Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 22 maja 2025 11:54
  • Data zakończenia: 22 maja 2025 12:19

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką metodę łączenia materiałów należy wybrać do połączenia stali nierdzewnej z mosiądzem?

A. Lutowania twardego
B. Zgrzewania
C. Lutowania miękkiego
D. Klejenia
Lutowanie twarde jest techniką łączenia, która polega na wykorzystaniu stopu o wyższej temperaturze topnienia niż w przypadku lutowania miękkiego. Jest to proces, który zapewnia silne i trwałe połączenia, co czyni go idealnym do łączenia metali o różnych właściwościach, takich jak stal nierdzewna i mosiądz. W przypadku tych dwóch materiałów, lutowanie twarde umożliwia osiągnięcie wysokiej wytrzymałości na rozciąganie oraz odporności na korozję, co jest kluczowe w aplikacjach przemysłowych. W praktyce lutowanie twarde wymaga zastosowania odpowiednich lutów, które mają podobne właściwości fizyczne i chemiczne do łączonych materiałów. Dobrą praktyką jest również precyzyjne przygotowanie powierzchni, aby zapewnić skuteczną adhezję. Lutowanie twarde jest szeroko stosowane w branży motoryzacyjnej, elektronicznej oraz w produkcji sprzętu medycznego, gdzie niezawodność połączeń jest kluczowa.

Pytanie 2

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 60
B. 24
C. 30
D. 75
Odpowiedzi, które wskazują na 24, 75 lub 30 działek, oparte są na błędnych założeniach dotyczących sposobu pomiaru napięcia. W przypadku odpowiedzi 24 działki, może występować mylne przekonanie, że każda działka odpowiada napięciu 1 V - jednak w rzeczywistości, z uwagi na zakres 30 V i 75 działek, wartość, która przypada na jedną działkę, to 0,4 V. Natomiast odpowiedź 75 działek sugeruje, że woltomierz mógłby wskazać maksymalną wartość zakresu, co nie jest możliwe, gdyż mierzymy napięcie 24 V, a nie jego maksymalne dozwolone napięcie. Z kolei 30 działek odnosi się do błędnego założenia, że napięcie 24 V odpowiada 30% zakresu 30 V, co jest nieprawidłowe, ponieważ stanowiłoby to wartość mniejszą od rzeczywistego odczytu. W praktyce istotne jest zrozumienie, że pomiar napięcia wymaga nie tylko wiedzy na temat używanego narzędzia, ale także o jego właściwościach i układzie skali. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to brak zrozumienia mechanizmu działania woltomierzy, co może skutkować nieprawidłową interpretacją danych pomiarowych. Prawidłowe zrozumienie skali oraz wartości mierzonych jest kluczowe, aby uniknąć nieporozumień i zapewnić dokładność pomiarów, co jest niezwykle ważne w inżynierii elektrotechnicznej.

Pytanie 3

Jakiego typu oprogramowanie powinno być zastosowane do monitorowania przebiegu procesów w przemyśle?

A. SCADA
B. CAM
C. CAD
D. CAE
Odpowiedź SCADA (Supervisory Control and Data Acquisition) jest prawidłowa, ponieważ jest to system informatyczny służący do nadzorowania i kontrolowania procesów przemysłowych w czasie rzeczywistym. Systemy SCADA umożliwiają monitoring i zarządzanie urządzeniami zdalnymi, takimi jak pompy, maszyny czy systemy elektryczne, a także zbierają dane z tych urządzeń, które następnie przetwarzane są w celu analizy wydajności oraz optymalizacji procesów. Przykłady zastosowania SCADA obejmują przemysł petrochemiczny, energetykę oraz wodociągi, gdzie konieczne jest nieprzerwane monitorowanie parametrów operacyjnych. Kluczowe dla systemów SCADA jest ich zdolność do integracji z innymi technologiami, takimi jak PLC (Programowalne Sterowniki Logiczne) i HMI (Interfejsy Człowiek-Maszyna), co pozwala na stworzenie kompleksowego środowiska do zarządzania procesami. Wdrażanie standardów takich jak ISA-95 w kontekście integrowania SCADA z systemami zarządzania przedsiębiorstwem (ERP) jest również istotnym aspektem ich efektywności i nowoczesności. Dobrze zaprojektowane systemy SCADA są niezbędne dla zapewnienia bezpieczeństwa operacji i redukcji ryzyka awarii.

Pytanie 4

Enkoder to urządzenie przetwarzające

A. prędkość obrotową na regulowane napięcie stałe
B. kąt obrotu na regulowane napięcie stałe
C. kąt obrotu na impulsy elektryczne
D. prędkość obrotową na impulsy elektryczne
Wszystkie zaproponowane odpowiedzi, z wyjątkiem poprawnej, zawierają błędne interpretacje funkcji i zastosowania enkoderów. Przede wszystkim, enkodery nie przekształcają prędkości obrotowej na impulsy elektryczne, co sugeruje jedna z błędnych odpowiedzi. W rzeczywistości, enkoder mierzy kąt obrotu, a nie prędkość. Prędkość obrotowa jest pochodną kąta obrotu w czasie, co oznacza, że można ją obliczyć na podstawie danych z enkodera, ale sam enkoder nie dokonuje tego pomiaru bezpośrednio. Drugą nieprawidłową koncepcją jest przekształcanie kąta obrotu na regulowane napięcie stałe. Chociaż niektóre systemy mogą wykorzystywać sygnały analogowe, większość nowoczesnych enkoderów generuje impulsy cyfrowe, a nie sygnały analogowe. Zastosowanie regulowanego napięcia stałego jest typowe dla innych rodzajów czujników, takich jak potencometry, które działają na innej zasadzie. Błędne przekonanie, że enkoder jest odpowiedzialny za przekształcanie sygnału na napięcie stałe, prowadzi do mylnych wniosków o jego funkcjonowaniu. Kluczowym jest zrozumienie, że enkoder jest precyzyjnym urządzeniem do pomiaru ruchu, a nie do generowania sygnałów analogowych, co jest istotnym aspektem przy projektowaniu systemów automatyzacji i robotyki.

Pytanie 5

Który instrument pomoże w monitorowaniu jakości sprężonego powietrza pod kątem wilgotności oraz obecności kondensatu?

A. Detektor wycieków
B. Miernik punktu rosy
C. Miernik przepływu powietrza
D. Termomanometr bimetaliczny
Miernik punktu rosy to naprawdę ważne urządzenie, jeżeli chodzi o jakość sprężonego powietrza. Głównie pozwala zmierzyć, w jakiej temperaturze para wodna zaczyna się skraplać, co jest mega istotne w kontekście wilgotności. W różnych branżach, gdzie sprężone powietrze jest na porządku dziennym, kontrolowanie wilgotności to podstawa. Za dużo wody w powietrzu może uszkodzić sprzęt, prowadzić do korozji, a czasem nawet zmniejszyć efektywność działania. Na przykład w systemach pneumatycznych, gdzie wszystko musi działać precyzyjnie, nadmiar wilgoci może spowodować tzw. „hydrauliczne uderzenie”, co w efekcie może doprowadzić do awarii. A skoro mówimy o branży spożywczej czy farmaceutycznej, to według norm ISO 8573, które regulują jakość sprężonego powietrza, pomiar punktu rosy to kluczowa sprawa, bo wpływa na bezpieczeństwo i jakość produktów. Używając miernika punktu rosy, szczególnie w połączeniu z systemami osuszania powietrza, można naprawdę zadbać o odpowiednie standardy jakości, co jest niezbędne, żeby procesy przemysłowe działały jak należy.

