Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 19 kwietnia 2025 12:01
  • Data zakończenia: 19 kwietnia 2025 12:38

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie wykorzystuje się do określenia temperatury krzepnięcia płynu solarnego?

A. manometr
B. higrometr
C. refraktometr
D. rotametr
Refraktometr jest urządzeniem używanym do pomiaru wskaźnika załamania światła, co umożliwia określenie stężenia substancji rozpuszczonych w cieczy. W kontekście płynów solarnych, refraktometr jest szczególnie przydatny do pomiaru temperatury zamarzania, ponieważ pozwala na precyzyjne określenie właściwości płynów, takich jak ich stężenie glikolu. Wysokiej jakości refraktometry wykorzystywane w aplikacjach solarnych są skalibrowane w odpowiednich zakresach temperatur, co czyni je niezastąpionym narzędziem w ocenie efektywności systemów solarnych. Dzięki zastosowaniu refraktometru, inżynierowie mogą monitorować właściwości płynów roboczych, co jest kluczowe dla utrzymania optymalnych warunków pracy instalacji. Zrozumienie, jak zmienia się gęstość i inne właściwości cieczy w różnych temperaturach, ma bezpośredni wpływ na wydajność systemów solarnych. W branży energetycznej, przestrzeganie standardów i dobrych praktyk pomiarowych jest kluczowe dla zapewnienia niezawodności systemów, a refraktometr stanowi narzędzie do osiągnięcia tych celów.

Pytanie 2

W instalacji grzewczej zasilanej energią słoneczną, która jest użytkowana bez przegrzewania, wymiana płynu solarnego na bazie glikolu powinna odbywać się co

A. 3 lata
B. 5 lat
C. 8 lat
D. 7 lat
Jeżeli chodzi o wymianę płynu solarnego, to warto wiedzieć, że powinna ona odbywać się co 5 lat. To nie jest tylko przypadkowa liczba. Chodzi o to, że glikol, który jest używany, ma swoje właściwości chemiczne i termiczne, które z czasem mogą się pogarszać. Oprócz transportu ciepła, glikol chroni instalację przed zamarzaniem i korozją. Gdy zbyt długo go nie wymieniamy, może dojść do jego degradacji, co wpływa na efektywność całego systemu. Dlatego lepiej zadbać o regularną wymianę co pięć lat, żeby wszystko działało jak należy. Takie zalecenia są zgodne z normami i doświadczeniami profesjonalistów z branży. Warto więc pamiętać, że to kluczowe dla długotrwałej efektywności systemu grzewczego, a także dla jego bezpieczeństwa.

Pytanie 3

Wskaźnik efektywności energetycznej pompy ciepła COP wynoszący 4 wskazuje, że dostarczając

A. 4 kWh energii elektrycznej do pracy pompy ciepła można uzyskać 1 kWh ciepła
B. 1 kWh energii elektrycznej do pracy pompy ciepła można uzyskać 4 kWh energii cieplnej
C. 1 kWh energii cieplnej do pracy pompy ciepła można uzyskać 4 kWh energii elektrycznej
D. 4 kWh energii cieplnej do pracy pompy ciepła można uzyskać 1 kWh energii elektrycznej
Nieprawidłowe odpowiedzi na pytanie dotyczące wskaźnika COP pompy ciepła opierają się na błędnym rozumieniu działania tych urządzeń. Wysoka wartość COP, jak w przypadku równania 4, oznacza efektywność przekładającą się na ilość ciepła uzyskanego w stosunku do ilości zużytej energii elektrycznej. Zrozumienie tego wskaźnika jest kluczowe dla oceny wydajności systemów grzewczych. Odpowiedzi sugerujące, że 1 kWh energii cieplnej można uzyskać poprzez zużycie 4 kWh energii elektrycznej są niepoprawne, ponieważ de facto wskazują na odwrotną sytuację, co prowadzi do znaczącego zafałszowania analizy efektywności energetycznej. Typowym błędem myślowym jest mylenie energii cieplnej z energią elektryczną oraz niedostateczne zrozumienie zasady działania pomp ciepła jako urządzeń przekształcających energię. Pompy ciepła działają na zasadzie przemiany energii z jednego źródła do innego, co sprawia, że ich efektywność można ocenić przez wskaźnik COP. Odpowiedzi, które twierdzą, że większa ilość energii elektrycznej jest potrzebna do uzyskania mniejszej ilości energii cieplnej, są sprzeczne z zasadami termodynamiki oraz podstawowym celem pomp ciepła, którym jest maksymalizacja efektywności energetycznej. Aby uniknąć takich nieporozumień, ważne jest, aby zrozumieć, jak działają te systemy oraz jakie standardy i normy, takie jak EN 14511, regulują ich wydajność i sposób pomiaru. W edukacji na temat energii odnawialnej i efektywności energetycznej należy kłaść duży nacisk na poprawne interpretowanie wskaźników efektywności, aby odpowiednio ocenić i zastosować pompy ciepła w praktyce.

Pytanie 4

Jeśli całkowity opór cieplny przegrody wynosi 4,00 (m2-K)/W, to jaką wartość ma współczynnik przenikania ciepła?

A. 0,50 W/(m2K)
B. 0,25 W/(m2-K)
C. 0,35 W/(m2-K)
D. 0,10 W/(m2-K)
Współczynnik przenikania ciepła, oznaczany jako U, jest odwrotnością całkowitego oporu cieplnego R przegrody. Całkowity opór cieplny to suma oporów poszczególnych warstw materiałów budowlanych. Wzór na obliczenie współczynnika przenikania ciepła przedstawia się jako U = 1/R. W tym przypadku, mając całkowity opór cieplny R równy 4,00 (m2-K)/W, obliczamy U jako U = 1/4,00 = 0,25 W/(m2-K). W praktyce oznacza to, że przez każdy metr kwadratowy przegrody o tym oporze cieplnym przepływa 0,25 wata ciepła przy różnicy temperatur wynoszącej 1 K. Wartość współczynnika U ma istotne znaczenie w kontekście projektowania budynków, ponieważ pozwala ocenić efektywność energetyczną przegrody. Zgodnie z normami budowlanymi, niższe wartości U są pożądane, co wskazuje na lepsze właściwości izolacyjne. Przykładowo, w budynkach pasywnych współczynnik U dla ścian zewnętrznych nie powinien przekraczać 0,15 W/(m2-K).

