Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 20 maja 2025 23:23
  • Data zakończenia: 20 maja 2025 23:45

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który protokół jest wykorzystywany do konwersji między adresami IP publicznymi a prywatnymi?

A. NAT
B. SNMP
C. RARP
D. ARP
Niektóre z wymienionych protokołów, takie jak ARP (Address Resolution Protocol), SNMP (Simple Network Management Protocol) oraz RARP (Reverse Address Resolution Protocol), pełnią zupełnie inne funkcje w kontekście sieci komputerowych, co może prowadzić do nieporozumień w ich zastosowaniu. ARP jest używany do mapowania adresów IP na fizyczne adresy MAC, co jest niezbędne dla komunikacji w lokalnej sieci Ethernet. Tymczasem SNMP jest protokołem do zarządzania i monitorowania urządzeń w sieciach, a RARP służy do tłumaczenia adresów MAC na adresy IP. Zrozumienie tych różnic jest kluczowe dla prawidłowego posługiwania się protokołami sieciowymi. Częstym błędem jest utożsamianie NAT z innymi protokołami, co wynika z mylnego przekonania, że wszystkie protokoły sieciowe dotyczą translacji adresów. W rzeczywistości NAT jest jedynym z wymienionych, którego zadaniem jest działanie jako most pomiędzy siecią lokalną a Internetem poprzez zmianę adresów IP. Aby uniknąć takich nieporozumień, warto zgłębić każdy z wymienionych protokołów oraz ich konkretne zastosowania w praktyce. Zrozumienie kontekstu, w którym każdy z tych protokołów funkcjonuje, oraz ich roli w sieci pomoże w uniknięciu błędnych wniosków przy rozwiązywaniu problemów związanych z adresowaniem i komunikacją w sieciach komputerowych.

Pytanie 2

Zaprezentowany tylny panel płyty głównej zawiera następujące interfejsy:

Ilustracja do pytania
A. 2 x HDMI, 1 x D-SUB, 1 x RJ11, 6 x USB 2.0
B. 2 x PS2; 1 x RJ45; 6 x USB 2.0, 1.1
C. 2 x USB 3.0; 4 x USB 2.0, 1.1, 1 x D-SUB
D. 2 x USB 3.0; 2 x USB 2.0, 1.1; 2 x DP, 1 x DVI
Wybór błędnych odpowiedzi mógł wynikać z niepełnego zrozumienia lub braku znajomości standardów interfejsów stosowanych na płytach głównych. Odpowiedź zawierająca 2 x PS2, 1 x RJ45 oraz 6 x USB 2.0, 1.1 jest nieprawidłowa, ponieważ na przedstawionym panelu widoczny jest jeden port PS2 służący do podłączenia tradycyjnych urządzeń wejściowych, jak klawiatura lub mysz, i nie ma aż sześciu portów USB 2.0. Co więcej, RJ45 to standardowy port sieciowy Ethernet, często obecny na płytach głównych, jednak liczba interfejsów USB w tej odpowiedzi była błędnie określona. Kolejne błędne rozpoznanie obejmowało porty HDMI oraz D-SUB, które są stosowane do przesyłania sygnałów wideo, jednak odpowiedź z HDMI jest błędna, gdyż na obrazie brak tego interfejsu, a obecny jest tylko port D-SUB. Z kolei odpowiedź z portami DP i DVI jest również niepoprawna, ponieważ na przedstawionym panelu nie są widoczne te cyfrowe interfejsy wideo, które służą do przesyłania sygnałów w wysokiej rozdzielczości i są wykorzystywane w nowoczesnych monitorach. Częste błędy myślowe podczas takiego rozpoznawania wynikają z niedostatecznej znajomości wyglądu i funkcji różnych portów, co może prowadzić do niewłaściwego przypisania ich nazw i zastosowań w praktyce komputerowej. Aby uniknąć takich pomyłek, warto zaznajomić się z najnowszymi standardami oraz ich fizycznymi cechami, co ułatwia ich poprawne identyfikowanie na egzaminach oraz w codziennej pracy z komputerami.

Pytanie 3

Zasilacz UPS o mocy nominalnej 480 W nie powinien być używany do zasilania

A. drukarki laserowej
B. urządzeń sieciowych typu router
C. monitora
D. modemu ADSL
Podłączanie urządzeń takich jak modem ADSL, router czy monitor do zasilacza UPS o mocy 480 W jest teoretycznie możliwe, jednakże nie uwzględnia ono kontekstu praktycznego i wymagań energetycznych, które mogą powodować nieefektywne wykorzystanie zasobów. Modemy ADSL oraz urządzenia sieciowe, jak routery, mają stosunkowo niskie zapotrzebowanie na moc, zazwyczaj w granicach 10-30 W, co oznacza, że te urządzenia mogą być bezpiecznie zasilane przez UPS bez obaw o przeciążenie. Monitory, w zależności od ich technologii (LCD, LED, itp.), również zużywają umiarkowane ilości energii, często w przedziale 30-100 W, co sprawia, że nie stanowią one zagrożenia dla zasilacza o mocy 480 W. Typowym błędem myślowym przy podłączaniu tego typu urządzeń do UPS jest przeświadczenie, że ich suma pobieranej mocy automatycznie zwalnia z racji zachowania się w granicach limitu znamionowego. Należy również wziąć pod uwagę, że zasilacz UPS ma swoje ograniczenia nie tylko w kontekście bezpośredniego obciążenia, ale także w odniesieniu do przebiegów prądowych i ich stabilności. Złą praktyką jest ignorowanie maksymalnych wartości chwilowych, które mogą wystąpić przy włączaniu lub wyłączaniu urządzeń, co w przypadku urządzeń takich jak drukarki laserowe, może prowadzić do przeciążeń, a w rezultacie do uszkodzenia zasilacza lub podłączonego sprzętu. Dlatego kluczowe jest, aby zawsze analizować całkowite obciążenie zasilacza i stosować się do zaleceń producentów dotyczących jego użytkowania.

Pytanie 4

W systemie działającym w trybie wielozadaniowości z wywłaszczeniem program, który zatrzymał się

A. nie jest w stanie zawiesić systemu operacyjnego
B. nie umożliwi usunięcia się z pamięci operacyjnej
C. może spowodować zawieszenie całego systemu operacyjnego
D. zablokuje działanie wszystkich pozostałych programów
W trybie wielozadaniowości z wywłaszczeniem, system operacyjny zarządza czasem CPU w sposób, który pozwala na uruchamianie wielu programów jednocześnie. W tym modelu, jeśli jeden program (proces) zostanie zawieszony, system ma zdolność do przerwania jego działania, aby umożliwić działanie innym procesom. Oznacza to, że zawieszenie jednego programu nie wpływa na stabilność całego systemu operacyjnego, który może kontynuować pracę z innymi aktywnymi programami. Przykładem zastosowania tego modelu jest działanie systemu Windows, w którym użytkownik może korzystać z wielu aplikacji, a nawet jeśli jedna z nich ulegnie awarii, inne programy pozostaną aktywne. Jest to istotna cecha nowoczesnych systemów operacyjnych, która zwiększa ich niezawodność i użyteczność. Standardy zarządzania wielozadaniowością w systemach operacyjnych, takie jak te opracowane przez IEEE, również podkreślają znaczenie wywłaszczenia w zapewnieniu ciągłości działania systemu.

Pytanie 5

Osoba korzystająca z komputera publikuje w sieci Internet pliki, które posiada. Prawa autorskie zostaną złamane, gdy udostępni

A. zrobione przez siebie fotografie obiektów wojskowych
B. otrzymany dokument oficjalny
C. swoje autorskie filmy z protestów ulicznych
D. obraz płyty systemu operacyjnego Windows 7 Home
Udostępnienie otrzymanego dokumentu urzędowego, własnych autorskich filmów czy zdjęć obiektów wojskowych nie zawsze narusza prawa autorskie, ponieważ różnią się one w kontekście własności intelektualnej. Dokumenty urzędowe często są uznawane za materiały publiczne, co oznacza, że mogą być udostępniane bez naruszania praw autorskich, o ile użytkownik nie narusza przepisów związanych z prywatnością czy innymi regulacjami prawnymi. Posiadanie praw do własnych filmów czy zdjęć, które zostały stworzone przez użytkownika, daje mu prawo do ich udostępniania. Kluczowym błędem myślowym jest założenie, że wszystkie materiały, które nie są oryginalnie stworzone przez użytkownika, są automatycznie chronione prawem. To prowadzi do nieporozumienia związanych z zasadami stosowania praw autorskich i licencjonowania. Użytkownicy powinni być świadomi specyfiki ochrony prawnej, która różni się w zależności od rodzaju materiału. Warto zainwestować czas w naukę o prawach autorskich, aby unikać potencjalnych problemów prawnych związanych z niewłaściwym udostępnianiem treści. Edukacja w tym zakresie jest kluczowa dla każdego użytkownika internetu.