Pytanie 6

Urządzenia elektroniczne, które gwarantują stabilność napięcia prądu elektrycznego na wyjściu, niezależnie od obciążeń oraz zmian w napięciu w sieci, określamy mianem

A. generatorów
B. prostowników
C. zasilaczy
D. stabilizatorów
Prostowniki, jako urządzenia przekształcające prąd zmienny na prąd stały, nie są odpowiednie do utrzymywania stałości napięcia na wyjściu. Ich podstawową funkcją jest konwersja, a nie stabilizacja. W przypadku generatorów, ich rola polega na wytwarzaniu energii elektrycznej, zazwyczaj w formie prądu zmiennego, co również nie pozwala na utrzymanie stałej wartości napięcia w zmiennych warunkach obciążenia czy napięcia zasilania. Zasilacze, z drugiej strony, mogą oferować różne poziomy regulacji napięcia, ale nie zapewniają one takiej samej stałości jak stabilizatory. Błędne jest więc utożsamianie tych urządzeń ze stabilizatorami, ponieważ stabilizatory są specjalnie zaprojektowane do tego celu. Często mylone są one z zasilaczami, jednak zasilacze mogą mieć wewnętrzne regulacje, które nie gwarantują stałości napięcia przy różnych obciążeniach. W praktyce, nieumiejętność rozróżnienia tych terminów może prowadzić do niewłaściwych wyborów w projektach elektronicznych, co skutkuje uszkodzeniami sprzętu oraz nieprawidłowym działaniem systemów. Warto znać różnice pomiędzy tymi elementami, aby podejmować świadome decyzje projektowe zgodne z najlepszymi praktykami branżowymi.

Pytanie 7

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, który jest sterowany przez PLC, należy zająć się zasilaniem pneumatycznym.

A. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz wyłączyć PLC
B. odłączyć przewody zasilające sterownik oraz przewody pneumatyczne od elektrozaworu
C. wprowadzić sterownik PLC w tryb STOP, odłączyć zasilanie elektryczne oraz pneumatyczne układu
D. dezaktywować zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu i przewody
Poprawna odpowiedź wskazuje na kluczowe etapy przygotowania do wymiany zaworu elektropneumatycznego, który jest zintegrowany z systemem sterowania PLC. Wprowadzenie sterownika PLC w tryb STOP jest niezbędne, aby zapobiec niekontrolowanemu działaniu systemu podczas przeprowadzania prac serwisowych. Wyłączenie zasilania elektrycznego oraz pneumatycznego całego układu eliminuje ryzyko wystąpienia niebezpiecznych sytuacji, takich jak przypadkowe uruchomienie czy wyciek sprężonego powietrza, co mogłoby prowadzić do uszkodzeń sprzętu lub zagrożenia dla operatorów. Dobrym przykładem jest procedura serwisowa w przemyśle automatyzacyjnym, gdzie przed wymianą komponentów pneumatycznych zawsze stosuje się blokady i procedury bezpieczeństwa, zgodne z normami ISO 13849, które regulują bezpieczeństwo maszyn. Praktyczne zastosowanie tej wiedzy zwiększa bezpieczeństwo operacji oraz efektywność pracy, minimalizując ryzyko awarii i wypadków.

Pytanie 8

Aby poprawić efektywność montażu połączeń gwintowych, wykorzystuje się klucze

A. uniwersalne
B. oczko
C. płaskie
D. zapadkowe
Klucze zapadkowe są specjalizowanymi narzędziami, które pozwalają na szybkie i efektywne dokręcanie oraz odkręcanie połączeń gwintowych, co znacznie zwiększa wydajność montażu. Ich konstrukcja pozwala na ciągłe obracanie klucza w jednym kierunku bez konieczności jego wyjmowania z miejsca pracy. Działa to na zasadzie mechanizmu zapadkowego, gdzie przekręcenie klucza w jedną stronę powoduje, że zapadka przeskakuje, umożliwiając kolejne ruchy. W praktyce oznacza to, że praca z kluczem zapadkowym jest znacznie szybsza i mniej męcząca, co ma kluczowe znaczenie w środowiskach przemysłowych, gdzie czas i efektywność są na wagę złota. Użycie kluczy zapadkowych jest zgodne z normami ergonomii oraz efektywności pracy, co czyni je bardzo popularnym rozwiązaniem w mechanice i montażu. Warto również zauważyć, że klucze zapadkowe są dostępne w różnych rozmiarach i konfiguracjach, co pozwala na ich stosowanie w różnorodnych zastosowaniach, od napraw samochodowych po prace w przemyśle budowlanym.

Pytanie 9

Jaki instrument pomiarowy powinno się użyć do określenia amplitudy, częstotliwości oraz kształtu sygnałów w instalowanych urządzeniach mechatronicznych?

A. Multimetr
B. Oscyloskop
C. Mostek RLC
D. Częstościomierz
Oscyloskop to zaawansowane narzędzie pomiarowe, które umożliwia wizualizację kształtu sygnałów elektronicznych w czasie rzeczywistym. Działa na zasadzie przetwarzania napięcia, które jest przedstawiane na ekranie w formie wykresu, gdzie oś X reprezentuje czas, a oś Y napięcie. Dzięki oscyloskopowi inżynierowie mogą analizować zarówno amplitudę, jak i częstotliwość sygnałów, co jest niezbędne przy projektowaniu i testowaniu urządzeń mechatronicznych. W praktyce oscyloskop jest wykorzystywany do badania układów elektronicznych, diagnostyki usterek czy oceny jakości sygnału. Na przykład, podczas analizy sygnałów z czujników w systemach automatyki przemysłowej, oscyloskop pozwala na szybkie wychwycenie anomalii w komunikacji czy nieprawidłowości w działaniu układów przetwarzających dane. W branży mechatronicznej standardem jest korzystanie z oscyloskopów, które spełniają normy IEC 61010, zapewniając bezpieczeństwo i dokładność pomiarów. Używanie oscyloskopu to nie tylko praktyka, ale i dobra praktyka, umożliwiająca skuteczną analizę skomplikowanych sygnałów.

