Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 25 maja 2025 17:49
  • Data zakończenia: 25 maja 2025 18:09

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Po zainstalowaniu nowej pompy cieczy chłodzącej trzeba

A. wyczyścić układ chłodzenia
B. ustawić luz zaworowy
C. uzupełnić poziom płynu chłodzącego
D. ustawić zbieżność kół
Uzupełnienie płynu chłodzącego po wymianie pompy to naprawdę ważna sprawa, żeby silnik działał jak należy. Jak już wymienisz pompę, musisz zadbać o to, żeby cały układ był dobrze napełniony. Bez tego może się zdarzyć, że silnik się przegrzeje, a to może być kosztowne. Po wymianie pompy warto też odpowietrzyć układ, żeby pozbyć się powietrza, które może powodować przegrzewanie w niektórych miejscach. Nie zapomnij też regularnie sprawdzać poziomu płynu w zbiorniku, a także zajrzeć, czy nie ma jakiś wycieków. Rada dla Ciebie - lepiej używać płynów chłodzących, które producent zaleca, bo dzięki temu silnik będzie miał lepsze właściwości termiczne i ochroni sobie przed korozją. No i oczywiście, regularne kontrolowanie stanu płynu to klucz do dłuższego życia silnika i jego efektywności.

Pytanie 2

Jeśli wymiar czopów głównych wału korbowego przekracza ostatni wymiar naprawczy, jakie działania należy podjąć w stosunku do tych czopów?

A. szlifowaniu na wymiar naprawczy
B. regeneracji poprzez metalizację natryskową
C. regeneracji poprzez chromowanie elektrolityczne
D. regeneracji poprzez napawanie wibrostykowe
Odpowiedzi dotyczące regeneracji czopów głównych poprzez napawanie wibrostykowe, metalizację natryskową oraz chromowanie elektrolityczne nie są adekwatne w kontekście tego pytania. Napawanie wibrostykowe to technika, która polega na nanoszeniu materiału w postaci stopu na powierzchnię uszkodzonego elementu. Choć może być skuteczna w niektórych zastosowaniach, nie jest standardowo stosowana do czopów głównych wału korbowego, ponieważ może prowadzić do lokalnych deformacji i niejednorodności struktury materiału. Metalizacja natryskowa również nie jest optymalna w tym przypadku, ponieważ stosuje się ją w sytuacjach, gdy wymagana jest ochrona przed korozją lub poprawa właściwości tribologicznych, a nie do przywracania wymiarów. Chromowanie elektrolityczne, chociaż skuteczne w poprawie odporności na zużycie powierzchni, nie rozwiązuje problemu przerośnięcia wymiaru czopów. W każdym z tych przypadków istnieje ryzyko, że regenerowane elementy nie spełnią standardów jakości, co może prowadzić do dalszych uszkodzeń w silniku. Zastosowanie niewłaściwych metod regeneracji może także prowadzić do zwiększenia kosztów naprawy, wydłużenia czasu przestoju maszyny oraz obniżenia jej niezawodności.

Pytanie 3

Trudności w włączaniu biegów mogą być spowodowane

A. zużyciem zębatek w skrzyni biegów
B. zużyciem łożysk w skrzyni biegów
C. niewystarczającym skokiem jałowym pedału sprzęgła
D. nadmiernym skokiem jałowym pedału sprzęgła
Utrudnione włączanie biegów może być mylnie interpretowane jako wynik zbyt małego skoku jałowego pedału sprzęgła lub zużycia kół zębatych w skrzyni biegów. Zbyt mały skok jałowy pedału sprzęgła może rzeczywiście prowadzić do problemów, jednak w takim przypadku kierowca zazwyczaj odczuwa nadmierne wibracje i trudności z całkowitym rozłączeniem sprzęgła, co sprawia, że włączanie biegów staje się bardziej oporne, ale nie jest to najczęstsza przyczyna. Zużycie kół zębatych w skrzyni biegów, pomimo że może prowadzić do zgrzytów i hałasów podczas zmiany biegów, nie jest bezpośrednio związane z trudnościami w włączaniu biegów, gdyż zazwyczaj objawia się to w inny sposób. Wiele osób myli różne objawy, co prowadzi do nieprawidłowych wniosków. Kluczowe jest zrozumienie, że problemy z biegami często są wynikiem złożonego działania wielu elementów, w tym również stanu technicznego sprzęgła oraz płynu hydraulicznego. Dlatego ważne jest, aby podczas diagnostyki samochodu uwzględniać wszystkie możliwe czynniki, a nie skupiać się tylko na jednym elemencie. Właściwa konserwacja oraz regularne przeglądy techniczne mogą znacząco wpłynąć na unikanie takich problemów.

Pytanie 4

Ustawienie świateł mijania w pojazdach samochodowych przeprowadza się przy pomocy urządzenia, które funkcjonuje na zasadzie porównania granicy światła oraz cienia reflektora z

A. wartościami określonymi w tabelach naświetleń
B. wartościami ustalonymi przez producenta auta
C. wartościami zdefiniowanymi dla pojazdów z maksymalną prędkością do 130 km/h
D. liniami odcięcia według wzoru urządzenia
Ustawiając linię odcięcia reflektora, korzystamy z szablonu przyrządu pomiarowego. Dzięki temu możemy dokładnie wyregulować światła mijania. To ważne, bo dobrze ustawione światła są kluczowe dla bezpieczeństwa na drodze. Używanie takich narzędzi, jak poziomice czy wskaźniki kątowe, pozwala precyzyjnie określić krawędź światła. To z kolei pomoże uniknąć oślepiania innych kierowców. Normy, jak ECE R48, mówią, jak powinny być ustawione reflektory, żeby ograniczyć ryzyko oślepienia tych, którzy jadą w przeciwnym kierunku. Poza tym dobrze ustawione światła polepszają widoczność, co jest istotne, zwłaszcza w nocy lub przy kiepskim świetle. Dla każdego, kto pracuje w branży motoryzacyjnej, znajomość tych procedur to podstawa, jeżeli chodzi o konserwację i diagnostykę pojazdów.

Pytanie 5

Silnik spalinowy chłodzony cieczą nie osiąga odpowiedniej temperatury. Jakie uszkodzenie w układzie chłodzenia może powodować takie symptomy?

A. Nagrzewnicy
B. Wentylatora
C. Chłodnicy
D. SCS Termostatu
Termostat w silniku spalinowym pełni kluczową rolę w zarządzaniu temperaturą pracy układu chłodzenia. Jego głównym zadaniem jest kontrolowanie przepływu cieczy chłodzącej pomiędzy silnikiem a chłodnicą. Po osiągnięciu odpowiedniej temperatury silnika, termostat otwiera się, co pozwala na krążenie cieczy chłodzącej, a tym samym utrzymanie optymalnych warunków pracy silnika. Jeśli termostat jest uszkodzony i pozostaje w pozycji zamkniętej, ciecz chłodząca nie może swobodnie krążyć, co prowadzi do przegrzewania silnika, lub w przypadku, gdy nie otwiera się w ogóle, silnik może nie osiągnąć optymalnej temperatury roboczej. Optymalna temperatura pracy silnika jest kluczowa dla jego wydajności i zmniejszenia emisji szkodliwych substancji. Dbanie o sprawność termostatu to nie tylko kwestia wydajności, ale także oszczędności paliwa oraz ochrony silnika przed nadmiernym zużyciem. W praktyce, jeśli zauważysz, że silnik nie osiąga właściwej temperatury, warto zbadać działanie termostatu, co jest zgodne z dobrymi praktykami w zakresie konserwacji układów chłodzenia.

