Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 25 kwietnia 2025 20:52
  • Data zakończenia: 25 kwietnia 2025 21:10

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby uzyskać roztwór 25 gramów CuSO4 w 50 gramach wody, konieczne jest podgrzanie mieszanki do temperatury w przybliżeniu

A. 313 K
B. 30°C
C. 20°C
D. 340 K
Odpowiedzi 30°C, 313 K i 20°C są nieprawidłowe, ponieważ nie zapewniają odpowiednich warunków do skutecznego rozpuszczenia 25 g CuSO4 w 50 g wody. Przy 30°C, która odpowiada 303 K, rozpuszczalność siarczanu miedzi jest znacznie niższa niż przy 340 K. Zmniejszenie temperatury prowadzi do obniżenia energii kinetycznej cząsteczek, co spowalnia proces rozpuszczania. W przypadku 313 K, co odpowiada 40°C, chociaż temperatura ta jest wyższa, może być niewystarczająca do uzyskania pełnej rozpuszczalności dla podanej ilości soli. Natomiast 20°C, czyli 293 K, to zbyt niska temperatura, aby skutecznie rozpuścić taką ilość siarczanu miedzi. Często w takich sytuacjach pojawia się mylne przekonanie, że niższe temperatury mogą sprzyjać lepszemu rozpuszczaniu, co jest nieprawidłowe. Kluczowym elementem jest zrozumienie, że rozpuszczalność substancji w cieczy, jaką jest woda, rośnie wraz z temperaturą w przypadku wielu soli. Ignorowanie tego aspektu prowadzi do typowych błędów myślowych, takich jak zakładanie, że wszystkie substancje zachowują się jednakowo w różnych warunkach termicznych. Dlatego w praktyce laboratoryjnej i przemysłowej zawsze należy stosować odpowiednie temperatury zgodnie z danymi dotyczącymi rozpuszczalności dla danej substancji.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Który z poniższych czynników nie mógł przyczynić się do błędnego określenia całkowitej liczby drobnoustrojów w surowym mleku?

A. Nieprawidłowe czyszczenie i dezynfekcja pipet do pobierania próbek pierwotnych
B. Transport próbki mleka w temperaturze 30°C
C. Pobranie nadmiernej liczby próbek pierwotnych
D. Nieodpowiednie mycie i dezynfekcja zbiorników do przechowywania mleka
Pobranie zbyt dużej liczby próbek pierwotnych nie wpływa na błędne oznaczenie ogólnej liczby drobnoustrojów w surowym mleku, ponieważ standardowe procedury analityczne zakładają, że próba powinna być reprezentatywna dla całej partii, a niekoniecznie musi być ograniczona do określonej liczby próbek. W praktyce laboratoria często pobierają wiele próbek w celu zwiększenia dokładności wyników, jednak kluczowe jest, aby każda próbka była odpowiednio przechowywana i transportowana zgodnie z ustalonymi normami. Dobrą praktyką jest stosowanie systemu losowego przy pobieraniu próbek, co pozwala na lepsze odwzorowanie rzeczywistego stanu mikrobiologicznego całej partii mleka. W przypadku dużej liczby próbek zaleca się ich równoległe analizowanie, co może zwiększyć precyzję wyników końcowych. Ponadto, zgodnie z zaleceniami organizacji takich jak Codex Alimentarius, należy przestrzegać surowych norm dotyczących transportu i przechowywania próbek, aby uniknąć zafałszowania wyników z powodu czynników zewnętrznych.

Pytanie 4

Z próbek przygotowuje się ogólną próbkę

A. analitycznych
B. pierwotnych
C. laboratoryjnych
D. wtórnych
Wybór odpowiedzi dotyczących próbek analitycznych, wtórnych czy laboratoryjnych wskazuje na pewne nieporozumienia związane z podstawowymi koncepcjami dotyczącymi prób w procesie analitycznym. Próbki analityczne są zazwyczaj wyselekcjonowane z prób pierwotnych, ale nie są one same w sobie źródłem reprezentatywnych danych; są to próbki, które zostały już poddane pewnym procesom przygotowawczym. W praktyce, aby uzyskać wartościowe analizy, konieczne jest, aby próbki analityczne były pozyskiwane z próbek pierwotnych. Podobnie, próbki wtórne to te, które powstają na podstawie wcześniejszych analiz lub prób, co oznacza, że nie odzwierciedlają one bezpośrednio warunków z miejsca wydobycia. W przypadku próbek laboratoryjnych, termin ten odnosi się do próbek, które są już przetwarzaną i analizowaną formą materiału, co również nie jest zgodne z zasadą przygotowywania próbki ogólnej. W praktyce, błędne wnioskowanie w tym zakresie może prowadzić do nieprawidłowych analiz, fałszywych wyników oraz błędnych decyzji zarówno w badaniach naukowych, jak i w procesach przemysłowych. Kluczowe jest, aby zrozumieć, że odpowiednia metodologia i procedury pobierania próbek są fundamentem dla uzyskiwania wiarygodnych danych oraz analizy, co jest zgodne z najlepszymi praktykami w branży analitycznej.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Skuteczny środek do osuszania

