Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 25 maja 2025 19:07
  • Data zakończenia: 25 maja 2025 19:22

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Czego się używa w produkcji z porcelany?

A. zlewki oraz bagietki
B. moździerze i parowniczki
C. naczynia wagowe oraz krystalizatory
D. szkiełka zegarkowe oraz szalki Petriego
Moździerze i parowniczki są przykładami przedmiotów laboratoryjnych wykonanych z porcelany, co wynika z ich właściwości chemicznych oraz strukturalnych. Porcelana jest materiałem odpornym na wysokie temperatury i agresywne chemikalia, co czyni ją idealnym materiałem do produkcji sprzętu laboratoryjnego, który ma kontakt z substancjami chemicznymi. Moździerze służą do rozdrabniania substancji stałych oraz do ich mieszania, a ich gładka powierzchnia pozwala na efektywne przeprowadzanie reakcji chemicznych. Parowniczki, z kolei, są wykorzystywane do odparowywania cieczy, co również wymaga materiału odpornego na działanie wysokiej temperatury oraz na chemikalia. Używanie porcelanowych naczyń w laboratoriach jest zgodne z najlepszymi praktykami, ponieważ minimalizuje ryzyko zanieczyszczenia prób i zapewnia ich wysoką jakość. Dodatkowo, porcelana ma estetyczny wygląd, co może być istotne w laboratoriach, gdzie organizowane są prezentacje lub spotkania naukowe.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Temperatura topnienia mocznika wynosi 133 °C. W celu określenia czystości preparatów tej substancji, przeprowadzono badania temperatury ich topnienia, uzyskując wyniki przedstawione w tabeli. Wskaż preparat o najmniejszym stopniu czystości.

PreparatABCD
Zakres temperatury topnienia [°C]132-133130-133125-133128-133

A. C.
B. B.
C. D.
D. A.
Odpowiedź C jest prawidłowa, ponieważ temperatura topnienia czystego mocznika wynosi 133 °C. W przypadku analizy czystości substancji, kluczowym czynnikiem jest ocena temperatury topnienia - im niższa temperatura początkowa oraz szerszy zakres topnienia, tym większa obecność zanieczyszczeń w próbce. Preparat C osiąga temperaturę początkową topnienia na poziomie 125 °C, co wskazuje na obecność zanieczyszczeń obniżających jego punkt topnienia. Dodatkowo, zakres topnienia 125-133 °C również sugeruje, że substancja nie jest w pełni czysta, co jest zgodne z zasadami analizy chemicznej i standardami jakości. W praktyce, takie badania są istotne w przemyśle chemicznym, farmaceutycznym czy spożywczym, gdzie czystość substancji ma kluczowe znaczenie dla jakości końcowego produktu. Ważne jest, aby zapewnić odpowiednią kontrolę jakości, a metody takie jak pomiary temperatury topnienia są standardem w laboratoriach analitycznych, co umożliwia zapewnienie wysokich standardów jakości preparatów.

Pytanie 5

Podstawowy zestaw do filtracji składa się ze statywu oraz

A. zlejka, zlewki i pipety
B. z dwóch zlewek i bagietki
C. zlejka, dwóch zlewek i bagietki
D. zlejka Büchnera, zlewki i bagietki
Podstawowy zestaw do sączenia rzeczywiście składa się z statywu oraz zlejki, dwóch zlewek i bagietki. Statyw jest kluczowy, ponieważ zapewnia stabilność i bezpieczeństwo podczas procesu sączenia, co jest szczególnie ważne w laboratoriach chemicznych i biologicznych, gdzie manipulacja cieczami może być niebezpieczna. Zlejka służy do przechwytywania cieczy, która jest sączona, natomiast zlewki są wykorzystywane do przechowywania oraz transportowania różnych odczynników i próbek. Bagietka, z kolei, jest narzędziem pomocniczym używanym do kierowania cieczy lub do mieszania składników w zlewkach. Przykładem zastosowania tego zestawu jest filtracja próbki cieczy w celu usunięcia zawiesin, co jest powszechnie stosowane w analizach chemicznych oraz podczas przygotowywania rozwiązań o określonym stężeniu. W laboratoriach stosuje się również standardowe procedury bezpieczeństwa, które obejmują wykorzystanie odpowiednich narzędzi i zachowywanie porządku, aby uniknąć kontaminacji.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Podczas pobierania próby wody do oznaczania metali ciężkich zaleca się stosowanie butelek wykonanych z:

A. szkła sodowego
B. ceramiki
C. aluminium
D. polietylenu wysokiej gęstości (HDPE)
Polietylen wysokiej gęstości (HDPE) to materiał, który najczęściej wykorzystuje się do pobierania i przechowywania próbek wody przeznaczonych do analizy zawartości metali ciężkich. Przede wszystkim HDPE jest tworzywem chemicznie obojętnym wobec większości metali. To ogromna zaleta, bo nie wchodzi w reakcje z badanymi jonami, nie adsorbuje ich na swojej powierzchni i nie emituje zanieczyszczeń, które mogłyby zaburzyć wyniki. W praktyce laboratoria stosują butelki HDPE zarówno w analizach środowiskowych, jak i przemysłowych. Bardzo ważne jest też to, że HDPE jest wytrzymały mechanicznie, odporny na pęknięcia i łatwy do mycia oraz dekontaminacji przed kolejnym użyciem. Takie pojemniki są rekomendowane przez międzynarodowe normy, np. ISO 5667 dotyczące pobierania próbek wody. Z mojego doświadczenia wynika, że HDPE to pewność, że próbka nie zostanie zanieczyszczona metalami z materiału opakowania ani nie dojdzie do strat analitu przez związanie z powierzchnią. To naprawdę kluczowe, żeby nie zafałszować wyników, szczególnie przy bardzo niskich stężeniach metali ciężkich.