Pytanie 10

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Klejenie
B. Zgrzewanie
C. Spawanie
D. Nitowanie
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 11

Aby zmierzyć nierówności osiowe (bicie) obracającej się tarczy, należy użyć

A. mikrometru
B. czujnika zegarowego
C. średnicówki mikrometrycznej
D. suwmiarki
Czujnik zegarowy jest narzędziem pomiarowym, które umożliwia precyzyjne określenie nierówności osiowej (bicia) wirujących tarcz. Działa na zasadzie pomiaru odległości, przy czym jego igła stykowa przesuwa się wzdłuż powierzchni obrabianego elementu, rejestrując wszelkie wahania. Dzięki wysokiej dokładności, czujniki zegarowe są standardowo stosowane w inżynierii mechanicznej do oceny i kontrolowania jakości elementów rotacyjnych. W praktyce, czujnik zegarowy jest niezbędny do ustawienia tarczy w maszynach takich jak tokarki czy frezarki. Użytkownik umieszcza czujnik w odpowiedniej pozycji, a następnie obraca tarczę, co pozwala na odczyt bicia. Każde odchylenie od idealnej osi wskazuje na konieczność korekcji ustawienia, co jest kluczowe dla zapewnienia nie tylko precyzyjnego działania maszyny, ale także wydłużenia jej żywotności oraz zapewnienia bezpieczeństwa pracy. Wysoka jakość czujników zegarowych oraz ich precyzyjne kalibracje są zgodne z najlepszymi praktykami w branży mechanicznej.

Pytanie 12

Woltomierz, podłączony do prądniczki tachometrycznej o stałej 10 V/1000 obr/min, pokazuje napięcie 7,5 V. Jaką prędkość obrotową mierzymy?

A. 750 obr/min
B. 75 obr/min
C. 7500 obr/min
D. 7 obr/min
Odpowiedź 750 obr/min jest poprawna, ponieważ woltomierz wskazuje napięcie 7,5 V, a prądniczka tachometryczna ma stałą 10 V przypadającą na 1000 obr/min. Aby obliczyć prędkość obrotową, stosujemy proporcję: jeśli 10 V odpowiada 1000 obr/min, to 7,5 V odpowiada x obr/min. Wykonując obliczenia, otrzymujemy: x = (7,5 V * 1000 obr/min) / 10 V = 750 obr/min. Praktyczne zastosowanie takiej analizy można znaleźć w automatyce i inżynierii, gdzie prędkości obrotowe silników są kluczowe dla precyzyjnego sterowania procesami. W branży motoryzacyjnej, na przykład, prędkości obrotowe silników są monitorowane za pomocą tachometrów, które mogą być oparte na prądnicach tachometrycznych. Zrozumienie tych zasad jest istotne zarówno dla projektantów, jak i techników, aby zapewnić efektywność i bezpieczeństwo systemów napędowych.

Pytanie 13

W aplikacjach sterujących, wykonywanych przy użyciu sterownika PLC, do zapisywania sygnałów impulsowych oraz ich konwersji na sygnały trwałe (włączanie z samopodtrzymaniem) wykorzystuje się moduły

A. zegarów czasowych
B. przerzutników
C. filtrów komparatorowych
D. rejestrów licznikowych
Przerzutniki są podstawowymi elementami w systemach automatyki, które umożliwiają przechowywanie i przetwarzanie sygnałów impulsowych na sygnały długotrwałe. Działają poprzez zmianę swojego stanu na podstawie sygnałów wejściowych, co pozwala na samopodtrzymanie stanu wyjściowego. Na przykład, w aplikacjach przemysłowych, przerzutniki D mogą być używane do włączania silników na określony czas po otrzymaniu impulsu startowego, co jest szczególnie przydatne w systemach transportowych czy w procesach produkcyjnych. W kontekście standardów branżowych, przerzutniki często występują w projektach zgodnych z normami IEC 61131-3, które definiują programowanie PLC, co zapewnia ich szeroką zastosowalność i kompatybilność. Warto również zauważyć, że przerzutniki są kluczowymi elementami w tworzeniu bardziej złożonych systemów automatyki, takich jak sekwencjonery czy sygnalizatory. Zapewniają one stabilność działania systemu oraz pozwalają na elastyczne zarządzanie procesami, co czyni je niezastąpionymi w nowoczesnej automatyce przemysłowej.

Pytanie 14

Jakie urządzenie powinno być zastosowane do zasilania silnika indukcyjnego klatkowego w układzie trójfazowym, aby umożliwić ustawienie maksymalnych wartości prądu rozruchowego oraz płynne dostosowanie prędkości obrotowej silnika?

A. Prostownika sterowanego trójpulsowego
B. Softstartu
C. Przełącznika gwiazda-trójkąt
D. Przemiennika częstotliwości
Wykorzystanie przełącznika gwiazda-trójkąt jest podejściem stosowanym głównie w przypadku silników o dużej mocy przy uruchamianiu. Jego celem jest zmniejszenie prądu rozruchowego poprzez przejście z połączenia w gwiazdę (gdzie silnik przy uruchamianiu pracuje z obniżoną mocą) do połączenia w trójkąt, co umożliwia pełne obciążenie. Jednakże, ta metoda nie pozwala na regulację prędkości obrotowej silnika, co czyni ją nieodpowiednią w kontekście wymagań przedstawionego pytania. Z kolei softstart to urządzenie, które także reguluje prąd rozruchowy, ale jego funkcjonalność kończy się po uruchomieniu silnika, co oznacza, że nie zapewnia on dalszej regulacji prędkości obrotowej. Dodatkowo, prostownik sterowany trójpulsowy jest komponentem używanym do prostowania prądu przemiennego, ale nie dostarcza funkcji regulacji prędkości obrotowej ani nie pozwala na kontrolowanie prądu rozruchowego w sposób wymagany do optymalizacji pracy silnika. Wybór nieodpowiednich urządzeń do zasilania silników może prowadzić do niewłaściwego ich działania, a także do zwiększenia zużycia energii, co jest niezgodne z nowoczesnymi standardami efektywności energetycznej, takimi jak ISO 50001. Dlatego znajomość i umiejętność prawidłowego doboru urządzeń jest kluczowa w inżynierii elektrycznej.

Pytanie 15

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Nasadowego
B. Płaskiego
C. Dynamometrycznego
D. Imbusowego
Odpowiedź 'imbusowy' jest poprawna, ponieważ śruby z łbem walcowym i gniazdem sześciokątnym są zaprojektowane do współpracy z kluczami imbusowymi. Klucz imbusowy, znany również jako klucz sześciokątny, ma kształt, który idealnie pasuje do gniazda w takiej śrubie. Umożliwia to łatwe i efektywne wykręcanie i wkręcanie śrub, a także zapewnia mocny chwyt, co jest szczególnie ważne w zastosowaniach wymagających dużego momentu obrotowego. Przykładowo, wiele rowerów, mebli flat-pack i urządzeń mechanicznych wykorzystuje tego rodzaju śruby, co sprawia, że klucz imbusowy jest niezbędnym narzędziem w narzędziowni. Standardy DIN 911 określają wymiary kluczy imbusowych, co gwarantuje ich uniwersalność i dostępność w różnych rozmiarach, co jest kluczowe w pracy z różnymi typami śrub. W związku z tym, używając klucza imbusowego, możemy zapewnić właściwe dopasowanie oraz uniknąć uszkodzenia śruby lub narzędzia.