Pytanie 6

Podczas monitorowania aktywności sieciowej zauważono, że na adres serwera przesyłano tysiące zapytań DNS w każdej sekundzie z różnych adresów IP, co doprowadziło do zawieszenia systemu operacyjnego. Przyczyną tego był atak typu

A. Mail Bombing
B. Flooding
C. DDoS (Distributed Denial of Service)
D. DNS snooping
W analizowanym pytaniu niepoprawne odpowiedzi dotyczą różnych form ataków, które nie są związane z opisanym fenomenem. DNS snooping odnosi się do techniki wykorzystania informacji z systemu DNS, aby zdobyć dane o infrastrukturze sieciowej lub o osobach korzystających z danej usługi. Nie jest to metoda ataku, a raczej technika zbierania informacji, która nie prowadzi do przeciążenia systemu. Mail Bombing, z drugiej strony, polega na wysyłaniu dużych ilości wiadomości e-mail do konkretnego odbiorcy, co może prowadzić do przeciążenia jego skrzynki pocztowej, ale nie wpływa na serwer DNS jako taki. Flooding, w kontekście cyberbezpieczeństwa, to termin ogólny odnoszący się do zasypywania systemu wieloma zapytaniami lub danymi, jednak niekoniecznie musi to być atak rozproszony, a zatem nie odpowiada dokładnie opisanej sytuacji. Typowe błędy myślowe, które mogą prowadzić do wybrania tych odpowiedzi, obejmują mylenie technik zbierania informacji z atakami oraz ograniczone rozumienie specyfiki ataków DDoS, które są zorganizowane i rozproszone, a nie pojedyncze akcje, jak te przedstawione w pozostałych odpowiedziach.

Pytanie 7

Użytkownicy w sieciach bezprzewodowych mogą być uwierzytelniani zdalnie przy pomocy usługi

A. HTTPS
B. RADIUS
C. NNTP
D. IMAP
No to widzę, że wybrałeś odpowiedzi jak IMAP, HTTPS i NNTP, ale muszę przyznać, że są one nieco mylące w kontekście zdalnego uwierzytelniania w sieciach bezprzewodowych. IMAP to protokół do zarządzania e-mailami, więc nie ma tu mowy o uwierzytelnianiu w sieci. Użycie go w tym przypadku to trochę nietrafione posunięcie, bo nie ma żadnych mechanizmów, które by pomogły w autoryzacji dostępu do sieci. HTTPS z kolei to protokół, który dba o bezpieczne przesyłanie danych w internecie, ale znów nie jest to coś, co służy do uwierzytelniania w sieci lokalnej. Może się wydawać, że jest to jakiś sposób na ochronę, ale w tym kontekście po prostu nie pasuje. NNTP natomiast to protokół do wymiany wiadomości w grupach dyskusyjnych, i to też nie ma nic wspólnego z procesem uwierzytelniania w sieciach. Tutaj błędnie myślisz, myląc funkcje tych protokołów, które tak naprawdę mają różne zadania. Zrozumienie, jak te protokoły działają i do czego służą, jest kluczowe, szczególnie w kontekście bezpieczeństwa sieci.

Pytanie 8

Jakie urządzenie jest używane do mocowania pojedynczych żył kabla miedzianego w złączach?

Ilustracja do pytania
A. zaciskarka RJ45
B. obcinacz izolacji
C. szukacz kabli
D. nóż KRONE
Zaciskarka RJ45 służy do zarabiania wtyków RJ45, typowo stosowanych w instalacjach sieciowych Ethernet. Proces ten polega na zaciskaniu końcówek przewodów na stykach wtyku, co nie znajduje zastosowania przy mocowaniu pojedynczych żył w złączach typu IDC. Szukacz kabli jest narzędziem diagnostycznym, którego główną funkcją jest identyfikacja i śledzenie przebiegu kabli w ścianach lub innych trudno dostępnych miejscach, co nie ma związku z fizycznym mocowaniem przewodów. Obcinacz izolacji z kolei, jak sama nazwa wskazuje, wykorzystywany jest do usuwania zewnętrznej powłoki izolacyjnej z kabli, nie zaś do ich mocowania w złączach. Błędne postrzeganie funkcji tych narzędzi często wynika z niedostatecznego zrozumienia ich specjalistycznych zastosowań oraz różnych etapów pracy z instalacjami kablowymi. Kluczowe jest rozpoznanie narzędzi właściwych dla danego zadania w telekomunikacji oraz ich prawidłowe użycie, co bezpośrednio wpływa na jakość i trwałość instalacji. Prawidłowe przypisanie narzędzi do ich funkcji operacyjnych jest niezbędne dla efektywnej pracy technicznej w każdej instalacji sieciowej.

Pytanie 9

Według normy JEDEC, standardowe napięcie zasilające dla modułów pamięci RAM DDR3L o niskim napięciu wynosi

A. 1.20 V
B. 1.50 V
C. 1.65 V
D. 1.35 V
Wybór 1.20 V, 1.50 V oraz 1.65 V nie jest zgodny z rzeczywistością specyfikacji JEDEC dotyczącej pamięci DDR3L. Napięcie 1.20 V jest charakterystyczne dla pamięci DDR4, która została zaprojektowana z myślą o jeszcze niższym zużyciu energii oraz wyższej wydajności w porównaniu do DDR3L. Zastosowanie DDR4 umożliwia osiąganie większych prędkości przesyłu danych, ale wymaga także nowszych płyt głównych oraz układów scalonych. Z kolei napięcie 1.50 V jest standardem dla pamięci DDR3, która jest starszą technologią i nie jest zoptymalizowana pod kątem niskiego poboru mocy. Użycie tego napięcia w kontekście DDR3L jest błędne, ponieważ prowadziłoby do nieefektywnego działania modułów oraz zwiększonego zużycia energii, co w przypadku urządzeń mobilnych może być krytyczne. Natomiast 1.65 V to maksymalne napięcie, które może być stosowane w niektórych modułach pamięci DDR3, ale nie w kontekście DDR3L, gdzie kluczowym celem było obniżenie napięcia dla lepszego zarządzania energią. Niezrozumienie różnic między tymi specyfikacjami może prowadzić do nieodpowiedniego doboru pamięci do systemów, co z kolei może wpływać na stabilność i wydajność całej platformy komputerowej.

Pytanie 10

Aby sprawdzić minimalny czas ważności hasła w systemie Windows, stosuje się polecenie

A. net group
B. net user
C. net time
D. net accounts
Polecenie 'net accounts' służy do konfigurowania różnych ustawień kont użytkowników w systemie Windows, w tym minimalnego okresu ważności hasła. Umożliwia administratorowi określenie, jak długo hasło musi być używane przed tym, jak użytkownik będzie zobowiązany do jego zmiany. Dzięki temu można zwiększyć bezpieczeństwo systemu, zmniejszając ryzyko, że hasła zostaną użyte przez osoby nieuprawnione przez długi czas. Na przykład, standardowe praktyki bezpieczeństwa sugerują, aby minimalny okres ważności hasła wynosił co najmniej 30 dni, co można ustawić przy pomocy tego polecenia. W kontekście zarządzania bezpieczeństwem IT, regularna zmiana haseł i ich minimalny okres ważności są kluczowe dla ochrony przed atakami, takimi jak brute force czy phishing. Warto także pamiętać, że po ustawieniu minimalnego okresu ważności, użytkownicy nie będą mogli zmieniać haseł częściej niż ustalono, co zapobiega potencjalnym nadużyciom.

Pytanie 11

W tabeli z ofertą usług komputerowych znajdują się poniższe informacje. Jaki będzie koszt dojazdu serwisanta do klienta, który mieszka poza miastem, w odległości 15 km od biura firmy?