Pytanie 8

Jaką masę chlorku sodu można znaleźć w 150 g roztworu soli o stężeniu 5% (m/m)?

A. 5,00 g
B. 0,05 g
C. 0,75 g
D. 7,50 g
Poprawna odpowiedź wynosi 7,50 g chlorku sodu w 150 g roztworu o stężeniu 5% (m/m). Aby obliczyć masę substancji rozpuszczonej w roztworze, należy zastosować wzór: masa substancji = stężenie (m/m) × masa roztworu. W naszym przypadku stężenie wynosi 5%, co oznacza, że w 100 g roztworu znajduje się 5 g soli. Skoro mamy 150 g roztworu, wykorzystywana proporcja to 5 g/100 g, co można zapisać jako 5 g × 150 g / 100 g = 7,50 g. Tego rodzaju obliczenia są kluczowe w chemii, farmacji oraz branżach zajmujących się produkcją roztworów. Zrozumienie stężenia masowego jest również pomocne w praktycznych zastosowaniach, takich jak przygotowywanie roztworów w laboratoriach, co wymaga precyzyjnych pomiarów. W kontekście standardów branżowych, dobrym przykładem jest stosowanie stężenia m/m w analizie jakościowej substancji chemicznych, co ułatwia porównanie różnych roztworów oraz ich właściwości. Zrozumienie tych obliczeń jest fundamentalne dla każdego chemika, technologa czy farmaceuty.

Pytanie 9

Część partii pobrana w sposób jednorazowy z jednego źródła towaru zapakowanego lub z jednego opakowania jednostkowego określana jest mianem próbki

A. średniej laboratoryjnej
B. analitycznej
C. ogólnej
D. pierwotnej
Odpowiedź 'pierwotnej' jest poprawna, ponieważ próbka pierwotna to część partii, która jest pobrana jednorazowo z jednego miejsca towaru opakowanego lub z jednego opakowania jednostkowego. Termin ten jest kluczowy w kontekście badań laboratoryjnych i jakości produktów. Próbki pierwotne są często stosowane w analizach chemicznych, mikrobiologicznych i fizykochemicznych, gdzie dokładność i reprezentatywność próbki mają kluczowe znaczenie dla wyników. Na przykład, w akredytowanych laboratoriach, zgodnie z normami ISO 17025, zaleca się pobieranie próbek pierwotnych w sposób zapewniający ich reprezentatywność dla całej partii. Przykłady zastosowania obejmują kontrolę jakości surowców w przemyśle spożywczym czy farmaceutycznym, gdzie kluczowe jest, aby wyniki badań były wiarygodne i mogły być zastosowane do oceny całej partii produktu. Dobrą praktyką jest również dokumentowanie procesu pobierania próbek, co zwiększa transparentność i wiarygodność analiz.

Pytanie 10

Dekantacja to metoda

A. oddzielania cieczy od osadu, która polega na zlaniu cieczy znad osadu
B. opadania cząstek ciała stałego w wyniku działania siły ciężkości, które są rozproszone w cieczy
C. oddzielania cieczy od osadu, która polega na odparowaniu cieczy
D. oddzielania cieczy lub gazu od cząstek ciała stałego, które są w nich zawieszone, polegająca na przepuszczeniu zawiesiny przez przegrodę filtracyjną
Tutaj trzeba zwrócić uwagę na kilka rzeczy. Dekantacja to nie to samo co odparowanie – odparowanie znaczy, że ciecz przechodzi w stan gazowy, a to nie ma nic wspólnego z oddzielaniem osadu. A sedymentacja? To też nie dekantacja. W sedymentacji cząstki opadają na dno pod wpływem grawitacji, tak po prostu, więc nie jest to aktywny proces jak przy dekantacji. Zajmuje to więcej czasu i nie wymaga od nas działania. Jeszcze filtracja, która była wymieniona – to kompletnie inna sprawa, bo tu ciecz przepływa przez filtr, co zatrzymuje cząstki stałe. Często ludzie mylą te procesy, a to może wynikać z braku zrozumienia ich różnic. Fajnie byłoby umieć te techniki rozróżniać i wiedzieć, kiedy ich używać, bo to jest naprawdę ważne w chemii i inżynierii materiałowej.

Pytanie 11

Fragment procedury analitycznej
(...) Przenieś badany roztwór całkowicie do rozdzielacza gruszkowego o pojemności od 50 do 100 cm3, dodaj 5 cm3 roztworu tiocyjanianu potasu oraz 10 cm3 alkoholu izopentylowego, a następnie wstrząsaj zawartością przez 30 sekund.
Po rozdzieleniu faz przenieś roztwór wodny do drugiego rozdzielacza, natomiast fazę organiczną do suchej kolbki miarowej o pojemności 50 cm3(...) Który rodzaj ekstrakcji jest opisany w powyższym fragmencie?