Pytanie 5

W systemie, gdzie występuje grawitacyjny obieg czynnika grzewczego, nie spotka się

A. zawór odcinający
B. pompa obiegowa
C. zawór bezpieczeństwa
D. zawór zwrotny
Pompa obiegowa nie jest elementem instalacji grzewczej o grawitacyjnym obiegu czynnika grzewczego, ponieważ jej funkcją jest wymuszanie cyrkulacji wody w systemie. W instalacjach grawitacyjnych obieg czynnika grzewczego opiera się na różnicy gęstości pomiędzy ciepłą i zimną wodą. Gdy woda się nagrzewa, jej gęstość maleje, co powoduje, że unosi się ku górze, a zimniejsza woda, mająca większą gęstość, opada. Taki naturalny proces tworzy krąg obiegu wody, który nie wymaga wsparcia mechanicznego. W praktyce systemy grawitacyjne są stosowane w budynkach o prostych układach instalacyjnych, gdzie nie ma potrzeby stosowania pompy, co łączy się z niższymi kosztami eksploatacji i mniejszą awaryjnością. Zawory odcinające, zwrotne i bezpieczeństwa są natomiast istotnymi elementami tych instalacji, zapewniającymi kontrolę przepływu, ochronę przed cofaniem się wody oraz bezpieczeństwo całego systemu grzewczego.

Pytanie 6

Czujnik termostatyczny systemu "strażak" używany do ochrony kotłów na biomasę powinien być zamontowany

A. na obudowie podajnika
B. w czopuchu kotła
C. w podajniku ślimakowym
D. w komorze paleniskowej
Montaż czujnika termostatycznego w podajniku ślimakowym może wydawać się sensownym rozwiązaniem, jednak wiąże się z kilkoma istotnymi zagrożeniami. Przede wszystkim, podajnik może być miejscem o zmiennym cieple, gdzie temperatura materiału opałowego nie jest jednolita. W praktyce, czujnik umieszczony w takim miejscu może nie dostarczać precyzyjnych danych o temperaturze, co w efekcie prowadzi do niewłaściwego działania systemu zabezpieczeń. Ponadto, umiejscowienie czujnika w czopuchu kotła, gdzie odpływają gazy spalinowe, jest błędne, ponieważ temperatury w tym obszarze mogą być znacznie wyższe, co może prowadzić do fałszywych alarmów lub uszkodzenia czujnika. Montaż czujnika w komorze paleniskowej również jest nieodpowiedni, ponieważ ekstremalne warunki panujące w tym miejscu mogą zdemolować czujnik, co z kolei grozi poważnymi skutkami dla bezpieczeństwa systemu. Typowym błędem w myśleniu jest założenie, że czujnik termostatyczny można umieścić w dowolnym miejscu, byle tylko był blisko źródła ciepła. Tego typu podejście ignoruje zasady działania i odpowiednie normy, które jasno wskazują, że lokalizacja czujnika powinna sprzyjać stabilności i dokładności pomiarów, co jest kluczowe dla efektywnego i bezpiecznego działania systemów grzewczych.

Pytanie 7

Jakie będzie pierwsze następstwo utraty zasilania w instalacji solarnej podczas słonecznego dnia?

A. wrzenie wody w zbiorniku
B. przeciek płynu solarnego przez zawór bezpieczeństwa
C. zapowietrzenie systemu solarnego
D. wzrost temperatury płynu solarnego
Wzrost temperatury płynu w instalacji solarnej, gdy zasilanie gaśnie, to dość istotny temat. Kiedy jest słońce i panele produkują energię, płyn, który zazwyczaj jest mieszanką wody z glikolem, nagrzewa się pod wpływem promieni słonecznych. Normalnie, dzięki pompom, płyn krąży przez wymienniki ciepła i przekazuje energię do zbiornika. Ale gdy zniknie zasilanie, pompy stają się bezużyteczne, płyn się nie rusza i zaczyna się nagrzewać. To może prowadzić do przegrzania i nawet uszkodzenia sprzętu. Dlatego nowoczesne systemy mają czujniki temperatury i różne zabezpieczenia, które mogą reagować na zmiany temperatury, żeby minimalizować ryzyko uszkodzeń. Normy, jak EN 12975, dostarczają metod, które pomagają monitorować systemy solarne, co jest naprawdę ważne, żeby działały sprawnie przez dłuższy czas.

Pytanie 8

Wskaż gaz, który powinien być wykorzystywany do przewozu biomasy w formie pyłu?

A. Inertny
B. Ziemny
C. Węglowy
D. Błotny
Wybór gazu do transportu biomasy w postaci pyłu jest kluczowy, a odpowiedzi "Węglowy", "Ziemny" oraz "Błotny" są nieprawidłowe z kilku powodów. Gaz węglowy, będący często synonymem dla gazu ziemnego, może zawierać związki chemiczne, które reagują z biomateriałami, co stwarza ryzyko zapłonu. W przypadku biomasy, która jest organicznym materiałem łatwopalnym, obecność gazu węglowego może być niebezpieczna, zwłaszcza w zamkniętych systemach transportowych. Z kolei gaz ziemny jest złożonym węglowodorem, który również może prowadzić do niekontrolowanych reakcji chemicznych. Odpowiedzi "Błotny" i "Ziemny" wydają się w ogóle nie odnosić do standardów transportowych w kontekście biomasy. Gazy te nie są zwykle używane w przemyśle i mogą pozostawać w sferze nieprecyzyjnych terminów. W rzeczywistości, dla efektywnego transportu biomasy w postaci pyłu, kluczowe jest zastosowanie gazów neutralnych, które nie wchodzą w reakcje chemiczne z transportowanym materiałem. W przeciwnym razie, istnieje ryzyko nieprzewidywalnych reakcji, które mogą prowadzić do poważnych zagrożeń, w tym do pożarów. W przemyśle energetycznym oraz chemicznym, wybór odpowiednich mediów transportowych powinien być oparty na solidnych podstawach naukowych oraz przemysłowych standardach bezpieczeństwa.

Pytanie 9

Przed zainstalowaniem systemu solarnego dokonano pomiarów wewnątrz obiektu. Instalacji solarnych nie można realizować w technologii PEX/Al/PEX, ponieważ

A. warstwy polietylenowe mają słabe właściwości przewodzenia ciepła
B. nie są odporne na wysokie temperatury
C. brak jest odpowiednich złączek do połączenia z kolektorem
D. obecne w nich aluminium prowadzi do degradacji glikolu
Wybór nieodpowiednich materiałów do instalacji solarnych może prowadzić do poważnych problemów, co jest widoczne w proponowanych odpowiedziach. Warstwy polietylenu rzeczywiście mają swoje ograniczenia, ale nie jest prawdą, że źle przewodzą ciepło. Polietylen ma dobrą efektywność przewodzenia ciepła, co czyni go użytecznym w wielu aplikacjach. Niezastosowanie odpowiednich łączek nie jest również problemem, ponieważ rynek oferuje wiele rozwiązań dostosowanych do różnych technologii. Problemem przewodności ciepła nie jest brak łączek, lecz ich właściwości materiałowe. Z kolei degradacja glikolu, choć może być istotna w kontekście nieodpowiednich warunków temperaturowych, nie jest główną przyczyną, dla której rury PEX/Al/PEX są niewłaściwe do użycia. Kluczowym elementem jest odporność na wysokie temperatury, której te rury nie spełniają. Właściwy dobór materiałów powinien opierać się na ich właściwościach termicznych oraz zgodności z wymaganiami systemów OZE, co jest podstawą do zapewnienia efektywności i trwałości instalacji. Często błędy w myśleniu wynikają z niepełnego zrozumienia różnych aspektów technologii solarnej oraz specyfiki wykorzystywanych materiałów. Zrozumienie tych niuansów jest kluczowe dla sukcesu wszelkich projektów związanych z odnawialnymi źródłami energii.