A. nie powinien przyspieszać rozkładu suszonej substancji.
B. powinien działać wolno.
C. powinien wchodzić w reakcję z substancją suszoną i nie prowadzić do jej utlenienia.
D. powinien być rozpuszczalny w cieczy, która jest suszona.
Dobry środek suszący nie powinien katalizować rozkładu substancji suszonej, ponieważ jego główną funkcją jest usunięcie wody bez wpływania negatywnego na właściwości chemiczne suszonego materiału. Katalizatory mogą przyspieszać reakcje chemiczne, co w przypadku substancji wrażliwych na utlenienie czy degradację prowadziłoby do obniżenia ich jakości oraz zmiany ich właściwości. Na przykład, w przemyśle farmaceutycznym, gdzie utrzymanie stabilności substancji czynnych jest kluczowe, stosowanie środków, które nie katalizują rozkładów jest absolutnie niezbędne. Dobre praktyki sugerują, aby wybierać środki suszące zgodne z wymaganiami danej substancji, unikając jednocześnie substancji, które mogłyby przyczynić się do degradacji. Dlatego kluczowe jest dobieranie odpowiednich metod suszenia, takich jak suszenie w próżni czy użycie substancji adsorpcyjnych, które nie mają wpływu na chemiczne właściwości suszonego materiału, co jest zgodne z normami jakościowymi takimi jak ISO 9001.

Pytanie 8

Wapno palone uzyskuje się poprzez prażenie wapienia według równania: CaCO3 → CaO + CO2. Ile kilogramów wapienia należy zastosować, aby w efekcie jego prażenia otrzymać 7 kg wapna palonego, jeśli wydajność reakcji wynosi 50%?
Masy molowe: MCa = 40 g/mol, MC = 12 g/mol, MO = 16 g/mol.

A. 25,0 kg
B. 12,5 kg
C. 50,0 kg
D. 37,5 kg
Aby obliczyć ilość wapienia potrzebną do uzyskania 7 kg wapna palonego (CaO) przy wydajności reakcji wynoszącej 50%, należy najpierw zrozumieć reakcję chemiczną, która zachodzi. W reakcji CaCO3 → CaO + CO2 mol wapnia (Ca) uzyskujemy z jednego mola węglanu wapnia (CaCO3). Masy molowe są następujące: Ca = 40 g/mol, C = 12 g/mol, O = 16 g/mol, co daje masę CaCO3 równą 100 g/mol. Z przeprowadzonej reakcji wynika, że 1 mol CaCO3 daje 1 mol CaO, co odpowiada masie 56 g/mol dla CaO. Z punktu widzenia praktycznego, wydajność 50% oznacza, że aby otrzymać 7 kg (7000 g) wapna palonego, potrzebujemy 2 razy więcej węglanu wapnia, czyli 14000 g (14 kg) CaCO3. Jednak ze względu na wydajność, musimy użyć 28 kg CaCO3. Zatem, aby uzyskać 7 kg CaO, przy wydajności 50% potrzebujemy 25 kg CaCO3 na uzyskanie 14 kg CaCO3. W praktyce, te obliczenia są kluczowe w przemyśle chemicznym i materiałowym, gdzie precyzyjne dawkowanie surowców jest istotne dla efektywności produkcji, co jest zgodne z normami jakości w branży.

Pytanie 9

Nie należy podgrzewać cieczy w szczelnie zamkniętych pojemnikach, ponieważ

A. może wystąpić niebezpieczeństwo zgaszenia płomienia
B. wzrost ciśnienia może spowodować wybuch
C. może to zwiększyć jej toksyczność
D. istnieje ryzyko zalania palnika
Ogrzewanie cieczy w szczelnie zamkniętych naczyniach stwarza ryzyko wzrostu ciśnienia wewnątrz naczynia, co może prowadzić do niebezpiecznych sytuacji, w tym wybuchu. W momencie, gdy ciecz jest podgrzewana, jej temperatura wzrasta, co powoduje zwiększenie energii kinetycznej cząsteczek. W zamkniętym naczyniu, które nie ma możliwości swobodnego wydostania się pary, ciśnienie będzie rosło. Przykładem z życia codziennego mogą być sytuacje, gdy gotujemy wodę w zamkniętej butelce lub słoiku. W takich przypadkach para wodna nie ma drogi ujścia, a przy osiągnięciu krytycznego poziomu ciśnienia, naczynie może pęknąć lub eksplodować, co stanowi poważne zagrożenie dla bezpieczeństwa. Zgodnie z normami BHP oraz zaleceniami producentów sprzętu laboratoryjnego i przemysłowego, zawsze należy stosować naczynia przystosowane do ogrzewania cieczy oraz zapewniać odpowiedni nadmiar ciśnienia, aby zminimalizować ryzyko takich incydentów, na przykład poprzez użycie zaworów bezpieczeństwa.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Podczas oznaczania kwasu siarkowego zachodzi reakcja:

H2SO4 + 2NaOH → Na2SO4 + 2H2O 
Zgodnie z zamieszczoną instrukcją, roztwór poreakcyjny należy

Fragmenty instrukcji zbierania, utylizacji i eliminacji odpadów chemicznych
Lista substancji, które mogą być usunięte z odpadami komunalnymi w postaci stałej, lub wprowadzone do systemu kanalizacyjnego w postaci rozcieńczonych roztworów wodnych, o ile ich ilość nie przekracza jednorazowo 100 g.
Związki nieorganiczne
Siarczany sodu, potasu, magnezu, wapnia, amonu
Kwasy nieorganiczne
Stężone kwasy ostrożnie rozcieńczyć przez wkroplenie z równoczesnym mieszaniem do wody z lodem, a następnie zneutralizować roztworem wodorotlenku sodowego. Po neutralizacji doprowadzić pH roztworu do zakresu 6-8 przelać do pojemnika S. Małe ilości kwasów takich jak siarkowy, solny, azotowy czy fosforowy (nie więcej niż 10 g) po rozcieńczeniu wodą i neutralizacji roztworem wodorotlenku sodowego oraz doprowadzeniu pH takiego roztworu do zakresu 6-8 można wylać do zlewu i obficie spłukać wodą.
Sole nieorganiczne
Stałe sole nieorganiczne – pojemnik N.
Obojętne roztwory soli nieorganicznych pojemnik S. Sole metali ciężkich, sole o właściwościach toksycznych – pojemnik TN.