Pytanie 6

Po zainstalowaniu nowego, zewnętrznego przegubu napędowego na półosi, powinno się go nasmarować odpowiednim smarem

A. łożyskowym
B. miedziowym
C. grafitowym
D. molibdenowym
Wybór niewłaściwego rodzaju smaru do przegubów napędowych może prowadzić do poważnych problemów eksploatacyjnych. Smar łożyskowy, chociaż często używany w różnych aplikacjach, nie jest odpowiedni do przegubów napędowych, ponieważ może nie zapewniać wymaganej odporności na ekstremalne warunki pracy, a jego zastosowanie prowadzi do szybszego zużycia mechanizmów. Z kolei smar miedziowy, mimo że posiada właściwości antyzatarciowe, może być zbyt agresywny dla niektórych materiałów stosowanych w przegubach i prowadzić do ich degradacji. Grafitowy smar, choć może być skuteczny w niektórych specyficznych aplikacjach, nie jest zalecany do przegubów napędowych z powodu braku odpowiedniej adhezji oraz tendencji do wypłukiwania w obecności cieczy. Często błędnie zakłada się, że różnorodność smarów pozwala na ich dowolne stosowanie, co jest nieprawidłowe i może prowadzić do kosztownych napraw. Prawidłowy dobór smaru powinien opierać się na zrozumieniu specyfikacji technicznych oraz wymagań stawianych przez producentów pojazdów, co jest kluczowe dla utrzymania optymalnej wydajności i bezpieczeństwa jednostek napędowych.

Pytanie 7

Frekfencja migania świateł kierunkowskazów powinna wynosić

A. 120 do 30 błysków na minutę
B. 100 do 30 błysków na minutę
C. 90 do 30 błysków na minutę
D. 60 do 30 błysków na minutę
Optymalna częstotliwość błysków świateł kierunkowskazów, wynosząca od 90 do 30 błysków na minutę, jest zgodna z obowiązującymi normami i dobrymi praktykami w zakresie bezpieczeństwa ruchu drogowego. Taki zakres częstotliwości zapewnia odpowiednią widoczność sygnałów kierunkowych, co jest kluczowe dla innych uczestników ruchu. W praktyce oznacza to, że kierowcy mają wystarczająco dużo czasu na zauważenie sygnału i na podjęcie odpowiednich działań, co przekłada się na zmniejszenie ryzyka wypadków. Częstość ta jest również zgodna z przepisami prawa w wielu krajach, co sprawia, że jest to standard, którego powinni przestrzegać producenci pojazdów. Warto pamiętać, że zbyt wolne błyski mogą być mylnie interpretowane jako nieczytelne, a zbyt szybkie mogą wprowadzać w błąd. Utrzymanie tej częstotliwości jest zatem niezbędne dla poprawy bezpieczeństwa na drogach oraz dla efektywnej komunikacji między kierowcami.

Pytanie 8

W nowoczesnych systemach zasilania silnika o zapłonie samoczynnym typu Commonrail, paliwo ulega sprężeniu do ciśnienia wynoszącego

A. 10 kPa
B. 1000 atm
C. 2000 bar
D. 18 MPa
Odpowiedź 2000 bar jest prawidłowa, ponieważ w nowoczesnych systemach zasilania silnika z zapłonem samoczynnym typu Commonrail, ciśnienie sprężania paliwa osiąga wartości rzędu 2000 bar, co odpowiada około 200 MPa. Taka wartość ciśnienia jest kluczowa dla efektywnego rozpylania paliwa w komorze spalania, co z kolei zapewnia optymalne warunki do spalania, zwiększając wydajność silnika oraz redukując emisję zanieczyszczeń. Nowoczesne wtryskiwacze paliwa są zaprojektowane do pracy w tych ekstremalnych warunkach, co pozwala na precyzyjne dawkowanie paliwa i lepsze spalanie. Przy tak wysokim ciśnieniu, paliwo atomizuje się na drobne krople, co sprzyja lepszemu wymieszaniu z powietrzem, prowadząc do bardziej efektywnego procesu spalania. Przykładowo, w silnikach wysokoprężnych wykorzystywanych w pojazdach osobowych oraz dostawczych, zastosowanie systemu Commonrail z ciśnieniem na poziomie 2000 bar pozwala na znaczną redukcję zużycia paliwa oraz emisji tlenków azotu (NOx), co jest zgodne z normami ekologicznymi Euro 6.

Pytanie 9

W przypadku zwichnięcia kończyny dolnej, jaką należy podjąć pierwszą pomoc przedlekarską?

A. ustawieniu kończyny.
B. aplikacji zimnego okładu.
C. sprawdzeniu tętna oraz oddechu.
D. nałożeniu jałowego opatrunku.
W przypadku zwichnięcia kończyny dolnej, pierwszą pomocą przedlekarską jest wykonanie chłodnego okładu. To podejście ma na celu zmniejszenie obrzęku oraz łagodzenie bólu poprzez działanie przeciwzapalne i znieczulające. Chłodzenie miejscowe powinno być stosowane w sposób ostrożny, aby uniknąć odmrożeń. Należy używać worków z lodem lub chłodnych kompresów, które są owinięte w materiał, aby nie miały bezpośredniego kontaktu ze skórą. Zastosowanie chłodnego okładu powinno trwać około 15-20 minut, a następnie można powtórzyć co 1-2 godziny w ciągu pierwszych 48 godzin po urazie. W sytuacjach, gdy podejrzewamy zwichnięcie, kluczowe jest unikanie ruchów w stawie oraz niepróbowanie nastawiania kończyny, co może prowadzić do dalszych uszkodzeń. Warto również pamiętać o tym, że po zastosowaniu okładu, pacjent powinien być niezwłocznie przewieziony do placówki medycznej w celu dalszej diagnostyki i leczenia. Stosowanie chłodzenia jest zgodne z ogólnymi zasadami pierwszej pomocy, które kładą nacisk na minimalizowanie szkód oraz podejmowanie działań uspokajających pacjenta.

Pytanie 10

Częściami składowymi są opasanie oraz osnowa, co to jest?

A. stalowej obręczy koła
B. aluminiowej obręczy koła
C. dętki
D. opony
Opasanie i osnowa to kluczowe części składowe opony, które odpowiadają za jej wytrzymałość oraz właściwości jezdne. Opasanie to warstwa materiału, najczęściej tekstylnego lub stalowego, która otacza rdzeń opony, zwiększając jej stabilność i odporność na uszkodzenia. Osnowa zaś to zewnętrzna struktura, która zapewnia oponie odpowiedni kształt oraz funkcje, takie jak przyczepność i amortyzacja. W praktyce, odpowiedni dobór materiałów dla opasania i osnowy jest kluczowy w procesie produkcji opon, co jest zgodne z normami ISO 3999 oraz ECE R30, które określają wymagania dotyczące opon. Bez właściwego opasania i osnowy, opona nie byłaby w stanie efektywnie przenosić obciążeń, co mogłoby prowadzić do awarii podczas eksploatacji. Dobre praktyki w branży oponiarskiej wymagają przeprowadzenia zaawansowanych testów wytrzymałościowych oraz analizy materiałów, aby zapewnić, że opony będą spełniały standardy bezpieczeństwa oraz wydajności.