Pytanie 16

Który z podanych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Żeliwo szare
B. Żeliwo białe
C. Stal niskowęglowa
D. Stal wysokowęglowa
Stal niskowęglowa to jeden z najpopularniejszych materiałów, jeśli chodzi o konstrukcje spawane. Ma świetne właściwości mechaniczne i jest łatwa do spawania. Niska zawartość węgla sprawia, że jest elastyczna i nie pęka tak łatwo podczas spawania. Dzięki tym zaletom, stal niskowęglowa znajduje różne zastosowania - w budownictwie, przemyśle stoczniowym czy motoryzacyjnym. Na przykład, używa się jej do produkcji belek, rur czy ram, gdzie potrzebna jest solidność i wytrzymałość na obciążenia. Zresztą, normy takie jak EN 10025 dokładnie określają wymagania dla stali konstrukcyjnych, co tylko potwierdza jej znaczenie w przemyśle. Z mojego doświadczenia, stal niskowęglowa jest lepszym wyborem niż stal wysokowęglowa, bo ma lepsze właściwości spawalnicze i mniejsze ryzyko wystąpienia naprężeń wewnętrznych, co jest mega istotne w konstrukcjach spawanych.

Pytanie 17

W tabeli podano dane techniczne sterownika PLC Jakim maksymalnym prądem można obciążyć sterownik dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalnyDC 20,4 ... 28,8 V
Przy sygnale „0"maks. AC/DC 5 V
Przy sygnale „1"min. AC/DC 12 V
Prąd wejściowy2,5 mA
Wyjścia:
Rodzaj4 przekaźnikowe
Prąd ciągły10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym

A. 3 A
B. 0,75 A
C. 2,5 A
D. 10 A
Wybór odpowiedzi, które wskazują na inne wartości prądu, może wynikać z kilku typowych błędów myślowych obowiązujących w temacie doboru komponentów do systemów automatyki. Podawanie wartości takich jak 0,75 A, 2,5 A czy 10 A może sugerować nieporozumienie dotyczące charakterystyki silników indukcyjnych oraz ich wymagań prądowych. Na przykład, wybranie niskiego prądu, jak 0,75 A, może wynikać z założenia, że silnik o niewielkiej mocy wymaga niewielkiego prądu. Jednakże, nawet małe silniki mogą mieć prąd rozruchowy, który jest znacznie wyższy od prądu nominalnego, co może prowadzić do uszkodzenia sterownika, jeśli jego maksymalny prąd nie jest wystarczający. Z kolei podanie 10 A jako limitu jest całkowicie błędne, ponieważ wiele typowych sterowników PLC nie jest zaprojektowanych do obsługi tak dużych obciążeń bez dodatkowych urządzeń zabezpieczających. Zrozumienie zasadności obliczeń dotyczących prądu oraz ich konsekwencji w praktyce jest kluczowe w doborze odpowiednich komponentów. W automatyce przemysłowej, ignorowanie tych zasad może prowadzić do poważnych uszkodzeń sprzętu, co z kolei wiąże się z kosztami naprawy oraz przestojami w produkcji. Dlatego, przed podłączeniem jakiegokolwiek obciążenia do sterownika, zawsze należy dokładnie zapoznać się z jego specyfikacjami technicznymi i warunkami pracy.

Pytanie 18

Lampka sygnalizacyjna RUN w programowalnym sterowniku PLC wskazuje, że

A. program kontrolny znajduje się w pamięci RAM sterownika i może zostać uruchomiony
B. istnieje możliwość edytowania nowego programu kontrolnego przy użyciu komputera
C. konieczna jest wymiana baterii zasilającej pamięć RAM sterownika
D. nastąpiła awaria wewnętrzna sterownika
Świecący element sygnalizacyjny RUN w sterowniku programowalnym PLC wskazuje, że program sterowniczy jest załadowany do pamięci RAM sterownika i jest gotowy do uruchomienia. Pamięć RAM jest kluczowym elementem w systemach PLC, ponieważ służy do przechowywania aktywnego programu oraz danych operacyjnych, co pozwala na dynamiczne sterowanie procesami przemysłowymi. W praktyce oznacza to, że operator może bez problemu uruchomić proces produkcyjny, a także wprowadzać zmiany w czasie rzeczywistym, co jest niezwykle istotne w kontekście elastyczności i efektywności systemów automatyki. W standardach branżowych, takich jak IEC 61131, wyróżnia się różne tryby pracy sterowników, a sygnalizacja RUN jest jednym z podstawowych wskaźników stanu, który informuje o poprawnym działaniu systemu. Prawidłowe działanie tego wskaźnika jest także istotne w kontekście diagnostyki, gdyż pozwala na szybką weryfikację, czy urządzenie jest gotowe do pracy.

Pytanie 19

Falownik to urządzenie przetwarzające moc, które konwertuje prąd

A. zmienny o regulowanej częstotliwości na prąd zmienny 50 Hz
B. trój fazowy na prąd jednofazowy
C. zmienny o częstotliwości 50 Hz na prąd stały
D. stały na prąd zmienny o regulowanej częstotliwości
Falownik jest kluczowym urządzeniem w systemach zasilania, które przekształca prąd stały (DC) na prąd zmienny (AC) o regulowanej częstotliwości. Ta funkcjonalność jest istotna w wielu zastosowaniach, w tym w napędach silników elektrycznych, gdzie regulacja prędkości i momentu obrotowego jest niezbędna do efektywnego działania. Falowniki są szeroko stosowane w przemyśle, na przykład w systemach HVAC (ogrzewanie, wentylacja, klimatyzacja), które wymagają elastycznej regulacji wydajności. Dzięki zastosowaniu falowników, użytkownicy mogą oszczędzać energię, co jest zgodne z zasadami zrównoważonego rozwoju oraz standardami efektywności energetycznej, takimi jak normy IEC 61800. Współczesne falowniki często wyposażone są w zaawansowane funkcje, takie jak kontrola wektora, co pozwala na osiąganie wysokiej precyzji w regulacji parametrów pracy. W praktyce, przekształcenie DC na AC umożliwia zasilanie różnych urządzeń zasilanych prądem zmiennym, co czyni falowniki niezbędnymi w nowoczesnych systemach automatyki oraz robotyki.

Pytanie 20

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. pirometru
B. termometru
C. tensometru
D. tachometru
Tensometr jest urządzeniem służącym do pomiaru naprężeń normalnych, takich jak ściskanie i rozciąganie. Działa na zasadzie pomiaru odkształceń, które następnie przelicza na wartości naprężeń zgodnie z zasadą Hooke'a. Dzięki temu, tensometry są niezwykle ważne w inżynierii mechanicznej i materiałowej, gdzie precyzyjne pomiary naprężeń są kluczowe dla oceny wytrzymałości materiałów oraz konstrukcji. Przykłady zastosowania tensometrów obejmują badania wytrzymałościowe elementów konstrukcyjnych, takich jak belki, stropy czy mosty. W standardach takich jak ISO 9513 określono metody kalibracji tensometrów, co pozwala na uzyskanie wiarygodnych wyników. Dobre praktyki w stosowaniu tensometrów obejmują również ich odpowiedni dobór do rodzaju materiału oraz warunków pomiarowych, co zapewnia rzetelność i dokładność uzyskanych wyników. Dodatkowo, stosowane są różne typy tensometrów, w tym tensometry foliowe, które umożliwiają pomiary na różnorodnych powierzchniach, co zwiększa ich wszechstronność w zastosowaniach inżynieryjnych.