A. Ciągłej ciało stałe – ciecz
B. Okresowej ciecz – ciecz
C. Okresowej ciało stałe – ciecz
D. Ciągłej ciecz – ciecz
Fragment procedury analitycznej opisuje proces ekstrakcji okresowej ciecz – ciecz, co oznacza, że rozdzielanie składników następuje w wyniku wielokrotnego kontaktu dwóch cieczy o różnej polarności. W przedstawionej procedurze, badany roztwór jest mieszany z roztworem tiocyjanianu potasu i alkoholem izopentylowym, co prowadzi do rozdzielenia faz. Ekstrakcja okresowa jest szczególnie efektywna w przypadku związków organicznych, które można oddzielić od roztworów wodnych. Praktyczne zastosowanie tego typu ekstrakcji występuje w analitycznej chemii, np. w izolowaniu związków organicznych z wodnych roztworów, co jest istotne w laboratoriach zajmujących się analizą chemiczną żywności, środowiska czy farmaceutyków. Dobrym przykładem może być ekstrakcja substancji czynnych z roztworów, co pozwala na ich dalszą analizę i identyfikację. Warto zwrócić uwagę, że stosowanie odpowiednich proporcji reagentów oraz optymalnych warunków mieszania jest kluczowe dla efektywności tego procesu.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Reagent, który reaguje wyłącznie z jednym konkretnym jonem lub związkiem, nazywamy reagente

A. grupowy
B. specyficzny
C. maskujący
D. selektywny
Odczynnik specyficzny to taki, który reaguje z jednym, ściśle określonym jonem lub związkiem chemicznym, co czyni go niezwykle przydatnym w analizach chemicznych i laboratoryjnych. Przykładem może być odczynnik nieselektywnego wykrywania jonów srebra, jakim jest chlorowodorek sodu, który wytrąca białe osady tylko w obecności jonów srebra. W praktyce, zastosowanie odczynników specyficznych pozwala na przeprowadzanie dokładnych analiz jakościowych i ilościowych, co jest kluczowe w laboratoriach chemicznych, analitycznych, a także w przemyśle farmaceutycznym i środowiskowym. Standardy ASTM i ISO promują stosowanie takich odczynników w badaniach laboratoryjnych, co podkreśla ich znaczenie w zapewnieniu wysokiej jakości wyników. W kontekście praktycznym, specyficzność odczynników jest niezwykle ważna w diagnostyce medycznej, gdzie konieczne jest precyzyjne określenie obecności konkretnych biomarkerów.

Pytanie 14

Mianowanie roztworu o stężeniu przybliżonym można wykonać poprzez

A. miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu.
B. miareczkowanie tym samym roztworem mianowanym o ściśle określonym stężeniu.
C. miareczkowanie innym roztworem, który nie jest mianowany.
D. zmierzenie gęstości tego roztworu.
Mianowanie roztworu o stężeniu przybliżonym można skutecznie przeprowadzić poprzez miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu, ponieważ pozwala to na precyzyjne określenie ilości molesów substancji czynnej w analizowanym roztworze. W praktyce, podczas miareczkowania wykorzystuje się znany roztwór o dokładnie zmierzonym stężeniu, co pozwala na dokładne obliczenia i analizę wyników. Na przykład, w laboratoriach chemicznych często wykorzystuje się miareczkowanie kwasu solnego roztworem wodorotlenku sodu o znanym stężeniu, co umożliwia precyzyjne określenie stężenia kwasu. Zgodnie z normami branżowymi, takimi jak ISO 8655, precyzyjne miareczkowanie jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Dodatkowo, stosowanie roztworów mianowanych eliminuje wiele zmiennych, które mogłyby wpłynąć na wynik, takich jak niejednorodność roztworów niemianowanych, co czyni je bardziej niezawodnymi w kontekście stosowania w analizach laboratoryjnych.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Naczynia miarowe o kształcie rurek poszerzonych w środku, z wąskim i wydłużonym dolnym końcem, przeznaczone do pobierania i transportowania cieczy o ściśle określonej objętości, to

A. biurety
B. pipety
C. cylindry
D. wkraplacze
Pipety to takie fajne naczynka, które trzymamy w laboratoriach, żeby dokładnie mierzyć i przenosić różne płyny. Mają specjalną budowę - szerszą część w środku i wąski koniec, co ułatwia nam nalewanie cieczy w ściśle określonych ilościach. Korzysta się z nich w wielu dziedzinach, jak chemia czy biologia, a nawet w medycynie i farmacji. Na przykład, w biologii molekularnej pipety są super do przenoszenia małych ilości chemikaliów, które potem wykorzystujemy w reakcjach PCR. W labach często używamy pipet automatycznych, bo to pozwala na jeszcze dokładniejsze pomiary i szybszą pracę. A pojemności pipet są różne, więc możemy dobrać odpowiednią do naszych potrzeb. Ważne, żeby dobrze korzystać z tych narzędzi, czyli pamiętać o kalibracji i stosować się do wskazówek producenta - to naprawdę robi różnicę.

Pytanie 17

Na etykiecie kwasu siarkowego(VI) znajduje się zapis:
Określ gęstość kwasu siarkowego(VI).