Pytanie 11

Jaką substancję można uznać za potencjalne źródło wybuchu oraz pożaru?

A. Uciekający płyn hamulcowy
B. Uciekający płyn z systemu chłodzenia
C. Spaliny wydobywające się z układu wydechowego
D. LPG wyciekające z nieszczelnego systemu zasilania gazem
LPG, czyli gaz płynny, jest substancją wysoce łatwopalną, co czyni go potencjalnym zagrożeniem w kontekście wybuchu i pożaru. W przypadku nieszczelnego układu zasilania gazem, LPG może wydobywać się do otoczenia, gdzie w obecności źródła zapłonu, takiego jak iskra lub wysoka temperatura, może dojść do zapłonu. W przemyśle i pojazdach zasilanych gazem, ważne jest, aby regularnie przeprowadzać kontrole szczelności instalacji gazowych oraz stosować odpowiednie materiały i technologie, które minimalizują ryzyko wycieków. Przykładem może być zastosowanie złączek i uszczelek wykonanych z materiałów odpornych na wysokie ciśnienie i temperaturę. Ponadto, w budynkach, gdzie wykorzystywane jest LPG, powinny być zainstalowane czujniki gazu, które w przypadku wycieku natychmiast alarmują użytkowników, co umożliwia podjęcie szybkich działań zapobiegających pożarowi. Zgodnie z normami bezpieczeństwa, takimi jak PN-EN 13786, instalacje gazowe powinny być projektowane i montowane przez wykwalifikowanych specjalistów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 12

Czym charakteryzuje się układ wtryskowy typu Common Rail?

A. Bezpośrednim wtryskiem do gaźnika
B. Małą ilością przewodów paliwowych
C. Zaworem EGR załączanym mechanicznie
D. Wysokim ciśnieniem paliwa w szynie zasilającej
Układ wtryskowy typu Common Rail to jedna z najbardziej zaawansowanych technologii stosowanych w silnikach diesla. Charakteryzuje się tym, że paliwo jest przechowywane w specjalnej szynie zasilającej pod bardzo wysokim ciśnieniem, często sięgającym nawet 2000 barów. Dzięki temu, wtrysk paliwa do cylindrów może być precyzyjnie sterowany elektronicznie, co pozwala na optymalizację spalania, redukcję emisji szkodliwych substancji oraz zwiększenie efektywności paliwowej. W praktyce oznacza to, że silniki z takim układem są nie tylko bardziej ekologiczne, ale także charakteryzują się lepszą dynamiką i niższym zużyciem paliwa. Common Rail umożliwia także wielokrotne wtryski w jednym cyklu pracy silnika, co dodatkowo poprawia jego pracę. Warto też wspomnieć, że technologia ta jest obecnie standardem w nowoczesnych samochodach z silnikami diesla, a jej rozwój przyczynił się do znacznego postępu w dziedzinie motoryzacji, wpływając na poprawę parametrów pracy silników oraz ich kompatybilność z nowymi normami emisji.

Pytanie 13

Do kontroli kadłuba oraz głowicy silnika wykorzystywane są liniał krawędziowy i szczelinomierz, aby zmierzyć

A. równoległość
B. szczelność
C. płaskość
D. prostopadłość
Weryfikacja kadłuba i głowicy silnika wymaga precyzyjnych pomiarów, a odpowiedzi związane z innymi parametrami, takimi jak szczelność, równoległość czy prostopadłość, mogą wprowadzać w błąd. Szczelność odnosi się do zdolności komponentów do utrzymywania płynów i gazów, co jest ważne, ale nie związane bezpośrednio z pomiarami płaskości. W przypadku silnika, szczelność jest kontrolowana głównie poprzez uszczelki oraz odpowiednie dopasowanie części, nie przez pomiar z użyciem liniału krawędziowego. Równoległość dotyczy relacji między dwiema równoległymi powierzchniami, natomiast prostopadłość odnosi się do kątów prostych między powierzchniami. Choć te parametry są również istotne dla działania silnika, ich pomiar nie jest bezpośrednio związany z weryfikacją płaskości. Wykonywanie pomiarów równoległości lub prostopadłości może być mylone z pomiarem płaskości, co może prowadzić do błędnych wniosków o stanie komponentów silnika. Dlatego kluczowe jest, aby podczas oceny kadłuba i głowicy silnika skupić się na płaskości, jako podstawowym kryterium, a nie na innych parametrach, które mogą wydawać się atrakcyjne, ale nie są właściwe w tym kontekście. Zrozumienie różnicy między tymi pojęciami jest istotne dla skutecznego przeprowadzania analiz i zapewnienia właściwego funkcjonowania silników.

Pytanie 14

Aby nawiązać łączność pomiędzy samochodem a komputerem diagnostycznym, konieczne jest, aby pojazd był wyposażony w gniazdo

A. ADB
B. EOBD
C. EGR
D. EDB
Odpowiedź EOBD (European On-Board Diagnostics) jest poprawna, ponieważ standard ten definiuje systemy diagnostyczne stosowane w pojazdach. EOBD umożliwia komunikację między pojazdem a komputerem diagnostycznym, co pozwala na monitorowanie stanu technicznego silnika oraz innych istotnych układów. Dzięki gniazdu EOBD, mechanicy mogą odczytywać kody błędów, analizować dane w czasie rzeczywistym oraz przeprowadzać diagnostykę układów emisji spalin. W praktyce, EOBD jest standardem obowiązującym w większości nowoczesnych pojazdów sprzedanych w Europie od 2001 roku (dla samochodów osobowych) oraz od 2004 roku (dla samochodów ciężarowych). Umożliwia to nie tylko szybką identyfikację problemów, ale również przyczynia się do przestrzegania norm emisji, co ma kluczowe znaczenie w kontekście ochrony środowiska. Prawidłowe korzystanie z gniazda EOBD jest więc istotne zarówno dla diagnostyki, jak i dla spełniania wymogów prawnych związanych z emisją spalin.

Pytanie 15

Nadmierny luz pierścieni w gniazdach tłoka silnika spalinowego może prowadzić do

A. wzrostu zużycia oleju silnikowego
B. wzrostu ciśnienia sprężania
C. spadku stopnia sprężania
D. wzrostu zużycia paliwa
Nadmierny luz pierścieni w rowkach tłoka silnika spalinowego ma istotny wpływ na wydajność silnika oraz jego trwałość. Zwiększone zużycie oleju silnikowego jest bezpośrednim konsekwencją tego zjawiska. Pierścienie tłokowe mają za zadanie nie tylko uszczelniać komorę spalania, ale także regulować ilość oleju, który smaruje ściany cylindrów. Przy nadmiernym luzie pierścieni, olej może łatwiej przedostawać się do komory spalania, co prowadzi do jego spalania. To zjawisko może skutkować zwiększonym zużyciem oleju, co z kolei oznacza częstsze uzupełnianie oleju oraz może prowadzić do większego zanieczyszczenia spalin. Zgodnie z dobrymi praktykami branżowymi, regularna kontrola luzu pierścieni oraz ich stanu powinna być częścią rutynowej konserwacji silnika. Przykładem może być kontrola luzu pierścieni w silnikach wysokoprężnych, gdzie normalne zużycie oleju jest kluczowe dla efektywności i ekologiczności działania jednostki napędowej. Właściwe utrzymanie luzu pierścieni jest także rekomendowane przez wiele producentów silników, jako sposób na zapewnienie optymalnej pracy silnika.