Pytanie 10

Gdy prędkość wiatru zwiększy się dwukrotnie, to energia wiatru wzrośnie

A. dziesięciokrotnie
B. czterokrotnie
C. ośmiokrotnie
D. dwukrotnie
Prędkość wiatru ma kluczowe znaczenie dla obliczeń związanych z energią wiatrową, a niepoprawne odpowiedzi na to pytanie często wynikają z błędnego zrozumienia zależności między prędkością a energią. Wiele osób mylnie zakłada, że podwojenie prędkości wiatru automatycznie prowadzi do podwojenia energii. W rzeczywistości energia wiatru rośnie w kwadracie prędkości, co oznacza, że wzrost prędkości o 100% prowadzi do wzrostu energii o 400%. Takie myślenie prowadzi do częstych nieporozumień i nieprawidłowych obliczeń w projektach związanych z energią odnawialną, co może skutkować nieefektywnymi systemami. Jeśli ktoś wskazuje, że energia rośnie dziesięciokrotnie, może to wynikać z błędnego zrozumienia, że energetyczny potencjał wiatru nie jest liniowy, co jest kluczowym aspektem w projektowaniu turbin wiatrowych. Z kolei błędna odpowiedź mówiąca o wzroście czterokrotnym również nie uwzględnia rzeczywistego wpływu prędkości na energię, co z kolei może prowadzić do niedoszacowania mocy niezbędnej do wydajnej konwersji energii wiatrowej. Ostatecznie, aby skutecznie wykorzystać energię wiatru, konieczne jest zrozumienie dynamiki ruchu powietrza oraz zastosowanie odpowiednich obliczeń, które są zgodne z branżowymi standardami, takimi jak IEC 61400, które określają wymagania dotyczące turbin wiatrowych.

Pytanie 11

Aby chronić instalację centralnego ogrzewania przed nadmiernym wzrostem ciśnienia czynnika grzewczego spowodowanym temperaturą i związanym ze wzrostem objętości, należy zastosować

A. grupę pompową
B. zawór zwrotny
C. zawór bezpieczeństwa
D. naczynie wzbiorcze
Naczynie wzbiorcze to naprawdę istotny element w systemie centralnego ogrzewania. Jego głównym zadaniem jest ochrona instalacji przed zbyt wysokim ciśnieniem czynnika grzewczego. Kiedy temperatura rośnie, to wiadomo - objętość wody też się zwiększa, a to prowadzi do podwyższenia ciśnienia. I tu właśnie wchodzi naczynie wzbiorcze, które działa jak bufor, czyli tłumi te zmiany. Jeśli odpowiednio je dobierzemy, nadmiar wody zostaje skierowany do zbiornika, co sprawia, że ciśnienie w instalacji jest stabilne. To ważne szczególnie w instalacjach z kotłami gazowymi czy olejowymi – naczynie nie tylko zapobiega uszkodzeniom samej instalacji, ale też urządzeń grzewczych. Ważne, żeby naczynie miało odpowiednią pojemność i ciśnienie wstępne, bo to wynika z norm EN 12828 i PN-EN 12831. W praktyce, dzięki naczyniu wzbiorczemu można uniknąć niebezpiecznych sytuacji, jak awarie czy wręcz eksplozje, które mogą się zdarzyć przy dużym wzroście ciśnienia. Więc można powiedzieć, że to obowiązkowy, ale też kluczowy element, żeby cała instalacja grzewcza działała bezproblemowo.

Pytanie 12

Podczas przewozu pompy ciepła należy wziąć pod uwagę szczególną podatność tego urządzenia na

A. niskie temperatury
B. wilgotność powietrza
C. działanie promieni słonecznych
D. nachylenia
Pompy ciepła to dość skomplikowane urządzenia, które niestety są dość wrażliwe na różne przechylenia, zwłaszcza podczas transportu. Wynika to z ich konstrukcji oraz użytych części, jak sprężarki, parowniki czy skraplacze. Jak coś pójdzie nie tak w transporcie, to te elementy mogą się po prostu uszkodzić. Na przykład, jeśli sprężarka będzie w złym kącie, to może być problem z jej smarowaniem, co sprawi, że szybciej się zużyje. W branży trzeba naprawdę uważać na standardy transportu, zwłaszcza te normy ISO 9001, które mówią, jak prawidłowo pakować i przewozić takie wrażliwe sprzęty. Dlatego podczas transportu pomp ciepła warto trzymać się wskazówek producenta, które często mówią o tym, jak bardzo można je nachylać i jakie metody zabezpieczenia stosować, żeby wszystko było w porządku.

Pytanie 13

Do struktur piętrzących należy zaliczyć

A. zapory
B. śluzy
C. ujęcia wody
D. przepławki dla ryb
Zapory są kluczowymi budowlami piętrzącymi, które służą do gromadzenia wody w zbiornikach, co umożliwia jej efektywne wykorzystanie w różnych zastosowaniach, takich jak produkcja energii elektrycznej, nawadnianie pól uprawnych oraz regulacja przepływu wód w rzekach. Budowle te są projektowane zgodnie z rygorystycznymi normami inżynieryjnymi, aby zapewnić ich stabilność i bezpieczeństwo. Przykładowo, w Polsce wiele zapór, takich jak zapora w Solinie, odgrywa istotną rolę w zarządzaniu wodami oraz w ochronie przed powodziami. Dobrze zaprojektowane zapory są również istotne dla ochrony ekosystemów wodnych, ponieważ mogą tworzyć siedliska dla wielu gatunków ryb i innych organizmów wodnych. W procesie projektowania zapór uwzględnia się także aspekty związane z ochroną środowiska oraz zrównoważonym rozwojem, co czyni je nie tylko funkcjonalnymi, ale i odpowiedzialnymi ekologicznie obiektami.

Pytanie 14

W celu przygotowania materiałowego zestawienia do montażu instalacji solarnej, tworzy się

A. przedmiar robót
B. zapytanie ofertowe
C. obmiar robót
D. harmonogram wykonywanych prac
Odpowiedzi, które wskazują na inne pojęcia, takie jak obmiar robót, zapytanie ofertowe czy harmonogram wykonywanych prac, nie oddają istoty procesu przygotowania projektu montażu instalacji solarnej. Obmiar robót to termin, który odnosi się do pomiaru wykonanych prac, a nie planowania materiałów potrzebnych do ich realizacji. Użycie obmiaru w kontekście instalacji solarnej może prowadzić do nieporozumień, ponieważ jest to dokument powstający po zakończeniu określonej fazy budowy, co uniemożliwia wcześniejsze zaplanowanie niezbędnych materiałów. Z kolei zapytanie ofertowe ma na celu uzyskanie cen od różnych dostawców, ale samo w sobie nie zawiera szczegółowych informacji o wymaganych materiałach, co czyni je niewystarczającym do formułowania zestawienia materiałowego. Harmonogram wykonywanych prac jest istotnym dokumentem, który planuje czas realizacji poszczególnych zadań, ale nie zajmuje się bezpośrednio określaniem ilości materiałów. W praktyce, wiele osób myli te pojęcia, co może prowadzić do niedoszacowania lub przeszacowania potrzebnych zasobów, a w konsekwencji do opóźnień w realizacji projektu i zwiększenia kosztów. Dlatego kluczowe jest zrozumienie roli przedmiaru robót jako fundamentalnej części procesu planowania.

