mogą wpływać na działanie czujnika temperatury, wymagają zrozumienia zasad jego funkcjonowania oraz kontekstu jego zastosowania. Zakres zmian temperatury 15°C÷30°C to parametry, w których czujnik powinien prawidłowo działać, ponieważ są zgodne z jego specyfikacją. Odpowiedź sugerująca, że problemem może być odbiornik słuchawek bezprzewodowych pracujący na częstotliwości 433 MHz, jest mylna, ponieważ różne urządzenia pracujące na różnych częstotliwościach nie wchodzą w interakcję, co pozwala na ich jednoczesne działanie w tym samym pomieszczeniu. Napięcie zasilania 2,9 V również mieści się w dopuszczalnym zakresie dla tego typu czujnika, co wyklucza je jako źródło problemów. Często nieprawidłowe wnioski oparte są na mylnym założeniu, że wszystkie urządzenia bezprzewodowe mogą zakłócać swoje działanie, niezależnie od częstotliwości. W rzeczywistości, aby zakłócenia miały miejsce, muszą one występować na tej samej częstotliwości operacyjnej. Zrozumienie zasad działania systemów bezprzewodowych oraz znajomość specyfikacji technicznych urządzeń są kluczowe dla ich prawidłowego wykorzystania, co pozwala na uniknięcie błędnych interpretacji dotyczących wpływu różnych czynników na ich funkcjonowanie.

Pytanie 35

Jakie narzędzia są używane do określenia trasy przewodów na ścianie z betonu?

A. śruby i śrubokręt
B. wiertarka i kołki rozporowe
C. ołówek i poziomica
D. gwoździe oraz młot
Wybranie ołówka i poziomnicy do wyznaczenia trasy przewodów na ścianie betonowej jest najbardziej właściwym podejściem, ponieważ te narzędzia pozwalają na precyzyjne i estetyczne wykonanie pracy. Ołówek umożliwia zaznaczenie linii, po których będą prowadzone przewody, co jest kluczowe dla zachowania porządku i estetyki w instalacji. Poziomnica natomiast jest niezbędna do uzyskania dokładności w poziomie, co ma fundamentalne znaczenie dla zapewnienia prawidłowego ułożenia przewodów oraz ich prawidłowego funkcjonowania. Przykładowo, gdy przewody są prowadzone wzdłuż ściany, ich równe ułożenie nie tylko poprawia estetykę, ale również minimalizuje ryzyko uszkodzeń mechanicznych oraz ułatwia późniejsze prace konserwacyjne. Zgodnie ze standardami branżowymi, takie jak normy ISO dotyczące instalacji elektrycznych, precyzyjne wyznaczenie tras przewodów jest kluczowym elementem w zapewnieniu bezpieczeństwa i trwałości instalacji. Warto również pamiętać, że poprawnie wykonana instalacja nie tylko spełnia wymagania techniczne, ale również wpływa na komfort użytkowania przestrzeni.

Pytanie 36

Wyłącznik, który chroni instalację elektryczną przed skutkami przeciążenia, to

A. różnicowoprądowy
B. nadprądowy
C. czasowy
D. podnapięciowy
Wyłącznik nadprądowy jest kluczowym elementem ochrony instalacji elektrycznej przed skutkami przeciążenia. Działa on na zasadzie detekcji prądu przekraczającego nominalną wartość, co może prowadzić do przegrzewania się przewodów, a w konsekwencji do pożaru lub uszkodzenia urządzeń elektrycznych. Wyłączniki nadprądowe są zaprojektowane zgodnie z normami IEC 60898 oraz IEC 60947, co zapewnia ich niezawodność w zastosowaniach domowych i przemysłowych. W praktyce, wyłącznik nadprądowy można spotkać w rozdzielniach elektrycznych budynków, gdzie zabezpiecza obwody zasilające gniazda i oświetlenie. Jego działanie jest szczególnie istotne w sytuacjach, gdy do obwodu podłączane są urządzenia o dużym poborze mocy, takie jak grzejniki elektryczne czy urządzenia AGD. Właściwe dobranie wyłącznika nadprądowego do charakterystyki obciążenia jest istotne dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznej.

Pytanie 37

Jakim urządzeniem należy się posłużyć, aby zmierzyć amplitudę sygnału z generatora taktującego mikroprocesorowy układ o częstotliwości f = 25 MHz?

A. Częstościomierzem o maksymalnym zakresie 50 MHz
B. Woltomierzem prądu zmiennego o wewnętrznej rezystancji 100 kOhm/V
C. Oscyloskopem o podstawie czasu 100 ns/cm
D. Amperomierzem prądu zmiennego z rezystorem szeregowym 10 kOhm
Odpowiedź dotycząca oscyloskopu o podstawie czasu 100 ns/cm jest prawidłowa, ponieważ oscyloskop jest urządzeniem zaprojektowanym do analizy sygnałów czasowych i ich amplitudy w bardzo wysokich częstotliwościach. W przypadku sygnału o częstotliwości 25 MHz, czas trwania jednego okresu wynosi 40 ns. Podstawa czasu 100 ns/cm pozwala na uchwycenie co najmniej dwóch pełnych cykli sygnału, co jest niezbędne do dokładnej analizy jego kształtu oraz amplitudy. Oscyloskopy umożliwiają również pomiar parametrów takich jak pik-pik, co jest kluczowe przy badaniu sygnałów cyfrowych. W praktyce, oscyloskop jest często używany w laboratoriach elektronicznych i podczas testowania układów cyfrowych, co czyni go standardowym narzędziem w branży. Zastosowanie oscyloskopu przy pomiarze sygnałów o wysokiej częstotliwości jest zgodne z najlepszymi praktykami inżynieryjnymi, zapewniając precyzyjny i wiarygodny pomiar, który jest nieoceniony w procesie projektowania i diagnozowania układów elektronicznych. Warto również zaznaczyć, że oscyloskopy są wyposażone w różne tryby analizy, co pozwala na monitorowanie sygnałów w czasie rzeczywistym oraz ich zapisanie do późniejszej analizy.