A. 30 zł
B. 25 zł + 2 zł za każdy kilometr od siedziby firmy poza miastem
C. 30 zł + VAT
D. 60 zł + VAT
Wybór odpowiedzi wynikał z nieporozumienia w interpretacji zasad ustalania kosztów dojazdu serwisanta. Wiele osób może pomylić dojazd do klienta na terenie miasta z dojazdem poza miasto. Odpowiedź '30 zł' sugeruje, że koszt dotyczy jedynie jednego kierunku, co jest błędne, ponieważ opłata za dojazd poza miastem jest liczona w obie strony. Odpowiedź '25 zł + 2 zł za każdy kilometr poza granicami miasta' pomija fakt, że koszt dojazdu do klienta w mieście i poza miastem są różne i nie można ich łączyć w taki sposób. Koszt dojazdu do klienta na terenie miasta dotyczy jedynie klientów lokalnych, podczas gdy w tym przypadku mamy do czynienia z klientem, który znajduje się 15 km od firmy. Wreszcie, odpowiedź '60 zł + VAT' prezentuje poprawny koszt, jednak brak zrozumienia, że VAT powinien być dodany do całkowitej kwoty, a nie oddzielnie, prowadzi do zamieszania. Typowe błędy myślowe polegają na błędnym przyjęciu zasady ustalania kosztów oraz nieuwzględnieniu odległości w obydwu kierunkach. Zapoznanie się z zasadami ustalania kosztów w usługach serwisowych jest kluczowe dla zrozumienia właściwego podejścia do obliczeń.

Pytanie 12

Jakie protokoły są właściwe dla warstwy internetowej w modelu TCP/IP?

A. IP, ICMP
B. DHCP, DNS
C. HTTP, FTP
D. TCP, UDP
Wybrane odpowiedzi, takie jak TCP, UDP, HTTP, FTP, DHCP i DNS, należą do innych warstw modelu TCP/IP, co czyni je niepoprawnymi w kontekście pytania o warstwę internetową. Protokół TCP (Transmission Control Protocol) oraz UDP (User Datagram Protocol) funkcjonują na warstwie transportowej. TCP jest protokołem połączeniowym, który zapewnia niezawodność i kontrolę przepływu, co jest kluczowe dla aplikacji wymagających przesyłania danych z gwarancją dostarczenia w odpowiedniej kolejności. Z kolei UDP to protokół bezpołączeniowy, stosowany w aplikacjach, które preferują szybkość nad niezawodność, takich jak transmisje wideo czy gry online. HTTP (Hypertext Transfer Protocol) i FTP (File Transfer Protocol) to protokoły warstwy aplikacji, które obsługują przesyłanie danych w kontekście przeglądarki internetowej i transferu plików. DHCP (Dynamic Host Configuration Protocol) i DNS (Domain Name System) również funkcjonują na warstwie aplikacji, zajmując się dynamicznym przydzielaniem adresów IP i tłumaczeniem nazw domen na adresy IP. Często mylone jest, że wszystkie te protokoły operują na tej samej warstwie, co prowadzi do nieporozumień w zakresie architektury sieci. Kluczowe jest zrozumienie hierarchii warstw oraz przypisania protokołów do odpowiednich poziomów w modelu TCP/IP, co jest niezbędne do efektywnego projektowania i zarządzania sieciami komputerowymi.

Pytanie 13

Oprogramowanie, które jest dodatkiem do systemu Windows i ma na celu ochronę przed oprogramowaniem szpiegującym oraz innymi niechcianymi elementami, to

A. Windows Home Server
B. Windows Defender
C. Windows Azure
D. Windows Embedded
Windows Home Server, Windows Azure oraz Windows Embedded to inne komponenty systemu Windows, które pełnią różne funkcje, lecz nie są narzędziami dedykowanymi do ochrony przed oprogramowaniem szpiegującym. Windows Home Server był rozwiązaniem skoncentrowanym na zarządzaniu plikami w domowych sieciach, umożliwiającym centralne przechowywanie i udostępnianie danych, co sprawia, że nie zawierał w sobie funkcji zabezpieczających przed szkodliwym oprogramowaniem. W przypadku Windows Azure, jest to platforma chmurowa oferująca usługi obliczeniowe i hostingowe, skupiona na dostarczaniu zasobów w chmurze, a nie na lokalnej ochronie systemu. To podejście do ochrony nie jest zgodne z zaleceniami branżowymi, które sugerują, aby użytkownicy korzystali z dedykowanych narzędzi zabezpieczających. Windows Embedded to z kolei system operacyjny przeznaczony dla urządzeń wbudowanych, takich jak sprzęt przemysłowy, gdzie nie ma na celu zapewnienia ochrony przed złośliwym oprogramowaniem w tradycyjnym sensie. Wybór tych rozwiązań zamiast Windows Defender może prowadzić do poważnych luk w zabezpieczeniach, co stwarza ryzyko infekcji i utraty danych. Kluczowe jest zrozumienie różnicy między funkcjami poszczególnych produktów, co może zapobiec podejmowaniu błędnych decyzji w zakresie zabezpieczeń komputerowych.

Pytanie 14

Która z podanych właściwości kabla koncentrycznego RG-58 sprawia, że obecnie nie jest on używany do tworzenia lokalnych sieci komputerowych?

A. Brak opcji zakupu dodatkowych urządzeń sieciowych
B. Maksymalna odległość między punktami wynosząca 185 m
C. Maksymalna prędkość przesyłania danych 10Mb/s
D. Koszt narzędzi do instalacji i łączenia kabli
Kabel koncentryczny RG-58 charakteryzuje się maksymalną prędkością transmisji danych wynoszącą 10 Mb/s, co w dzisiejszych standardach sieciowych jest zdecydowanie zbyt niskie. Współczesne lokalne sieci komputerowe (LAN) wymagają znacznie wyższych prędkości, aby zaspokoić potrzeby użytkowników i aplikacji. Na przykład, w technologii Ethernet standard 100BASE-TX zapewnia prędkość transmisji danych wynoszącą 100 Mb/s, a nawet 1 Gb/s w przypadku standardu 1000BASE-T. Przykładem zastosowania nowoczesnych technologii jest sieć biurowa, w której wiele urządzeń, takich jak komputery, drukarki i serwery, wymaga szybkiej wymiany danych. Dlatego kabel RG-58, z uwagi na swoje ograniczenia, został w dużej mierze zastąpiony przez szybsze i bardziej niezawodne rozwiązania, takie jak skrętka (np. Cat5e, Cat6) oraz światłowody, które oferują nie tylko większe prędkości transmisji, ale również znacznie wyższe odległości między urządzeniami bez strat w jakości sygnału, co jest kluczowe w nowoczesnych infrastrukturach sieciowych.

Pytanie 15

Prezentowany kod zawiera instrukcje pozwalające na

A. zmianę parametrów prędkości dla portu 0/1 na fastethernet
B. utworzenie wirtualnej sieci lokalnej o nazwie vlan 10 w przełączniku
C. wyłączenie portów 0 i 1 przełącznika z sieci vlan
D. przypisanie nazwy fastEthernet dla pierwszych dziesięciu portów przełącznika
Zgłoszone odpowiedzi są błędne i opierają się na nieporozumieniach dotyczących działania i konfiguracji przełączników oraz VLAN-ów. Usunięcie portów 0 i 1 z sieci VLAN nie jest możliwe za pomocą przedstawionych komend, ponieważ polecenie 'switchport access vlan 10' jedynie przypisuje porty do konkretnego VLAN-u, a nie usuwa ich z istniejącej konfiguracji. Ponadto, zmiana ustawienia prędkości dla portu 0/1 na fastethernet jest związana z innym procesem konfiguracji i nie pojawia się w tym kontekście, ponieważ listing nie zawiera polecenia zmiany prędkości. Ustawienie nazwy fastEthernet dla portów również jest mylne; 'fastEthernet' to jedynie rodzaj interfejsu, a nie jego nazwa. Użytkownicy mogą mieć trudności w interpretacji, jeśli nie rozumieją podstawowej koncepcji VLAN-ów, które są logicznymi segmentami sieci, a nie fizycznymi portami. Dlatego ważne jest, aby podczas konfigurowania przełączników zrozumieć różnicę między różnymi typami ustawień oraz ich wpływem na infrastrukturę sieciową. Ignorowanie tych podstawowych zasad może prowadzić do nieefektywnej konfiguracji i problemów z zarządzaniem oraz bezpieczeństwem sieci.