KWAS SIARKOWY MIN. 95%
CZ.D.A.
H2SO4
M = 98,08 g/mol    1 l – 1,84 kg

A. 1,84 g/dm3
B. 0,184 g/dm3
C. 0,184 g/cm3
D. 1,84 g/cm3
Wybór błędnych odpowiedzi może świadczyć o nieporozumieniach dotyczących definicji gęstości oraz jednostek miary. W odpowiedziach takich jak 0,184 g/dm3 i 0,184 g/cm3, liczby te są nieprawidłowe, ponieważ pomijają kluczowy aspekt masy kwasu siarkowego(VI) w kontekście jego gęstości. W szczególności, warto zauważyć, że 0,184 g/dm3 jest równoznaczne z 0,000184 g/cm3, co jest zbyt niską wartością jak na gęstość stężonego kwasu siarkowego(VI). To podejście jest błędne, ponieważ nie uwzględnia rzeczywistej masy kwasu w 1 litrze, która wynosi 1840 g. Ponadto, 0,184 g/cm3 również jest nieprawidłowe, ponieważ sugeruje, że kwas siarkowy(VI) jest znacznie mniej gęsty niż w rzeczywistości. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych odpowiedzi, to pomylenie jednostek oraz niewłaściwe przeliczenie masy na gęstość. Wiedza o gęstości substancji chemicznych jest kluczowa dla wielu procesów przemysłowych oraz laboratoryjnych; błędne zrozumienie tego pojęcia może prowadzić do niebezpiecznych sytuacji, takich jak niewłaściwe przygotowanie roztworów lub błędna klasyfikacja substancji w zakresie ich transportu. Dlatego tak ważne jest, aby dokładnie przestudiować dane zawarte na etykietach substancji chemicznych oraz wykorzystywać je w praktycznych zastosowaniach w zgodzie z obowiązującymi normami i najlepszymi praktykami.

Pytanie 18

W trakcie pobierania próbek wody, które mają być analizowane pod kątem składników podatnych na rozkład fotochemiczny, należy

A. wykorzystywać pojemniki z jasnego szkła z dokładnie dopasowanym korkiem
B. stosować opakowania nieprzezroczyste
C. obniżyć temperaturę próbek do 10oC
D. dodać do próbek roztwór H3PO4 w celu zakwaszenia
Chociaż schłodzenie próbek do temperatury 10oC, zakwaszenie ich roztworem H3PO4 oraz stosowanie opakowań z jasnego szkła mogą wydawać się sensownymi metodami, nie są one skuteczne w kontekście analizy składników podatnych na rozkład fotochemiczny. Schłodzenie próbek jest korzystne dla spowolnienia procesów biologicznych i chemicznych, ale nie eliminuje problemu związanego z fotodegradacją, ponieważ światło wciąż może przenikać przez opakowanie. Z kolei zakwaszenie próbek może prowadzić do niepożądanych reakcji chemicznych, które mogą zmieniać skład próbki. Użycie jasnego szkła natomiast nie zapewnia ochrony przed światłem, co jest kluczowe, gdyż może spowodować degradację substancji fotochemicznych. Typowym błędem myślowym jest przekonanie, że jedynie temperatura lub pH próbki mają kluczowe znaczenie, podczas gdy ważnym aspektem jest także ochrona przed światłem. W praktyce, niewłaściwe podejście do pobierania i przechowywania próbek może prowadzić do zafałszowania wyników analitycznych i tym samym do błędnych wniosków w badaniach środowiskowych. Dlatego kluczowe jest przestrzeganie ustalonych standardów i dobrych praktyk, które wskazują na użycie odpowiednich materiałów. Zrozumienie tych zasad ma fundamentalne znaczenie dla zapewnienia wiarygodności wyników badań.

Pytanie 19

Jakie proporcje objętościowe powinny być zastosowane do zmieszania roztworu etanolu o stężeniu 30% (V/V) z roztworem o stężeniu 70% (V/V), aby uzyskać roztwór o stężeniu 50% (V/V)?

A. 3:7
B. 1:2
C. 1:1
D. 2:1
Patrząc na błędne odpowiedzi, widać, że spora część osób myli proporcje, co prowadzi do złych obliczeń stężenia. Na przykład przy stężeniu 2:1, można pomyśleć, że większa ilość 30% jakoś zrekompensuje jego mniejsze stężenie, ale to jest w sumie błąd. Mieszanie w takim stosunku da zbyt niskie stężenie etanolu, bo mniejsza ilość roztworu 70% nie podniesie go do 50%. Inny typowy błąd to myślenie, że stosunek 1:2 da dobrego miksu, ale to też za dużo 70%, co sprawi, że końcowe stężenie będzie powyżej 50%. Niektórzy mylą mieszanie z obliczaniem średnich, a to w kontekście stężeń nie ma sensu, bo nie uwzględniają różnicy w stężeniach. Kluczem przy takich obliczeniach jest zrozumienie, że musimy znaleźć równowagę w mieszaniu różnych stężeń, żeby uzyskać pożądaną wartość średnią, a to wymaga znajomości zasad chemii i matematyki. Przygotowywanie roztworów o określonych stężeniach jest codziennością w laboratoriach chemicznych oraz w przemyśle, gdzie precyzja jest mega ważna.