Pytanie 15

Ile wynosi zawartość popiołu w peletach drzewnych?

A. 0,5-1,5% suchej masy
B. 5,4-6,5% suchej masy
C. 7,4-8,5% suchej masy
D. 2,4-3,5% suchej masy
Analizując inne dostępne odpowiedzi, można zauważyć, że każda z nich wskazuje na znacznie wyższą zawartość popiołu w pelecie drzewnym, co jest sprzeczne z przyjętymi standardami branżowymi. Odpowiedzi sugerujące poziomy 2,4-3,5% suchej masy, 5,4-6,5% suchej masy oraz 7,4-8,5% suchej masy znacznie przekraczają normy określone w dokumentacji normatywnej. W rzeczywistości, wyższa zawartość popiołu prowadzi do wielu problemów, takich jak gorsza jakość spalania, zwiększone zakwaszenie spalin oraz częstsze potrzeby czyszczenia komór pieca i kominów. Tego typu błędne podejścia mogą wynikać z mylnych przekonań na temat jakości biomasy, gdzie niektórzy mogą sądzić, że większa zawartość popiołu jest akceptowalna lub nawet pożądana. W praktyce, jednak, wysoka zawartość popiołu może prowadzić do strat energetycznych i wyższych kosztów eksploatacji systemów grzewczych. Warto także zwrócić uwagę na to, że w przypadku pelletu drzewnego, który spełnia określone normy, niska zawartość popiołu powinna być priorytetem dla producentów oraz użytkowników, co wskazuje na konieczność przestrzegania wysokich standardów jakości w produkcji tego rodzaju paliwa.

Pytanie 16

Panele fotowoltaiczne zamocowane na stałych uchwytach (bez opcji regulacji kąta przez cały rok), zainstalowane na terytorium Polski, powinny być nachylone w stosunku do poziomu pod kątem:

A. 65°
B. 35°
C. 45°
D. 55°
Pochylenie ogniw fotowoltaicznych pod kątem 45° jest optymalne dla lokalizacji w Polsce, biorąc pod uwagę średnią pozycję Słońca na niebie przez różne pory roku. Taki kąt maksymalizuje uzyski energii słonecznej, szczególnie w okresie letnim, kiedy Słońce znajduje się wyżej. Zgodnie z wytycznymi dotyczącymi instalacji paneli fotowoltaicznych, efektywność konwersji energii słonecznej w dużej mierze zależy od kąta nachylenia. W praktyce, ustawienie paneli pod kątem 45° może poprawić ich wydajność o kilka procent w porównaniu do kątów bardziej płaskich lub bardziej stromo nachylonych. Dodatkowo, kąt 45° umożliwia lepsze odprowadzanie śniegu w zimie oraz ogranicza gromadzenie się brudu i zanieczyszczeń, co również wpływa na wydajność systemu. Warto również zauważyć, że to właśnie ten kąt jest najczęściej zalecany przez specjalistów w dziedzinie energii odnawialnej w Polsce, co czyni go najlepszym wyborem dla stałych uchwytów.

Pytanie 17

Połączenie zaciskowe przewodów solarnych z twardymi rurami miedzianymi jest wykonane nieprawidłowo, gdy

A. brak daty opisującej połączenie
B. nie oznaczono pełnego wsunięcia rury do kielicha złączki
C. połączenie nie zostało oznaczone jako zaciśnięte
D. nie podano numeru porządkowego do opisu połączenia
Pełne wsunięcie rury do kielicha złączki jest kluczowym elementem zapewniającym szczelność i trwałość połączenia zaciskowego przewodów solarnych z rurami miedzianymi. Niewłaściwe wsunięcie może prowadzić do wycieku czynników roboczych, a w dłuższej perspektywie – do uszkodzeń systemu. Standardy branżowe, takie jak normy ISO dotyczące połączeń rur, podkreślają konieczność prawidłowego montażu, co zapewnia bezpieczeństwo oraz efektywność działania instalacji. W praktyce, niepełne wsunięcie rury może skutkować osłabieniem połączenia, a także zwiększonym ryzykiem korozji, co negatywnie wpływa na całkowitą wydajność systemu solarnego. Przykładowo, w instalacjach grzewczych, gdzie ciśnienie i temperatura są kluczowe, nieprawidłowe połączenie może prowadzić do poważnych awarii. Dlatego ważne jest, aby każdy element połączenia był dokładnie kontrolowany podczas montażu, co jest zgodne z zaleceniami producentów oraz praktykami inżynieryjnymi.

Pytanie 18

Gdzie w instalacji solarnej umieszcza się mieszacz wody użytkowej?

A. pomiędzy centralnym ogrzewaniem a obiegiem wody zimnej
B. pomiędzy wodą zimną a obiegiem wody ciepłej
C. pomiędzy obiegiem solarnym a obiegiem wody zimnej
D. pomiędzy obiegiem solarnym a obiegiem wody ciepłej
Mieszacz wody użytkowej w instalacji solarnej jest kluczowym elementem, który zapewnia optymalne wykorzystanie ciepła generowanego przez kolektory słoneczne. Jego prawidłowe umiejscowienie pomiędzy obiegiem wody zimnej a obiegiem wody ciepłej pozwala na efektywne zarządzanie temperaturą wody dostarczanej do odbiorników, takich jak krany czy urządzenia sanitarno-grzewcze. Mieszacz umożliwia regulację proporcji wody zimnej i ciepłej, co jest niezbędne do uzyskania komfortu użytkowania oraz ochrony instalacji przed przegrzewaniem. Przykładowo, w sytuacji, gdy temperatura wody z kolektorów jest zbyt wysoka, mieszacz może wprowadzać zimną wodę, obniżając tym samym temperaturę mieszanki. Zgodnie z dobrymi praktykami branżowymi, takie rozwiązanie minimalizuje ryzyko uszkodzenia urządzeń oraz poprawia ich żywotność. Ponadto, zastosowanie mieszacza przyczynia się do efektywności energetycznej całego systemu solarnego, co jest szczególnie istotne w kontekście zrównoważonego rozwoju i ochrony środowiska.

