Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 30 maja 2025 05:43
  • Data zakończenia: 30 maja 2025 05:45

Egzamin niezdany

Wynik: 2/40 punktów (5,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z podanych rezultatów pomiarów jest poprawny dla sygnałów telewizyjnych z nadajników naziemnych?

A. Poziom 25 dBµV, MER 29 dB
B. Poziom 55 dBµV, MER 24 dB
C. Poziom 65 dBµV, MER 12 dB
D. Poziom 29 dBµV, MER 14 dB
Poziom 55 dBµV oraz MER 24 dB to wartości mieszczące się w standardowych wymaganiach dla sygnałów telewizyjnych nadawanych drogą naziemną. Poziom sygnału 55 dBµV jest uznawany za minimalnie akceptowalny do odbioru sygnału DVB-T w warunkach domowych, co zapewnia stabilność odbioru. MER, czyli Modulation Error Ratio, wynoszący 24 dB oznacza, że jakość sygnału jest na poziomie wystarczającym do zapewnienia wysokiej jakości obrazu bez zakłóceń. W praktyce, odbiorniki telewizyjne powinny operować z MER na poziomie co najmniej 20 dB, aby uniknąć problemów z odbiorem. Wartości te są zgodne z normami ITU oraz ETSI, które określają minimalne wymagania dla odbioru sygnałów DVB-T. Odpowiedni poziom sygnału i MER są kluczowe w kontekście zakłóceń, które mogą wpływać na jakość obrazu oraz stabilność połączenia. W przypadku słabszych parametrów, mogą wystąpić problemy, takie jak zacinanie się obrazu czy całkowity brak sygnału. Przykładem zastosowania tych wartości może być analiza warunków otoczenia przy instalacji anteny, gdzie kluczowe jest zapewnienie odpowiedniego poziomu sygnału dla stabilnego odbioru.

Pytanie 2

Awaria telewizora, manifestująca się brakiem możliwości regulacji geometrii, balansu bieli oraz zniknięciem niektórych opcji w menu użytkownika (np. brakiem opcji zmiany systemu odbioru dźwięku) wskazuje na

A. utracie z pamięci danych.
B. braku kontaktu w złączach typu wysuwanego.
C. zimnych lub przegrzanych lutach.
D. pęknięciu ścieżek łączących.
Utrata danych z pamięci w odbiornikach telewizyjnych jest często skutkiem problemów z zasilaniem lub uszkodzeniami komponentów elektronicznych odpowiedzialnych za przechowywanie ustawień. Gdy dane dotyczące geometrii obrazu, balansu bieli oraz funkcji menu znikają, może to wskazywać na uszkodzenie pamięci nieulotnej, co uniemożliwia urządzeniu zachowanie wprowadzonych ustawień. Przykładem zastosowania tej wiedzy jest diagnozowanie telewizorów, gdzie użytkownicy zgłaszają problemy z brakiem regulacji. W takich sytuacjach technik może wykonać testy diagnostyczne, aby sprawdzić, czy pamięć przechowująca te ustawienia działa prawidłowo. W standardach napraw elektroniki, kluczowe jest również wykonywanie regularnych przeglądów oraz konserwacji, co może zapobiec utracie danych. Dobre praktyki obejmują także instalację zasilaczy z filtrami przeciwprzepięciowymi, co zmniejsza ryzyko uszkodzenia pamięci. Zrozumienie tej problematyki jest niezbędne w kontekście zapewnienia długoterminowej niezawodności sprzętu RTV.

Pytanie 3

Który z poniższych przyrządów jest używany do pomiaru oporności izolacji przewodów?

A. IMI-341
B. UM-112B
C. Mostek Wiena
D. Mostek Thomsona
Mostek Thomsona, Mostek Wiena oraz UM-112B to urządzenia pomiarowe, które nie są przeznaczone do pomiaru rezystancji izolacji kabli, co może prowadzić do nieporozumień. Mostek Thomsona jest wykorzystywany głównie do pomiaru niewielkich różnic napięć, co sprawia, że nie jest naturalnym wyborem do oceny izolacji, która wymaga znacznie wyższych napięć pomiarowych. Z kolei Mostek Wiena, stosowany głównie w analizie częstotliwościowej, jest narzędziem do pomiaru impedancji, co również nie odpowiada specyfice pomiarów izolacyjnych. UM-112B, jako multimeter, jest bardziej uniwersalnym narzędziem do pomiarów napięcia, prądu i rezystancji, ale nie jest optymalnym rozwiązaniem do oceny stanu izolacji kabel, ponieważ nie oferuje odpowiednich napięć testowych, które są kluczowe dla tej aplikacji. Prawidłowe zrozumienie funkcji poszczególnych przyrządów jest istotne, aby unikać nieefektywnego lub niebezpiecznego korzystania z nieodpowiednich urządzeń w kontekście pomiarów elektrycznych. Dlatego ważne jest, aby stosować dedykowane mierniki, takie jak IMI-341, które są zaprojektowane zgodnie z normami branżowymi, co zapewnia nie tylko dokładność pomiarów, ale także bezpieczeństwo użytkowników.

Pytanie 4

Który z wymienionych komponentów obwodów elektronicznych wytwarza sygnał napięciowy pod działaniem pola magnetycznego i znajduje zastosowanie w miernikach pola magnetycznego?

A. Kontaktron
B. Warystor
C. Piezorezystor
D. Hallotron
Kontaktron to element, który działa na zasadzie zjawiska magnetycznego, ale jego zastosowanie jest ograniczone w porównaniu do hallotronu. Kontaktrony są używane głównie jako przełączniki w obwodach, które wykorzystują mechaniczne zamknięcie obwodu w odpowiedzi na obecność pola magnetycznego. W przeciwieństwie do hallotronów, które generują sygnał analogowy, kontaktrony oferują jedynie sygnał cyfrowy, co ogranicza ich funkcjonalność w aplikacjach wymagających precyzyjnego pomiaru. Warystor, natomiast, jest elementem pasywnym, który zabezpiecza obwody przed przepięciami, a nie generuje sygnałów na podstawie pola magnetycznego. Działa na zasadzie zmiany oporu przy określonym napięciu, co również eliminuje jego zastosowanie w kontekście pomiarów pola magnetycznego. Piezorezystor to kolejny ciekawy element, który zmienia opór elektryczny pod wpływem sił mechanicznych, jednak nie ma on związku z polem magnetycznym. Typowym błędem myślowym, który prowadzi do wyboru nieprawidłowych odpowiedzi, jest mylenie funkcji i zasad działania różnych elementów elektronicznych. Zrozumienie, że nie każdy element, który reaguje na zjawiska fizyczne, ma zdolność do generowania sygnału napięciowego pod wpływem pola magnetycznego, jest kluczowe dla poprawnego rozwiązywania zadań z zakresu elektroniki. Dlatego ważne jest, aby przy wyborze odpowiedzi kierować się nie tylko funkcjonalnością, ale także specyfiką zastosowań danego elementu.