Pytanie 16

Przejazd autem przez płytę kontrolną w stacji diagnostycznej pozwala na dokonanie pomiaru

A. kąta pochylenia sworznia zwrotnicy
B. pochylenia koła jezdnego
C. zbieżności całkowitej
D. kąta wyprzedzenia sworznia zwrotnicy
Jak wiesz, jazda po płycie pomiarowej w stacji kontroli jest mega ważna dla sprawdzenia, jak dobrze ustawione są koła. Zbieżność całkowita to różnica w kącie kół przednich i to naprawdę wpływa na to, jak jedzie auto. Kiedy zbieżność jest źle ustawiona, opony szybciej się zużywają, auto gorzej się prowadzi, a paliwa idzie więcej. Na przykład, jeżeli zbieżność jest ujemna, to może się zdarzyć, że koła będą się ze sobą stykać, co jest niebezpieczne. Producent zawsze zaleca, żeby kontrolować te ustawienia regularnie, a szczególnie po wymianie opon czy naprawie zawieszenia. Dzięki tym pomiarom można wydłużyć życie opon i układu kierowniczego, co w dłuższej perspektywie się na pewno opłaca.

Pytanie 17

Filtr cząstek stałych jest zazwyczaj wykorzystywany w systemach wydechowych silników o zapłonie

A. iskrowym z wtryskiem pośrednim
B. samoczynnym z wtryskiem pośrednim
C. iskrowym z wtryskiem bezpośrednim
D. samoczynnym z wtryskiem bezpośrednim
Filtr cząstek stałych (FAP) jest kluczowym elementem w układach wylotowych spalin silników o zapłonie samoczynnym z wtryskiem bezpośrednim. Te silniki, znane jako silniki Diesla, wytwarzają dużą ilość cząstek stałych, które mogą być szkodliwe dla zdrowia i środowiska. FAP działa na zasadzie wychwytywania i magazynowania cząstek stałych, a następnie ich spalania w procesie zwanym regeneracją. Wtrysk bezpośredni w silnikach Diesla pozwala na lepsze spalanie paliwa, co skutkuje niższą emisją cząstek stałych. Standardy emisji spalin, takie jak Euro 6, wymagają stosowania filtrów cząstek stałych w silnikach Diesla, aby spełnić normy dotyczące jakości powietrza. Przykładem zastosowania FAP są samochody osobowe w klasie premium oraz pojazdy dostawcze, które muszą spełniać rygorystyczne normy emisji. Ponadto, wprowadzenie filtrów cząstek stałych przyczyniło się do ogólnego zwiększenia efektywności energetycznej silników, co jest zgodne z trendami w branży motoryzacyjnej, polegającymi na zrównoważonym rozwoju i ochronie środowiska.

Pytanie 18

Aby ocenić stan techniczny systemu smarowania silnika, na początku należy

A. przeprowadzić pomiar ciśnienia w systemie smarowania
B. zweryfikować czystość filtrów olejowych
C. sprawdzić poziom oleju w silniku
D. ocenić stan pompy olejowej
Sprawdzenie poziomu oleju w silniku jest pierwszym i kluczowym krokiem w ocenie stanu technicznego układu smarowania. Olej silnikowy pełni fundamentalną rolę w smarowaniu ruchomych części silnika, co ma bezpośredni wpływ na jego wydajność i żywotność. Niedobór oleju może prowadzić do intensywnego zużycia elementów silnika, przegrzewania się, a w skrajnych przypadkach do jego uszkodzenia. Praktyka wykazuje, że regularne kontrolowanie poziomu oleju jest zgodne z zaleceniami producentów pojazdów oraz standardami branżowymi. W przypadku stwierdzenia niskiego poziomu oleju, zaleca się jego uzupełnienie lub wymianę, aby zapewnić optymalne smarowanie. Dodatkowo, monitorowanie koloru i konsystencji oleju może dostarczyć informacji o jego stanie, a także o ewentualnych problemach, takich jak zanieczyszczenia czy degradacja. Znajomość tych praktyk pozwala na wczesne wykrywanie usterek i podejmowanie działań prewencyjnych, co znacząco podnosi bezpieczeństwo i niezawodność eksploatacji silnika.

Pytanie 19

Jakie urządzenie należy wykorzystać na stanowisku diagnostycznym do pomiaru głośności układu wydechowego, aby ocenić jego stan techniczny?

A. sonometr
B. stetoskop
C. manometr
D. pirometr
Sonometr to fajne urządzenie, które pozwala nam mierzyć poziom dźwięku. Jest naprawdę ważne, zwłaszcza gdy zajmujemy się diagnostyką układów wydechowych w pojazdach. Dzięki niemu możemy dokładnie sprawdzić, jak głośno działa nasz układ wydechowy. To ma duże znaczenie, bo nie tylko wpływa na komfort jazdy, ale też musi być zgodne z normami, które mamy w prawie, jeśli chodzi o emisję hałasu. W praktyce, sonometr pomaga nam zauważyć różne problemy, jak na przykład nieszczelności czy uszkodzone tłumiki, które mogą generować za dużo hałasu. Zgodnie z normami ISO 1996, pomiary muszą być robione w odpowiednich warunkach, żeby wyniki były wiarygodne. Z mojego doświadczenia, używanie sonometru sprawia, że szybciej i skuteczniej możemy ocenić, czy auto spełnia wymagania dotyczące hałasu, i w razie potrzeby zalecić jakieś naprawy.

Pytanie 20

Aby dokonać weryfikacji i pomiarów wału korbowego, na początku należy

A. zdjąć pokrywy czopów i wyjąć wał korbowy z silnika
B. rozebrać tłoki
C. rozmontować korbowody
D. usunąć zanieczyszczenia z wału
Aby przeprowadzić weryfikację i pomiary wału korbowego, kluczowym krokiem jest zdemontowanie pokrywy czopów i wymontowanie wału korbowego z silnika. Tylko w ten sposób można uzyskać dostęp do elementów, które wymagają dokładnych pomiarów, takich jak średnice czopów wału oraz luz między wałem a łożyskami. Właściwe pomiary są niezbędne do oceny stanu technicznego wału korbowego, co ma bezpośredni wpływ na prawidłowe funkcjonowanie silnika. W praktyce, przed rozpoczęciem demontażu, należy zwrócić uwagę na odpowiednie zabezpieczenie i oznaczenie elementów, aby uniknąć pomyłek podczas ponownego montażu. Standardy branżowe, takie jak zalecenia producentów, często wskazują na istotność stosowania właściwych narzędzi i technik demontażu, aby nie uszkodzić delikatnych komponentów silnika. Na przykład, korzystanie z odpowiednich kluczy dynamometrycznych podczas montażu pokryw czopów jest kluczowe dla zachowania właściwego momentu dokręcania, co wpływa na długowieczność wału korbowego.