Pytanie 16

Na ilustracji przedstawiono urządzenie sieciowe, którym jest

Ilustracja do pytania
A. firewall
B. przełącznik
C. router
D. konwerter mediów
Router to kluczowe urządzenie w sieciach komputerowych służące do łączenia różnych sieci i przekazywania pakietów danych między nimi. Jego główną funkcją jest kierowanie ruchem w sieci na podstawie informacji zawartych w nagłówkach IP. Routery posiadają interfejsy sieciowe umożliwiające podłączenie do różnych typów mediów transmisyjnych takich jak Ethernet FastEthernet czy GigabitEthernet. Często są wyposażone w porty konsolowe do konfiguracji oraz sloty na karty pamięci umożliwiające zapisywanie konfiguracji czy aktualizacji oprogramowania. W praktyce routery są używane do łączenia sieci lokalnych z Internetem zarządzania ruchem w dużych sieciach korporacyjnych oraz zapewniania bezpiecznego przesyłu danych poprzez stosowanie protokołów VPN czy funkcji firewallowych. Dzięki zaawansowanym funkcjom zarządzania ruchem routery mogą priorytetyzować różne typy danych co jest kluczowe w zapewnieniu jakości usług QoS w sieciach korporacyjnych. Routery działają na trzecim poziomie modelu OSI co oznacza że są odpowiedzialne za przesyłanie danych na podstawie adresów IP co jest kluczowe w nowoczesnych architekturach sieciowych.

Pytanie 17

W systemie Linux narzędzie top pozwala na

A. monitorowanie wszystkich bieżących procesów
B. zidentyfikowanie katalogu zajmującego najwięcej przestrzeni na dysku twardym
C. ustalenie dla użytkownika najwyższej wartości limitu quoty
D. porządkowanie plików według ich rozmiaru w kolejności rosnącej
Program top jest jednym z podstawowych narzędzi dostępnych w systemie Linux, służącym do monitorowania aktywnych procesów w czasie rzeczywistym. Umożliwia on użytkownikom śledzenie zużycia zasobów systemowych, takich jak CPU, pamięć, a także identyfikację procesów, które mogą wpływać na wydajność systemu. W interfejsie top można sortować procesy według różnych kryteriów, co ułatwia zrozumienie, które z nich są najbardziej zasobożerne. Przykładowo, administrator systemu może użyć polecenia top, aby szybko zidentyfikować procesy obciążające CPU i podjąć odpowiednie działania, takie jak ich zatrzymanie lub optymalizacja. Ponadto, top jest zgodny z najlepszymi praktykami zarządzania systemem, umożliwiając administratorom monitorowanie stanu serwerów i wykrywanie problemów, co jest kluczowe w zapewnieniu stabilności i wydajności infrastruktur IT.

Pytanie 18

W komputerze o parametrach przedstawionych w tabeli konieczna jest wymiana karty graficznej na kartę GeForce GTX 1070 Ti Titanium 8G DDR5, PCI EX-x16 3.0, 256b, 1683 MHz/1607 MHz, Power consumption 180W, 3x DP, 2x HDMI, recommended power supply 500W, DirectX 12, OpenGL 4.5. W związku z tym należy również zaktualizować

PodzespółParametryPobór mocy [W]
Procesor Intel i5Cores: 6, Threads: 6, 2.8 GHz, Tryb Turbo: 4.0 GHz, s-115130
Moduł pamięci DDR3Taktowanie: 1600 MHz, 8 GB (1x8 GB), CL 96
Monitor LCDPowłoka: matowa, LED, VGA x1, HDMI x1, DP x140
Mysz i klawiaturaprzewodowa, interfejs: USB2
Płyta główna2x PCI Ex-x16 3.0, D-Sub x1, USB 2.0 x2, RJ-45 x1, USB 3.1 gen 1 x4, DP x1, PS/2 x1, DDR3, s-1151, 4xDDR4 (Max: 64 GB)35
Karta graficzna3x DP, 1x DVI-D, 1x HDMI, 2 GB GDDR3150
Dysk twardy 7200 obr/min1 TB, SATA III (6 Gb/s), 64 MB16
ZasilaczMoc: 300W---

A. procesora
B. zasilacza
C. karty sieciowej
D. płyty głównej
Wybierając odpowiedzi, które wskazują na inne komponenty jak karta sieciowa czy płyta główna, widać, że nie do końca rozumiesz, co jest ważne przy wymianie karty graficznej. Karta sieciowa to ważny element, ale nie wpływa na pobór mocy przy wymianie karty graficznej, bo niet trzeba jej zmieniać, ani nie obciąża zasilacza. Jeżeli chodzi o płytę główną, to zmiana nie jest potrzebna, jeśli gniazda są zgodne z nową kartą. Sama płyta nie zwiększa poboru mocy, a jej wymiana to dodatkowe koszty i kłopoty. Procesora wcale nie musisz zmieniać; pobór jego mocy jest o wiele niższy od nowej karty. Warto pamiętać, że przy modernizacji graficznej kluczowy jest zasilacz, który musi być dobrze dopasowany do nowego sprzętu. Wybór złego zasilacza może skończyć się niestabilnością systemu, a nawet uszkodzeniem. Dlatego trzeba dokładnie obliczyć zapotrzebowanie na moc i dopasować zasilacz, co w tych odpowiedziach nie zostało w ogóle uwzględnione.

Pytanie 19

Podanie nieprawidłowych napięć do płyty głównej może skutkować

A. puchnięciem kondensatorów, zawieszaniem się procesora oraz nieoczekiwanymi restartami
B. brakiem możliwości instalacji aplikacji
C. uruchomieniem jednostki centralnej z kolorowymi pasami i kreskami na wyświetlaczu
D. pojawieniem się błędów w pamięci RAM
Dostarczanie nieprawidłowych napięć do płyty głównej może prowadzić do puchnięcia kondensatorów, zawieszania się jednostki centralnej oraz niespodziewanych restartów. Kondensatory na płycie głównej są kluczowymi elementami odpowiedzialnymi za stabilizację napięcia zasilającego różne komponenty systemu. Kiedy napięcie przekracza dopuszczalne wartości, kondensatory mogą ulec uszkodzeniu, co objawia się ich puchnięciem lub wyciekiem. Zjawisko to jest szczególnie istotne w kontekście kondensatorów elektrolitycznych, które są wrażliwe na zbyt wysokie napięcia. Dodatkowo, nieprawidłowe napięcie wpływa na stabilność pracy procesora oraz pamięci RAM, co może prowadzić do zawieszeń, bluescreenów oraz niespodziewanych restartów. W branży komputerowej standardem jest stosowanie zasilaczy z certyfikatem 80 Plus, które gwarantują efektywność i stabilność napięcia, co minimalizuje ryzyko uszkodzenia komponentów. Dbanie o odpowiednie parametry zasilania to kluczowy element utrzymania długowieczności sprzętu i jego niezawodności.

Pytanie 20

/dev/sda: Czas odczytu z pamięci podręcznej: 18100 MB w 2.00 sekundy = 9056.95 MB/sek. Przedstawiony wynik wykonania polecenia systemu Linux jest używany do diagnostyki

A. karty sieciowej
B. układu graficznego
C. pamięci operacyjnej
D. dysku twardego
Analizując inne opcje odpowiedzi, można zauważyć, że każda z nich odnosi się do różnych komponentów sprzętowych, które nie mają związku z przedstawionym wynikiem diagnostycznym. Karta graficzna jest odpowiedzialna za rendering grafiki i nie jest bezpośrednio związana z operacjami odczytu danych z dysku twardego. Jej wydajność mierzy się zazwyczaj w klatkach na sekundę (FPS) w kontekście gier lub w operacjach związanych z przetwarzaniem obrazu. Z kolei karta sieciowa zajmuje się transmisją danych w sieci komputerowej, co również nie ma związku z wydajnością odczytu danych z dysku. W kontekście tego pytania, karta sieciowa mierzy wydajność w Mbps lub Gbps, co również nie odnosi się do przedstawionego wyniku. Pamięć RAM z kolei odpowiada za przechowywanie danych operacyjnych dla procesora, a nie za odczyt danych z dysku. Jej działanie można diagnozować przy pomocy innych narzędzi i metryk, takich jak czas dostępu, przepustowość lub wykorzystanie pamięci, ale nie jest to związane z operacjami odczytu z dysku twardego. Typowym błędem myślowym jest mylenie funkcji tych komponentów oraz ich wpływu na wydajność całego systemu. Zrozumienie, że każdy z tych elementów ma swoją specyfikę i odpowiada za różne aspekty działania komputera, jest kluczowe dla analizy wyników diagnostycznych.