Pytanie 5

Czynniki wpływające na zniekształcenie sygnału przesyłanego w światłowodzie jednomodowym to

A. pole elektrostatyczne
B. pole elektromagnetyczne
C. dyspersja chromatyczna
D. dyspersja międzymodowa
Dyspersja międzymodowa jest zjawiskiem, które występuje głównie w światłowodach wielomodowych, gdzie różne tryby propagacji światła mogą podróżować różnymi ścieżkami. W kontekście światłowodów jednomodowych, dyspersja międzymodowa nie ma zastosowania, ponieważ te światłowody są zaprojektowane tak, aby prowadzić tylko jeden tryb światła, co minimalizuje ryzyko zniekształceń związanych z tym zjawiskiem. Pole elektromagnetyczne oraz pole elektrostatyczne również nie mają bezpośredniego wpływu na zniekształcenia sygnału w światłowodach. Pole elektromagnetyczne może wpływać na sygnały w różnych technologiach komunikacyjnych, ale w kontekście przesyłu światłowodowego nie jest to istotne, ponieważ światłowody działają na zasadzie propagacji światła, a nie fal elektromagnetycznych w tradycyjnym sensie. Pole elektrostatyczne, z drugiej strony, dotyczy interakcji ładunków elektrycznych, które również nie wpływają na sygnał w światłowodach. Typowe błędy myślowe mogą prowadzić do mylenia tych pojęć z dyspersją chromatyczną, której skutki są bardziej zauważalne w kontekście transmisji danych. Zrozumienie tych różnic jest kluczowe dla projektowania i optymalizacji systemów światłowodowych oraz dla efektywnego rozwiązywania problemów związanych z zniekształceniami sygnału.

Pytanie 6

Jaki środek ochrony osobistej jest najczęściej używany podczas naprawy urządzeń elektronicznych w serwisie RTV?

A. Fartuch ochronny
B. Maska ochronna do twarzy
C. Rękawiczki
D. Szkła ochronne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fartuch ochronny jest kluczowym środkiem ochrony indywidualnej stosowanym w serwisach RTV, ponieważ zapewnia nie tylko bezpieczeństwo, ale również ochronę przed zanieczyszczeniami i uszkodzeniami. W trakcie napraw urządzeń elektronicznych, serwisanci często mają do czynienia z substancjami chemicznymi, takimi jak smary czy środki czyszczące, które mogą być szkodliwe dla skóry. Fartuch zabezpiecza odzież i skórę, minimalizując ryzyko kontaktu z tymi substancjami. Ponadto, fartuch ochronny oferuje również bariery przeciwko odpadkom mechanicznym, które mogą pojawić się podczas demontażu i montażu urządzeń. Dobrą praktyką w branży jest stosowanie fartuchów wykonanych z materiałów odpornych na działanie substancji chemicznych, które można łatwo czyścić lub wymieniać. Przykładowo, podczas naprawy telewizorów czy komputerów, fartuch ochronny jest nie tylko środkiem ochronnym, ale także oznaką profesjonalizmu i dbałości o detale, co wpływa na postrzeganą jakość usług w oczach klientów.

Pytanie 7

Ochrona podstawowa (przed bezpośrednim kontaktem) w urządzeniach elektrycznych polega na użyciu

A. wyłączników nadprądowych
B. izolowania części czynnych
C. bezpieczników topikowych
D. transformatora separującego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolowanie części czynnych jest podstawowym środkiem ochrony przed dotykiem bezpośrednim w urządzeniach elektrycznych, co oznacza, że wszystkie elementy, które mogą być pod napięciem, są oddzielone od dostępnych powierzchni, które mogą być dotykane przez użytkowników. Taki sposób ochrony jest kluczowy, ponieważ minimalizuje ryzyko przypadkowego kontaktu z napięciem oraz potencjalne porażenie prądem. Zastosowanie izolacji w praktyce obejmuje np. użycie obudów wykonanych z materiałów dielektrycznych oraz odpowiedniego projektowania urządzeń, które uniemożliwiają dostęp do części czynnych. W kontekście norm, takich jak IEC 61140, izolacja jest podkreślona jako podstawowy aspekt bezpieczeństwa elektrycznego. Warto również dodać, że izolacja ma różne klasyfikacje, co pozwala na dostosowanie stopnia ochrony do specyficznych warunków pracy urządzenia, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 8

Aby zmierzyć współczynnik zawartości harmonicznych na wyjściu wzmacniacza audio, co należy wykorzystać?

A. miernik zniekształceń nieliniowych
B. rejestrator przebiegów elektrycznych
C. wobuloskop
D. oscyloskop

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Miernik zniekształceń nieliniowych jest narzędziem dedykowanym do oceny jakości sygnału audio, w szczególności do pomiaru współczynnika zawartości harmonicznych. Jego zasadniczą funkcją jest analiza zniekształceń, które mogą występować w sygnale audio na wyjściu wzmacniacza. Dzięki zastosowaniu odpowiednich algorytmów, miernik ten potrafi wyodrębnić i zmierzyć harmoniczne, co pozwala na określenie, w jakim stopniu sygnał odbiega od idealnego. Przykładem praktycznego zastosowania jest kalibracja wzmacniaczy audio w studiach nagraniowych, gdzie zniekształcenia muszą być minimalizowane, aby zapewnić najwyższą jakość dźwięku zgodną z standardami branżowymi, takimi jak AES (Audio Engineering Society). Oprócz pomiaru współczynnika THD (Total Harmonic Distortion), miernik zniekształceń nieliniowych pozwala również na analizę intermodulacji i ocenę czystości sygnału, co jest kluczowe w produkcji audio i inżynierii dźwięku.

Pytanie 9

Na podstawie danych zamieszczonych w tabeli określ, w którym przypadku całkowity koszt wykonania zasilacza jest najniższy, jeśli koszt brutto roboczogodziny wynosi 10 zł?

Koszt materiałów bruttoCzas pracy
A.10 zł3,0 h
B.20 zł2,5 h
C.15 zł2,0 h
D.25 zł1,5 h

A. A.
B. D.
C. C.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to C, ponieważ najniższy całkowity koszt wykonania zasilacza wynosi 35 zł. Obliczamy go, mnożąc czas pracy (2,0 h) przez koszt roboczogodziny (10 zł/h), co daje 20 zł. Następnie dodajemy koszt materiałów, który wynosi 15 zł. Zatem całkowity koszt wynosi 20 zł + 15 zł = 35 zł. W kontekście branżowym, analiza kosztów jest kluczowym elementem optymalizacji procesów produkcyjnych. Właściwe kalkulacje pozwalają na identyfikację obszarów, w których można obniżyć wydatki, co jest zgodne z zasadami Lean Management. Dzięki takim praktykom przedsiębiorstwa mogą zwiększyć swoją konkurencyjność na rynku. Ponadto, umiejętność efektywnego zarządzania kosztami jest niezbędna w projektowaniu nowych produktów i usług, co przekłada się na lepsze podejmowanie decyzji i planowanie budżetu.

Pytanie 10

Na schemacie ideowym elektronicznego urządzenia wskazano wartość rezystancji poprzez oznaczenie k22.
Jaką wartość ma ta rezystancja?