Pytanie 21

Proces oceny stanu technicznego elementu mechanicznego zaczyna się od

A. oględzin
B. pomiarów
C. obróbki
D. montażu
Oględziny są pierwszym krokiem w ocenie stanu technicznego podzespołów mechanicznych, ponieważ pozwalają na wstępną identyfikację ewentualnych uszkodzeń, zużycia czy nieprawidłowości. W trakcie oględzin należy zwrócić uwagę na widoczne oznaki uszkodzeń, takie jak pęknięcia, wgniecenia, korozja czy nieszczelności. Dobrą praktyką jest stosowanie standardów takich jak ISO 9001, które podkreślają znaczenie systematycznego podejścia do oceny stanu technicznego. W praktyce inżynierskiej, oględziny są często wspierane narzędziami wizualnymi, takimi jak mikroskopy, kamery inspekcyjne czy oświetlenie UV, co umożliwia dokładniejsze zidentyfikowanie problemów. Na przykład, w przypadku oceny stanu łożysk, oględziny mogą ujawnić wyciek smaru lub oznaki przegrzania, co jest kluczowe dla dalszych działań, takich jak pomiary czy planowanie konserwacji.

Pytanie 22

Osoba obsługująca elektryczne urządzenie prądu stałego o nominalnym napięciu 60 V oraz III klasie ochronności jest narażona na

A. poranienie prądem elektrycznym podczas dotykania ręką nieizolowanego zacisku PEN
B. poranienie prądem elektrycznym w trakcie dotykania ręką metalowej obudowy
C. odczuwalne efekty przepływu prądu przy kontakcie ręką z nieizolowanymi elementami aktywnymi
D. poranienie prądem elektrycznym w momencie kontaktu ręką z nieizolowanymi elementami aktywnymi
Odpowiedzi wskazujące na porażenie prądem elektrycznym w różnych kontekstach nie uwzględniają specyfiki klasy ochronności III oraz właściwego zrozumienia ryzyka związanych z pracą z urządzeniami elektrycznymi. Porażenie prądem elektrycznym może wystąpić w sytuacjach, gdy pracownik ma kontakt z nieizolowanymi elementami aktywnymi, jednak kluczowe jest zrozumienie, że w przypadku urządzeń z III klasą ochronności ryzyko to jest odpowiednio zminimalizowane. Pierwsza z niewłaściwych odpowiedzi odnosi się do kontaktu z nieizolowanym zaciskiem PEN. W praktyce, zacisk PEN jest elementem instalacji elektrycznej, który pełni rolę zarówno neutralnego, jak i ochronnego, a jego nieizolowane wbudowanie w system może być niezgodne z zasadami projektowymi. Kolejna niepoprawna koncepcja sugeruje, że kontakt z metalową obudową urządzenia skutkuje porażeniem prądem, co w kontekście odpowiednich zabezpieczeń i prawidłowego uziemienia nie powinno mieć miejsca. Ważne jest, aby zrozumieć, że w przypadku prawidłowo skonstruowanych urządzeń klasy III, wszelkie elementy przewodzące powinny być odpowiednio izolowane lub uziemione w celu zapewnienia bezpieczeństwa użytkowników. Typowym błędem jest zatem założenie, że jakikolwiek kontakt z elementami urządzenia o napięciu 60 V musi automatycznie prowadzić do porażenia, co jest sprzeczne z zasadami bezpieczeństwa elektrycznego oraz dobrą praktyką inżynieryjną.

Pytanie 23

Tachometryczna prądnica działa z prędkością obrotową wynoszącą 1000 obr/min. Jaką prędkość obrotową należy osiągnąć, aby napięcie na wyjściu prądnicy wyniosło 7,3 V?

A. 73 obr/min
B. 730 obr/min
C. 7,3 obr/min
D. 7 300 obr/min
Wybór 7,3 obr/min, 730 obr/min oraz 73 obr/min jako odpowiedzi na pytanie o prędkość obrotową prądnicy tachometrycznej prowadzi do kilku błędnych wniosków, które są wynikiem nieprawidłowego zrozumienia zasad działania prądnic. Przede wszystkim, prądnica tachometryczna wytwarza napięcie, które jest proporcjonalne do prędkości obrotowej wału. Oznacza to, że im wyższa prędkość obrotowa, tym wyższe napięcie. Odpowiedzi 7,3 obr/min i 73 obr/min sugerują ekstremalnie niskie prędkości, które są nieadekwatne do standardowego działania prądnicy. Dla prędkości 1000 obr/min napięcie wynosi 7,3 V; zatem prędkości obrotowe niższe od 1000 obr/min nie mogą generować napięcia wyjściowego wyższego niż 7,3 V. Z kolei odpowiedź 730 obr/min również jest błędna, ponieważ przy tej prędkości napięcie wyniesie mniej niż 7,3 V. Typowym błędem myślowym jest przyjęcie, że mniejsze prędkości mogą wytwarzać wyższe napięcia, co jest sprzeczne z zasadami fizyki. Kluczowe jest zrozumienie, że prądnice tachometryczne są wykorzystywane w systemach, gdzie precyzyjne mierzenie prędkości obrotowej jest kluczowe, na przykład w systemach regulacji i kontroli procesów przemysłowych, a ich działanie opiera się na proporcjonalności między prędkością a napięciem.

Pytanie 24

W trakcie serwisowania urządzenia mechatronicznego, w którym istnieje ryzyko wystąpienia napięcia elektrycznego, technik mechatronik powinien stosować

A. rękawic ochronnych i fartucha ochronnego
B. nienaruszonych narzędzi izolowanych
C. okularów ochronnych i fartucha ochronnego
D. szczypiec oraz zestawu wkrętaków
Używanie nieuszkodzonych narzędzi izolowanych jest kluczowym elementem zapewnienia bezpieczeństwa podczas pracy z urządzeniami mechatronicznymi, w których może występować niebezpieczne napięcie elektryczne. Narzędzia izolowane, takie jak śrubokręty, szczypce czy klucze, są zaprojektowane z myślą o minimalizacji ryzyka porażenia prądem elektrycznym. Izolacja narzędzi powinna spełniać odpowiednie normy, takie jak IEC 60900, które określają wymagania dotyczące narzędzi używanych w obszarach narażonych na wysokie napięcia. Przykładem zastosowania izolowanych narzędzi może być naprawa elektrycznych systemów sterowania w robotach przemysłowych, gdzie dostęp do napięciowych elementów urządzenia wiąże się z ryzykiem. W praktyce, stosowanie tych narzędzi powinno być rutyną w codziennej pracy mechatronika, a przed każdym użyciem należy upewnić się, że nie ma widocznych uszkodzeń izolacji. Regularne kontrole i konserwacja narzędzi izolowanych są również niezbędne, aby zapewnić ich niezawodność i skuteczność.