A. wylać do zlewu i spłukać bieżącą wodą.
B. zobojętnić i usunąć z odpadami komunalnymi.
C. umieścić w pojemniku TN.
D. umieścić w pojemniku S.
Wybór niewłaściwej metody utylizacji roztworu po reakcji kwasu siarkowego z wodorotlenkiem sodu może prowadzić do poważnych konsekwencji zarówno dla środowiska, jak i dla bezpieczeństwa osób pracujących w laboratoriach. Umieszczanie roztworów w pojemnikach przeznaczonych dla odpadów niebezpiecznych, jak sugeruje jedna z odpowiedzi, jest nieadekwatne, ponieważ powstały siarczan sodu jest substancją neutralną i nie stwarza zagrożenia, co jest sprzeczne z zasadami efektywnej gospodarki odpadami. Ponadto, niewłaściwe wylewanie takich roztworów do zlewu bez wcześniejszego rozcieńczenia wodą może prowadzić do lokalnych zanieczyszczeń, a także może być niezgodne z lokalnymi przepisami dotyczącymi utylizacji odpadów chemicznych. Kwestia zobojętniania przed usunięciem jest również problematyczna, ponieważ w większości przypadków neutralizacja nie jest wymagana dla substancji obojętnych i może wprowadzać dodatkowe reakcje chemiczne, które generują odpady, zamiast ich minimalizować. Takie błędne podejścia pokazują, jak ważne jest posiadanie wiedzy na temat właściwego zarządzania odpadami oraz umiejętność rozpoznawania potencjalnych zagrożeń w praktyce laboratoryjnej. Właściwe postępowanie z odpadami chemicznymi powinno być zgodne z normami ochrony środowiska oraz wewnętrznymi procedurami bezpieczeństwa w laboratoriach, co jest kluczowe dla zapewnienia bezpieczeństwa osób oraz minimalizacji wpływu na środowisko.

Pytanie 13

Które równanie przedstawia reakcję otrzymywania mydła?

CH3COOH + NaOH →CH3COONa + H2O
2 CH3COOH + Na2O →2 CH3COONa + H2O
2 C2H5COOH + 2 Na →2 C2H5COONa + H2
C17H35COOH + NaOH →C17H35COONa + H2O

A. C17H35COOH + NaOH → C17H35COONa + H2O
B. 2 CH3COOH + Na2O → 2 CH3COONa + H2O
C. CH3COOH + NaOH → CH3COONa + H2O
D. 2 C2H5COOH + 2 Na → 2 C2H5COONa + H2↑
No, ta reakcja, którą podałeś, to super przykład zmydlania, a więc procesu, w którym kwasy tłuszczowe reagują z zasadami, w tym przypadku z wodorotlenkiem sodu. Z tego powodu powstaje sól kwasu tłuszczowego, czyli mydło, a przy okazji mamy jeszcze wodę. Zmydlanie to absolutny must-have w produkcji mydeł, które wszyscy używamy w domach czy w kosmetykach. Przykład? Naturalne mydła, które można robić z olejów, np. kokosowego albo oliwy z oliwek. Ważne, żeby trzymać się dobrych proporcji kwasu tłuszczowego do zasady, bo to wpływa na to, jak twarde będzie mydło, jak się pieni i jak nawilża. Zmydlanie jest też ważnym procesem w chemii, bo używa się go do produkcji różnych substancji chemicznych. Jak widać, to istotna sprawa!

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Metodą, która nie umożliwia przeniesienia składników próbki do roztworu, jest

A. stapianie
B. roztwarzanie
C. liofilizacja
D. mineralizacja
Mineralizacja, stapianie i roztwarzanie to metody, które można użyć do przygotowania próbek do analizy chemicznej. Mineralizacja przekształca składniki organiczne w rozpuszczalne formy, co jest kluczowe, bo eliminujemy interferencje, które mogą wpłynąć na wyniki. Stapianie to inna metoda, która zmienia próbki w jednorodną masę - przydaje się, gdy mamy do czynienia z twardymi materiałami, które trzeba przerobić. Roztwarzanie to po prostu dodanie próbki do rozpuszczalnika, co daje nam roztwór, i to jest najczęstsza metoda w laboratoriach. Wszystkie te metody służą do analizy chemicznej, a liofilizacja akurat nie daje roztworu, więc nie jest odpowiednia. Czasem ludzie mylą liofilizację z innymi metodami i przez to się mylą w wyborze sposobu przygotowania próbek. Laboratoria powinny korzystać z ustalonych standardów i najlepszych praktyk, by metody były skuteczne i odpowiednie do danej analizy.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jakie urządzenie służy do pomiaru temperatury topnienia substancji chemicznych?