Pytanie 21

Wskaż błędny sposób podziału dysku MBR na partycje

A. 1 partycja podstawowa oraz jedna rozszerzona
B. 3 partycje podstawowe oraz jedna rozszerzona
C. 1 partycja podstawowa i dwie rozszerzone
D. 2 partycje podstawowe i jedna rozszerzona
W przypadku podziału dysku MBR istnieje wiele błędnych koncepcji dotyczących liczby partycji podstawowych i rozszerzonych, które mogą prowadzić do nieporozumień. Zgodnie z zasadami MBR, maksymalnie można stworzyć cztery partycje podstawowe lub trzy partycje podstawowe oraz jedną partycję rozszerzoną. W przypadku podziału na dwie partycje rozszerzone i jedną podstawową, powstaje problem, ponieważ partycja rozszerzona jest strukturą, która jedynie umożliwia utworzenie wielu partycji logicznych. Partycja rozszerzona nie może występować w liczbie większej niż jedna. Typowym błędem jest mylenie partycji podstawowych z logicznymi – partycje logiczne są zawarte wewnątrz partycji rozszerzonej i nie mogą istnieć samodzielnie bez odpowiedniej struktury rozszerzonej. Z tego powodu, odpowiedzi sugerujące możliwość utworzenia więcej niż jednej partycji rozszerzonej są nieprawidłowe. Warto również zauważyć, że wybór MBR jako systemu partycjonowania jest czasami ograniczający, szczególnie w przypadku nowoczesnych dysków twardych, gdzie lepszym rozwiązaniem może być GPT, które oferuje bardziej zaawansowane funkcje, takie jak większa liczba partycji oraz lepsze wsparcie dla większych dysków. Zrozumienie tych zasad jest kluczowe dla właściwego zarządzania danymi i projektowania struktur dyskowych.

Pytanie 22

Jaką liczbę hostów można podłączyć w sieci o adresie 192.168.1.128/29?

A. 6 hostów
B. 16 hostów
C. 12 hostów
D. 8 hostów
Wybór odpowiedzi wskazującej na 8, 12 lub 16 hostów wynika z nieporozumienia w zakresie zasad adresacji IP i obsługi podziału na podsieci. Każda sieć ma określoną maskę podsieci, która definiuje, ile adresów IP jest dostępnych w danym zakresie. W przypadku maski /29, oznacza to, że trzy bity są przeznaczone dla hostów. W praktyce, z 8 adresów, jakie można wygenerować, dwa są zarezerwowane: jeden dla adresu sieci, a drugi dla adresu rozgłoszeniowego. W związku z tym, jedyną poprawną odpowiedzią jest 6 dostępnych adresów dla hostów. Wybór 8 hostów może wynikać z błędnego założenia, że wszystkie adresy mogą być używane, co jest niezgodne z zasadami inżynierii sieciowej. Odpowiedzi sugerujące 12 lub 16 hostów wynikają z ignorowania podstawowych zasad dotyczących liczby adresów IP, które można uzyskać z danej maski podsieci - w przypadku /29 liczba ta nie może przekraczać 6. Właściwe zrozumienie adresacji IP jest kluczowe w projektowaniu i zarządzaniu sieciami komputerowymi, a pomyłki w tym zakresie mogą prowadzić do niedoborów adresów IP lub problemów z komunikacją w sieci.

Pytanie 23

Karta rozszerzeń przedstawiona na ilustracji może być zainstalowana w komputerze, jeśli na płycie głównej znajduje się przynajmniej jeden dostępny slot

Ilustracja do pytania
A. PCIe
B. AGP
C. PCI
D. ISA
Karta rozszerzeń, którą widzisz na rysunku, to karta zgodna ze standardem PCI, czyli Peripheral Component Interconnect. To dość popularny standard, który był używany, żeby podłączać różne karty rozszerzeń do płyty głównej komputera. Wprowadzony w latach 90-tych, szybko zyskał uznanie, bo był uniwersalny i wspierał różne urządzenia, takie jak karty dźwiękowe, sieciowe czy graficzne. PCI działa na zasadzie magistrali równoległej, co znaczy, że dane mogą być przesyłane jednocześnie przez kilka linii sygnałowych. Dzięki temu transfer danych jest szybszy niż w starszych technologiach, jak ISA. Dodatkowo, PCI ma funkcję Plug and Play, więc instalacja i ustawianie urządzeń jest dużo prostsze, bo nie trzeba bawić się w ręczne ustawianie zworków. W praktyce, z wykorzystaniem PCI można rozbudować komputer o nowe funkcje, dodając różne karty, co znacznie zwiększa jego możliwości. W przypadku wielu starszych komputerów, PCI był kluczowy do rozszerzania systemu o nowe funkcjonalności, dlatego do dziś jest istotnym elementem rozwoju technologii komputerowej.

Pytanie 24

W terminalu systemu Windows, do zarządzania parametrami konta użytkownika komputera, takimi jak okres ważności hasła, minimalna długość hasła, czas blokady konta i inne, wykorzystywane jest polecenie

A. NET CONFIG
B. NET ACCOUNTS
C. NET USE
D. NET USER
Polecenie NET USER w systemie Windows służy do zarządzania użytkownikami konta, w tym do ustawiania polityki haseł. Umożliwia administratorom konfigurowanie ważnych parametrów, takich jak minimalna długość hasła, czas ważności hasła oraz blokowanie konta po określonym czasie nieaktywności. Przykładowo, używając komendy 'NET USER [nazwa_użytkownika] /expires:[data]', administrator może ustawić datę, po której dane konto przestanie być aktywne. Dzięki temu można efektywnie zarządzać bezpieczeństwem systemu oraz dostosować polityki haseł do standardów branżowych, takich jak NIST SP 800-63. Dobre praktyki wskazują, że regularne aktualizowanie haseł oraz ich odpowiednia długość są kluczowe dla ochrony danych. Ponadto, polecenie NET USER pozwala na sprawdzenie stanu konta oraz jego ustawień, co jest niezbędne w kontekście audytów bezpieczeństwa.

Pytanie 25

Który zakres adresów IPv4 jest poprawnie przypisany do danej klasy?

Zakres adresów IPv4Klasa adresu IPv4
A.1.0.0.0 ÷ 127.255.255.255A
B.128.0.0.0 ÷ 191.255.255.255B
C.192.0.0.0 ÷ 232.255.255.255C
D.233.0.0.0 ÷ 239.255.255.255D

A. B
B. D
C. C
D. A
Klasa B adresów IPv4 obejmuje zakres od 128.0.0.0 do 191.255.255.255. Adresy w tej klasie są często używane w średnich i dużych sieciach, ponieważ oferują większą liczbę dostępnych adresów hostów w porównaniu z klasą C. Każdy adres klasy B ma pierwszy oktet w zakresie od 128 do 191, a następne dwa oktety są używane do identyfikacji sieci, co daje możliwość utworzenia 16 384 sieci, każda z maksymalnie 65 534 hostami. W praktyce, oznacza to, że klasa B jest idealna dla organizacji z dużym zapotrzebowaniem na liczby hostów. Współczesne sieci korzystają z maski podsieci, aby elastyczniej zarządzać adresacją, jednak klasyczne podejście jest nadal istotne w kontekście zrozumienia podstaw działania protokołu IPv4. Standardy takie jak RFC 791 i późniejsze uaktualnienia precyzują sposób użycia tej klasy adresów, co jest ważne dla administratorów sieciowych, którzy muszą projektować wydajne i niezawodne struktury sieciowe.

Pytanie 26

Jakiego rodzaju plik należy stworzyć w systemie operacyjnym, aby zautomatyzować rutynowe działania, takie jak kopiowanie lub tworzenie plików oraz folderów?