Pytanie 21

Zniekształcenie powierzchni przylegania głowicy silnika następuje w wyniku

A. niedostatecznego smarowania
B. zużytych gniazd zaworów
C. luźnych łożysk wału rozrządu
D. nieprawidłowego dokręcenia śrub
Jak wiesz, dobrze dokręcone śruby w układzie mocującym głowicę silnika są mega ważne. Jeśli nie dokręcisz ich odpowiednio, siły rozkładają się nierównomiernie i to może prowadzić do deformacji płaszczyzny. W efekcie może być problem z szczelnością komory spalania, co wpływa na to, jak działają układy zaworowe. Podczas montażu głowicy lepiej trzymać się sprawdzonych procedur, które opisują, jak dokręcać śruby - czasem są tam konkretne wartości momentu obrotowego i sekwencje. W motoryzacji mamy normy jak ISO 898-1, które mówią, jakie materiały i cechy mechaniczne powinny mieć śruby. Więc pamiętaj, żeby o to zadbać, bo to kluczowe dla długiej i bezawaryjnej pracy silnika, a co za tym idzie, bezpieczeństwo i wydajność twojego auta. Jeśli spróbujesz to zlekceważyć, możesz się zmierzyć z poważnymi problemami, takimi jak przegrzewanie silnika albo uszkodzenie uszczelki pod głowicą, a to może być naprawdę kosztowne.

Pytanie 22

Reperacja tarcz hamulcowych w sytuacji, gdy nie są nadmiernie zdeformowane oraz mają właściwą grubość, polega na ich

A. przetoczeniu
B. galwanizacji
C. metalizacji
D. napawaniu
Napawanie, galwanizacja i metalizacja to metody, które raczej się nie nadają do regeneracji tarcz hamulcowych. Napawanie polega na dodawaniu nowej warstwy materiału, co w przypadku tarcz może wywołać nierówności i problemy z hamowaniem. To bardziej technika do naprawy elementów, które muszą być wzmocnione. Galwanizacja to sposób, który pokrywa metalowe powierzchnie warstewką ochronną, ale nie poprawia geometrii tarcz. Metalizacja z kolei to nanoszenie drobnego metalu, co też nie działa w przypadku tarcz hamulcowych. Takie myślenie po prostu nie ma sensu. Źle podchodząc do regeneracji tarcz, można narazić siebie i innych na niebezpieczeństwo, więc musimy korzystać ze sprawdzonych metod. Kluczowe jest, żeby zachować precyzyjną geometrię tarcz, a przetoczenie to robi, w przeciwieństwie do innych metod, które dodają materiał zamiast przywracać oryginalną funkcjonalność.

Pytanie 23

Który z komponentów mechanizmu tłokowo-korbowego silnika samochodowego odpowiada za przekazywanie sił z tłoka na korbowód?

A. Pierścień tłokowy
B. Stopa korbowodu
C. Główka korbowodu
D. Sworzeń tłokowy
Pierścień tłokowy, będący elementem uszczelniającym między tłokiem a cylindrem, nie ma bezpośredniego wpływu na przenoszenie sił z tłoka na korbowód. Jego głównym zadaniem jest zapobieganie przedostawaniu się mieszanki paliwowo-powietrznej do układu olejowego oraz uszczelnienie komory spalania, co jest istotne dla efektywności silnika, ale nie dla przenoszenia sił. Stopa korbowodu, z drugiej strony, to część, która łączy korbowód z wałem korbowym, a nie z tłokiem. Jej funkcja polega na przenoszeniu momentu obrotowego na wał korbowy, a nie na bezpośrednim przenoszeniu sił z tłoka. Główka korbowodu jest z kolei miejscem, w którym korbowód łączy się ze sworzniem tłokowym, ale sama w sobie nie przenosi sił bezpośrednio. Typowym błędem jest mylenie ról poszczególnych elementów mechanizmu tłokowo-korbowego oraz nieuwzględnianie ich funkcji w kontekście całego układu. Wiedza na temat funkcji i interakcji poszczególnych części jest kluczowa dla zrozumienia działania silników spalinowych oraz dla ich efektywnej konserwacji i naprawy.

Pytanie 24

Gdzie wykorzystywana jest przekładnia planetarna?

A. w pompie wtryskowej
B. w alternatorze
C. w rozruszniku
D. w prądnicy
Przekładnia planetarna jest kluczowym elementem stosowanym w rozrusznikach, pozwalającym na efektywne przekształcanie momentu obrotowego oraz zwiększenie prędkości obrotowej silnika. W konstrukcji rozrusznika, przekładnia planetarna działa jako mechanizm redukcyjny, który wspomaga uruchamianie silnika spalinowego, zapewniając odpowiednią moc podczas rozruchu. Dzięki zastosowaniu przekładni planetarnej możliwe jest uzyskanie dużego momentu obrotowego przy niewielkich wymiarach i masie urządzenia. W praktyce oznacza to, że rozrusznik osiąga wysoką wydajność, co jest niezbędne w sytuacjach, gdy silnik wymaga dużej energii startowej. Przekładnie planetarne charakteryzują się także wysoką niezawodnością oraz trwałością, co jest zgodne z najlepszymi praktykami inżynieryjnymi w dziedzinie motoryzacji. Dodatkowo, ich budowa pozwala na zmniejszenie hałasu i wibracji podczas pracy, co zwiększa komfort użytkowania pojazdu.

Pytanie 25

Na desce rozdzielczej samochodu zaświeciła się lampka ostrzegawcza ciśnienia oleju. W pierwszej kolejności powinno się

A. zweryfikować wydajność pompy olejowej
B. sprawdzić poziom oleju
C. dokonać pomiaru ciśnienia oleju
D. ocenić funkcjonowanie czujnika oleju
Zasygnalizowana kontrolka ciśnienia oleju na desce rozdzielczej pojazdu wskazuje, że może występować problem z układem smarowania silnika. Pierwszym krokiem powinno być skontrolowanie poziomu oleju silnikowego, ponieważ zbyt niski poziom oleju jest najczęstszą przyczyną spadku ciśnienia. W praktyce, niewystarczająca ilość oleju może prowadzić do poważnych uszkodzeń silnika, w tym do zatarcia tłoków czy uszkodzenia panewki. Regularne sprawdzanie poziomu oleju jest zgodne z zaleceniami producentów pojazdów i standardami branżowymi, które podkreślają konieczność utrzymania odpowiedniego poziomu oleju w celu zapewnienia prawidłowego smarowania. W przypadku niskiego poziomu oleju, należy uzupełnić go odpowiednim olejem, spełniającym normy jakościowe, co zapobiegnie dalszym problemom. Użytkownicy powinni również być świadomi, że poziom oleju warto sprawdzać regularnie, co kilka tysięcy kilometrów, a nie tylko w momencie, gdy świeci kontrolka. Dbałość o odpowiedni poziom oleju jest kluczowa dla długowieczności silnika i jego efektywnego działania.

Pytanie 26

Gdzie znajduje się wytłoczony numer identyfikacyjny VIN w pojeździe?