A. Engler.
B. Kipp.
C. Thiel.
D. Soxleth.
Aparat Thielego jest specjalistycznym urządzeniem używanym do oznaczania temperatury topnienia związków chemicznych. Jego działanie opiera się na precyzyjnym pomiarze temperatury w kontrolowanym środowisku, co pozwala na uzyskanie dokładnych wyników. W praktyce, aparat Thielego wykorzystuje się w laboratoriach chemicznych oraz w przemyśle farmaceutycznym do określenia charakterystyki substancji stałych, co jest kluczowe dla ich dalszych zastosowań. Zgodnie z dobrą praktyką laboratoryjną, proces oznaczania temperatury topnienia powinien odbywać się w atmosferze wolnej od zanieczyszczeń, co zapewnia dokładność wyników. Dodatkowo, znajomość temperatury topnienia jest istotna nie tylko dla identyfikacji substancji, ale także dla oceny ich czystości. Substancje czyste mają wyraźnie określoną temperaturę topnienia, podczas gdy zanieczyszczenia powodują obniżenie tej wartości. Dlatego aparaty Thielego są powszechnie stosowane w standardowych procedurach analitycznych, co świadczy o ich znaczeniu w chemii analitycznej.

Pytanie 18

Odczynnik, który w specyficznych warunkach reaguje wyłącznie z danym jonem, umożliwiając tym samym jego identyfikację w mieszance, to odczynnik

A. indywidualny
B. selektywny
C. specyficzny
D. charakterystyczny
Odczynnik specyficzny to taki, który reaguje z określonym jonem w danej mieszaninie, co pozwala na jego wykrycie i analizę. Oznacza to, że w warunkach laboratoryjnych, odczynnik ten jest w stanie wyizolować reakcję tylko dla jednego jonu, unikając interakcji z innymi składnikami. Przykładem może być zastosowanie odczynnika specyficznego do wykrywania jonów srebra w roztworach, gdzie używany jest tiocyjanian potasu, który reaguje z srebrem, tworząc charakterystyczny kompleks. Tego typu odczynniki są kluczowe w analizie chemicznej, gdyż umożliwiają precyzyjne pomiary i wykrywanie substancji w skomplikowanych mieszaninach. W laboratoriach często stosuje się różne metody analityczne, takie jak spektroskopia czy chromatografia, które wymagają użycia odczynników o wysokiej specyfice, aby wyniki były wiarygodne. Specyficzność odczynnika jest zgodna z dobrą praktyką laboratoryjną i standardami jakości, co jest istotne w kontekście zapewnienia dokładności wyników analizy.

Pytanie 19

Wszystkie pojemniki z odpadami, zarówno stałymi, jak i ciekłymi, które są przekazywane do służby zajmującej się utylizacją, powinny być opatrzone informacjami

A. o nazwie wytwórcy oraz dacie zakupu
B. o rodzaju analizy, do której były używane
C. o dacie i godzinie przekazania
D. o jak najbardziej dokładnym składzie tych odpadów
Odpowiedź dotycząca możliwie szczegółowego składu odpadów jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami dotyczącymi gospodarowania odpadami, szczegółowe informacje o składzie odpadów są kluczowe dla ich prawidłowej utylizacji. Umożliwia to odpowiednim służbom ustalenie, jakie procesy recyklingu lub unieszkodliwiania są najbardziej odpowiednie. Na przykład, jeśli odpady zawierają substancje niebezpieczne, konieczne jest zastosowanie specjalnych procedur ich przetwarzania, aby zminimalizować ryzyko dla środowiska i zdrowia publicznego. Dodatkowo, zgodnie z normami ISO 14001, organizacje powinny prowadzić ewidencję oraz monitorować rodzaje i ilości odpadów, co sprzyja efektywnemu zarządzaniu nimi i zgodności z przepisami. W praktyce, dokumentacja zawierająca szczegółowy skład odpadów może również ułatwić audyty oraz kontrole środowiskowe, a także przyczynić się do optymalizacji procesów gospodarki odpadami w przedsiębiorstwie.

Pytanie 20

Wskaż jaka zawartość chlorków w próbce wody pozwala na wykorzystanie tej wody do produkcji betonu zgodnie z normą PN-EN 1008.

Wymagania dotyczące zawartości chlorków w wodzie do produkcji betonu według normy PN-EN 1008
substancjadopuszczalna wartość w mg/dm3
chlorki1000

A. 10 g/dm3
B. 1000 g/dm3
C. 1000 g/m3
D. 107 mg/m3
Wybierając odpowiedzi, takie jak 1000 g/dm3 czy 10 g/dm3, można zauważyć pewne nieporozumienia dotyczące jednostek i norm. Odpowiedź 1000 g/dm3 jest zdecydowanie zbyt wysoka, ponieważ oznaczałaby, że woda zawiera 1000 gramów chlorków na każdy litr, co jest równoważne stężeniu 1 kg/dm3. Tego rodzaju stężenie jest nierealistyczne w kontekście wody pitnej czy technologicznej, a także przekracza wszelkie normy dotyczące jakości wody. Z kolei 10 g/dm3, chociaż teoretycznie dopuszczalne, również jest niewłaściwe, ponieważ w kontekście normy PN-EN 1008, odpowiednia wartość wynosi 1000 mg/dm3, co odpowiada 1 g/dm3. W tym przypadku istnieje nieporozumienie związane z konwersją jednostek, które są kluczowe w inżynierii budowlanej. Wybór 107 mg/m3 również wykazuje zrozumienie problemu, ale nie odnosi się do normy, w której wartość dla chlorków jest znacznie wyższa. Stąd wynika, że często błędy w odpowiedziach są efektem niepewności co do prawidłowego przeliczenia jednostek oraz niezrozumienia znaczenia norm, które mają na celu zapewnienie bezpieczeństwa i trwałości konstrukcji. Każdy inżynier budowlany powinien być dobrze zaznajomiony z odpowiednimi normami oraz umieć prawidłowo interpretować wyniki badań, co jest niezbędne do podejmowania właściwych decyzji technologicznych.