A. 22 Ω
B. 22 kΩ
C. 0,22 Ω
D. 0,22 kΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
No to tak. Wartość rezystancji, którą mamy oznaczoną jako k22, to tak naprawdę 0,22 kΩ, a to jest równoznaczne z 220 Ω. Ten 'k' w tym przypadku to taki prefiks kilo, który oznacza, że to jest tysięczna wielokrotność jednostki. Ale w tym konkretnym przypadku, pierwsza cyfra '2' to nie dodatkowe zera, tylko pełna wartość. Umiejętność czytania oznaczeń rezystorów jest naprawdę ważna, jak chcesz projektować jakieś obwody elektroniczne. To pozwala dobrze dobrać wszystkie komponenty, co ma wielkie znaczenie dla funkcji i bezpieczeństwa całego układu. Zrozumienie tego systemu jest istotne nie tylko dla inżynierów, ale też dla tych, którzy są hobbystami w elektronice. W dzisiejszych czasach, normy takie jak IPC-2221 kładą duży nacisk na dokładne odczytywanie wartości rezystancji, żeby uniknąć różnych pomyłek w projektowaniu obwodów drukowanych, co jest ważne zarówno w przemyśle, jak i dla użytkowników końcowych.

Pytanie 11

Obudowa wzmacniacza dystrybucyjnego z oznaczeniem IP64 gwarantuje

A. ochronę przed wnikaniem pyłu w ilościach wpływających na pracę urządzenia oraz ochronę przed strumieniem wody z każdego kierunku
B. ochronę przed wnikaniem pyłu w ilościach, które mogą zakłócać funkcjonowanie urządzenia oraz ochronę przed kroplami opadającymi pod dowolnym kątem, ze wszystkich stron
C. całkowitą ochronę przed wnikaniem pyłu oraz ochronę przed kroplami padającymi pod dowolnym kątem, ze wszystkich stron
D. pełną ochronę przed wnikaniem pyłu oraz zabezpieczenie przed strumieniem wody z każdego kierunku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obudowa wzmacniacza dystrybucyjnego oznaczona kodem IP64 zapewnia całkowitą ochronę przed wnikaniem pyłu oraz ochronę przed kroplami padającymi pod dowolnym kątem, ze wszystkich stron. Kod IP (Ingress Protection) jest standardem określającym stopień ochrony urządzeń elektronicznych przed wnikaniem ciał stałych oraz cieczy. W przypadku IP64, pierwsza cyfra '6' oznacza całkowitą ochronę przed pyłem, co oznacza, że żadne cząstki pyłu nie mogą przeniknąć do wnętrza obudowy, co chroni sprzęt przed uszkodzeniem oraz zapewnia jego prawidłowe działanie. Druga cyfra '4' wskazuje, że obudowa jest odporna na krople wody padające pod różnymi kątami, co oznacza, że nie ma ryzyka uszkodzenia, gdy woda pada na nią z góry. Takie właściwości są szczególnie ważne w aplikacjach, gdzie urządzenia są narażone na trudne warunki atmosferyczne, na przykład w przemysłowych instalacjach, które mogą być narażone na pył, wilgoć oraz różne zanieczyszczenia. Przykładowe zastosowania to obudowy wzmacniaczy w systemach audio, które mogą być używane zarówno na zewnątrz, jak i wewnątrz, a ich niezawodność jest kluczowa dla jakości dźwięku.

Pytanie 12

Układ DMA stosowany w mikrokomputerach pozwala na

A. używanie pamięci RAM bez pośrednictwa CPU
B. podwójne zwiększenie częstotliwości zegara systemu
C. realizowanie podwójnych poleceń
D. wstrzymywanie CPU w każdym momencie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układ DMA (Direct Memory Access) jest kluczowym komponentem w architekturze mikrokomputerów, który umożliwia bezpośredni dostęp do pamięci RAM, omijając jednostkę centralną (CPU). Dzięki temu, procesy takie jak transfer danych między pamięcią a urządzeniami peryferyjnymi (np. dyskami twardymi, kartami sieciowymi) mogą odbywać się równolegle z wykonywaniem innych instrukcji przez CPU. To prowadzi do zwiększenia wydajności systemu, ponieważ CPU nie jest obciążone operacjami I/O, co pozwala na jego lepsze wykorzystanie w innych zadaniach. W praktyce oznacza to, że podczas transferu dużych ilości danych, takich jak w przypadku obsługi multimediów czy dużych baz danych, system może działać znacznie sprawniej, co jest zgodne z najlepszymi praktykami projektowania systemów operacyjnych. Układy DMA są szeroko stosowane w nowoczesnych systemach komputerowych, gdzie wydajność oraz szybkość transferu danych są kluczowe. Zastosowanie DMA w takich sytuacjach jest standardem w branży, co podkreśla znaczenie tego rozwiązania.

Pytanie 13

Aby zmierzyć natężenie prądu w układzie automatyki przemysłowej bez odłączania zasilania, należy użyć amperomierza

A. wychyłowy
B. stacjonarny
C. lampowy
D. cęgowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Amperomierz cęgowy to narzędzie pomiarowe, które umożliwia pomiar natężenia prądu w obwodach elektrycznych bez konieczności ich przerywania. Działa na zasadzie pomiaru pola magnetycznego, które powstaje w wyniku przepływu prądu przez przewodniki. Często stosowany w instalacjach automatyki przemysłowej, gdzie niezawodność i bezpieczeństwo są kluczowe, amperomierz cęgowy pozwala na szybkie i bezpieczne pomiary w działających obwodach. Przykładem jego zastosowania może być monitorowanie prądu w silnikach elektrycznych lub w zasilaczach, gdzie nieprzerwane działanie systemu jest istotne. Praktyczne aspekty użycia cęgów pomiarowych obejmują również ich mobilność oraz łatwość w obsłudze, co jest zgodne z dobrą praktyką w branży elektroenergetycznej, polegającej na minimalizowaniu ryzyka w miejscu pracy. Cęgowe amperomierze są także zgodne z normami bezpieczeństwa, co czyni je preferowanym wyborem w wielu zastosowaniach przemysłowych oraz w diagnostyce instalacji elektrycznych.

Pytanie 14

Zgodnie z dyrektywą 2002/95/EC Parlamentu Europejskiego z dnia 27 stycznia 2003, w sprzęcie ogólnego przeznaczenia (z wyjątkiem wybranych urządzeń techniki komputerowej oraz systemów telekomunikacyjnych) zabrania się stosowania w stopach lutowniczych

A. cyny
B. pasty lutowniczej
C. kalafonii
D. ołowiu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgodnie z dyrektywą 2002/95/EC, znaną jako dyrektywa RoHS (Restriction of Hazardous Substances), stosowanie ołowiu w sprzęcie powszechnego użytku jest zabronione ze względu na jego potencjalnie szkodliwy wpływ na zdrowie ludzi i środowisko. Ołów jest substancją toksyczną, która może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia układu nerwowego, szczególnie u dzieci. Dlatego dyrektywa RoHS ma na celu ograniczenie obecności niebezpiecznych substancji w produktach elektronicznych. Przykładowo, w produkcji lutowia stosuje się alternatywne materiały, takie jak lutowie bezołowiowe, które może zawierać cynę, srebro i miedź, aby spełniać wymagania środowiskowe i zdrowotne. Warto również zauważyć, że zgodność z dyrektywą RoHS jest kluczowym elementem procesów certyfikacji produktów elektronicznych, co przekłada się na ich akceptację na rynkach europejskich.