A. Konfiguracyjny
B. Początkowy
C. Wsadowy
D. Systemowy
Inicjujący plik nie jest odpowiedni do automatyzacji czynności, ponieważ służy on zazwyczaj do uruchamiania programów lub skryptów w odpowiedzi na określone zdarzenia, a nie do wykonywania serii zadań. Może to prowadzić do pomyłek, gdyż jego zastosowanie nie obejmuje powtarzalnych operacji, które są kluczowe w automatyzacji. Z kolei pliki systemowe, choć mogą pełnić istotną rolę w konfiguracji i działaniu systemu operacyjnego, nie są dedykowane do automatyzacji codziennych zadań użytkownika. Systemowe pliki są bardziej związane z wewnętrznymi operacjami systemu, a ich modyfikacje mogą prowadzić do destabilizacji środowiska operacyjnego. Pliki konfiguracyjne natomiast zawierają ustawienia i preferencje programów, ale również nie są odpowiednie do automatyzacji działań, gdyż ich głównym celem jest definiowanie konfiguracji, a nie wykonywanie aktywnych operacji. Typowe błędy myślowe obejmują mylenie różnych typów plików i ich zastosowań, co może skutkować nieefektywnym zarządzaniem zadaniami oraz niepotrzebnym zwiększaniem złożoności procesów. W każdym przypadku, kluczowe jest zrozumienie różnicy między typami plików i ich przeznaczeniem, aby skutecznie wykorzystać je w codziennej pracy.

Pytanie 27

Jakim protokołem jest realizowana kontrola poprawności transmisji danych w sieciach Ethernet?

A. HTTP
B. UDP
C. TCP
D. IP
Protokół TCP (Transmission Control Protocol) jest kluczowym elementem w architekturze modelu OSI, odpowiedzialnym za zapewnienie niezawodnej transmisji danych w sieciach komputerowych, w tym Ethernet. TCP działa na poziomie transportu i zapewnia kontrolę poprawności przesyłania danych poprzez mechanizmy takie jak segmentacja, numerowanie sekwencyjne pakietów, kontroli błędów oraz retransmisji utraconych danych. Dzięki tym mechanizmom, TCP eliminuje problem duplikacji oraz umożliwia odbiorcy potwierdzenie odbioru danych, co jest kluczowe w aplikacjach wymagających wysokiej niezawodności, takich jak przesyłanie plików czy strumieniowanie wideo. W praktyce, TCP jest wykorzystywany w protokołach wyższego poziomu, takich jak HTTP, FTP czy SMTP, co podkreśla jego znaczenie w globalnej komunikacji internetowej. Standardy RFC definiują szczegółowe zasady działania tego protokołu, a jego implementacja jest powszechna w wielu systemach operacyjnych, co czyni go fundamentem współczesnych sieci komputerowych.

Pytanie 28

Sieć, w której funkcjonuje komputer o adresie IP 192.168.100.50/28, została podzielona na 4 podsieci. Jakie są poprawne adresy tych podsieci?

A. 192.168.100.48/29; 192.168.100.54/29; 192.168.100.56/29; 192.168.100.58/29
B. 192.168.100.48/30; 192.168.100.52/30; 192.168.100.56/30; 192.168.100.60/30
C. 192.168.100.50/28; 192.168.100.52/28; 192.168.100.56/28; 192.168.100.60/28
D. 192.168.100.48/27; 192.168.100.52/27; 192.168.100.56/27; 192.168.100.58/27
Podczas analizy pozostałych odpowiedzi, warto zwrócić uwagę na kilka istotnych błędów koncepcyjnych. Odpowiedzi, które wykorzystują maski /29 lub /27, nie są adekwatne do opisanego problemu, ponieważ nie prowadzą do utworzenia czterech odrębnych podsieci z dostępnego zakresu adresów. W przypadku maski /29, każda z podsieci ma 8 adresów (6 użytecznych dla hostów), co oznacza, że w rezultacie można by utworzyć jedynie dwie podsieci z początkowego zakresu 192.168.100.48/28. Z kolei maska /27, która oferuje 32 adresy (30 użytecznych), również nie odpowiada na potrzebę utworzenia czterech podsieci; zamiast tego, prowadziłaby do nieefektywnego wykorzystania dostępnych adresów. Dodatkowo, wszystkie podane odpowiedzi błędnie próbują użyć istniejącego adresu 192.168.100.50/28 jako podstawy do podziału, co jest mylące, ponieważ to prowadzi do nieprawidłowych obliczeń. Kluczowym błędem myślowym jest niezrozumienie, jak właściwie dzielić sieci na mniejsze podsieci, co jest fundamentalną umiejętnością w administracji sieci. Zrozumienie zasad podziału adresów IP oraz efektywnego wykorzystania dostępnych zasobów jest niezmiernie ważne dla inżynierów sieciowych i administratorów, zwłaszcza w kontekście zarządzania dużymi infrastrukturami sieciowymi.

Pytanie 29

Aby zwiększyć lub zmniejszyć wielkość ikony na pulpicie, należy obracać kółkiem myszy, trzymając jednocześnie klawisz:

A. CTRL
B. TAB
C. SHIFT
D. ALT
Odpowiedzi takie jak TAB, ALT i SHIFT wskazują na pewne nieporozumienia dotyczące podstawowych skrótów klawiszowych oraz ich funkcji w systemach operacyjnych. Klawisz TAB, na przykład, jest używany głównie do przełączania pomiędzy elementami interfejsu użytkownika, co czyni go nieodpowiednim do zmiany rozmiaru ikon. Użytkownicy mogą pomylić tę funkcję z nawigacją w formularzach lub podczas pracy z dokumentami, co skutkuje błędnym przyporządkowaniem jego roli. Z kolei klawisz ALT służy do wywoływania opcji dostępnych w menu programu oraz do tworzenia skrótów klawiszowych w połączeniu z innymi klawiszami. Jego funkcja nie obejmuje jednak zmieniania rozmiaru ikon na pulpicie, co może być mylące dla osób, które próbują zrozumieć, jak działa interfejs użytkownika. Klawisz SHIFT z kolei jest często używany do wprowadzania wielkich liter lub do zaznaczania wielu elementów jednocześnie, ale nie ma on zastosowania w kontekście powiększania lub zmniejszania ikon. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to niezrozumienie roli i funkcji poszczególnych klawiszy w interfejsie systemu operacyjnego oraz brak doświadczenia w korzystaniu z zaawansowanych funkcji systemowych. Ważne jest, aby użytkownicy regularnie zapoznawali się z dokumentacją oraz przewodnikami dotyczącymi skrótów klawiszowych, aby skutecznie używać dostępnych narzędzi i funkcji.

Pytanie 30

Zaprezentowany komputer jest niepełny. Który z komponentów nie został wymieniony w tabeli, a jest kluczowy dla poprawnego funkcjonowania zestawu i powinien być dodany?

Lp.Nazwa podzespołu
1.Cooler Master obudowa komputerowa CM Force 500W czarna
2.Gigabyte GA-H110M-S2H, Realtek ALC887, DualDDR4-2133, SATA3, HDMI, DVI, D-Sub, LGA1151, mATX
3.Intel Core i5-6400, Quad Core, 2.70GHz, 6MB, LGA1151, 14nm, 65W, Intel HD Graphics, VGA, TRAY/OEM
4.Patriot Signature DDR4 2x4GB 2133MHz
5.Seagate BarraCuda, 3,5", 1TB, SATA/600, 7200RPM, 64MB cache
6.LG SuperMulti SATA DVD+/-R24x,DVD+RW6x,DVD+R DL 8x, bare bulk (czarny)
7.Gembird Bezprzewodowy Zestaw Klawiatura i Mysz
8.Monitor Iiyama E2083HSD-B1 19.5inch, TN, HD+, DVI, głośniki
9.Microsoft OEM Win Home 10 64Bit Polish 1pk DVD

A. Zasilacz
B. Karta graficzna
C. Wentylator procesora
D. Pamięć RAM
Zasilacz, karta graficzna oraz pamięć RAM to również kluczowe komponenty każdego komputera, ale w kontekście tego pytania ich brak nie jest przyczyną niekompletności zestawu w odniesieniu do chłodzenia procesora. Zasilacz zapewnia niezbędne zasilanie dla całego systemu, a jego parametry muszą być dobrane odpowiednio do specyfikacji energetycznej wszystkich zainstalowanych komponentów. Karta graficzna, choć nie jest wymieniona w tabeli, to w przypadku niektórych konfiguracji może być zintegrowana z procesorem, jak ma to miejsce w przypadku układów Intel HD Graphics. Pamięć RAM jest niezbędna do przechowywania i szybkiego dostępu do danych, ale jej brak w zestawie uniemożliwiłby w ogóle działanie systemu operacyjnego, co nie jest przedmiotem tego pytania. Typowym błędem myślowym jest niedocenianie znaczenia odpowiedniego chłodzenia procesora, zwłaszcza w przypadku zestawów bez dołączonych fabrycznie systemów chłodzących, co może prowadzić do poważnych problemów termicznych, a w konsekwencji do uszkodzenia sprzętu lub znaczącego obniżenia jego wydajności.