Pytanie 25

Jaką metodę łączenia materiałów należy wykorzystać do zestawienia stali nierdzewnej z mosiądzem?

A. Lutowanie twarde
B. Zgrzewanie
C. Lutowanie miękkie
D. Klejenie
Lutowanie twarde jest techniką, która idealnie nadaje się do łączenia stali nierdzewnej i mosiądzu, dzięki właściwościom materiałów oraz temperaturze lutowania. Lutowanie twarde polega na stosowaniu stopów lutowniczych, które mają wyższą temperaturę topnienia niż w przypadku lutowania miękkiego, co pozwala na uzyskanie mocniejszych połączeń. Technika ta jest szczególnie cenna w zastosowaniach przemysłowych, gdzie wymagana jest wysoka wytrzymałość mechaniczna i odporność na korozję. Przykładem mogą być elementy w instalacjach hydraulicznych, gdzie połączenie stali nierdzewnej z mosiężnymi złączkami pozwala na zapewnienie długotrwałej i szczelnej pracy. Warto również zauważyć, że lutowanie twarde jest zgodne z normami przemysłowymi, takimi jak ISO 17672, które określają wymagania dotyczące materiałów stosowanych w procesie lutowania. Dzięki tym właściwościom, lutowanie twarde stanowi najlepszy wybór do tego typu zastosowań.

Pytanie 26

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 barów, działa z prędkością 50 cykli na minutę i zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania siłownika?

A. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
B. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
C. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
D. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
Odpowiedzi z wydajnością 3,6 m3/h są błędne, ponieważ nie spełniają podstawowych wymagań dla zasilania siłownika sprężonym powietrzem. Siłownik potrzebuje 4,2 m3/h (jak to przeliczymy z litrów na metry sześcienne), więc sprężarka musi mieć moc do dostarczania przynajmniej tyle powietrza. Ta wydajność 3,6 m3/h na pewno nie wystarczy, by pokryć potrzeby, a siłownik mógłby mieć problemy z pełnym cyklem roboczym. To by wpłynęło na działanie całego systemu. Dodatkowo, maksymalne ciśnienie 0,7 MPa (7 bar) to za mało, bo siłownik działa przy ciśnieniu 8 barów. Jeśli sprężarka nie dostarczy odpowiedniego ciśnienia, to wyjdą problemy z wydajnością siłownika i mogą być awarie. W praktyce coś takiego to już ryzyko, a to się nie trzyma zasad dobrej praktyki w projektowaniu systemów pneumatycznych, gdzie trzeba dobierać urządzenia z odpowiednią wydajnością i parametrami, żeby wszystko działało bez zarzutu.

Pytanie 27

Siłownik hydrauliczny jest zasilany olejem pod ciśnieniem p = 60 barów oraz ma przepływ Q = 85 l/min. Jaka jest moc hydrauliczna, którą pobiera siłownik?

A. 85,0 kW
B. 8,5 kW
C. 51,0 kW
D. 5,1 kW
Moc hydrauliczna siłownika można obliczyć za pomocą wzoru: P = Q * p, gdzie P to moc w watach, Q to natężenie przepływu w litrach na minutę, a p to ciśnienie w barach. W tym przypadku mamy p = 60 barów oraz Q = 85 l/min. Aby obliczyć moc, musimy najpierw przeliczyć jednostki: 1 l/min = 0,001 m³/min, a 60 barów = 6 MPa. Przeliczając natężenie przepływu: Q = 85 l/min * 0,001 m³/l = 0,085 m³/min. Teraz przeliczamy na sekundy: 0,085 m³/min = 0,085/60 m³/s = 0,00141667 m³/s. Teraz możemy obliczyć moc: P = Q * p = 0,00141667 m³/s * 6 MPa = 8,5 kW. Tego typu obliczenia są kluczowe dla inżynierów zajmujących się hydrauliką, ponieważ pozwalają na dobór odpowiednich komponentów systemu hydraulicznego, takich jak pompy i siłowniki, co ma bezpośredni wpływ na efektywność energetyczną oraz funkcjonalność urządzenia. W praktyce, znajomość mocnych punktów siłowników hydraulicznych pozwala na ich właściwe zastosowanie w maszynach przemysłowych, budowlanych czy w aplikacjach mobilnych.

Pytanie 28

Jaki czujnik powinno się wykorzystać do pomiaru wartości natężenia pola magnetycznego?

A. Hallotronowy
B. Tensometryczny
C. Pojemnościowy
D. Ultradźwiękowy
Czujnik hallotronowy jest specjalistycznym urządzeniem, które wykrywa obecność i natężenie pola magnetycznego. Zasada jego działania opiera się na efekcie Hall'a, który polega na wytwarzaniu napięcia poprzecznego na przewodniku, gdy przepływa przez niego prąd i jest jednocześnie poddany działaniu pola magnetycznego. Dzięki temu czujniki hallotronowe znajdują szerokie zastosowanie w różnych dziedzinach, takich jak motoryzacja (np. w systemach ABS), automatyka przemysłowa oraz urządzenia elektroniczne. Charakteryzują się wysoką czułością i precyzją, co czyni je najlepszym wyborem do pomiarów natężenia pola magnetycznego. Ich instalacja i użytkowanie są zgodne z powszechnie uznawanymi standardami branżowymi, co dodatkowo podnosi ich wartość w zastosowaniach przemysłowych. Warto również zwrócić uwagę na rozwój technologii, gdzie czujniki hallotronowe są integralną częścią nowoczesnych systemów pomiarowych i automatyzacyjnych.

Pytanie 29

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik AC skutkuje

A. spadkiem reaktancji uzwojeń
B. zwiększeniem prędkości obrotowej
C. zmniejszeniem prędkości obrotowej
D. wzrostem reaktancji uzwojeń
Wzrost częstotliwości wyjściowej falownika nie powoduje spadku prędkości obrotowej silnika prądu przemiennego, co jest błędnym wnioskiem wynikającym z braku zrozumienia podstawowych zasad działania tych maszyn. Odpowiedź sugerująca spadek prędkości obrotowej ignoruje zależność między częstotliwością zasilania a prędkością obrotową, co jest kluczowe w kontekście silników asynchronicznych. W przypadku reaktancji uzwojeń, wzrost częstotliwości prowadzi do wzrostu reaktancji, co może być mylone z jej spadkiem. Reaktancja indukcyjna silnika jest proporcjonalna do częstotliwości i indukcyjności uzwojeń, co oznacza, że przy wyższej częstotliwości reaktancja będzie wzrastać, co wprowadza dodatkowe straty w systemie. Takie błędne rozumienie może prowadzić do niewłaściwego doboru parametrów falowników i silników, co w praktyce może skutkować ich nieefektywnym działaniem i obniżeniem niezawodności całego układu. Zrozumienie tych zależności jest kluczowe w projektowaniu i eksploatacji systemów napędowych, co wykazuje również dobre praktyki w inżynierii elektrycznej.

Pytanie 30

Jaką metodę należy wykorzystać do pomiaru prędkości obrotowej wirnika silnika napędzającego system mechatroniczny?