Pytanie 38

Aby ograniczyć niepożądany wpływ zewnętrznych pól elektromagnetycznych na przesył sygnałów cyfrowych przez kable, należy

A. zakopać kable w ziemi na głębokości minimum 0,6 m
B. wykorzystać kable z wzmocnioną izolacją
C. zastosować przewody ekranowane
D. umieścić kable w rurkach z PVC
Zastosowanie kabli ze wzmocnioną izolacją, umieszczanie kabli w rurkach PCV oraz ich zakopywanie w ziemi na głębokości co najmniej 0,6 m to podejścia, które w teorii mogą wydawać się sensowne, ale w praktyce nie są wystarczające do skutecznej ochrony przed zakłóceniami elektromagnetycznymi. Wzmocniona izolacja może zapewniać lepszą ochronę przed mechanicznymi uszkodzeniami, ale nie eliminuje wpływu pól elektromagnetycznych, które mogą wnikać do wnętrza kabla. Umieszczanie kabli w rurkach PCV może chronić je przed uszkodzeniami fizycznymi lub infiltracją wilgoci, jednakże nie stwarza rzeczywistej bariery dla pól elektromagnetycznych, które mogą nadal oddziaływać na przewodnictwo sygnału. Zakopywanie kabli w ziemi może oferować pewną ochronę, zwłaszcza przed czynnikami atmosferycznymi, ale głębokość 0,6 m nie gwarantuje, że pole elektromagnetyczne nie wpłynie na sygnał. Zewnętrzne źródła zakłóceń mogą być silne, a ich efekty mogą być odczuwalne, nawet w przypadku stosowania tych sposobów ochrony. Dlatego, aby skutecznie zminimalizować wpływ pól elektromagnetycznych, należy stosować przewody ekranowane, które są odpowiednio zaprojektowane oraz certyfikowane do pracy w trudnych warunkach elektromagnetycznych.

Pytanie 39

Skrót ADSL odnosi się do technologii, która pozwala na

A. kompresję materiałów audio i wideo
B. transmisję informacji cyfrowych za pośrednictwem fal radiowych
C. odbieranie cyfrowej telewizji naziemnej
D. szerokopasmowy asymetryczny dostęp do sieci teleinformatycznych
Skrót ADSL jednoznacznie odnosi się do technologii szerokopasmowego dostępu do internetu, co czyni niektóre odpowiedzi nieprawidłowymi. Przesyłanie informacji cyfrowej poprzez fale radiowe odnosi się do technologii takich jak Wi-Fi czy LTE, które nie wymagają fizycznego połączenia kablowego, co jest przeciwstawne do sposobu działania ADSL, który bazuje na istniejących liniach telefonicznych. Odbiór naziemnej telewizji cyfrowej również jest procesem niezwiązanym z ADSL, ponieważ polega na odbieraniu sygnałów telewizyjnych za pomocą anteny, a nie transmisji danych przez linię telefoniczną. Kompresja audio i wideo to proces technologiczny służący do zmniejszenia rozmiaru plików multimedialnych, który nie ma bezpośredniego związku z ADSL i jego funkcjonalnością. Typowym błędem myślowym w tym przypadku jest mylenie różnych technologii transmisji danych i ich zastosowań. ADSL jest specyficzną technologią, która została zaprojektowana do efektywnego dostarczania usług szerokopasmowych, a nie do transmisji radiowej, telewizyjnej czy kompresji danych. Właściwe zrozumienie ADSL i jego charakterystyki jest kluczowe dla efektywnego korzystania z zasobów internetowych, zwłaszcza w kontekście wzrastających potrzeb użytkowników.

Pytanie 40

Reflektometr optyczny to urządzenie wykorzystywane do zlokalizowania uszkodzeń w

A. ogniwach fotowoltaicznych
B. światłowodach
C. matrycach LCD
D. matrycach LED RGB
Jeśli chodzi o reflektometry optyczne, to sporo osób ma błędne wyobrażenie o tym, do czego one służą. Może i w technologii mamy ogniwa fotowoltaiczne, światłowody czy matryce LED RGB, ale reflektometry optyczne nie są najlepszym wyborem do lokalizowania w nich uszkodzeń. W przypadku ogniw fotowoltaicznych bardziej chodzi o pomiary prądu i napięcia, a nie o odbicia optyczne. Tak więc, nie da się z ich pomocą zdiagnozować problemów z konwersją energii słonecznej na elektryczną. Co do światłowodów, potrzebne są specjalistyczne urządzenia, takie jak reflektometry czasowe, bo one są zaprojektowane do pracy z sygnałami optycznymi. A matryce LED RGB, mimo że korzystają z technologii optycznych, w diagnostyce skupiają się na elektryczności, a nie na analizowaniu odbić świetlnych jak w matrycach LCD. Więc przypuszczanie, że reflektometry optyczne mogą być używane do diagnozowania uszkodzeń w tych technologiach, to błąd, bo nie wszyscy rozumieją, jak to wszystko działa.