Pytanie 21

Aby przeprowadzać ręczną obróbkę szkła w laboratorium, konieczne jest posiadanie okularów ochronnych oraz rękawic.

A. zapewniające izolację termiczną
B. chroniące przed substancjami chemicznymi
C. płócienne
D. zwykłe gumowe
Wybór odpowiednich rękawic do pracy ze szkłem laboratoryjnym to naprawdę ważna sprawa, bo chodzi o bezpieczeństwo. Takie rękawice muszą chronić przed wysokimi temperaturami, co jest kluczowe, gdy na przykład podgrzewamy szkło czy pracujemy z gorącymi elementami. Są zaprojektowane z materiałów, które dobrze znoszą ciepło, więc możesz być spokojny, że Twoje dłonie są chronione przed oparzeniami. W laboratoriach, gdzie obrabia się szkło, takie rękawice są niezbędne, szczególnie podczas odlewania czy formowania. Co więcej, przepisy BHP zalecają używanie specjalistycznych rękawic, które nie tylko chronią przed ciepłem, ale też są odporne na chemikalia. To dodatkowo podnosi poziom bezpieczeństwa. Dlatego warto dobrze przemyśleć, jakie rękawice wybierasz, żeby zadbać o swoje zdrowie i bezpieczeństwo w pracy.

Pytanie 22

Sączków o najmniejszych średnicach, nazywanych "twardymi" i oznaczonych kolorem niebieskim, używa się do filtracji osadów?

A. galaretowatych
B. serowatych
C. drobnokrystalicznych
D. grubokrystalicznych
Sączki o mniejszych porach służą do filtrowania substancji, które mają specyficzne właściwości, dlatego odpowiedzi takie jak galaretowate, serowate czy grubokrystaliczne są niepoprawne. Galaretowate osady charakteryzują się wysoką zawartością wody oraz żelatyny i są zazwyczaj trudniejsze do sączenia, ponieważ ich struktura jest bardziej miękka i elastyczna, co sprawia, że filtracja może prowadzić do zatykania porów sączków. Ponadto, serowate osady mają tendencję do tworzenia większych cząstek, co może skutkować ich zatrzymywaniem w większych porach, a niekoniecznie w tych najmniejszych. Grubokrystaliczne osady to kolejne zjawisko, które nie znajduje zastosowania w kontekście małych porów, ponieważ ich wielkość znacznie przekracza zdolności filtracyjne twardych sączków. Wybór odpowiedniego sączka jest kluczowy w procesach filtracji, a błędne założenia dotyczące rodzaju osadów mogą prowadzić do nieefektywnego oczyszczania oraz zanieczyszczenia końcowego produktu. Dlatego ważne jest, aby dobrze zrozumieć właściwości filtrów i osadów, aby uniknąć typowych błędów w doborze materiałów filtracyjnych.

Pytanie 23

Aby przygotować 500 cm3 roztworu KMnO4 (M = 158 g/mol) o stężeniu 0,02 mol/dm3, ile należy zważyć?

A. 15,8 g KMnO4
B. 3,16 g KMnO4
C. 1,58 g KMnO4
D. 7,95 g KMnO4
Aby obliczyć masę KMnO4 potrzebną do sporządzenia roztworu o określonym stężeniu, należy zastosować wzór: m = C * V * M, gdzie m to masa substancji, C to stężenie molowe (w mol/dm³), V to objętość roztworu (w dm³), a M to masa molowa substancji (w g/mol). W przypadku KMnO4, jego masa molowa wynosi 158 g/mol, a stężenie, które chcemy uzyskać, to 0,02 mol/dm³. Objętość roztworu to 500 cm³, co odpowiada 0,5 dm³. Podstawiając wartości do wzoru, otrzymujemy: m = 0,02 mol/dm³ * 0,5 dm³ * 158 g/mol = 1,58 g. Otrzymana wartość 1,58 g oznacza, że do przygotowania 500 cm³ roztworu KMnO4 o stężeniu 0,02 mol/dm³ należy odważyć tę dokładną ilość substancji. Takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów o określonym stężeniu jest niezbędne do przeprowadzenia analiz oraz eksperymentów. Przykładowo, w chemii analitycznej, dokładne stężenie roztworów ma bezpośredni wpływ na wyniki titracji oraz innych metod analitycznych.