A. Termoluminescencyjną
B. Radiometryczną
C. Ultradźwiękową
D. Stroboskopową
Odpowiedź stroboskopowa jest prawidłowa, ponieważ technika ta jest powszechnie stosowana do pomiaru prędkości obrotowej wirujących elementów, takich jak wały silników. Stroboskopowe pomiary opierają się na zjawisku stroboskopowym, które wykorzystuje krótkie impulsy światła emitowane przez stroboskop do oświetlania wirującego obiektu. W momencie, gdy częstotliwość błysków stroboskopu jest zsynchronizowana z prędkością obrotową wału, obiekt wydaje się zatrzymany, co pozwala dokładnie określić jego prędkość obrotową. Przykładem zastosowania tej metody mogą być sytuacje w przemyśle, gdzie konieczne jest monitorowanie prędkości wałów w maszynach produkcyjnych. Metoda stroboskopowa jest również preferowana w badaniach laboratoryjnych, ponieważ nie wpływa na działanie mierzonych elementów, co jest zgodne z najlepszymi praktykami w inżynierii. Dodatkowo, ta metoda jest szeroko opisana w normach takich jak ISO 24410, które określają wymagania dotyczące pomiarów prędkości obrotowej.

Pytanie 31

Który z poniższych języków programowania dla sterowników PLC jest językiem tekstowym?

A. IL (Instruction List) - lista instrukcji - lista instrukcji
B. FBD (Function Block Diagram) - schemat bloków funkcyjnych
C. ST (Structured Text) - tekst strukturalny
D. SFC (SeΩuential Function Chart) - schemat sekwencji funkcji
SFC, FBD i ST to też języki programowania, które wykorzystuje się w PLC, ale tu jest mały szkopuł – nie są one tekstowe. SFC, czyli Sequential Function Chart, to bardziej graficzny sposób przedstawienia działania systemu. Pokazuje, jak przebiegają operacje w formie diagramu, co jest fajne dla wizualizacji, ale nie przypomina zwykłego kodu. FBD, czyli Function Block Diagram, działa na podobnej zasadzie – tworzy się tam bloki funkcyjne i łączy je jako rysunki. To ułatwia modelowanie systemów, ale znowu, to nie tekst. ST, czyli Structured Text, jest bardziej skomplikowanym językiem tekstowym, bliskim tym wysokiego poziomu jak Pascal czy C. Chociaż ST jest tekstowy, to w tym przypadku odpowiedzią nie jest, bo IL to najprostszy z tekstowych języków do PLC. Wiele osób myli języki graficzne z tekstowymi, co często prowadzi do takich błędów. Takie zrozumienie poziomów abstrakcji jest kluczowe, zwłaszcza przy nauce programowania w automatyce.

Pytanie 32

Aby odkręcić śrubę z sześciokątnym gniazdem, konieczne jest zastosowanie klucza

A. nasadowego
B. imbusowego
C. płaskiego
D. nasadowego
Odpowiedź 'imbusowego' jest poprawna, ponieważ klucz imbusowy, znany również jako klucz sześciokątny, jest specjalnie zaprojektowany do pracy z elementami z gniazdem sześciokątnym. Tego typu gniazda, charakteryzujące się sześciokątnym otworem, są powszechnie stosowane w różnych zastosowaniach, od mechaniki samochodowej po dostępność w elektronice. W praktyce, klucz imbusowy zapewnia doskonałe dopasowanie do gniazda, co minimalizuje ryzyko uszkodzenia zarówno klucza, jak i śruby. Jego konstrukcja pozwala na aplikację większego momentu obrotowego, co jest kluczowe w przypadku śrub o dużych średnicach lub przy mocnych połączeniach. Używanie klucza imbusowego zgodnie z koncepcjami inżynieryjnymi i standardami, takimi jak ISO, zwiększa efektywność pracy oraz trwałość narzędzi. Ponadto, klucze imbusowe są dostępne w różnych rozmiarach, co pozwala na szeroki zakres zastosowań, od małych śrub w sprzęcie elektronicznym po duże elementy konstrukcyjne.

Pytanie 33

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. odfiltrowanie cząstek stałych z powietrza
B. spływ kondensatu wodnego do najniższego punktu instalacji
C. rozchodzenie się mgły olejowej w instalacji
D. rozbijanie kropli oleju strumieniem sprężonego powietrza
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.

Pytanie 34

Skrót THT (Through-Hole Technology) odnosi się do metody montażu

A. skręcanego
B. zaciskowego
C. powierzchniowego
D. przewlekanego
Odpowiedzi, które wskazują na skręcanie, zaciskanie lub montaż powierzchniowy, są nieprawidłowe, ponieważ każda z tych metod różni się zasadniczo od technologii przewlekanego montażu. Skręcanie komponentów to technika, która znajduje zastosowanie w montażu mechanicznym, gdzie elementy są łączone za pomocą śrub lub nakrętek. W kontekście elektroniki, skręcanie może nie zapewniać wymaganej stabilności połączeń elektrycznych, a także jest mniej odpowiednie dla małych komponentów, które często wymagają niższej wagi oraz oszczędności miejsca. Zaciskowy montaż również nie odnosi się do THT; jest to technika używana w połączeniach takich jak złącza przewodowe, gdzie nie stosuje się lutowania. Montaż powierzchniowy (SMT) to nowocześniejsza technologia, w której komponenty są osadzane na powierzchni płytki, co powoduje zmniejszenie rozmiarów i zwiększenie gęstości montażu. Ta metoda ma swoje zastosowanie w wielu nowoczesnych urządzeniach, ale nie jest tożsama z przewlekanym montażem. Istotnym błędem myślowym jest mylenie tych technologii, co może prowadzić do nieprawidłowych założeń dotyczących trwałości, jakości i odpowiedniości technologii dla konkretnych zastosowań. Zrozumienie różnic pomiędzy tymi metodami jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i produkcją układów elektronicznych, aby zapewnić optymalizację procesu produkcji oraz jakości finalnych produktów.

Pytanie 35

Jakie elementy należy zweryfikować podczas kontroli smarownicy w zespole przygotowania powietrza w systemie pneumatycznym?

A. Poziom oleju
B. Ciśnienie w systemie
C. Spust kondensatu
D. Wilgotność powietrza
Poziom oleju w smarownicy jest kluczowym parametrem, który należy kontrolować, aby zapewnić prawidłowe funkcjonowanie systemu pneumatycznego. Olej jest niezbędny do smarowania ruchomych elementów maszyn oraz do redukcji tarcia, co bezpośrednio wpływa na ich żywotność oraz efektywność pracy. Zbyt niski poziom oleju może prowadzić do nadmiernego zużycia komponentów, a w skrajnych przypadkach do ich uszkodzenia. W praktyce, regularne kontrole poziomu oleju powinny być częścią rutynowego przeglądu technicznego instalacji pneumatycznej, zgodnie z zaleceniami producentów urządzeń oraz normami branżowymi, takimi jak ISO 8573. Konsekwentne monitorowanie poziomu oleju oraz jego jakości w smarownicach przyczynia się do zwiększenia niezawodności systemów pneumatycznych, co jest kluczowe w procesach przemysłowych, gdzie ciągłość produkcji jest priorytetem.