Pytanie 15

W przypadku łączenia urządzeń audio na dużą odległość, jakie kable powinny być wykorzystane?

A. sygnalizacyjne YKSwXs
B. symetryczne (balanced)
C. sygnalizacyjne YKSY
D. niesymetryczne (unbalanced)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kable symetryczne, znane również jako kable zbalansowane, są kluczowym elementem w połączeniach urządzeń akustycznych na większe odległości. Główna zaleta tych kabli polega na ich zdolności do redukcji zakłóceń elektromagnetycznych, co jest szczególnie ważne w kontekście długich tras sygnałowych. Dzięki zastosowaniu dwóch przewodów sygnałowych, które przesyłają sygnał w przeciwnych fazach, kable symetryczne eliminują wpływ zakłóceń zewnętrznych, co zapewnia czystość dźwięku i stabilność sygnału. Przykładem zastosowania mogą być instalacje nagłośnieniowe na koncertach, gdzie kable symetryczne są powszechnie używane do łączenia mikrofonów z mikserami audio, zwłaszcza w przypadku dużych odległości. W branży audio stosuje się standardy takie jak AES/EBU i XLR, które są typowymi złączami dla kabli symetrycznych. W praktyce, wybór kabli symetrycznych jest zgodny z najlepszymi praktykami, które zalecają ich stosowanie wszędzie tam, gdzie jakość sygnału i odporność na zakłócenia są kluczowe dla sukcesu technicznego występu lub nagrania.

Pytanie 16

Multiswitche umożliwiają

A. wybór programów telewizyjnych do odbioru.
B. stworzenie systemu antenowego z dowolną ilością gniazd do odbioru.
C. zmianę kąta azymutu anteny.
D. sterowanie wszystkimi torami satelitarnymi.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Multiswitche to urządzenia stosowane w systemach telewizji satelitarnej, które umożliwiają rozdzielenie sygnału satelitarnego na wiele gniazd odbiorczych. Dzięki nim można zbudować instalację antenową o dowolnej liczbie odbiorników, co jest szczególnie przydatne w dużych obiektach, takich jak bloki mieszkalne czy hotele. Multiswitch pozwala na podłączenie wielu dekoderów do jednego talerza satelitarnego. W praktyce oznacza to, że mieszkańcy mogą korzystać z różnych programów telewizyjnych bez potrzeby instalacji osobnych anten. Warto podkreślić, że dobrze zaprojektowana instalacja z użyciem multiswitchy powinna uwzględniać odpowiednie normy, takie jak EN 50083-2, które dotyczą parametrów technicznych systemów rozdzielających sygnały. Właściwe dobranie multiswitcha oraz jego konfiguracja mogą zadecydować o jakości odbioru i stabilności sygnału w różnych warunkach użytkowania.

Pytanie 17

W osiedlowym szlabanie uszkodzony został pilot zdalnego sterowania działający w systemie Keeloq. Konieczna jest jego wymiana na pilot

A. jakikolwiek stałokodowy
B. jakikolwiek zmiennokodowy
C. uniwersalny (samouczący)
D. jedynie dostarczony przez producenta szlabanu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi "wyłącznie dostarczony przez producenta szlabanu" jest właściwy, ponieważ systemy zdalnego sterowania, takie jak Keeloq, często są zaprojektowane do pracy z określonymi pilotami, które są dostarczane przez producenta. System Keeloq oparty jest na technologii kodowania zmiennego, co oznacza, że piloty są programowane do współpracy z danym urządzeniem, zapewniając maksymalne bezpieczeństwo i niezawodność. Użycie uniwersalnych pilotów lub pilotów stałokodowych może prowadzić do problemów z kompatybilnością, a nawet do naruszenia bezpieczeństwa, ponieważ mogą nie być w stanie poprawnie zidentyfikować sygnałów lub mogą być podatne na nieautoryzowane kopiowanie sygnałów. Przykładem zastosowania tego podejścia jest system zabezpieczeń w parkingach, gdzie korzystanie z pilotów dostarczonych przez producenta zapobiega nieautoryzowanemu dostępowi. W przypadku uszkodzenia pilota, zaleca się kontakt z producentem w celu uzyskania oryginalnych komponentów, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 18

Podczas montażu komponentów elektronicznych metodą lutu miękkiego nie powinno się

A. zajmować się czystością grota
B. ustalać czasu lutowania do poszczególnych miejsc na płytce
C. dostosowywać temperatury lutowania do konkretnej lokalizacji na płytce
D. przenosić lutowia na końcówce grota

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przenoszenie lutowia na grocie lutownicy jest praktyką, której należy unikać, ponieważ może prowadzić do wielu problemów związanych z jakością lutowania. Grota lutownicy powinna być czysta i odpowiednio nagrzana, aby zapewnić skuteczne i trwałe połączenie. Przenoszenie lutowia na grocie zwiększa ryzyko powstawania zanieczyszczeń, co może negatywnie wpłynąć na jakość lutowia i prowadzić do wadliwych połączeń. Zgodnie z najlepszymi praktykami, lutowie powinno być aplikowane bezpośrednio na złącze, a nie na grot. Przykładem dobrego zachowania w tym zakresie jest technika tzw. 'wstępnego podgrzewania' elementów, co zwiększa efektywność procesu lutowania oraz redukuje ryzyko przegrzania. Kolejnym aspektem jest używanie lutowia o odpowiednim składzie, które dobrze wtopi się w materiały bez tworzenia nadmiernych osadów, co z kolei pomoże w uzyskaniu czystego i mocnego połączenia.

Pytanie 19

Urządzenie pozwalające na podłączenie większej ilości czujników do systemu alarmowego nosi nazwę

A. modułu ETHM
B. ekspandera wejść
C. ekspandera wyjść
D. modułu GSM

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ekspander wejść jest urządzeniem, które umożliwia podłączenie do centrali alarmowej większej liczby czujników, co jest kluczowe w rozbudowanych systemach zabezpieczeń. Jego głównym zadaniem jest zwiększenie liczby dostępnych wejść, umożliwiając tym samym jednoczesne monitorowanie różnych stref lub obiektów. W praktyce, jeśli mamy do czynienia z obiektem o dużym metrażu, gdzie standardowa centrala alarmowa nie ma wystarczającej liczby wejść, wykorzystanie ekspandera wejść pozwala na łatwe i efektywne dostosowanie systemu do indywidualnych potrzeb. W kontekście standardów branżowych, ekspandery są zgodne z normami EN 50131, które regulują bezpieczeństwo systemów alarmowych. Dodatkowo, ich zastosowanie w systemach inteligentnego budynku umożliwia integrację z innymi urządzeniami, co zwiększa funkcjonalność oraz elastyczność całego systemu zabezpieczeń. Przykładem może być sytuacja, w której dodatkowe czujniki ruchu są instalowane w różnych pomieszczeniach, co pozwala na skuteczniejsze monitorowanie i szybsze reagowanie na potencjalne zagrożenia.