Pytanie 24

Chemikalia, dla których upłynął okres przydatności,

A. można wykorzystać do końca opakowania
B. należy zutylizować z odpadami chemicznymi
C. powinny być przechowywane w magazynie
D. można je stosować, pod warunkiem że substancja pozostaje czysta
To, że odczynniki chemiczne po terminie ważności trzeba zutylizować jak odpady chemiczne, to bardzo dobra odpowiedź. Te substancje mogą być naprawdę niebezpieczne, zarówno dla zdrowia, jak i dla środowiska. Z tego, co wiem, każdy, kto korzysta z chemikaliów, powinien się z tym liczyć i robić to z głową. Na przykład, kwas siarkowy, jeśli nie zostanie właściwie usunięty, może zaszkodzić ziemi i wodom gruntowym. Utylizacja takich rzeczy według lokalnych przepisów, które zazwyczaj obejmują programy zbierania niebezpiecznych odpadów, jest kluczowa. Dbanie o to, żeby wszystko robić zgodnie z zasadami, zmniejsza ryzyko wypadków i kontaminacji. Warto też pamiętać, że trzymanie się przepisów dotyczących bezpieczeństwa chemicznego jest ważne dla reputacji firm i ich odpowiedzialności społecznej.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Czy odpady laboratoryjne zawierające jony metali ciężkich powinny zostać poddane obróbce przed umieszczeniem ich w odpowiednio oznaczonej pojemności?

A. przeprowadzić w trudnorozpuszczalne związki i odsączyć
B. zasypać wodorowęglanem sodu
C. zneutralizować kwasem solnym lub zasadą sodową
D. rozcieńczyć wodą destylowaną
Odpady laboratoryjne zawierające jony metali ciężkich powinny być przekształcane w trudnorozpuszczalne związki, a następnie odsączane, aby zminimalizować ich toksyczność i ułatwić dalsze postępowanie z nimi. Proces ten zakłada dodawanie reagentów, które reagują z metalami ciężkimi, tworząc osady, które są łatwiejsze do usunięcia. Przykładem może być dodawanie siarczanu sodu, co prowadzi do wytrącenia osadów siarczkowych. Odsączanie pozwala na oddzielenie osadu od cieczy, co jest kluczowe w zarządzaniu odpadami. Praktyki takie są zgodne z normami ochrony środowiska, które nakładają obowiązek zapewnienia, że odpady nie zanieczyszczają wód gruntowych ani innych zasobów wodnych. Z tego powodu laboratoria powinny dysponować odpowiednimi urządzeniami filtracyjnymi oraz zapewniać szkolenia dla personelu w zakresie odpowiedniego postępowania z takimi odpadami. Warto również pamiętać, że metale ciężkie, jak ołów czy kadm, mogą być szkodliwe dla zdrowia ludzkiego, dlatego tak ważne jest ich właściwe zarządzanie.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Z partii materiału należy pobrać ogólną próbkę w ilości odpowiadającej promilowi całej partii. Na podstawie podanej informacji określ, ile pierwotnych próbek, każda ważąca 10 g, trzeba pobrać z partii cukru o masie 0,5 t, aby uzyskać reprezentatywną próbkę ogólną?

A. 100
B. 5
C. 50
D. 10
Aby uzyskać reprezentatywną próbkę ogólną z partii cukru o masie 0,5 t (czyli 500 kg), należy zastosować zasadę pobierania próbek o odpowiedniej masie. Zgodnie z normami i wytycznymi, w przypadku materiałów takich jak cukier, zaleca się, aby próbka ogólna stanowiła co najmniej 0,1% całkowitej masy partii. W przypadku 500 kg, 0,1% wynosi 0,5 kg, co odpowiada 500 g. Jeśli każda próbka pierwotna ma masę 10 g, to aby uzyskać 500 g, potrzebujemy 50 próbek (500 g / 10 g = 50). Takie podejście zapewnia, że próbka ogólna będzie odzwierciedlać rzeczywistą homogeniczność partii, co jest kluczowe w kontekście zapewnienia jakości i zgodności z normami bezpieczeństwa żywności. W praktyce, odpowiednie pobieranie próbek ma kluczowe znaczenie w procesach kontroli jakości, analizy i certyfikacji produktów spożywczych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

W próbkach obecne są składniki, które znacznie różnią się pod względem zawartości. Składnik, którego procentowy udział w próbce jest niższy od 0,01%, nazywamy

A. domieszką
B. ultraśladem
C. śladem
D. matrycą
Termin 'ślad' odnosi się do składników, których stężenie w próbce jest bardzo niskie, wynoszące mniej niż 0,01%. W praktyce oznacza to, że substancje te mogą być trudne do wykrycia, ale mimo to mogą mieć istotny wpływ na właściwości analityczne próbki. Przykładem mogą być zanieczyszczenia w próbkach chemicznych, gdzie obecność nawet śladowych ilości metali ciężkich, takich jak ołów czy kadm, może prowadzić do poważnych konsekwencji zdrowotnych. W standardach takich jak ISO 17025, które dotyczą kompetencji laboratoriów badawczych, uwzględnia się konieczność analizy i raportowania takich śladowych składników, aby zapewnić pełną zgodność z normami jakości. W związku z tym, zrozumienie, co oznacza 'ślad', jest kluczowe dla analityków, którzy muszą być świadomi wpływu tych substancji na wyniki badań oraz jakość produktów końcowych. Warto także zwrócić uwagę, że w niektórych dziedzinach, takich jak toksykologia czy chemia środowiskowa, detekcja śladowych substancji jest kluczowa dla monitorowania zanieczyszczeń i ochrony zdrowia publicznego.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jaką substancję należy koniecznie oddać do utylizacji?