A. z lewej strony, w tylnej części nadwozia
B. w każdym miejscu ramy pojazdu
C. z prawej strony, na elemencie konstrukcyjnym nadwozia
D. w każdym miejscu nadwozia samochodu
Numer identyfikacyjny VIN (Vehicle Identification Number) to unikalny kod przypisany do każdego pojazdu, który zawiera informacje o jego pochodzeniu, specyfikacji i historii. Wytłoczony numer VIN znajduje się po prawej stronie na elemencie konstrukcyjnym nadwozia, co jest zgodne z normami producentów oraz standardami Międzynarodowej Organizacji Normalizacyjnej (ISO). Umiejscowienie VIN w tym miejscu ma na celu łatwe zidentyfikowanie pojazdu podczas kontroli technicznych, rejestracji oraz w przypadku jego kradzieży. Przykładowo, w trakcie zakupu używanego samochodu, sprawdzenie wytłoczonego VIN na nadwoziu pozwala na weryfikację tożsamości pojazdu oraz jego historii serwisowej. Dobrą praktyką jest także sprawdzenie, czy VIN na nadwoziu zgadza się z informacjami w dokumentach pojazdu, co zapobiega oszustwom oraz nieporozumieniom przy transakcji. Warto również wspomnieć, że prawidłowe wytłoczenie numeru VIN jest istotne dla zachowania standardów bezpieczeństwa i jakości, co jest kluczowe zarówno dla producentów, jak i użytkowników pojazdów.

Pytanie 27

W diagnostyce samochodów wykorzystuje się oprogramowanie komputerowe

A. AutoCAD
B. Warsztat
C. Eurotax
D. ESItronic
ESItronic to zaawansowane oprogramowanie diagnostyczne używane w warsztatach samochodowych do analizy i naprawy pojazdów. Program ten umożliwia diagnozowanie usterek oraz odczytywanie danych z różnych systemów elektronicznych w samochodach, co jest kluczowe w nowoczesnym serwisowaniu. ESItronic jest dostosowany do wielu marek i modeli pojazdów, co czyni go uniwersalnym narzędziem w diagnostyce. Dzięki zastosowaniu tego oprogramowania mechanicy mogą szybko zidentyfikować problemy, co znacząco przyspiesza proces naprawy i zwiększa efektywność pracy. Program oferuje również dostęp do informacji technicznych, schematów, a także najnowszych aktualizacji dotyczących procedur serwisowych, co jest zgodne z najlepszymi praktykami branżowymi w zakresie utrzymania pojazdów. Przykładem zastosowania ESItronic może być diagnoza problemu z systemem ABS, gdzie mechanik korzysta z aplikacji do odczytu kodów błędów i analizy danych w czasie rzeczywistym.

Pytanie 28

Co jest wskazane przy wymianie płynu hamulcowego w pojeździe?

A. Stosowanie płynu dowolnej marki
B. Zamiana płynu hamulcowego na wodę destylowaną
C. Użycie płynu zgodnego ze specyfikacją producenta
D. Wymiana płynu co 100 000 km
Wymiana płynu hamulcowego w pojeździe to nie tylko kwestia utrzymania układu hamulcowego w dobrym stanie, ale przede wszystkim kwestia bezpieczeństwa. Aby zapewnić odpowiednie działanie hamulców, należy zawsze używać płynu zgodnego ze specyfikacją producenta pojazdu. Producent dokładnie określa, jaki typ płynu (np. DOT 3, DOT 4, DOT 5.1) jest odpowiedni dla danego modelu samochodu, co jest kluczowe dla zapewnienia właściwego punktu wrzenia i lepkości płynu w różnych warunkach temperaturowych. Płyn hamulcowy jest higroskopijny, co oznacza, że z czasem absorbuje wilgoć z otoczenia, co może prowadzić do obniżenia jego temperatury wrzenia. Dlatego regularna wymiana płynu, zgodnie z zaleceniami producenta, jest niezbędna dla utrzymania skuteczności hamowania. Pamiętajmy, że niewłaściwy płyn może prowadzić do uszkodzeń elementów układu hamulcowego, takich jak uszczelki czy przewody, co w skrajnych przypadkach może skutkować awarią hamulców. Dobre praktyki serwisowe zalecają regularne kontrole i wymiany płynu, co zapewnia nie tylko bezpieczeństwo, ale też dłuższą żywotność układu hamulcowego.

Pytanie 29

W specyfikacji rozmiaru opony 225/65R17 101H litera R wskazuje na

A. maksymalne dopuszczalne obciążenie (nośność opony)
B. typ konstrukcji osnowy opony
C. maksymalną prędkość jazdy
D. średnicę opony
Litera R w oznaczeniu rozmiaru opony 225/65R17 101H odnosi się do konstrukcji osnowy opony, co wskazuje, że opona jest oponą radialną. Opony radialne charakteryzują się tym, że włókna osnowy są ułożone w kierunku promieniowym, co pozwala na lepsze rozkładanie sił działających na oponę podczas jazdy. Dzięki tej konstrukcji, opony radialne zapewniają większą stabilność, lepszą przyczepność oraz niższe opory toczenia w porównaniu do opon diagonalnych. W praktyce oznacza to, że pojazdy wyposażone w opony radialne mogą osiągać lepsze osiągi, a także wyższą efektywność paliwową. Opony radialne są obecnie standardem w branży motoryzacyjnej, co potwierdzają normy ISO oraz standardy producentów samochodów. Warto dodać, że stosowanie opon odpowiednich do konstrukcji pojazdu jest kluczowe dla bezpieczeństwa i efektywności jazdy, a ich właściwy wybór powinien być oparty na specyfikacji producenta i zaleceniach branżowych.

Pytanie 30

Firma transportowa zleciła regulację luzów7 zaworowych w 10 pojazdach wyposażonych w silniki rzędowe 4-cylindrowe 8 zaworowe. Silniki mają jedną pokrywę zaworów. Posługując się danymi z tabeli oblicz całkowity czas wykonania zlecenia.

Nazwa operacjiCzas [min]
Wymiana świecy5
Demontaż pokrywy zaworów10
Regulacja luzu zaworów 1 cylindra(*)5*
Montaż pokrywy zaworów10
Wymiana filtra powietrza8

(*) – podany czas dotyczy wyłącznie regulacji luzu zaworowego

A. 20 minut
B. 40 minut
C. 228 minut
D. 400 minut
Poprawna odpowiedź to 400 minut, co wynika z dokładnego przeliczenia czasu potrzebnego na regulację luzów zaworowych w 10 pojazdach. Każde z silników 4-cylindrowych wymaga 60 minut na wykonanie wszystkich niezbędnych operacji: 20 minut na wymianę świec zapłonowych, 10 minut na demontaż pokrywy zaworów, 20 minut na regulację luzów, oraz 10 minut na montaż pokrywy. Sumując te czasy, otrzymujemy 60 minut na jeden pojazd. Następnie, dla 10 pojazdów, czas ten mnożymy przez 10, co daje 600 minut. Warto jednak zwrócić uwagę, że pytanie dotyczy regulacji luzów zaworowych, która dla 10 silników powinna być uwzględniona w kontekście praktyki wykonawczej i planowania czasu pracy w warsztacie. W branży motoryzacyjnej, takie obliczenia pozwalają na efektywne zarządzanie czasem pracy i kosztami usług, co jest kluczowe dla zadowolenia klienta oraz rentowności działalności. Dla dalszej analizy, można również zapoznać się z dokumentacją producentów silników, gdzie znajdziemy szczegółowe instrukcje dotyczące regulacji luzów oraz oszacowania czasu potrzebnego na wykonanie tych operacji.