Pytanie 20

Podczas reakcji chlorku żelaza(III) z wodorotlenkiem potasu dochodzi do wytrącenia wodorotlenku żelaza(III) w formie

A. galaretowatego osadu
B. grubokrystalicznego osadu
C. drobnokrystalicznego osadu
D. serowatego osadu
Wybór odpowiedzi dotyczący serowatego, grubokrystalicznego lub drobnokrystalicznego osadu opiera się na nieprawidłowym zrozumieniu mechanizmów wytrącania i struktury fizycznej osadów. Serowaty osad sugeruje odmienną teksturę, która jest charakterystyczna dla innych reakcji, na przykład związanych z osadzaniem koloidalnym, gdzie cząsteczki tworzą bardziej stałe, twarde struktury. Grubokrystaliczny osad natomiast wskazuje na obecność dużych, wyraźnych kryształów, co jest typowe dla reakcji krystalizacji o niskiej rozpuszczalności, a nie dla wodorotlenku żelaza(III), który ma tendencję do formowania się w postaci bardziej jednorodnej, galaretowatej. Drobnokrystaliczny osad może być mylący, ponieważ sugeruje, że produkt reakcji ma bardzo małe, jednorodne kryształy, co znów nie odnosi się do rzeczywistej natury wodorotlenku żelaza(III), który w warunkach reakcji z wodorotlenkiem potasu przyjmuje bardziej złożoną, galaretowatą formę. Takie nieporozumienia mogą wynikać z błędnego postrzegania roli pH i stężenia reagentów w procesie wytrącania, co jest kluczowe dla zrozumienia właściwości chemicznych osadów. Zachęcam do przestudiowania literatury dotyczącej chemii koordynacyjnej oraz procesów osadzania, aby lepiej zrozumieć te zjawiska.

Pytanie 21

Po zmieszaniu wszystkie pierwotne próbki danej partii materiału tworzą próbkę

A. analityczną
B. średnią
C. wtórną
D. ogólną
Odpowiedź ogólna jest poprawna, ponieważ po zmieszaniu wszystkich próbek pierwotnych danej partii materiału uzyskuje się jedną reprezentatywną próbkę, która odzwierciedla właściwości całej partii. W praktyce jest to kluczowe w procesach analitycznych, gdzie zapewnienie reprezentatywności próbki ma fundamentalne znaczenie dla uzyskanych wyników. W kontekście norm ISO 17025 dotyczących akredytacji laboratoriów badawczych oraz metod pobierania próbek, istotne jest, aby reprezentatywna próbka była zgodna z zaleceniami dotyczącymi wielkości i sposobu pobierania. Dzięki temu możemy mieć pewność, że wyniki analizy będą miały zastosowanie do całej partii materiału, a nie tylko do wybranych fragmentów. W praktyce, proces ten jest często stosowany w laboratoriach, które zajmują się kontrolą jakości, gdzie analiza jednego z wielu komponentów materiału pozwala na ocenę jego właściwości fizycznych czy chemicznych, co jest niezbędne w branżach takich jak przemysł spożywczy, farmaceutyczny czy chemiczny. W związku z tym, zrozumienie, czym jest próbka ogólna, jest niezbędne dla właściwej interpretacji wyników badań.

Pytanie 22

Z próbek przygotowuje się ogólną próbkę

A. analitycznych
B. pierwotnych
C. wtórnych
D. laboratoryjnych
Przygotowanie próbki ogólnej z próbek pierwotnych jest kluczową procedurą w wielu dziedzinach analityki. Próbki pierwotne to te, które są pozyskiwane bezpośrednio z miejsca danego badania, co zapewnia ich reprezentatywność i integralność. Umożliwia to właściwe odwzorowanie warunków, w jakich dana substancja występuje w naturze. Na przykład w analizach środowiskowych, takich jak badanie jakości wód czy gleby, próbki pierwotne pobierane są bezpośrednio z miejsca, co pozwala na dokładne przeanalizowanie ich właściwości chemicznych i fizycznych. Zgodnie z normami ISO, odpowiednie pobieranie próbek jest istotne dla zachowania właściwych standardów jakości i rzetelności wyników. W praktyce, przygotowanie próbki ogólnej z próbek pierwotnych pozwala na przeprowadzenie dalszych analiz, takich jak spektrometria, chromatografia czy mikroskopia, co daje możliwość uzyskania danych nie tylko o składzie chemicznym, ale także o potencjalnych zanieczyszczeniach i ich źródłach. Zrozumienie tej procedury jest kluczowe dla wszelkich prac badawczych i przemysłowych, dlatego istotne jest, aby praktycy i naukowcy stosowali się do ścisłych wytycznych dotyczących pobierania i przygotowania próbek.