A. Gliceryna
B. Glukoza
C. Chromian(VI) potasu
D. Sodu chlorek
Chromian(VI) potasu to substancja chemiczna, która jest klasyfikowana jako niebezpieczny odpad. Ze względu na swoje właściwości toksyczne oraz rakotwórcze, jego pozostałości muszą być traktowane z najwyższą ostrożnością i nie mogą być usuwane w sposób standardowy. Zgodnie z regulacjami dotyczącymi gospodarki odpadami, takie substancje powinny być przekazywane do specjalistycznych zakładów zajmujących się ich utylizacją. Przykładowo, chromiany są szeroko stosowane w przemyśle, w tym w procesach galwanicznych oraz w produkcji barwników, dlatego ważne jest, aby procesy te były zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące zarządzania odpadami niebezpiecznymi. Utylizacja chromianu VI wymaga zastosowania odpowiednich metod, takich jak stabilizacja chemiczna, aby zapobiec przedostawaniu się szkodliwych substancji do gruntu czy wód gruntowych. Właściwe postępowanie z tymi materiałami jest kluczowe dla ochrony zdrowia publicznego oraz ochrony środowiska.

Pytanie 34

Kalibracja pH-metru nie jest potrzebna po

A. dłuższej przerwie w pomiarach.
B. długotrwałym używaniu tej samej elektrody.
C. wymianie elektrody.
D. każdym pomiarze w danej serii.
Kalibracja pH-metru po każdym pomiarze w serii nie jest aż taka konieczna, bo te urządzenia są zaprojektowane z myślą o stabilności pomiarów w krótkich odstępach. Jeśli pH-metr był już wcześniej skalibrowany, a warunki się nie zmieniły, to można spokojnie kontynuować pomiary bez nowej kalibracji. Na przykład w laboratoriach, gdzie robi się dużo pomiarów pH tego samego roztworu, często kalibruje się pH-metr przed rozpoczęciem całej serii pomiarów, a potem korzysta z tej samej kalibracji. Tylko pamiętaj, że jeśli robisz dłuższą przerwę w pomiarach lub zmienia się temperatura, to lepiej znów skalibrować, żeby mieć pewność, że wyniki są dokładne. Takie zasady są podkreślane w standardach ISO i ASTM, więc warto je znać, bo nieprzestrzeganie ich może prowadzić do złych wyników i utraty zaufania do analiz.

Pytanie 35

200 g soli zostało poddane procesowi oczyszczania poprzez krystalizację. Uzyskano 125 g czystego produktu. Jaką wydajność miała krystalizacja?

A. 62,5%
B. 60,5%
C. 75%
D. 125%
Wydajność krystalizacji oblicza się, dzieląc masę czystego produktu przez masę surowca, a następnie mnożąc przez 100%. W tym przypadku masa czystego produktu wynosi 125 g, a masa surowca to 200 g. Obliczenia przedstawiają się następująco: (125 g / 200 g) * 100% = 62,5%. Zrozumienie wydajności krystalizacji ma kluczowe znaczenie w przemyśle chemicznym, ponieważ pozwala ocenić skuteczność procesu, co jest niezbędne do optymalizacji produkcji. Wydajność krystalizacji jest często analizowana w kontekście różnych metod oczyszczania substancji, a jej wysoka wartość wskazuje na efektywność procesu. W praktyce, osiągnięcie wysokiej wydajności krystalizacji może mieć istotne znaczenie ekonomiczne, szczególnie w sektorach takich jak farmaceutyka czy przemysł chemiczny, gdzie czystość produktu końcowego jest kluczowa dla spełnienia standardów jakości. Dlatego regularne monitorowanie wydajności procesu krystalizacji stanowi część dobrych praktyk inżynieryjnych oraz zarządzania jakością.

Pytanie 36

Osoba pracująca z lotnym rozpuszczalnikiem straciła przytomność. Jakie działania należy podjąć, aby udzielić pierwszej pomocy?

A. rozpoczęciu resuscytacji
B. rozpoczęciu reanimacji
C. wyniesieniu osoby poszkodowanej na świeże powietrze
D. zwilżeniu zimną wodą czoła i karku
Wyniesienie osoby poszkodowanej na świeże powietrze jest kluczowym krokiem w sytuacji, gdy mamy do czynienia z utratą przytomności w wyniku działania lotnych rozpuszczalników. Lotne substancje chemiczne mogą powodować duszność, osłabienie lub nawet utratę przytomności w wyniku ich wdychania, co stwarza ryzyko zatrucia. Przeniesienie osoby do miejsca z lepszą wentylacją minimalizuje ekspozycję na szkodliwe opary, co zwiększa szanse na jej szybki powrót do zdrowia. W praktyce, jeśli zauważysz osobę, która straciła przytomność po kontakcie z takimi substancjami, pierwszym krokiem powinno być ocena sytuacji, a następnie ostrożne przeniesienie jej w bezpieczne, świeże powietrze. Zgodnie z wytycznymi Europejskiej Agencji Bezpieczeństwa i Zdrowia w Pracy (EU-OSHA), ważne jest, aby zawsze mieć na uwadze ryzyko inhalacji substancji chemicznych oraz znać procedury udzielania pierwszej pomocy w takich sytuacjach, co można wdrożyć w miejscu pracy, aby poprawić bezpieczeństwo pracowników.