Pytanie 31

Oprogramowanie ESI tronie to nazwa programu komputerowego służącego do

A. wynajmu samochodów
B. sporządzania kosztorysu napraw
C. diagnozowania pojazdu
D. przechowywania części
Odpowiedź "diagnostyki pojazdu" jest poprawna, ponieważ ESI tronie to zaawansowany system diagnostyczny wykorzystywany w branży motoryzacyjnej do analizy stanu technicznego pojazdów. Program ten umożliwia mechanikom oraz technikom dostęp do szczegółowych informacji na temat błędów i usterek, co pozwala na szybsze i bardziej precyzyjne diagnozowanie problemów. Przykładowo, ESI tronie może być używane do skanowania kodów błędów, co jest istotnym elementem nowoczesnej diagnostyki. W praktyce, mechanicy mogą korzystać z tego narzędzia do identyfikacji problemów elektrycznych, układu paliwowego czy systemów sterowania silnikiem. Standardy branżowe, takie jak SAE J1939 czy ISO 15765, są często stosowane w programach diagnostycznych, co czyni ESI tronie nie tylko narzędziem, ale także zgodnym z międzynarodowymi normami. Warto zaznaczyć, że prawidłowe wykorzystanie ESI tronie przyczynia się do zwiększenia efektywności pracy warsztatów samochodowych oraz skrócenia czasu naprawy, co w efekcie przekłada się na zadowolenie klientów.

Pytanie 32

Jakie jest wykończenie powierzchni cylindrów w silnikach spalinowych?

A. szlifowanie
B. skrobanie
C. honowanie
D. polerowanie
Honowanie jest procesem obróbczo-wykończeniowym, który ma na celu poprawę jakości powierzchni cylindrów silników spalinowych poprzez usunięcie niewielkich nierówności i osiągnięcie odpowiedniego wzoru chropowatości. Umożliwia to lepsze smarowanie oraz zmniejszenie zużycia paliwa, co jest kluczowe dla efektywności silników. W honowaniu wykorzystuje się narzędzia z nasypem diamentowym lub węglika tungstenowego, co zapewnia wysoką precyzję oraz odporność na ścieranie. Przykładem zastosowania honowania jest proces obróbczy w silnikach o dużych obciążeniach, gdzie dokładność wymiarowa i jakość powierzchni są niezbędne do zapewnienia trwałości i niezawodności. W branży motoryzacyjnej honowanie cylindrów stało się standardem, który pozwala na spełnienie rygorystycznych norm emisji spalin oraz podniesienie ogólnej wydajności silników. Praktyki honowania są zgodne z normami ISO, które regulują jakość wykończenia powierzchni w elementach silników.

Pytanie 33

Zawsze powinno się zaczynać diagnostykę układu kontroli trakcji od

A. sprawdzenia poziomu płynu hamulcowego w zbiorniczku
B. odczytania pamięci błędów sterownika
C. potwierdzenia ciśnienia w ogumieniu pojazdu
D. balansowania kół pojazdu
Odczytanie pamięci błędów sterownika to kluczowy pierwszy krok w diagnostyce układu kontroli trakcji, ponieważ pozwala na zidentyfikowanie ewentualnych problemów, które mogą wpływać na jego funkcjonowanie. Współczesne pojazdy są wyposażone w zaawansowane systemy elektroniczne, które monitorują różne aspekty pracy pojazdu, w tym systemy związane z bezpieczeństwem, takie jak ABS i kontrola trakcji. Odczytując pamięć błędów, technik może szybko zdiagnozować, czy jakiekolwiek błędy zostały zapisane przez system, co może wskazywać na uszkodzone czujniki, problemy z elektroniką lub inne usterek. Przykładowo, jeśli w pamięci błędów pojazdu zapisany jest błąd dotyczący czujnika prędkości, technik może natychmiast skupić się na tym elemencie, co pozwala na szybkie i skuteczne rozwiązanie problemu. Dobre praktyki diagnostyczne sugerują, że zawsze warto rozpocząć od analizy danych zapisanych w systemie, co zwiększa efektywność pracy i minimalizuje czas potrzebny na eliminację usterki.

Pytanie 34

W dokumencie odbioru, sporządzanym w momencie przyjęcia pojazdu do serwisu, powinny być zawarte informacje dotyczące

A. masy całkowitej pojazdu
B. liczby osi pojazdu
C. widocznych uszkodzeń nadwozia pojazdu
D. daty ważności ubezpieczenia pojazdu
W kontekście protokołu zdawczo-odbiorczego, inne odpowiedzi, takie jak data ważności ubezpieczenia, liczba osi oraz masa całkowita pojazdu, nie są bezpośrednio związane z jego stanem technicznym w momencie przyjęcia do naprawy. Data ważności ubezpieczenia, choć istotna z punktu widzenia prawnego i administracyjnego, nie ma wpływu na sam proces naprawy ani na ocenę stanu technicznego pojazdu. Z kolei liczba osi pojazdu oraz masa całkowita to parametry techniczne, które mogą być brane pod uwagę przy klasyfikacji i rejestracji pojazdu, ale nie mają zastosowania w kontekście dokumentacji stanu technicznego na etapie przyjęcia do naprawy. Użytkownicy często mylą te dane z kluczowymi informacjami, które są istotne dla warunków naprawy. Takie podejście prowadzi do pominięcia elementów, które naprawdę powinny być udokumentowane, co z kolei może skutkować problemami w przyszłości w przypadku roszczeń lub spornych sytuacji związanych z naprawami. Dlatego ważne jest, aby zrozumieć, że protokół powinien skupiać się na aspektach związanych z faktycznym stanem technicznym pojazdu, a nie na parametrach, które nie mają bezpośredniego wpływu na proces naprawy.

Pytanie 35

Parametrem związanym z geometrią kół nie jest

A. ciśnienie w ogumieniu
B. kąt wyprzedzenia sworznia zwrotnicy
C. zbieżność kół
D. kąt nachylenia sworznia zwrotnicy
Ciśnienie w ogumieniu nie jest parametrem geometrii kół, ponieważ dotyczy jedynie stanu opon, a nie ich ustawienia czy kątów. Parametry geometrii, takie jak kąt pochylenia sworznia zwrotnicy, zbieżność kół oraz kąt wyprzedzenia sworznia zwrotnicy, mają kluczowe znaczenie dla właściwego prowadzenia pojazdu oraz jego stabilności na drodze. Kąt pochylenia sworznia zwrotnicy wpływa na kąt, pod jakim opona styka się z nawierzchnią, co z kolei ma wpływ na przyczepność i zużycie opon. Zbieżność kół odnosi się do ustawienia osi kół względem siebie oraz do kierunku jazdy, co jest istotne dla prawidłowego zachowania się pojazdu podczas skrętów. Kąt wyprzedzenia sworznia zwrotnicy, określający kąt, pod jakim oś obrotu koła jest ustawiona względem pionu, ma znaczenie dla stabilności jazdy i samoczynnego wracania kierownicy do pozycji neutralnej po skręcie. Dlatego znajomość tych parametrów jest kluczowa dla zapewnienia bezpieczeństwa, a ich regularna kontrola jest zalecana w praktyce motoryzacyjnej.