Pytanie 20

Zawartość pamięci EPROM może zostać utracona w wyniku

A. braku napięcia zasilającego
B. bezpośredniego wpływu promieni słonecznych
C. obniżenia napięcia zasilającego poniżej 2,5 V
D. niesprawnego układu odświeżającego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bezpośrednie działanie promieni słonecznych może prowadzić do uszkodzenia pamięci EPROM, ponieważ te układy są wrażliwe na promieniowanie UV. EPROM (Erasable Programmable Read-Only Memory) stosuje się w sytuacjach, w których potrzebne jest wielokrotne programowanie układu, a jego zawartość można usunąć poprzez naświetlanie promieniami UV. W praktyce oznacza to, że jeśli pamięć EPROM jest wystawiona na działanie intensywnego światła słonecznego, istnieje ryzyko, że dane zostaną przypadkowo usunięte. Z tego powodu w zastosowaniach przemysłowych i elektronicznych często stosuje się obudowy chroniące te pamięci przed bezpośrednim działaniem światła. Warto również zaznaczyć, że standardy dotyczące przechowywania urządzeń elektronicznych zalecają unikanie ekspozycji na silne źródła światła, aby zapewnić trwałość i wiarygodność przechowywanych danych. Zrozumienie tego zjawiska jest kluczowe dla inżynierów zajmujących się projektowaniem systemów elektronicznych, w których wykorzystuje się pamięci EPROM.

Pytanie 21

Jaki czujnik pozwala na pomiar naprężeń mechanicznych w konstrukcjach?

A. Czujnik pojemnościowy
B. Czujnik tensometryczny
C. Czujnik magnetyczny
D. Czujnik hallotronowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik tensometryczny jest specjalistycznym urządzeniem, które umożliwia pomiar naprężeń mechanicznych w elementach konstrukcyjnych poprzez wykorzystanie zasady zmiany oporu elektrycznego pod wpływem odkształceń. Tensometry działają na bazie efektu tensometrycznego, gdzie cienkie przewody lub folia, umieszczone na powierzchni mierzonego elementu, zmieniają swoją rezystancję w zależności od odkształceń mechanicznych. Przykłady zastosowania czujników tensometrycznych obejmują monitorowanie naprężeń w mostach, budynkach oraz innych konstrukcjach inżynierskich, co pozwala na wczesne wykrywanie uszkodzeń i zapewnia bezpieczeństwo użytkowników. Stanowią one integralną część systemów monitorowania strukturalnego, które są zgodne z normami, takimi jak ISO 3340, dotyczące oceny stanu technicznego obiektów. Dzięki ich wysokiej dokładności i niezawodności, czujniki tensometryczne są kluczowym narzędziem w inżynierii, umożliwiającym projektowanie bezpieczniejszych i bardziej efektywnych konstrukcji.

Pytanie 22

Na ekranie odbiornika OTV widoczna jest bardzo jasna linia pozioma, podczas gdy reszta ekranu pozostaje ciemna. W którym module odbiornika doszło do awarii?

A. W dekoderze kolorów
B. We wzmacniaczu p.cz. różnicowym fonii
C. W module odchylania poziomego
D. W module odchylania pionowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to blok odchylania pionowego, ponieważ opisany objaw, czyli jasna linia pozioma na ekranie, sugeruje problem w obszarze odpowiedzialnym za kontrolę odchylania obrazu w kierunku pionowym. W przypadku awarii tego bloku, sygnał odchylania pionowego nie jest prawidłowo przetwarzany, co prowadzi do niemożności skanowania obrazu w pionie, co z kolei skutkuje wyświetlaniem tylko poziomej linii. Tego typu problem jest typowy dla uszkodzeń w układach analogowych, gdzie niewłaściwe napięcia lub przerwy w obwodzie mogą całkowicie zablokować sygnał. W praktyce, diagnostyka takich usterek wymaga użycia oscyloskopu do analizy sygnałów odchylających oraz pomiaru napięć w kluczowych punktach obwodu, co pozwala na szybkie zlokalizowanie problemu. W branży elektronicznej standardowe procedury naprawcze zalecają wymianę uszkodzonych komponentów, takich jak kondensatory czy tranzystory, aby przywrócić prawidłowe działanie odbiornika.

Pytanie 23

Jak nazywa się jednostka mocy pozornej?

A. war.
B. wat.
C. watogodzina.
D. woltoamper.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Woltoamper (VA) jest jednostką mocy pozornej, która odnosi się do sumy mocy czynnej i mocy biernej w obwodach prądu przemiennego. W przeciwieństwie do wata, która mierzy moc czynną i uwzględnia jedynie energię, która jest rzeczywiście wykorzystywana do pracy, woltoamper uwzględnia także moc, która jest 'stracona' w systemie w wyniku opóźnień fazowych pomiędzy prądem a napięciem. W przypadku obwodów z indukcyjnościami lub pojemnościami, moc pozorna jest istotna dla określenia potrzebnych zabezpieczeń oraz wymagań dotyczących transformatorów i urządzeń, gdyż może wpływać na ich wydajność i żywotność. Przykładami zastosowania mocy pozornej są instalacje elektryczne w przemyśle, gdzie ważne jest, aby rozważać zarówno moc czynną, jak i bierną w celu zoptymalizowania efektywności energetycznej. Zgodnie z normami IEC, poprawne obliczenie mocy pozornej jest kluczowe dla projektowania systemów, które minimalizują straty energii.

Pytanie 24

W trakcie konserwacji działającego zasilacza komputerowego należy

A. oczyścić elementy chłodzące
B. zmienić elementy chłodzące
C. wyczyścić styki mikroprocesora sterującego
D. wymienić kondensatory filtrujące

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyczyścić elementy chłodzące zasilacza komputerowego to kluczowy krok w konserwacji, który ma na celu zapewnienie odpowiedniej cyrkulacji powietrza oraz efektywnego odprowadzania ciepła. W miarę użytkowania zasilacza, wentylatory i radiatory mogą zbierać kurz i inne zanieczyszczenia, co prowadzi do obniżenia wydajności chłodzenia. Wysoka temperatura wewnętrzna może skrócić żywotność podzespołów zasilacza, takich jak tranzystory czy kondensatory. Regularne czyszczenie elementów chłodzących, zgodnie z zaleceniami producentów oraz standardami branżowymi, takimi jak IPC-A-610, jest zatem nie tylko zalecane, ale wręcz niezbędne. Należy używać odpowiednich narzędzi, takich jak sprężone powietrze, aby uniknąć uszkodzenia elementów podczas czyszczenia. Przykładowo, czyszczenie zasilacza co kilka miesięcy w warunkach domowych, zwłaszcza w miejscach o dużym zapyleniu, może znacząco wpłynąć na jego niezawodność i stabilność energetyczną systemu komputerowego.

Pytanie 25

W tabeli przedstawiono fragment danych technicznych bezprzewodowego czujnika temperatury. Określ, który z czynników może wpływać na niewłaściwą pracę czujnika.