Pytanie 31

Prawo osobiste twórcy do oprogramowania komputerowego

A. obowiązuje tylko przez życie jego autora
B. obowiązuje przez 70 lat od daty pierwszej publikacji
C. nigdy nie traci ważności
D. obowiązuje przez 50 lat od daty pierwszej publikacji
Nieprawidłowe odpowiedzi sugerują, że autorskie prawo osobiste wygasa po określonym czasie, co jest niezgodne z rzeczywistością prawną. Odpowiedzi wskazujące na 50 lub 70 lat od daty pierwszej publikacji odnoszą się do autorskich praw majątkowych, a nie osobistych. Prawa majątkowe rzeczywiście wygasają po 70 latach od śmierci twórcy, co oznacza, że po tym okresie dzieło przechodzi do domeny publicznej. Jednak autorskie prawo osobiste, jak prawo do autorstwa i prawo do nienaruszalności dzieła, nie ma określonego terminu wygasania. W praktyce może to prowadzić do błędnych wniosków na temat ochrony praw twórcy. Również rozumienie prawa jako ograniczonego do życia twórcy jest mylące, ponieważ prawa osobiste trwają niezależnie od jego życia. Ochrona prawna dla twórców podkreśla znaczenie utrzymania integralności dzieła oraz uznania dla twórcy, co jest istotne w kontekście etyki zawodowej i ochrony własności intelektualnej. Warto zatem zrozumieć różnicę między prawami osobistymi i majątkowymi, aby właściwie interpretować zabezpieczenia prawne w obszarze twórczości intelektualnej.

Pytanie 32

Który typ drukarki stosuje metodę, w której stały barwnik jest przenoszony z taśmy na papier odporny na wysoką temperaturę?

A. Laserowa
B. Termosublimacyjna
C. Atramentowa
D. Termiczna
Drukarki laserowe działają na zasadzie elektrostatycznego naładowania tonera, który jest przenoszony na papier, a następnie utrwalany przez wysoką temperaturę. To podejście charakteryzuje się szybkością i wydajnością, ale nie wykorzystuje sublimacji barwnika, co czyni je mniej odpowiednim do uzyskiwania intensywnych kolorów czy płynnych przejść tonalnych, jak to ma miejsce w przypadku druku termosublimacyjnego. Z kolei drukarki termiczne stosują technologię, która polega na podgrzewaniu specjalnego papieru, co prowadzi do reakcji chemicznych w jego strukturze i w rezultacie do powstania obrazu. Pomimo że ta technika jest stosunkowo tania i szybka, generuje wydruki o ograniczonej trwałości, co sprawia, że nie nadaje się do aplikacji, które wymagają wysokiej jakości i długowieczności. Drukarki atramentowe dysponują systemem drobnych dysz, które nanoszą atrament na papier, co pozwala na uzyskanie złożonych obrazów, ale ich efektywność w generowaniu trwałych i odpornych na czynniki zewnętrzne wydruków jest ograniczona w porównaniu do technologii termosublimacyjnej. Wybierając odpowiednią technologię druku, warto zrozumieć różnice pomiędzy tymi metodami, aby uniknąć błędnych wyborów, które mogą prowadzić do nieefektywności oraz niezadowolenia z jakości uzyskiwanych wydruków. W praktyce, wybór powinien opierać się na zastosowaniu i wymaganiach dotyczących trwałości oraz jakości wydruków.

Pytanie 33

W instrukcji obsługi karty dźwiękowej można znaleźć następujące dane: - częstotliwość próbkowania wynosząca 22 kHz, - rozdzielczość wynosząca 16 bitów. Jaką przybliżoną objętość będzie miało mono jednokanałowe nagranie dźwiękowe trwające 10 sekund?

A. 80000 B
B. 220000 B
C. 160000 B
D. 440000 B
Błędy w obliczeniach wielkości plików dźwiękowych często wynikają z niepełnego uwzględnienia kluczowych parametrów, takich jak częstotliwość próbkowania, rozdzielczość oraz liczba kanałów. Osoby, które proponują odpowiedzi 80000 B, 160000 B czy 220000 B, mogą zaniżać wartość obliczeń, przyjmując niewłaściwe założenia dotyczące czasu trwania nagrania, częstotliwości lub rozdzielczości. Na przykład, odpowiedź 80000 B może wynikać z obliczenia na podstawie zbyt krótkiego czasu nagrania lub pominięcia przeliczenia bitów na bajty. Warto zauważyć, że częstotliwość próbkowania 22 kHz oznacza, że 22000 próbek dźwięku jest rejestrowanych na sekundę, co w kontekście 10-sekundowego nagrania daje 220000 próbek. Dla jednego kanału w 16-bitowej rozdzielczości, 10-sekundowe nagranie wymaga 3520000 bitów, co po przeliczeniu na bajty daje 440000 B. Typowym błędem myślowym jest także uproszczenie procesu obliczeniowego, które prowadzi do pominięcia ważnych kroków. W praktyce, umiejętność dokładnego obliczania rozmiarów plików audio ma kluczowe znaczenie w procesach produkcji dźwięku oraz w tworzeniu aplikacji audio, gdzie efektywne zarządzanie danymi jest kluczowe dla jakości i wydajności operacyjnej.

Pytanie 34

Na ilustracji, złącze monitora zaznaczone czerwoną ramką, będzie kompatybilne z płytą główną, która ma interfejs

Ilustracja do pytania
A. HDMI
B. D-SUB
C. DisplayPort
D. DVI
DisplayPort to zaawansowany interfejs cyfrowy stworzony do przesyłu sygnałów wideo i audio. W odróżnieniu od starszych technologii, takich jak DVI czy D-SUB, DisplayPort obsługuje wysoki zakres przepustowości, co pozwala na przesyłanie obrazów o wysokiej rozdzielczości i wielokanałowego dźwięku. Jest powszechnie stosowany w komputerach, monitorach i kartach graficznych nowej generacji. W praktyce, DisplayPort pozwala na połączenie wielu monitorów za pomocą jednego złącza dzięki funkcji Multi-Stream Transport (MST). W porównaniu do HDMI, DisplayPort oferuje wyższą przepustowość, co czyni go idealnym do profesjonalnych zastosowań graficznych i gier. Inżynierowie i projektanci często wybierają DisplayPort do konfiguracji wymagających wysokiej jakości obrazu i dźwięku. Zastosowanie tego interfejsu w praktyce pozwala na pełne wykorzystanie możliwości nowoczesnych płyt głównych i kart graficznych, które często wspierają najnowsze standardy DisplayPort, takie jak wersja 1.4, umożliwiająca przesyłanie obrazu 8K przy 60 Hz. Standaryzacja DisplayPort przez organizację VESA zapewnia jego wszechstronność i kompatybilność z różnymi urządzeniami.