Pytanie 23

Zgłębniki o konstrukcji przypominającej świder są wykorzystywane do pobierania próbek różnych materiałów

A. płynnych
B. półpłynnych
C. ciastowatych
D. sypkich
Zgłębniki w kształcie świdra, także znane jako świdry próbne, są specjalistycznymi narzędziami przeznaczonymi do pobierania próbek materiałów o konsystencji ciastowatej. Ich konstrukcja, przypominająca świdry, pozwala na efektywne wwiercanie się w bardziej gęste i lepkie substancje, co jest kluczowe w wielu dziedzinach, takich jak geologia, inżynieria materiałowa oraz nauki przyrodnicze. Przykładem zastosowania zgłębnika świdrowego jest badanie gruntów w celu określenia ich nośności lub składu, co jest istotne podczas projektowania fundamentów budynków. W praktyce, pobieranie próbek ciastowatych materiałów, jak np. gliny czy osady, jest trudne, dlatego użycie zgłębnika w kształcie świdra znacząco zwiększa precyzję i efektywność tego procesu. W standardach branżowych, takich jak ASTM D1586, opisane są metody pobierania próbek gruntów, które uwzględniają użycie takich narzędzi, co podkreśla ich fundamentalne znaczenie dla rzetelności badań geotechnicznych.

Pytanie 24

Reakcja miedzi metalicznej z stężonym kwasem azotowym(V) prowadzi do powstania azotanu(V) miedzi(II) oraz jakiego związku?

A. tlenek azotu(V) oraz wodór
B. tlenek azotu(IV) oraz woda
C. tlenek azotu(II) oraz woda
D. tlenek azotu(II) oraz wodór
Reakcje chemiczne, które prowadzą do powstania produktów takich jak tlenek azotu(II) lub tlenek azotu(V), są mylące, ponieważ nie odpowiadają rzeczywistym procesom zachodzącym w reakcji miedzi z kwasem azotowym. Tlenek azotu(II) (NO) jest produktem ubocznym reakcji redukcji, co jest nieprawidłowe w kontekście tej reakcji, ponieważ metale, takie jak miedź, wchodzą w reakcję z silniejszymi utleniaczami, co skutkuje powstawaniem tlenków o wyższych wartościach utlenienia. Podobnie, tlenek azotu(V) (N2O5) nie może być produktem reakcji, ponieważ wymaga innej reakcji chemicznej, w której występują inne materiały wyjściowe. Nieprawidłowe odpowiedzi często wynikają z mylenia różnych tlenków azotu oraz ich stanów utlenienia, co jest typowym błędem w nauce chemii. Kluczowe jest zrozumienie, że w reakcji kwasu azotowego z metalem powstają głównie tlenki o niższym stanie utlenienia, co jest zgodne z zasadami reakcji redoks. Dodatkowo, błędne odpowiedzi mogą prowadzić do nieporozumień w praktycznych zastosowaniach chemicznych, zwłaszcza w kontekście syntez organicznych oraz reakcji ekologicznych, co podkreśla znaczenie posiadania solidnej wiedzy na temat chemii nieorganicznej oraz jej mechanizmów.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Czy odpady laboratoryjne zawierające jony metali ciężkich powinny zostać poddane obróbce przed umieszczeniem ich w odpowiednio oznaczonej pojemności?

A. zasypać wodorowęglanem sodu
B. zneutralizować kwasem solnym lub zasadą sodową
C. rozcieńczyć wodą destylowaną
D. przeprowadzić w trudnorozpuszczalne związki i odsączyć
Odpady laboratoryjne zawierające jony metali ciężkich powinny być przekształcane w trudnorozpuszczalne związki, a następnie odsączane, aby zminimalizować ich toksyczność i ułatwić dalsze postępowanie z nimi. Proces ten zakłada dodawanie reagentów, które reagują z metalami ciężkimi, tworząc osady, które są łatwiejsze do usunięcia. Przykładem może być dodawanie siarczanu sodu, co prowadzi do wytrącenia osadów siarczkowych. Odsączanie pozwala na oddzielenie osadu od cieczy, co jest kluczowe w zarządzaniu odpadami. Praktyki takie są zgodne z normami ochrony środowiska, które nakładają obowiązek zapewnienia, że odpady nie zanieczyszczają wód gruntowych ani innych zasobów wodnych. Z tego powodu laboratoria powinny dysponować odpowiednimi urządzeniami filtracyjnymi oraz zapewniać szkolenia dla personelu w zakresie odpowiedniego postępowania z takimi odpadami. Warto również pamiętać, że metale ciężkie, jak ołów czy kadm, mogą być szkodliwe dla zdrowia ludzkiego, dlatego tak ważne jest ich właściwe zarządzanie.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Z analizy wykresu wynika, że substancją o najniższej rozpuszczalności w wodzie w temperaturze 100°C jest

A. saletra potasowa
B. siarczan(VI) miedzi(II)
C. sól kamienna
D. cukier
Cukier, siarczan(VI) miedzi(II) i saletra potasowa to substancje, które w sumie dobrze się rozpuszczają w wodzie, ale nie są odpowiedzią na pytanie, której substancji rozpuszczalność jest najsłabsza. Cukier, czyli sacharoza, jest znany z tego, że łatwo się rozpuszcza – w 100°C potrafi się rozpuścić nawet do 2000 g/l, co naprawdę przewyższa sól kamienną. Siarczan(VI) miedzi(II) ma też dobrą rozpuszczalność, bo przy 20°C dochodzi do około 70 g/l, więc również nie pasuje do tego pytania. Saletra potasowa, czyli azotan potasu, rozpuszcza się w wodzie do około 350 g/l przy 20°C. Czasami ludzie mylą, co to znaczy, że coś dobrze się rozpuszcza, bo na przykład myślą, że jak cukier się łatwo rozpuszcza w herbacie, to musi być słabiej rozpuszczalny. W rzeczywistości jednak, żeby zrozumieć rozpuszczalność substancji, warto sięgnąć po konkretne dane naukowe i zrozumieć, jakie właściwości chemiczne decydują o ich zachowaniu w roztworach.