DANE TECHNICZNE
Pasmo częstotliwości pracy868,0 MHz ÷ 868,6 MHz
Zasięg komunikacji radiowej (w terenie otwartym)do 500 m
Zasilaniebateria litowa CR123A 3 V
Czas pracy na bateriiokoło 3 lata
Pobór prądu w stanie gotowości50 μA
Maksymalny pobór prądu16 mA
Dokładność pomiaru temperatury±2%
Zakres temperatur pracy-10 °C...+55 °C
Maksymalna wilgotność93±3%
Wymiary obudowy24 x 110 x 27 mm
Waga56 g

A. Zakres zmian temperatury 15°C÷30°C.
B. Napięcie zasilania czujnika 2,9 V.
C. Odbiornik słuchawek bezprzewodowych 433 MHz.
D. Obce źródło fal radiowych 868 MHz.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obce źródło fal radiowych 868 MHz jest kluczowym czynnikiem, który może wpływać na niewłaściwą pracę czujnika temperatury. Czujniki bezprzewodowe komunikują się za pomocą fal radiowych, a ich prawidłowe działanie zależy od braku zakłóceń w paśmie częstotliwości, na którym operują. W przypadku tego czujnika, który działa na częstotliwości 868 MHz, każde zewnętrzne źródło fal radiowych w tym samym zakresie może prowadzić do interferencji. Przykładem zastosowania tego czujnika może być monitorowanie temperatury w różnych środowiskach, np. w inteligentnych domach lub w przemyśle. W takich zastosowaniach istotne jest, aby czujniki były odporne na zakłócenia, co można osiągnąć poprzez zastosowanie technologii komunikacji, takich jak LoRa czy Zigbee. Standardy te przewidują odpowiednie protokoły, które minimalizują ryzyko zakłóceń ze strony innych urządzeń. W związku z tym, projektując systemy monitorowania, warto zwracać uwagę na dobór odpowiednich częstotliwości oraz na obecność potencjalnych źródeł zakłóceń, co pozwoli na zapewnienie stabilności i dokładności pomiarów.

Pytanie 26

PAL B/G, PAL, SECAM, NTSC - jakie skróty dotyczą?

A. metod kodowania sygnału AUDIO
B. metod kodowania kolorów w sygnale telewizyjnym
C. nazwa szyn systemowych mikrokontrolera 8051
D. nazwa obszarów w półprzewodnikach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Skróty PAL, NTSC, SECAM i PAL B/G odnoszą się do standardów kodowania kolorów, które określają sposób przesyłania sygnału wizji w telewizji. Te standardy różnią się między sobą nie tylko w zakresie formatów obrazu, ale także w metodach modulacji i parametrach technicznych, co wpływa na jakość odbioru i kompatybilność między różnymi urządzeniami. Na przykład, NTSC jest używany głównie w Stanach Zjednoczonych i Japonii, gdzie sygnał telewizyjny jest przesyłany w formacie o 30 klatkach na sekundę. Z kolei PAL jest stosowany w Europie i wielu innych regionach, oferując 25 klatek na sekundę oraz wyższą jakość kolorów dzięki lepszemu rozwiązaniu problemu z synchronizacją. SECAM, który jest używany we Francji i niektórych krajach afrykańskich, różni się od PAL i NTSC zarówno w sposobie kodowania kolorów, jak i metodzie przesyłania sygnału. Znajomość tych standardów jest kluczowa w kontekście projektowania systemów audio-wideo oraz w rozwoju technologii telewizyjnych. Przykładowo, przy projektowaniu urządzeń do odbioru telewizji cyfrowej, inżynierowie muszą zadbać o kompatybilność z różnymi standardami, co bezpośrednio wpływa na jakość odbioru i zadowolenie użytkowników.

Pytanie 27

Jaką rolę w systemie monitoringu pełni UPS?

A. Zarządza pracą
B. Rejestruje obraz
C. Gwarantuje zasilanie
D. Nadzoruje działanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
UPS (Uninterruptible Power Supply) odgrywa kluczową rolę w systemach monitoringu, zapewniając stabilne zasilanie dla urządzeń, takich jak kamery, rejestratory i inne komponenty systemu. W przypadku przerwy w dostawie prądu, UPS automatycznie przechodzi w tryb zasilania awaryjnego, co zapobiega utracie danych oraz zapewnia ciągłość działania systemu monitoringu. Dobrą praktyką jest stosowanie UPS-ów z odpowiednim czasem pracy na baterii, aby umożliwić płynne zakończenie rejestracji oraz zapobiec uszkodzeniom sprzętu. Dodatkowo, UPS-y często wyposażone są w funkcje zarządzania energią, pozwalające na monitorowanie stanu baterii i obciążenia, co zwiększa efektywność energetyczną. Wybór odpowiedniego UPS powinien być zgodny z normami branżowymi, takimi jak IEC 62040, które definiują wymagania dla systemów UPS w kontekście niezawodności i bezpieczeństwa.

Pytanie 28

Podstawowym celem hermetycznej obudowy urządzenia elektronicznego z tworzywa sztucznego jest zapewnienie właściwej odporności tego urządzenia na wpływ

A. przepięć
B. wilgoci
C. wysokiej temperatury
D. pól elektromagnetycznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obudowa hermetyczna w urządzeniach elektronicznych, zrobiona z tworzywa sztucznego, jest bardzo ważna, bo chroni je przed różnymi warunkami atmosferycznymi. Jej podstawowym zadaniem jest ochrona przed wilgocią, co jest kluczowe, kiedy urządzenia mogą mieć kontakt z wodą lub w wysokiej wilgotności. Jeśli obudowa jest dobrze zaprojektowana, to spełnia normy, takie jak te od IP67, które pokazują, jak dobrze urządzenie jest zabezpieczone przed wodą oraz innymi zanieczyszczeniami. Można to zobaczyć na przykład w smartfonach czy zegarkach sportowych, które narażone są na deszcz czy pot. W przemyśle morskim i budowlanym hermetyzacja to standard, bo to zapewnia, że urządzenia działają prawidłowo w trudnych warunkach. Ważne jest, żeby używać odpowiednich materiałów i technologii uszczelniania, jak silikonowe uszczelki, bo to naprawdę pomaga w ochronie przed wilgocią. Moim zdaniem, producenci powinni też regularnie testować szczelność obudów, bo to wydłuży ich żywotność.

Pytanie 29

Aby zrealizować instalację anteny TV na zewnątrz budynku, należy użyć przewodu antenowego w osłonie

A. z PE o impedancji 75 Ω
B. z PVC o impedancji 50 Ω
C. z PVC o impedancji 75 Ω
D. z PE o impedancji 50 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "z PE o impedancji 75 Ω" jest poprawna, ponieważ przewód antenowy do instalacji telewizyjnej powinien mieć impedancję 75 Ω, co jest standardem dla większości systemów telewizyjnych. Użycie przewodu z materiału PE (polietylen) zapewnia dodatkową odporność na warunki atmosferyczne, co jest kluczowe w przypadku zastosowań zewnętrznych. Przewody te są w stanie znieść działanie promieni UV oraz wilgotność, co wydłuża ich żywotność. Na przykład, w instalacjach satelitarnych oraz antenowych do odbioru telewizji kablowej wykorzystuje się głównie przewody o impedancji 75 Ω, aby zminimalizować straty sygnału i zapewnić wysoką jakość odbioru. Przestrzeganie tych standardów jest kluczowe dla efektywności systemu, co potwierdzają normy branżowe dotyczące instalacji telewizyjnych. Zastosowanie wysokiej jakości przewodów z PE poprawia również stabilność sygnału oraz zmniejsza ryzyko zakłóceń zewnętrznych.