Pytanie 36

W trakcie użytkowania urządzenia mechatronicznego pracownik doznał porażenia prądem, lecz po chwili odzyskał oddech. Co należy zrobić?

A. przystąpić do pośredniego masażu serca
B. ustawić go w pozycji bocznej ustalonej
C. rozpocząć wykonywanie sztucznego oddychania i kontynuować przez około 30 minut
D. położyć go na plecach z uniesionymi nogami
Ułożenie osoby w pozycji bocznej ustalonej (PBU) jest kluczowym działaniem w przypadku osób po porażeniu prądem, które odzyskały oddech. Ta pozycja ma na celu zapewnienie swobodnego przepływu powietrza oraz zapobiegnięcie zadławieniu się, co jest szczególnie ważne, gdy pacjent jest nieprzytomny lub osłabiony. W PBU pacjent leży na boku, co pozwala na swobodne wydostawanie się wydzielin z jamy ustnej i zapobiega aspiracji. Wytyczne dotyczące pierwszej pomocy, takie jak te zawarte w standardach Europejskiego Ruchu na Rzecz Bezpieczeństwa (ERS), podkreślają znaczenie stosowania PBU w przypadkach utraty przytomności. Przykładem zastosowania jest sytuacja, gdy osoba po porażeniu prądem odzyskuje świadomość, ale nie jest w stanie samodzielnie kontrolować swoich dróg oddechowych. W takich przypadkach, szybka reakcja i odpowiednie ułożenie mogą uratować życie, dlatego znajomość tego działania jest niezbędna dla każdego, kto może być świadkiem takiego zdarzenia.

Pytanie 37

Aby zachować odpowiedni poziom ciśnienia w systemach hydraulicznych, wykorzystuje się zawory

A. redukujące
B. rozdzielające
C. dławiące
D. odcinające
Zawory redukcyjne odgrywają kluczową rolę w zarządzaniu ciśnieniem w układach hydraulicznych. Ich głównym zadaniem jest obniżenie ciśnienia roboczego na określonym poziomie, co jest istotne w wielu zastosowaniach przemysłowych. Zawory te działają poprzez automatyczne regulowanie przepływu cieczy, co pozwala na utrzymanie stabilnych warunków pracy w układzie. Na przykład, w systemach hydraulicznych zasilających maszyny produkcyjne, zawory redukcyjne zapewniają, że ciśnienie nie przekracza wartości określonej przez producenta, co zapobiega uszkodzeniom i zwiększa bezpieczeństwo operacji. Dobre praktyki w branży hydraulicznej zalecają regularne sprawdzanie i konserwację zaworów redukcyjnych, aby zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, zgodność z normami takimi jak ISO 4414 dotycząca bezpieczeństwa w hydraulice, podkreśla wagę stosowania właściwych zaworów w celu minimalizacji ryzyka awarii systemów hydraulicznych.

Pytanie 38

Który z elementów nie wchodzi w skład systemu przygotowania sprężonego powietrza?

A. Sprężarka
B. Filtr
C. Smarownica
D. Zawór redukcyjny
Sprężarka to ważny element w systemie sprężonego powietrza, ale nie wchodzi w skład zespołu przygotowania. W tym zespole są inne części, takie jak zawory redukcyjne, filtry i smarownice. Te elementy mają swoje zadania, jak na przykład oczyszczanie powietrza, regulację jego ciśnienia i nawilżanie przed użyciem. Zawór redukcyjny dba o to, żeby ciśnienie było odpowiednie, co jest naprawdę ważne, żeby maszyny działały jak trzeba. Filtr zajmuje się usuwaniem zanieczyszczeń i wilgoci, a to prolonguje żywotność urządzeń i zwiększa ich efektywność. Smarownica z kolei dodaje odpowiednią ilość oleju, co zmniejsza tarcie i zapobiega uszkodzeniom. Jak dobrze się rozumie rolę każdego z tych elementów, to można lepiej zarządzać systemami pneumatycznymi i je optymalizować w przemyśle, co jest naprawdę ważne w tej branży.

Pytanie 39

W systemie mechatronicznym znajduje się 18 czujników cyfrowych, 4 przetworniki analogowe oraz 11 elementów wykonawczych działających w trybie dwustanowym. Jaką konfigurację modułowego sterownika PLC należy zastosować do zarządzania tym układem?

A. DI16/DO8 oraz AI4
B. DI32/DO16 oraz AI4
C. DI32/DO8 oraz AI2
D. DI16/DO16 oraz AI2
Modułowy sterownik PLC z konfiguracją DI32/DO16 oraz AI4 to naprawdę dobry wybór. W układzie mechatronicznym masz aż 18 czujników binarnych, 4 przetworniki analogowe i 11 elementów, które działają w trybie dwustanowym. Dzięki DI32 masz więcej niż dość wejść cyfrowych, żeby połączyć wszystkie czujniki, a nawet zostaje ci trochę zapasu na przyszłość. Z kolei 16 wyjść cyfrowych (DO16) spokojnie obsłuży te 11 elementów wykonawczych, co daje ci możliwość rozszerzenia systemu, jeśli zajdzie taka potrzeba. No i te 4 wejścia analogowe (AI4) są akurat na przetworniki, co pozwala ci na monitorowanie i analizowanie sygnałów, a to jest kluczowe w mechatronice. Przykład? Chociażby automatyka przemysłowa, gdzie trzeba mieć na oku zarówno analogowe sygnały, jak i różne urządzenia wykonawcze.

Pytanie 40

Kiedy w układzie hydraulicznym, w którym nie ma elementów dławiących, w normalnych warunkach roboczych występuje wolna reakcja oraz znaczne opory przepływu, należy zastąpić olej olejem

A. tworzącym emulsję z wodą
B. o niższej lepkości
C. odpornym na proces starzenia
D. o wyższej gęstości
Odpowiedź o mniejszej lepkości jest prawidłowa, ponieważ lepkość oleju znacząco wpływa na opory przepływu w układzie hydraulicznym. Olej o niższej lepkości zmniejsza opory, co pozwala na łatwiejszy przepływ cieczy przez system hydrauliczny. W praktyce, zmiana na olej o mniejszej lepkości może poprawić reakcję układu hydraulicznego, zwiększając jego wydajność i responsywność. W standardach branżowych, takich jak ISO 6743, zaleca się dobór oleju hydraulicznego na podstawie jego lepkości, aby zapewnić optymalne warunki pracy i minimalizować zużycie energii. W przypadku systemów hydraulicznych, w których występują duże opory przepływu, zastosowanie oleju o mniejszej lepkości może przynieść korzyści w postaci zmniejszenia temperatury pracy, co wpływa na dłuższą żywotność komponentów oraz redukcję kosztów eksploatacyjnych. Warto również zauważyć, że należy zawsze dostosowywać lepkość oleju do warunków pracy i specyfikacji producenta, aby uniknąć problemów z działaniem układu hydraulicznego.