Pytanie 19

Przyczyną wydostawania się czynnika z zaworu bezpieczeństwa w systemach solarnych może być

A. zapowietrzenie systemu
B. niewystarczające stężenie płynu solarnego
C. wysoka wilgotność powietrza
D. niewielka objętość przeponowego naczynia wzbiorczego
Zbyt mała objętość przeponowego naczynia wzbiorczego w instalacjach solarnych może prowadzić do nieprawidłowego działania systemu, co skutkuje wypływem czynnika chłodzącego z zaworu bezpieczeństwa. Naczynie wzbiorcze pełni kluczową rolę w kompensacji zmian objętości płynu solarnego, które są spowodowane rozszerzalnością cieplną. W przypadku niewystarczającej objętości, ciśnienie w instalacji może wzrosnąć powyżej dozwolonego poziomu, co aktywuje zawór bezpieczeństwa. Utrzymanie odpowiedniej objętości naczynia wzbiorczego jest zgodne z normą PN-EN 12828, która określa zasady projektowania i eksploatacji systemów grzewczych. Praktycznie oznacza to, że każdy projektant instalacji solarnych powinien dokładnie obliczyć wymagane parametry naczynia wzbiorczego, uwzględniając maksymalne i minimalne temperatury pracy, aby zapewnić stabilność i bezpieczeństwo całego systemu. Warto również regularnie kontrolować stan naczynia oraz jego ciśnienie, co pomoże zminimalizować ryzyko wystąpienia awarii i zapewnić efektywność energetyczną systemu.

Pytanie 20

Obecność powietrza w systemie solarnym wynika głównie z

A. nieodpowietrzenia układu solarnego
B. uszkodzonej pompy obiegowej
C. nieprawidłowego umiejscowienia grupy pompowej
D. nieprawidłowego montażu naczynia wzbiorczego
Obecność powietrza w układzie solarnym jest najczęściej wynikiem nieodpowietrzenia układu, co oznacza, że powietrze nie zostało usunięte z systemu w odpowiednim czasie. To zjawisko może prowadzić do wielu problemów, takich jak spadek efektywności systemu grzewczego, hałas w instalacji czy nawet uszkodzenia komponentów, takich jak pompy, wymienniki ciepła czy rury. W praktyce, podczas montażu układów solarnych, kluczowe jest zastosowanie odpowiednich zaworów odpowietrzających oraz regularne serwisowanie, aby zapewnić pełne usunięcie powietrza. Zgodnie z normami branżowymi, zaleca się przeprowadzanie odpowietrzania systemu podczas uruchamiania oraz regularne kontrole, by upewnić się, że nie ma nagromadzenia powietrza. Dobre praktyki obejmują również stosowanie naczynia wzbiorczego, które ma na celu kompensację zmian objętości cieczy oraz umożliwienie skutecznego odpowietrzania. Warto pamiętać, że odpowiednie utrzymanie układu solarnego ma kluczowe znaczenie dla jego długowieczności i efektywności.

Pytanie 21

Aby złączyć ze sobą dwie stalowe rury o identycznej średnicy i gwincie zewnętrznym, należy zastosować

A. redukcji
B. mufy
C. odpowietrznika
D. nypla
Mufa jest kluczowym elementem w technice łączenia rur, szczególnie tych o gwincie zewnętrznym. Użycie mufy pozwala na łatwe i efektywne połączenie dwóch rur o tej samej średnicy, co jest istotne w wielu instalacjach wodociągowych, gazowych i przemysłowych. Mufa, jako złączka, posiada wewnętrzny gwint, który idealnie pasuje do gwintu zewnętrznego rur, co gwarantuje szczelność i niezawodność połączenia. Przykładowo, w instalacjach hydraulicznych, gdzie ciśnienie jest istotnym czynnikiem, stosowanie mufy zapewnia, że połączenia nie będą narażone na przecieki. Dodatkowo, zgodność z normami branżowymi, takimi jak PN-EN 10226, zapewnia wysoką jakość i bezpieczeństwo w użytkowaniu. Warto pamiętać, że odpowiedni dobór mufy do średnicy rur jest kluczowy dla prawidłowego funkcjonowania całej instalacji, a także jej długowieczności.

Pytanie 22

Do pełnego systemu fotowoltaicznego, który produkuje energię elektryczną z wykorzystaniem energii słonecznej, zaliczają się:

A. panele fotowoltaiczne, inwerter sieciowy, konstrukcja montażowa na dach, konektor
B. kolektor płaski, zasobnik dwuwężownicowy, grupa hydrauliczna, naczynie przeponowe
C. panele fotowoltaiczne, falownik, konstrukcja montażowa na dach, konektor, przewód solarny, naczynie przeponowe
D. powietrzna pompa, elektroniczny mikroprocesorowy system sterujący, elektroniczna pompa wody, zestaw montażowy zawierający kable, rury, zawiesia
Poprawna odpowiedź zawiera kluczowe komponenty systemu fotowoltaicznego, który jest niezbędny do efektywnej konwersji promieniowania słonecznego na energię elektryczną. Panele fotowoltaiczne są sercem systemu, ponieważ to w nich zachodzi proces fotowoltaiczny, w wyniku którego energia słoneczna jest przekształcana w prąd stały. Inwerter sieciowy, z kolei, jest odpowiedzialny za konwersję prądu stałego na prąd zmienny, który jest kompatybilny z siecią energetyczną. Konstrukcja montażowa na dach zapewnia stabilność i odpowiednie ustawienie paneli, co maksymalizuje ich wydajność. Konektory służą do bezpiecznego połączenia wszystkich elementów systemu, zapewniając jednocześnie odpowiednią ochronę przed warunkami atmosferycznymi. Ważne jest, aby każdy z tych elementów był zgodny z obowiązującymi standardami branżowymi, co wpływa na trwałość i efektywność całego systemu. Na przykład stosowanie wysokiej jakości materiałów do montażu i komponentów zwiększa niezawodność i żywotność instalacji. Dobrze zaprojektowany system fotowoltaiczny nie tylko przyczynia się do oszczędności energii, ale również zmniejsza emisję CO2, wspierając działania na rzecz zrównoważonego rozwoju.

Pytanie 23

Z informacji zawartych w dokumentacji wynika, że roczne wydatki na energię elektryczną w obiekcie użyteczności publicznej wynoszą 6000 zł. Inwestor postanowił zamontować na dachu budynku system paneli fotowoltaicznych, aby obniżyć te wydatki. Dzięki temu koszty zużycia energii elektrycznej będą niższe o 75%. Jaką kwotę będzie płacił za energię elektryczną po przeprowadzeniu tej inwestycji?

A. 5975 zł
B. 1500 zł
C. 5925 zł
D. 4500 zł
Poprawna odpowiedź to 1500 zł, ponieważ inwestor decydując się na montaż paneli fotowoltaicznych, zmniejsza swoje roczne koszty energii elektrycznej o 75%. To oznacza, że po wdrożeniu systemu będzie płacił jedynie 25% pierwotnej kwoty rachunków. Wyliczenie jest proste: 25% z 6000 zł to 1500 zł (6000 zł x 0,25 = 1500 zł). Instalacja paneli fotowoltaicznych to nie tylko sposób na redukcję kosztów, ale również na zredukowanie śladu węglowego budynku, co jest zgodne z trendami zrównoważonego rozwoju i efektywności energetycznej. Panele fotowoltaiczne przekształcają energię słoneczną w energię elektryczną, co może znacząco obniżyć zależność od zewnętrznych dostawców energii. Przed podjęciem decyzji o inwestycji warto przeprowadzić analizę techniczną i ekonomiczną, aby oszacować potencjalne oszczędności oraz czas zwrotu z inwestycji, co jest kluczowe w kontekście długoterminowego planowania finansowego budynków użyteczności publicznej.