Pytanie 30

Elementy urządzeń elektronicznych przeznaczone do recyklingu nie powinny być

A. oddzielane od obudowy z materiałów sztucznych
B. demontowane ręcznie, jeśli są wykonane z stali lub aluminium
C. składowane w pomieszczeniach bezpośrednio na podłożu
D. demontowane ręcznie, w przypadku gdy zawierają wysoką ilość metali szlachetnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gromadzenie elementów urządzeń elektronicznych bezpośrednio na ziemi jest niewłaściwe i sprzeczne z zasadami ochrony środowiska oraz dobrymi praktykami recyklingu. Tego rodzaju praktyka może prowadzić do zanieczyszczenia gleby i wód gruntowych, a także zwiększać ryzyko kontaktu z substancjami niebezpiecznymi, które mogą występować w tych urządzeniach, takimi jak ołów, rtęć czy kadm. Właściwe gromadzenie odpadów elektronicznych powinno odbywać się w dedykowanych pomieszczeniach lub pojemnikach, które są odpowiednio przystosowane do przechowywania tego typu materiałów. Zgodnie z dyrektywami Unii Europejskiej dotyczącymi zużytego sprzętu elektrycznego i elektronicznego (WEEE), odpady te powinny być zbierane w sposób, który minimalizuje ich wpływ na środowisko. W praktyce oznacza to konieczność korzystania z odpowiednich systemów zbierania i transportu, które zapewniają bezpieczeństwo zarówno dla ludzi, jak i dla środowiska.

Pytanie 31

Podczas hibernacji komputera zachodzi

A. przełączanie na zasilanie z UPS.
B. zamknięcie systemu.
C. reset systemu.
D. zapisanie zawartości pamięci na dysku twardym.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Hibernacja systemu komputerowego to proces, w którym zawartość pamięci operacyjnej (RAM) jest zapisywana na dysku twardym w celu oszczędzania energii, a następnie system może zostać wyłączony. Ta metoda jest szczególnie przydatna w laptopach oraz urządzeniach mobilnych, gdzie długotrwałe użytkowanie na baterii ma kluczowe znaczenie. Po wznowieniu pracy, system odtworzy stan, w jakim został wstrzymany, przywracając wszystkie otwarte aplikacje i dokumenty. Hibernacja różni się od usypiania, gdzie dane w pamięci są zachowywane tylko na czas aktywnego stanu, przy minimalnym zużyciu energii. W standardach zarządzania energią, taki jak ACPI (Advanced Configuration and Power Interface), hibernacja jest zalecana jako efektywne rozwiązanie do zarządzania mocą, które pozwala na długotrwałe przechowywanie stanu systemu bez potrzeby ciągłego zasilania. Przykładem zastosowania hibernacji może być moment, gdy użytkownik planuje dłuższą przerwę od pracy i chce wrócić do tego samego miejsca w systemie bez utraty postępów.

Pytanie 32

Jakiego rodzaju układ scalony jest oznaczany symbolem UCY7400?

A. Analogowy wykonany w technologii CMOS
B. Cyfrowy wykonany w technologii TTL
C. Analogowy wykonany w technologii TTL
D. Cyfrowy wykonany w technologii CMOS

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układ scalony oznaczany jako UCY7400 to prosto mówiąc, cyfrowy układ logiczny, zaprojektowany w technologii TTL, czyli Transistor-Transistor Logic. To, co jest fajne w TTL, to jego szybki czas przełączania. Dzięki temu, układy TTL są często używane tam, gdzie potrzebna jest błyskawiczna reakcja na sygnały. UCY7400 działa jako układ bramek NAND, co pozwala mu wykonywać różne operacje w logice cyfrowej. To czyni go takim podstawowym elementem w projektowaniu różnych układów cyfrowych. Możesz go używać do budowy prostych układów, jak sumatory, rejestry, czy porównywacze, które są naprawdę przydatne w systemach elektronicznych. W elektronice, TTL znalazł swoje miejsce w systemach wbudowanych i w edukacji, bo świetnie ukazuje podstawy logiki cyfrowej. Co więcej, technologia TTL jest bardziej odporna na zakłócenia i stabilniejsza w różnych temperaturach, co ma duże znaczenie w wielu branżach przemysłowych i handlowych.

Pytanie 33

Która forma transmisji sygnału jest najbardziej odporna na zakłócenia elektromagnetyczne?

A. skrętki ekranowanej
B. skrętki nieekranowanej
C. światłowodu
D. kabla koncentrycznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Transmisja sygnału za pośrednictwem światłowodu jest uważana za najbardziej odporną na zakłócenia elektromagnetyczne, co wynika z samej natury światłowodów. Sygnał przesyłany w światłowodach oparty jest na zjawisku całkowitego wewnętrznego odbicia światła, co sprawia, że sygnał nie jest narażony na zakłócenia elektromagnetyczne, jakie mogą wpływać na transmisję w przewodach miedzianych. W praktyce oznacza to, że światłowody są idealnym rozwiązaniem w środowiskach, gdzie występują silne źródła zakłóceń, takie jak w pobliżu dużych maszyn przemysłowych czy nadajników radiowych. Przykładem zastosowania światłowodów są sieci telekomunikacyjne oraz systemy informacyjne w dużych miastach, gdzie niezawodność i jakość transmisji danych są kluczowe. Zgodnie z normami ITU-T G.652 oraz G.657, światłowody zapewniają wysoką przepustowość i niskie tłumienie sygnału, co czyni je standardem w nowoczesnych instalacjach telekomunikacyjnych.

Pytanie 34

Kamera, działająca w systemie monitoringu wizyjnego, która jest umieszczona na zewnątrz i rejestruje obraz w każdych warunkach, powinna być wyposażona w

A. oświetlacz IR
B. obiektyw szerokokątny
C. obudowę z plastiku
D. obudowę metalową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oświetlacz IR to naprawdę ważny element w kamerach do monitoringu, zwłaszcza tych na zewnątrz. Dzięki niemu możemy nagrywać obrazy nawet w ciemnościach, bo chociaż to światło jest niewidoczne dla nas, kamery to widzą. To jest mega przydatne, szczególnie na parkingach czy w ogrodach, gdzie czasami jest naprawdę ciemno. Takie oświetlacze pomagają kamerom działać dobrze w różnych warunkach i są uwzględnione w normach branżowych, jak EN 50132. Dzięki nim monitoring może być efektywny przez całą dobę, co ratuje nas w różnych sytuacjach, poprawiając bezpieczeństwo na terenie, który obserwujemy. Można powiedzieć, że to kluczowy element w całym systemie.

Pytanie 35

Jakie urządzenie jest łączone za pomocą interfejsu SATA?