Pytanie 36

Jaką metodą należy przeprowadzić naprawę otworu, który w trakcie użytkowania stracił nominalne wymiary?

A. nitowania
B. spawania
C. lutowania
D. tulejowania
Tulejowanie to całkiem ciekawy sposób na naprawę otworów, który widzi się w przemyśle maszynowym, a także podczas remontów różnych urządzeń. Dzięki temu procesowi, można przywrócić otwory do ich pierwotnych wymiarów, które niestety mogą się zniszczyć czy zużyć w czasie eksploatacji. Idea jest prosta – wprowadza się tuleję, która ma odpowiednie normy i wymiary, do tego uszkodzonego otworu. Tuleje zazwyczaj robi się z bardzo trwałych materiałów, co sprawia, że naprawiony element może dłużej posłużyć. W praktyce tulejowanie jest wykorzystywane w różnych dziedzinach, takich jak motoryzacja, lotnictwo, a nawet budownictwo. Moim zdaniem, warto też pomyśleć o tulejach jako o sposobie na wzmocnienie konstrukcji. Generalnie, z racji na szeroki wachlarz zastosowań tulejowania, normy jak ISO 286, dotyczące tolerancji wymiarowych, są kluczowe dla zapewnienia jakości i precyzji w tej naprawczej metodzie.

Pytanie 37

W celu naprawienia otworu, który podczas użytkowania stracił swój nominalny wymiar, powinno się wykorzystać

A. kucie
B. nitowanie
C. spawanie
D. tulejowanie
Tulejowanie to taki sprytny sposób na naprawę otworów, które straciły swoje wymiary przez długotrwałe użytkowanie. W tym procesie wkłada się tuleje do środka otworów, co pozwala na przywrócenie ich właściwej średnicy. Można to spotkać w takich branżach jak przemysł maszynowy czy motoryzacyjny, gdzie dokładność wymiarów jest bardzo ważna. Na przykład, kiedy remontuje się bloki silników, to jeśli otwory na cylindry są uszkodzone, można zastosować tulejowanie, żeby zamontować nowe tłoki. Warto też wiedzieć, że standardy jak ISO 286 określają tolerancje wymiarowe, co ma duże znaczenie w tym procesie. Dobrze jest również pamiętać, żeby dobierać odpowiednie materiały tulei oraz dokładnie mierzyć przed i po naprawie. Tulejowanie to naprawdę fajna opcja, bo może zaoszczędzić czas i kasę w porównaniu do wymiany całych elementów, więc firmy chętnie z tego korzystają.

Pytanie 38

Zacisk hamulca stanowi część systemu hamulcowego

A. elektromagnetycznego
B. bębnowego
C. tarczowego
D. taśmowego
Zacisk hamulcowy to mega ważny element w układzie hamulcowym tarczowym, który jest teraz bardzo popularny w autach. Jego główna rola to przytrzymywanie i dociskanie klocków hamulcowych do tarczy, co w rezultacie tworzy siłę hamującą. Kiedy kierowca wciska pedał hamulca, ciśnienie hydrauliczne wędruje do zacisków, co sprawia, że tłoczki przesuwają się i dociskają klocki do obracającej się tarczy. Tak to działa, a efektem jest skuteczne hamowanie. Z mojego doświadczenia, warto regularnie sprawdzać stan klocków hamulcowych i poziom płynu hamulcowego, bo to wpływa na bezpieczeństwo na drodze. Ostatnio w autach często pojawiają się systemy ABS, które współpracują z układem tarczowym, żeby nie blokować kół i stabilizować pojazd podczas hamowania. Warto wiedzieć, że układ tarczowy jest lepszy w sytuacjach, gdzie potrzebne jest mocne hamowanie i lepsze chłodzenie, dlatego często można go spotkać w sportowych i osobowych autach.

Pytanie 39

Jakie jest zadanie systemu ABS?

A. zapobieganie poślizgowi kół na śliskiej nawierzchni podczas ruszania
B. wspomaganie procesu hamowania w sytuacjach awaryjnych
C. stabilizacja trajektorii jazdy podczas pokonywania zakrętów
D. zapobieganie zablokowaniu kół w trakcie hamowania na śliskiej nawierzchni
Układ ABS, czyli system zapobiegający blokowaniu kół, ma kluczowe znaczenie dla bezpieczeństwa jazdy, szczególnie na śliskich nawierzchniach. Jego głównym zadaniem jest utrzymanie kontroli nad pojazdem podczas hamowania, co zapobiega poślizgowi kół i pozwala kierowcy na dalsze manewrowanie. W przypadku nagłego hamowania na oblodzonej lub mokrej drodze, system ABS automatycznie zmienia siłę hamowania, aby uniknąć blokady kół. Dzięki temu, kierowca może utrzymać kontrolę nad pojazdem, co jest nieocenioną zaletą w sytuacjach awaryjnych. Na przykład, podczas hamowania w warunkach deszczowych, ABS może pomóc w skróceniu drogi hamowania, a jednocześnie umożliwić kierowcy wykonanie zwrotu, co może być kluczowe dla uniknięcia przeszkód. Standardy branżowe zalecają stosowanie systemów ABS w nowoczesnych pojazdach, co stało się normą w przemyśle motoryzacyjnym, przyczyniając się do poprawy ogólnego bezpieczeństwa na drogach.

Pytanie 40

Duża ilość węglowodorów w spalinach sugeruje

A. o niewłaściwym spalaniu paliwa
B. o samozapłonie paliwa
C. o efektywnym spalaniu paliwa
D. o wysokiej liczbie oktanowej paliwa
Odpowiedzi sugerujące, że wysoka zawartość węglowodorów w spalinach świadczy o samozapłonie paliwa, dobrym spalaniu paliwa czy wysokiej liczbie oktanowej, są niepoprawne i opierają się na nieporozumieniach dotyczących procesu spalania. Samozapłon paliwa zachodzi, gdy temperatura i ciśnienie w cylindrze silnika są wystarczająco wysokie, co prowadzi do zapłonu mieszanki bez potrzeby użycia iskry. W takim przypadku nie oczekuje się, aby węglowodory były obecne w spalinach w dużych ilościach, ponieważ proces spalania jest całkowity. Z kolei dobre spalanie paliwa wiąże się z efektywną konwersją paliwa na energię, co powinno skutkować minimalizacją emisji węglowodorów. Wysoka liczba oktanowa paliwa oznacza, że jest ono bardziej odporne na samozapłon, co wprowadza zamieszanie w kontekście jakości spalania. W rzeczywistości, liczba oktanowa odnosi się do zdolności paliwa do opierania się przedwczesnemu zapłonowi w silnikach o zapłonie iskrowym, a nie do ilości węglowodorów w spalinach. Takie błędne rozumienie może prowadzić do niewłaściwej diagnozy problemów z silnikiem oraz nieefektywnego zarządzania emisjami. Warto zatem zgłębić temat procesów spalania, aby właściwie interpretować wyniki analizy spalin oraz wdrażać odpowiednie działania naprawcze.