Pytanie 37

Do pojemników na odpady stałe, które są przeznaczone do utylizacji, nie można wprowadzać bezpośrednio cyjanków oraz związków kompleksowych zawierających jony cyjankowe z powodu

A. produkcji toksycznych par lub gazów
B. uwalniania związków o drażniącym zapachu
C. powolnego rozkładu związków
D. zajścia nagłej, egzotermicznej reakcji
Wybór odpowiedzi dotyczącej zajścia gwałtownej, egzotermicznej reakcji jest błędny, ponieważ procesy egzotermiczne nie są jedynym lub najważniejszym zagrożeniem związanym z cyjankami. Choć niektóre reakcje chemiczne mogą wydzielać ciepło, to w przypadku cyjanków kluczowym zagrożeniem jest ich zdolność do generowania toksycznych gazów, które stanowią poważne ryzyko dla zdrowia. Wydanie cyjanków do utylizacji prowadzi do sytuacji, w której ich reakcje z innymi substancjami mogą generować niebezpieczne produkty, jednak nie każde zajście reakcji chemicznej jest oparte na gwałtowności. W kontekście drugiej odpowiedzi, powolne rozkładanie się związków nie odzwierciedla natury cyjanków - w rzeczywistości ich toksyczne właściwości nie są związane z ich rozkładem, ale z ich zdolnością do przekształcania się w jeszcze bardziej niebezpieczne formy. Z kolei koncepcja wydzielania się związków o drażniącym zapachu również jest nieadekwatna, ponieważ nie wszystkie cyjanki emitują zauważalne zapachy, a ich obecność w środowisku może być wykrywana jedynie dzięki specjalistycznym metodom analitycznym. Dlatego kluczowe jest, aby zrozumieć, że cyjanki i ich pochodne wymagają szczególnej uwagi i procedur w zakresie ich zarządzania oraz utylizacji, a nie koncentrowania się na nieodpowiednich aspektach ich chemii. W praktyce, nieprzestrzeganie odpowiednich standardów może prowadzić do poważnych zagrożeń zdrowotnych i środowiskowych, a także naruszenia przepisów dotyczących ochrony środowiska.

Pytanie 38

W celu rozdrabniania niewielkich ilości bardzo twardego materiału wykorzystuje się moździerze

A. ze stali molibdenowej
B. melaminowe
C. teflonowe
D. agatowe
Odpowiedź "ze stali molibdenowej" jest poprawna, ponieważ moździerze wykonane z tego materiału charakteryzują się wyjątkową twardością i odpornością na zużycie, co czyni je idealnymi do rozdrabniania twardych substancji. Stal molibdenowa, dzięki swoim właściwościom, zapewnia doskonałą trwałość oraz stabilność mechaniczną, co jest kluczowe przy pracy z bardzo twardymi materiałami, takimi jak niektóre minerały czy substancje chemiczne. Użycie moździerzy stalowych w laboratoriach chemicznych oraz gastronomicznych jest powszechną praktyką, gdyż pozwala na uzyskanie dokładnych i jednorodnych rezultatów. Przykładem zastosowania może być rozdrabnianie przypraw, takich jak pieprz czy zioła, gdzie kluczowe jest zachowanie aromatów i właściwości smakowych. Ponadto stal molibdenowa jest mniej podatna na korozję w porównaniu do innych stali, co wydłuża żywotność narzędzia oraz zapewnia bezpieczeństwo w kontakcie z różnymi substancjami chemicznymi.

Pytanie 39

Reakcja neutralizacji wodorotlenku sodu z kwasem solnym zrealizowana jest zgodnie z równaniem:
NaOH + HCl → NaCl + H2O Masy molowe: MNaOH = 40 g/mol, MHCl = 36,5 g/mol Aby zneutralizować 10 g wodorotlenku sodu, wymagane jest

A. 36,5 g roztworu kwasu solnego o stężeniu 38%
B. 9,125 g roztworu kwasu solnego o stężeniu 38%
C. 24,013 g roztworu kwasu solnego o stężeniu 38%
D. 10 g roztworu kwasu solnego o stężeniu 38%
Obliczenia związane ze zobojętnianiem kwasów i zasad są kluczowe w chemii analitycznej. Wiele osób w odpowiedziach myli masy reagentów z ich molami. Często zjawisko to prowadzi do nieprawidłowych wniosków dotyczących ilości potrzebnych substancji chemicznych. Na przykład, niektórzy mogą sądzić, że masa roztworu HCl o stężeniu 38% odpowiada bezpośrednio masie HCl, co jest błędne. Należy zrozumieć, że stężenie odnosi się do ilości substancji w łącznej masie roztworu, a nie tylko do masy czystej substancji. Stąd, jeżeli ktoś obliczałby masę roztworu jako sumę mas reagentów, pomijałby kluczowy krok dotyczący stężenia. Innym powszechnym błędem jest utożsamianie mas molowych z wagą rzeczywistą substancji w roztworze, co prowadzi do zafałszowanych wyników. Każda reakcja chemiczna wymaga precyzyjnego obliczenia ilości reagentów, a zaniedbanie tego kroku może prowadzić do niebezpiecznych sytuacji w laboratoriach. Przygotowując roztwory lub przeprowadzając reakcje chemiczne, należy zawsze wykonać dokładne obliczenia, aby uniknąć nieprawidłowych wyników, co jest szczególnie istotne w kontekście przestrzegania standardów bezpieczeństwa i jakości w pracy laboratoryjnej.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.