A. napęd dyskietek
B. karta graficzna
C. dysk twardy
D. drukarka

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Interfejs SATA (Serial ATA) jest standardem używanym do podłączania urządzeń pamięci masowej, głównie dysków twardych oraz dysków SSD, do płyty głównej komputera. Dzięki swojej architekturze, SATA oferuje znaczące zalety w porównaniu do starszych rozwiązań, takich jak PATA (Parallel ATA). Prędkość transferu danych za pomocą SATA jest znacznie wyższa, co jest kluczowe w przypadku nowoczesnych dysków o dużej pojemności. Na przykład, SATA III, który jest najnowszą wersją tego standardu, pozwala na transfer danych z prędkością do 6 Gb/s. W praktyce oznacza to szybsze ładowanie systemu operacyjnego i aplikacji, a także efektywniejszą pracę z dużymi plikami multimedialnymi. Dobre praktyki branżowe zalecają stosowanie interfejsu SATA w większości nowoczesnych systemów komputerowych, zarówno w komputerach stacjonarnych, jak i laptopach. Warto również zauważyć, że standard SATA jest szeroko stosowany nie tylko w komputerach osobistych, ale także w serwerach i systemach nas, co potwierdza jego uniwersalność i niezawodność.

Pytanie 36

Jaką czujkę powinno się zastosować, aby sygnalizować otwarcie drzwi?

A. Podczerwieni
B. Ultradźwiękową
C. Mikrofalową
D. Kontaktronową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujka kontaktronowa jest najodpowiedniejszym rozwiązaniem do sygnalizacji otwarcia drzwi, ponieważ wykorzystuje zasadę działania, która opiera się na zbliżeniu dwóch styków magnetycznych. Gdy drzwi się otwierają, magnes umieszczony na drzwiach oddala się od styków, co powoduje ich rozłączenie. Taki mechanizm jest niezwykle niezawodny i często stosowany w systemach alarmowych oraz zabezpieczeniach budynków. Kontaktrony charakteryzują się prostotą instalacji oraz niskim zużyciem energii, co czyni je idealnym rozwiązaniem w przypadku monitorowania otwarcia drzwi. W praktyce czujki te można znaleźć w różnych aplikacjach, od domowych systemów alarmowych po zabezpieczenia w obiektach komercyjnych. Dobrą praktyką jest także ich integracja z systemami automatyki budynkowej, co zwiększa komfort użytkowania oraz efektywność zabezpieczeń. Warto podkreślić, że kontaktrony są zgodne z normami branżowymi dotyczącymi bezpieczeństwa i ochrony, co potwierdza ich skuteczność i powszechną akceptację w branży.

Pytanie 37

Gdy zachodzi potrzeba połączenia światłowodu ze skrętką, co należy użyć?

A. wzmacniak
B. koncentrator
C. router
D. konwerter

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Konwerter to urządzenie, które umożliwia interakcję między różnymi typami mediów transmisyjnych, w tym wypadku między światłowodem a skrętką. Światłowód transmituje dane za pomocą światła, co zapewnia znacznie większe prędkości oraz mniejsze straty sygnału na długich dystansach w porównaniu do skrętki, która wykorzystuje sygnał elektryczny. W praktyce, konwertery światłowodowe są często stosowane w sieciach komputerowych, gdzie metrów kabli światłowodowych nie można bezpośrednio podłączyć do urządzeń korzystających z kabli miedzianych. Przy użyciu konwertera można zrealizować połączenie, które łączy różne segmenty sieci, na przykład w biurach czy dużych obiektach. Standardy, takie jak IEEE 802.3, uwzględniają konwertery w kontekście budowy nowoczesnych sieci, co czyni je istotnym elementem infrastruktury. Dodatkowo, korzystanie z konwerterów pozwala na elastyczne rozbudowywanie sieci oraz adaptację do różnych wymagań technologicznych.

Pytanie 38

Zakres częstotliwości, podany w dokumentacji technicznej wzmacniacza, to

A. suma częstotliwości granicznych górnej i dolnej
B. różnica między częstotliwością graniczną górną a dolną
C. częstotliwość graniczna dolna
D. częstotliwość graniczna górna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pasmo przenoszenia wzmacniacza to taki zakres częstotliwości, w jakim działa on najlepiej. Można to opisać jako różnicę między górną a dolną częstotliwością graniczną. Tak więc, odpowiedź, którą wybrałeś, jest jak najbardziej trafna. W praktyce jest to mega ważne dla osób projektujących systemy audio, telekomunikacyjne czy inne urządzenia elektroniczne, gdzie jakość sygnału jest kluczowa. Na przykład, wzmacniacze audio zazwyczaj mają pasmo przenoszenia od 20 Hz do 20 kHz, co jest zbliżone do tego, co jesteśmy w stanie usłyszeć. Wzmacniacze operacyjne także mają swoje pasma, które trzeba zawsze brać pod uwagę przy projektach układów. Zrozumienie pasma przenoszenia naprawdę pomaga w optymalizacji projektów i eliminacji zniekształceń, co jest zgodne z tym, co powinno być w dobrym inżynieryjnym podejściu.

Pytanie 39

Aby zbadać ciągłość żył w przewodzie teletechnicznym, należy zastosować

A. galwanometr
B. woltomierz
C. omomierz
D. częstościomierz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Omomierz to super przyrząd do mierzenia oporu elektrycznego, a to znaczy, że jest świetny do sprawdzania, czy żyły w przewodzie teletechnicznym działają tak, jak powinny. Z mojego doświadczenia, sprawdzanie ciągłości żył jest naprawdę ważne, bo jak będą jakieś przerwy, to cała instalacja teletechniczna może po prostu nie działać. Kiedy używasz omomierza, możesz zmierzyć opór między końcami przewodów; jeśli wartość jest bliska zeru, to wiadomo, że przewód działa jak trzeba. Warto też pamiętać, że standardy takie jak IEC 61010 mówią, jak istotny jest pomiar oporu dla bezpieczeństwa instalacji elektrycznych. Dobrze jest też robić takie pomiary przed włączeniem systemu oraz regularnie je kontrolować, żeby uniknąć problemów później. Ogólnie mówiąc, omomierz to jedno z tych narzędzi, które naprawdę szybko pomogą zdiagnozować problemy z ciągłością, a to może zaoszczędzić czas i kasę na przyszłość.

Pytanie 40

Czy światło słoneczne może doprowadzić do utraty danych w pamięci rodzaju

A. DRAM
B. SDRAM
C. EEPROM
D. EPROM

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
EPROM (Erasable Programmable Read-Only Memory) to rodzaj pamięci, która może być programowana oraz kasowana za pomocą światła ultrafioletowego. W przeciwieństwie do pamięci EEPROM czy DRAM, EPROM jest pamięcią nieulotną, co oznacza, że zachowuje swoje dane nawet po odłączeniu zasilania. Jednakże, jej zawartość można usunąć poprzez wystawienie na działanie promieniowania UV. To sprawia, że EPROM jest stosunkowo łatwa do kasowania i programowania, co jest przydatne w aplikacjach, gdzie dane muszą być często aktualizowane, ale również wymagają długoterminowego przechowywania. Przykład zastosowania EPROM to w systemach wbudowanych, gdzie może być używana do przechowywania oprogramowania, które wymaga aktualizacji. W branży elektronicznej, standardy zalecają stosowanie pamięci EPROM w urządzeniach, które nie wymagają częstej wymiany danych, ale potrzebują elastyczności w programowaniu. Cały proces programowania i kasowania jest zgodny z dobrymi praktykami inżynierskimi, zapewniając długowieczność i niezawodność sprzętu.