Pytanie 24

W celu stworzenia kosztorysu dla inwestora, jakie narzędzia są wykorzystywane?

A. dziennik budowy
B. protokół odbioru częściowego
C. katalogi nakładów rzeczowych
D. protokół odbioru końcowego
Katalogi nakładów rzeczowych są fundamentalnym narzędziem stosowanym w procesie opracowywania kosztorysów inwestorskich. Zawierają one szczegółowe informacje na temat ilości i kosztów materiałów oraz robót budowlanych, co pozwala na precyzyjne oszacowanie całkowitych wydatków związanych z realizacją projektu. Przykładowo, w katalogach można znaleźć stawki kosztów dla różnych rodzajów robót, takich jak wykopy, fundamenty czy prace wykończeniowe, co pozwala na ich bezpośrednie zastosowanie w kosztorysie. W praktyce, korzystanie z katalogów zmniejsza ryzyko błędów w obliczeniach, ponieważ są one oparte na rzeczywistych danych z rynku budowlanego. Ponadto, stosowanie katalogów nakładów rzeczowych jest zalecane przez standardy branżowe, takie jak Zasadnicze Zasady Kosztorysowania (ZKZ), co czyni je niezbędnym elementem profesjonalnego kosztorysowania. Warto również zaznaczyć, że katalogi te mogą być dostosowane do specyfiki danego projektu, co zwiększa ich użyteczność.

Pytanie 25

Wskaż źródło informacji cenowych, z którego można uzyskać najnowsze dane dotyczące czynników produkcji budowlanej na aktualny kwartał danego roku?

A. Cenbud
B. Infobud
C. Infoargbud
D. Sekocenbud
Infobud, Cenbud i Infoargbud, mimo że mogą być używane w kontekście pozyskiwania informacji o branży budowlanej, nie są dedykowanymi źródłami do pozyskiwania aktualnych danych o cenach czynników produkcji budowlanej na bieżący kwartał. Infobud to platforma o szerokim zakresie, ale głównie koncentruje się na ogólnych informacjach dotyczących rynku budowlanego oraz projektów, zamiast na precyzyjnych danych cenowych. Cenbud i Infoargbud mogą być używane jako narzędzia do analizy rynku, jednak ich baza danych nie jest tak aktualizowana i wiarygodna jak w przypadku Sekocenbudu. Często mylone są z informatorami, które oferują przestarzałe lub niepełne dane, co może prowadzić do błędnych oszacowań kosztów i problemów w realizacji projektów. Kluczowym błędem w podejściu do wyboru informatora cenowego jest zakładanie, że każda dostępna platforma dostarcza rzetelnych i aktualnych informacji. W rzeczywistości, w branży budowlanej, gdzie precyzja kosztów jest niezbędna, korzystanie z wiarygodnych źródeł takich jak Sekocenbud jest niezbędne dla osiągnięcia sukcesu w projektach budowlanych. Nieodpowiednie źródła mogą prowadzić do nieefektywnego zarządzania budżetem oraz opóźnień w realizacji inwestycji.

Pytanie 26

Jakie materiały należy wykorzystać do naprawy izolacji przewodów w instalacji niskonapięciowej?

A. preszpan
B. koszulki termokurczliwe
C. taśmę bawełnianą
D. tereszpan
Koszulki termokurczliwe to materiał, który po nałożeniu na przewód elektryczny i podgrzaniu zmienia swoje właściwości, kurcząc się i mocno przylegając do izolacji. Dzięki temu tworzą one szczelną barierę, która chroni przed uszkodzeniami mechanicznymi oraz zapewnia odpowiednią izolację elektryczną. Zastosowanie koszulek termokurczliwych jest szczególnie istotne w instalacjach niskiego napięcia, gdzie bezpieczeństwo jest kluczowe. W praktyce, koszulki te są wykorzystywane do naprawy uszkodzeń izolacji, łączenia przewodów oraz ochrony przed wilgocią i innymi czynnikami zewnętrznymi. Stosowanie tego materiału jest zgodne z normami IEC 60068 oraz IEC 60332, które określają wymagania dotyczące materiałów izolacyjnych. Warto również zaznaczyć, że dobór odpowiednich koszulek termokurczliwych powinien uwzględniać ich średnicę, temperaturę kurczenia oraz klasyfikację ogniową, co pozwala na zapewnienie długotrwałej i bezpiecznej pracy instalacji.

Pytanie 27

Kolektory słoneczne instalowane na gruncie przy użyciu konstrukcji nośnej są szczególnie narażone na

A. zwiększone straty energii cieplnej w kierunku gruntu
B. znacznie gorsze warunki nasłonecznienia w porównaniu do dachu
C. większe opady śniegu niż na dachu
D. nierównomierne osiadanie fundamentów
Analizując inne odpowiedzi, można zauważyć, że pierwsza z nich sugeruje, iż kolektory słoneczne na powierzchni terenu mają znacznie słabsze warunki napromieniowania niż te zamontowane na dachu. W rzeczywistości, napromieniowanie zależy od wielu czynników, takich jak miejsce montażu, kąt nachylenia oraz obecność przeszkód terenowych. Kolektory na dachu mają często lepszą ekspozycję na słońce, ale odpowiednio umieszczone kolektory na ziemi mogą również osiągać dobre wyniki. Ponadto, jest to często mylone z pojęciem zakłóceń związanych z otoczeniem, które mogą wpływać na wydajność, ale nie jest to automatyczna reguła. Druga odpowiedź odnosi się do większego zaśnieżenia niż na dachu. W rzeczywistości, dachy mogą gromadzić więcej śniegu, co może ograniczać dostęp światła słonecznego do kolektorów, zwłaszcza w obszarach o dużych opadach śniegu. Kwestia zasypania śniegiem nie jest więc jednoznaczna. Kolejne stwierdzenie o zwiększonej stracie energii cieplnej do gruntu jest mylne, ponieważ straty ciepła mogą występować w każdym systemie, ale nie są one bezpośrednio związane z lokalizacją montażu kolektorów. Ostatnia odpowiedź, dotycząca nierównego osiadania fundamentów, jest najtrafniejsza, ponieważ to właśnie fundamenty muszą być odpowiednio zaprojektowane i wykonane, aby unikać problemów związanych z osiadaniem, a nie lokalizacja samego kolektora.

Pytanie 28

Która metoda transportu kolektorów słonecznych na dach wysokiego budynku jest najbardziej efektywna?