Pytanie 35

Adres IP (ang. Internet Protocol Address) to

A. niepowtarzalna nazwa symboliczna sprzętu
B. adres fizyczny urządzenia
C. niepowtarzalny numer seryjny sprzętu
D. adres logiczny urządzenia
Adres IP (ang. Internet Protocol Address) to logiczny adres przypisywany urządzeniom w sieci komputerowej, który umożliwia ich identyfikację oraz komunikację. Jest kluczowym elementem protokołu IP, który tworzy podstawę dla przesyłania danych w Internecie. Adresy IP mogą być dynamiczne lub statyczne. Dynamiczne adresy IP są przypisywane przez serwery DHCP na krótki czas, co zwiększa elastyczność i oszczędność adresów w przypadku urządzeń, które często łączą się z siecią. Przykładowo, komputer łączący się z publiczną siecią Wi-Fi otrzymuje zazwyczaj dynamiczny adres IP. Z kolei statyczne adresy IP są stałe i wykorzystywane w serwerach oraz urządzeniach, które muszą być zawsze dostępne pod tym samym adresem, jak np. serwery www. Znajomość adresacji IP jest istotna dla administratorów sieci, ponieważ pozwala na efektywne zarządzanie ruchem w sieci, diagnostykę problemów oraz zwiększa bezpieczeństwo poprzez odpowiednie ustawienia zapór i reguł routingu. Adres IP jest również podstawą do zrozumienia bardziej zaawansowanych koncepcji, takich jak NAT (Network Address Translation) czy VPN (Virtual Private Network).

Pytanie 36

Wartości 1001 i 100 w pliku /etc/passwd wskazują na

student:x:1001:100:Jan Kowalski:/home/student:/bin/bash

A. liczbę dni od ostatniej zmiany hasła oraz liczbę dni do wygaszenia hasła
B. numer koloru tekstu i numer koloru tła w terminalu
C. liczbę udanych oraz nieudanych prób logowania
D. identyfikatory użytkownika oraz grupy w systemie
W pliku /etc/passwd każda linia reprezentuje konto użytkownika w systemie UNIX lub Linux. Jest ona podzielona na pola oddzielone dwukropkami. Kluczowym elementem są identyfikatory UID (User ID) i GID (Group ID) które są używane do przypisywania uprawnień oraz dostępu do plików i zasobów. UID 1001 identyfikuje konkretnego użytkownika systemowego a GID 100 wskazuje na jego domyślną grupę. Dzięki tym identyfikatorom system operacyjny może efektywnie zarządzać uprawnieniami i izolacją użytkowników co jest kluczowe w systemach wieloużytkownikowych. Praktyczne zastosowanie obejmuje zarządzanie dostępem do plików gdzie właścicielem pliku jest użytkownik z określonym UID a grupa z GID może mieć różne prawa do tego pliku. W środowiskach produkcyjnych dobrze jest stosować zasady nadawania uprawnień zgodnie z minimalnymi wymaganiami oraz używać mechanizmów takich jak umask czy ACL do dalszej kontroli dostępu co podnosi poziom bezpieczeństwa systemu

Pytanie 37

Jaką maksymalną liczbę podstawowych partycji na dysku twardym z tablicą MBR można utworzyć za pomocą narzędzia Zarządzanie dyskami dostępnego w systemie Windows?

A. 2
B. 4
C. 1
D. 3
Odpowiedzi 1, 2 i 3 są niepoprawne, ponieważ opierają się na błędnych założeniach dotyczących struktury tablicy MBR i możliwości zarządzania partycjami. W przypadku opcji pierwszej, twierdzenie, że można utworzyć jedynie jedną partycję podstawową, jest błędne, ponieważ MBR został zaprojektowany z myślą o umożliwieniu tworzenia czterech partycji podstawowych. Dla odpowiedzi drugiej, pomylenie możliwości utworzenia dwóch partycji z rzeczywistością sugeruje, że użytkownik nie rozumie podstawowych zasad działania MBR i jego struktury. Z kolei odpowiedź trzecia, która sugeruje, że można utworzyć trzy partycje podstawowe, również nie uwzględnia maksymalnego limitu czterech partycji. Takie błędne interpretacje często wynikają z niepełnego zrozumienia tematu i nieznajomości specyfiki działania systemów operacyjnych oraz sposobów przydzielania przestrzeni dyskowej. Warto również zauważyć, że w przypadku systemu MBR, partycje mogą być wykorzystywane nie tylko do przechowywania danych, ale także do instalacji różnych systemów operacyjnych, co czyni je kluczowym elementem w zarządzaniu dyskami. Dlatego znajomość limitów i funkcji MBR jest istotna dla osób zajmujących się administracją systemami oraz dbających o efektywność wykorzystania przestrzeni dyskowej.

Pytanie 38

Jakim poleceniem w systemie Linux można dodać nowych użytkowników?

A. net user
B. useradd
C. usersadd
D. usermod
Odpowiedź 'useradd' jest poprawna, ponieważ jest to polecenie używane w systemach Linux do tworzenia nowych użytkowników. Umożliwia on administratorom systemu dodawanie użytkowników z różnymi opcjami, takimi jak określenie grupy, do której użytkownik ma przynależeć, czy też ustawienie hasła. Na przykład, aby dodać użytkownika o nazwie 'janek', wystarczy wpisać polecenie: 'sudo useradd janek'. Ważne jest, aby pamiętać, że po utworzeniu użytkownika zazwyczaj należy ustawić dla niego hasło za pomocą polecenia 'passwd', co zapewnia bezpieczeństwo. Dobre praktyki sugerują również, aby zawsze nadawać nowym użytkownikom odpowiednie ograniczenia dostępu oraz przypisywać ich do właściwych grup, co pomaga w zarządzaniu uprawnieniami w systemie. Ponadto, polecenie 'useradd' jest zgodne z normami systemowymi i pozwala na łatwe monitorowanie i zarządzanie użytkownikami w systemie operacyjnym, co jest kluczowe dla bezpieczeństwa i efektywności działania systemu.

Pytanie 39

Administrator powinien podzielić sieć o adresie 193.115.95.0 z maską 255.255.255.0 na 8 równych podsieci. Jaką maskę sieci powinien wybrać administrator?

A. 255.255.255.192
B. 255.255.255.224
C. 255.255.255.248
D. 255.255.255.240
Wybór nieodpowiedniej maski sieci często wynika z błędnych założeń dotyczących podziału sieci. W przypadku maski 255.255.255.192, która odpowiada 11111111.11111111.11111111.11000000, uzyskujemy 4 podsieci, co jest niewystarczające do spełnienia wymagań podziału na 8 podsieci. Z kolei maska 255.255.255.240, odpowiadająca 11111111.11111111.11111111.11110000, daje jedynie 16 adresów w każdej podsieci, z czego 14 jest dostępnych dla hostów, co również nie pasuje do wymagania o 8 równych podsieciach, ponieważ w tym przypadku wykorzystamy tylko 4 podsieci. Maska 255.255.255.248 (11111111.11111111.11111111.11111000) umożliwia podział na 32 podsieci, co w tym kontekście również nie jest praktyczne, a ilość dostępnych adresów w każdej z tych podsieci wynosi zaledwie 6. Takie błędy w ocenie możliwości podziału sieci mogą prowadzić do poważnych problemów w przyszłości, takich jak niewystarczająca liczba adresów dla urządzeń w sieci. Kluczowe jest, aby rozumieć logikę działania maski podsieci oraz zasady przydzielania adresów IP, żeby unikać nieefektywnego zarządzania zasobami sieciowymi.

Pytanie 40

Który zakres adresów pozwala na komunikację multicast w sieciach z użyciem adresacji IPv6?

A. 3ffe::/16
B. ff00::/8
C. ::/96
D. 2002::/24
Wybór adresów, takich jak ::/96, 3ffe::/16 czy 2002::/24, jest błędny z różnych powodów. Adres ::/96 jest częścią adresacji IPv6, która jest stosowana do translacji adresów IPv4, ale nie jest dedykowana do komunikacji multicast. Z kolei adres 3ffe::/16 był częścią zarezerwowanej przestrzeni adresowej IPv6 przeznaczonej dla zastosowań eksperymentalnych, co również nie ma związku z multicastem. Adres 2002::/24 jest związany z protokołem 6to4, który służy do tunelowania IPv6 przez IPv4, a więc również nie odnosi się do multicastu. W kontekście adresacji IPv6, nieprawidłowe podejście do wyboru adresów może prowadzić do nieefektywnej komunikacji w sieci, ponieważ nie każda pula adresów ma zastosowanie w różnych scenariuszach komunikacyjnych. Kluczowe jest, aby w przypadku rozważań nad multicastem korzystać z odpowiednio zdefiniowanych standardów, które wskazują na konkretne zakresy adresów, a także rozumieć ich różne zastosowania. Ignorowanie tych zasad prowadzi do nieporozumień i trudności w implementacji rozwiązań sieciowych, co może poważnie wpłynąć na jakość i wydajność usług świadczonych w sieci.