Pytanie 30

Odważka analityczna przygotowana w fabryce zawiera 0,1 mola EDTA. Posiadając taką jedną odważkę analityczną, jakie roztwory można przygotować?

A. 100 cm3 roztworu o stężeniu 0,0100 mol/dm3
B. 2000 cm3 roztworu o stężeniu 0,2000 mol/dm3
C. 1000 cm3 roztworu o stężeniu 0,0100 mol/dm3
D. 500 cm3 roztworu o stężeniu 0,2000 mol/dm3
Odpowiedź, że można przygotować 500 cm3 roztworu o stężeniu 0,2000 mol/dm3, jest prawidłowa, ponieważ można to uzasadnić z definicji stężenia molowego oraz objętości roztworu. Fabrycznie przygotowana odważka analityczna zawiera 0,1 mola EDTA. Aby obliczyć, ile roztworu można przygotować o określonym stężeniu, należy zastosować wzór: C = n/V, gdzie C to stężenie, n to liczba moli, a V to objętość w dm3. W przypadku stężenia 0,2000 mol/dm3, mamy: 0,1 mola = 0,2000 mol/dm3 * V. Po przekształceniu równania do postaci V = n/C otrzymujemy V = 0,1 mol / 0,2000 mol/dm3 = 0,5 dm3, co odpowiada 500 cm3. Przygotowując roztwór o tym stężeniu, możemy wykorzystać EDTA w titracji kompleksometrycznej, co jest standardową metodą analizy chemicznej, szczególnie w badaniach jakości wody i analizie metali. Takie podejście zapewnia dokładność i zgodność z normami analitycznymi, co jest kluczowe w laboratoriach chemicznych.

Pytanie 31

Aby przygotować 200 g roztworu chlorku potasu o stężeniu 5% (m/m), ile substancji należy zastosować?

A. 5 g KCl i 200 g wody
B. 10 g KCl i 200 g wody
C. 20 g KCl i 180 g wody
D. 10 g KCl i 190 g wody
Aby przygotować 200 g roztworu chlorku potasu (KCl) o stężeniu 5% (m/m), należy obliczyć masę substancji rozpuszczonej w odniesieniu do całkowitej masy roztworu. W przypadku stężenia 5% oznacza to, że 5% masy całkowitej roztworu stanowi KCl. Zatem, masa KCl w 200 g roztworu wynosi: 200 g * 0,05 = 10 g. Pozostała masa roztworu to masa wody, którą można obliczyć odejmując masę KCl od masy całkowitej roztworu: 200 g - 10 g = 190 g. Dlatego prawidłowym składnikiem do sporządzenia tego roztworu jest 10 g KCl i 190 g wody. Tego rodzaju obliczenia są niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskiwania powtarzalnych i wiarygodnych wyników eksperymentów. Stosowanie się do zasad i standardów, takich jak Good Laboratory Practice (GLP), zapewnia wysoką jakość wyników badań. Dodatkowo, umiejętność obliczania stężenia roztworów jest podstawą w pracach laboratoryjnych, biochemicznych oraz w wielu zastosowaniach przemysłowych.

Pytanie 32

Metoda oczyszczania substancji oparta na różnicach w rozpuszczalności poszczególnych składników w określonym rozpuszczalniku to

A. destylacja
B. krystalizacja
C. adsorpcja
D. chromatografia
Krystalizacja to proces oczyszczania substancji, który polega na wykorzystaniu różnic w rozpuszczalności składników w danym rozpuszczalniku. Podczas krystalizacji, gdy roztwór staje się nasycony, rozpuszczony substancja zaczyna wytrącać się w postaci kryształów. Ten proces jest szczególnie użyteczny w chemii i przemyśle farmaceutycznym, gdzie czystość substancji czynnej jest kluczowa. Przykładem może być produkcja soli kuchennej, gdzie rozpuszczona sól w wodzie jest poddawana procesowi odparowania, co prowadzi do wytrącenia się czystych kryształów soli. Krystalizacja jest zgodna z zasadami dobrej praktyki laboratoryjnej (GLP) oraz standardami czystości substancji, co czyni ją niezastąpioną metodą w analizie chemicznej i syntezach organicznych. Dzięki temu procesowi można uzyskać substancje o wysokiej czystości, co jest niezbędne w dalszych badaniach i aplikacjach przemysłowych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Przy transporcie próbek wody zaleca się, aby próbki były