A. Wciągarką linową
B. Ręcznie przez schody
C. Windą transportową
D. Wózkiem widłowym
Transport kolektorów słonecznych na dach wysokiego budynku przy użyciu wózka widłowego, ręcznie po schodach lub wciągarki linowej wiąże się z istotnymi niedogodnościami i zagrożeniami, które mogą wpływać na bezpieczeństwo oraz efektywność takich działań. Wózek widłowy, mimo że może być użyteczny w niektórych kontekstach, nie jest optymalnym rozwiązaniem w przypadku transportu na dużą wysokość. Wózki widłowe są przeznaczone głównie do pracy na płaskich powierzchniach i w ograniczonych przestrzeniach, co ogranicza ich zastosowanie w kontekście wysokich budynków. Ponadto, manewrowanie wózkiem widłowym w ciasnych klatkach schodowych lub windy może stwarzać niebezpieczeństwo dla użytkowników. Ręczne przenoszenie kolektorów po schodach to rozwiązanie, które wiąże się z dużym ryzykiem kontuzji, zarówno dla pracowników, jak i dla samych urządzeń. W przypadku dużych, ciężkich elementów, takich jak kolektory słoneczne, noszenie ich na dużych wysokościach może prowadzić do upadków i urazów. Praktyki BHP jasno wskazują na konieczność unikania manualnego transportu ciężkich przedmiotów w takich warunkach. Wciągarka linowa, chociaż może być rozważana w pewnych kontekstach, wymaga precyzyjnego ustawienia i umiejętności obsługi, co może być trudne do zrealizowania na budowach. Dodatkowo, niewłaściwe użycie wciągarki może prowadzić do wypadków, w tym uszkodzeń mienia i zagrożeń dla zdrowia. Dlatego ważne jest, aby w takich sytuacjach stosować metody transportu, które są zgodne z najlepszymi praktykami branżowymi oraz przepisami BHP, a windę transportową należy uznać za najbardziej bezpieczne i efektywne rozwiązanie.

Pytanie 29

Który z elementów powinien być zainstalowany w najwyższym punkcie systemu solarnego?

A. Czujnik temperatury kolektora
B. Naczynie wyrównawcze
C. Odpowietrznik
D. Pompę napełniającą
Odpowietrznik jest kluczowym elementem każdej instalacji solarnej, ponieważ jego głównym zadaniem jest usuwanie powietrza z systemu. Powietrze, które może gromadzić się w instalacji, tworzy pęcherzyki, które mogą powodować zakłócenia w przepływie czynnika grzewczego, prowadząc do obniżenia efektywności systemu oraz potencjalnych uszkodzeń. Montując odpowietrznik w najwyższym punkcie instalacji, zapewniamy, że powietrze zostanie skutecznie usunięte, co pozwala na optymalne działanie systemu. Przykładem dobrych praktyk jest instalowanie odpowietrzników automatycznych, które samoczynnie usuwają nagromadzone powietrze. Warto również pamiętać, że zgodnie z normami PN-EN 12976 dotyczącymi systemów solarnych, odpowiednia wentylacja i odprowadzenie powietrza są niezbędne dla zachowania długowieczności instalacji oraz jej efektywności energetycznej.

Pytanie 30

Najwyższą efektywność energetyczną uzyskują panele fotowoltaiczne

A. amorficzne
B. monokrystaliczne
C. organiczne
D. polikrystaliczne
Monokrystaliczne fotoogniwa to naprawdę świetna opcja, mają najwyższą sprawność energetyczną. Dzieje się tak głównie przez ich strukturę i materiały, jakie wykorzystuje się do ich produkcji. W zasadzie są robione z pojedynczych kryształów krzemu, przez co lepiej zamieniają energię słoneczną na elektryczną. Ich sprawność często przekracza 22%, co sprawia, że są idealne w miejscach, gdzie trzeba maksymalnie wykorzystać dostępne miejsce, jak dachy domów czy farmy słoneczne. W branży często wybiera się monokrystaliczne ogniwa tam, gdzie miejsca jest mało, a ich dłuższy czas życia oraz mniejsze straty energii w wysokich temperaturach sprawiają, że długoterminowo są opłacalne. Co więcej, monokrystaliczne ogniwa są bardziej odporne na degradację, co zwiększa ich niezawodność i wydajność w długim okresie. Widać to szczególnie w nowoczesnej architekturze, gdzie stosuje się zintegrowane systemy fotowoltaiczne.

Pytanie 31

Ciśnienie ustawione na zaworze zabezpieczającym w systemie grzewczym z zastosowaniem pompy ciepła powinno wynosić

A. 1 bar
B. 9 barów
C. 2 bary
D. 6 barów
Ustalenie niewłaściwej nastawy zaworu bezpieczeństwa w instalacji grzewczej z pompą ciepła prowadzi do wielu potencjalnych problemów. Przykładowo, 1 bar to zbyt niskie ciśnienie, które nie zapewnia odpowiedniej ochrony przed nadmiernym wzrostem ciśnienia. W takim przypadku, gdy ciśnienie wzrośnie, zawór nie zadziała w odpowiednim momencie, co może skutkować poważnymi uszkodzeniami systemu. Odpowiedź na poziomie 2 barów również jest niewłaściwa, ponieważ znowu nie spełnia standardów zabezpieczeń dla typowych instalacji grzewczych. Wybór 9 barów jako ustawienie ciśnienia bezpieczeństwa może wydawać się przesadny, co prowadzi do niepotrzebnego obciążenia komponentów systemu, zwiększając ryzyko awarii. W instalacjach grzewczych istotne jest, aby nastawa zaworu bezpieczeństwa była zgodna z wymaganiami producenta oraz normami branżowymi. Zbyt wysokie ciśnienie może prowadzić do uszkodzenia rur, złączek, a nawet samej pompy ciepła. Często popełnianym błędem jest także ignorowanie zaleceń producenta dotyczących ciśnienia roboczego, co może prowadzić do awarii systemu oraz niewłaściwej pracy pompy ciepła. Właściwe ustawienie ciśnienia to klucz do zapewnienia bezpieczeństwa i efektywności energetycznej instalacji grzewczej.

Pytanie 32

Za montaż urządzeń z zakresu energetyki odnawialnej oraz realizację dostaw zgodnych z projektem odpowiada

A. użytkownik
B. inwestor
C. kierownik budowy
D. projektant
Kierownik budowy odgrywa kluczową rolę w procesie montażu urządzeń energetyki odnawialnej, ponieważ to on odpowiada za koordynację wszystkich działań na placu budowy. Dobrze zorganizowane i zgodne z projektem dostawy są niezbędne do prawidłowego przebiegu robót. Kierownik budowy ma za zadanie nadzorować realizację prac montażowych, zapewniając, że wszelkie urządzenia są instalowane zgodnie z obowiązującymi normami oraz wytycznymi projektowymi. Na przykład, w przypadku instalacji paneli fotowoltaicznych, kierownik budowy musi zadbać o odpowiednie przygotowanie miejsca montażu, sprawdzenie zgodności z projektem oraz zapewnienie, że wszystkie niezbędne materiały i urządzenia dotrą na czas. Przykłady dobrych praktyk obejmują regularne spotkania z zespołem projektowym oraz dostawcami, co pozwala na bieżąco monitorować postęp prac i ewentualnie wprowadzać niezbędne korekty. Dzięki takim działaniom kierownik budowy minimalizuje ryzyko opóźnień oraz błędów, które mogą wpłynąć na efektywność instalacji.