A. zalkalizowane
B. zakwaszone do pH < 6
C. narażone na działanie światła
D. schłodzone do temperatury 2 - 5°C
Schłodzenie próbek wody do temperatury 2 - 5°C to naprawdę ważny krok, gdy transportujemy te próbki. Chodzi o to, żeby zmniejszyć wszelkie zmiany w ich składzie chemicznym i biologicznym. Niska temperatura spowalnia mikroorganizmy i różne reakcje chemiczne, które mogą zniszczyć próbki. W praktyce, według wytycznych takich organizacji jak EPA albo ISO, próbki powinny być transportowane w termosach czy chłodnicach, żeby zachować ich właściwości fizykochemiczne. Na przykład, jeśli analizujemy wodę pitną, to dobre utrzymanie temperatury jest konieczne dla dokładnych wyników badań, co jest kluczowe dla zdrowia publicznego. Dodatkowo, schłodzenie próbek pomaga też w zachowaniu ich wartości analitycznej, co jest ważne, zwłaszcza w kontekście monitorowania jakości wód w środowisku. Dlatego naprawdę trzeba trzymać się tych standardów, żeby uzyskać wiarygodne wyniki.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Losowo należy pobierać próbki z opakowań

A. z górnej części opakowania
B. z krawędzi opakowania
C. z kilku punktów w obrębie opakowania
D. z dolnej części opakowania
Odpowiedź "z kilku miejsc przekroju opakowania" jest poprawna, ponieważ losowe pobieranie próbek z różnych miejsc w opakowaniu zapewnia reprezentatywność próbki. Jest to kluczowe w wielu dziedzinach, takich jak analiza jakościowa, zapewnienie bezpieczeństwa produktów oraz kontrola procesów technologicznych. W praktyce oznacza to, że próbki należy pobierać z różnych warstw i lokalizacji w obrębie opakowania, aby zminimalizować ryzyko błędnych wniosków wynikających z niejednorodności składu. W odniesieniu do standardów takich jak ISO 2859-1, który określa metody pobierania próbek dla kontroli jakości, ważne jest, aby każda próbka była reprezentatywna dla całej partii. Takie podejście zwiększa wiarygodność wyników analiz laboratoryjnych i umożliwia dostarczenie rzetelnych informacji na temat jakości produktu. Przykładowo, w przemyśle spożywczym, pobieranie próbek z różnych miejsc opakowania pozwala na identyfikację ewentualnych zanieczyszczeń lub niezgodności jakościowych, co jest fundamentem dla zapewnienia bezpieczeństwa konsumentów.

Pytanie 37

Na ilustracji numery rzymskie wskazują

A. I – chłodnicę, II – sublimat
B. I – chłodnicę, II – destylat
C. I – rozdzielacz, II – sublimat
D. I – rozdzielacz, II – destylat
Wybór odpowiedzi, w której I oznaczono jako rozdzielacz, a II jako sublimat, prowadzi do kilku kluczowych nieporozumień. Rozdzielacz jest urządzeniem, które służy do oddzielania różnych faz, na przykład cieczy od gazów, co nie jest jego funkcją w kontekście destylacji. Destylacja to proces, w którym składniki mieszaniny cieczy są oddzielane na podstawie różnicy ich temperatur wrzenia, a nie za pomocą rozdzielaczy. Sublimacja, z drugiej strony, to proces, w którym substancja przechodzi bezpośrednio ze stanu stałego do gazowego, omijając fazę ciekłą, co nie znajduje zastosowania w kontekście chłodnicy i destylacji. Odpowiedzi, które określają II jako sublimat, pomijają zrozumienie, że sublimacja nie jest zjawiskiem zachodzącym w pracy chłodnicy, a tym bardziej w procesie destylacyjnym. Często obserwowanym błędem jest niewłaściwe utożsamianie procesów termicznych i stanów skupienia substancji. Ważne jest, aby przy analizie procesów chemicznych zrozumieć różnice między podziałem na fazy oraz transformacjami fizycznymi, do których należy sublimacja. Dobrym przykładem są procesy odparowywania i skraplania, które są kluczowe w kontekście destylacji, a pomylenie tych pojęć prowadzi do nieprawidłowych wniosków dotyczących zastosowania urządzeń i ich funkcji. Konieczne jest przyswojenie sobie tych definicji, aby skutecznie operować w obszarze chemii i inżynierii procesowej.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Podaj kolejność odczynników chemicznych według rosnącego stopnia czystości?

A. Czysty, czysty do analizy, chemicznie czysty, czysty spektralnie
B. Czysty do analizy, chemicznie czysty, czysty spektralnie, czysty
C. Czysty, chemicznie czysty, czysty do analizy, czysty spektralnie
D. Czysty spektralnie, chemicznie czysty, czysty do analizy, czysty
Twoje uszeregowanie odczynników chemicznych jako 'Czysty, czysty do analizy, chemicznie czysty, czysty spektralnie' jest całkiem trafne. To widać, bo pokazuje to, jak rośnie czystość tych substancji. Zaczynając od 'Czysty', to jest taki poziom czystości, który może mieć zanieczyszczenia. Potem mamy 'czysty do analizy' - ta substancja była oczyszczona na tyle, że można ją używać w analizach chemicznych, gdzie te zanieczyszczenia naprawdę mogą namieszać wyniki. 'Chemicznie czysty' to taki poziom, który nie ma zanieczyszczeń chemicznych, więc nadaje się do bardziej wymagających zastosowań. I na koniec, 'czysty spektralnie' oznacza, że dana substancja jest wolna od zanieczyszczeń, które mogą zepsuć analizy spektroskopowe. W laboratoriach chemicznych często korzysta się z takich preparatów do uzyskiwania wiarygodnych wyników. Czyli, jak widać, odpowiednie standardy czystości są mega ważne dla powtarzalności i precyzji w eksperymentach i analizach.