Pytanie 33

Co oznacza symbol PE-HD na rurze?

A. polietylen o średniej gęstości
B. polietylen o niskiej gęstości
C. polietylen o wysokiej gęstości
D. homopolimer polietylenu
Oznaczenie PE-HD odnosi się do polietylenu wysokiej gęstości, który jest jednym z najczęściej stosowanych tworzyw sztucznych w branży budowlanej oraz przemysłowej. PE-HD charakteryzuje się wysoką odpornością na chemikalia, działanie wysokich temperatur oraz promieniowanie UV, co czyni go idealnym materiałem do produkcji rur wykorzystywanych w różnych systemach wodociągowych, kanalizacyjnych oraz gazowych. Dzięki swojej gęstości i strukturze, PE-HD ma również dobrą odporność na uszkodzenia mechaniczne, co jest szczególnie ważne w przypadku instalacji w trudnych warunkach. Standardy ISO 4427 oraz EN 12201 określają wymagania techniczne dla rur PE-HD, co zapewnia ich wysoką jakość oraz niezawodność. W praktyce, rury oznaczone jako PE-HD są powszechnie stosowane do transportu wody pitnej oraz ścieków, a także w systemach irygacyjnych. Warto również zauważyć, że proces recyklingu PE-HD jest stosunkowo prosty, co przyczynia się do zrównoważonego rozwoju i ochrony środowiska.

Pytanie 34

Przy opracowywaniu kosztorysu, należy wskazać, gdzie powinny być zainstalowane kolektory słoneczne. Które z poniższych miejsc jest niewłaściwe dla ich montażu?

A. Na dachu skośnym pod kątem 45º na północ
B. Na gruncie pod kątem 45º na południe
C. Na dachu skośnym pod kątem 45º na południe
D. Na dachu płaskim pod kątem 45º na południe
Montaż kolektorów słonecznych na dachu skośnym pod kątem 45º na północ jest niewskazany, ponieważ kolektory te powinny być umieszczane w miejscach o maksymalnej ekspozycji na promieniowanie słoneczne. W Polsce najlepszym rozwiązaniem jest lokowanie ich na dachach skierowanych na południe, co zapewnia optymalną wydajność energetyczną. Kolektory słoneczne działają najlepiej, gdy są ustawione pod odpowiednim kątem, co pozwala na jak najefektywniejsze pochłanianie promieni słonecznych przez cały dzień. W praktyce, montaż kolektorów na stronach północnych prowadzi do znaczącego spadku ich efektywności, ponieważ ta strona dachu ma znacznie ograniczoną ilość światła słonecznego w ciągu roku. Warto również zwrócić uwagę, że różne normy dotyczące instalacji systemów solarnych, takie jak EN 12975, zalecają ustawienie kolektorów w kierunku południowym, aby zmaksymalizować ich wydajność oraz efektywność energetyczną, co jest kluczowe w kontekście zmniejszenia kosztów energii i zwiększenia efektywności wykorzystania odnawialnych źródeł energii.

Pytanie 35

Powstawanie zapowietrzenia w instalacji solarnej może być wynikiem

A. nieprawidłowym ciśnieniem wstępnym w zbiorniku przeponowym
B. użycia pompy obiegowej o niedostosowanej mocy
C. wykorzystania zbyt dużych średnic rur w instalacji
D. niewłaściwie wolnym wypełnianiem systemu
Zastosowanie zbyt dużych średnic rur instalacyjnych może być mylnie postrzegane jako przyczyna zapowietrzania instalacji solarnej, jednak jest to nieprawidłowe podejście. W rzeczywistości, większe średnice rur mogą prowadzić do zmniejszenia prędkości przepływu cieczy, co teoretycznie powinno ułatwiać odprowadzanie powietrza. Kluczowe jest to, że odpowiednia średnica rur powinna być dostosowana do specyfikacji systemu i zapotrzebowania na ciepło. W przypadku instalacji solarnych, zaleca się stosowanie rur o średnicy dostosowanej do obliczonego przepływu cieczy. Zbyt powolne napełnianie instalacji również jest postrzegane jako potencjalny problem, ale nie jest bezpośrednią przyczyną zapowietrzania. Właściwa procedura napełniania, która minimalizuje wprowadzenie powietrza, jest kluczowa, a nowoczesne systemy często wyposażone są w zawory odpowietrzające, które automatycznie usuwają powietrze z układu. Zastosowanie pompy obiegowej o niewłaściwej mocy może mieć wpływ na efektywność systemu, ale nie jest to główny czynnik zapowietrzania. W praktyce, pompa powinna być dobrana na podstawie obliczeń hydraulicznych oraz wymagań systemu, co zapewnia stabilny obieg cieczy. Zrozumienie, że zapowietrzenie jest problemem wynikającym głównie z niewłaściwego ciśnienia wstępnego, jest kluczowe dla zachowania efektywności i niezawodności instalacji solarnych.

Pytanie 36

Jaki kolor izolacji powinien mieć przewód neutralny?

A. niebieskiego
B. czarnego lub czerwonego
C. brązowego
D. żółto - zielonego
Odpowiedź 'niebieskiego' jest poprawna, ponieważ według Polskich Norm (PN) oraz przepisów dotyczących instalacji elektrycznych, przewód neutralny musi być oznaczony kolorem niebieskim. Ta norma ma na celu zapewnienie jednoznaczności w identyfikacji przewodów elektrycznych, co jest niezbędne w celu bezpieczeństwa oraz prawidłowego funkcjonowania instalacji. Użycie koloru niebieskiego dla przewodów neutralnych jest standardem przyjętym w wielu krajach, co ułatwia współpracę i rozumienie projektów elektroutwardzonych na poziomie międzynarodowym. Przykładowo, w instalacjach domowych przewód neutralny prowadzi prąd z powrotem do źródła zasilania, a jego poprawne oznaczenie jest kluczowe, aby uniknąć pomyłek, które mogą prowadzić do niebezpiecznych wypadków elektrycznych. Przewody ochronne, oznaczane kolorem żółto-zielonym, mają zupełnie inną funkcję - mają na celu zabezpieczenie przed porażeniem elektrycznym, co podkreśla znaczenie znajomości tych standardów w praktyce.

Pytanie 37

Jaką jednostkę stosuje się do wyrażania stopnia mineralizacji wody?

A. l/mg
B. l/°C
C. mg/l
D. °C/l
Jednostka "mg/l" (miligramy na litr) jest powszechnie stosowana do pomiaru stopnia mineralizacji wody, co oznacza ilość rozpuszczonych substancji mineralnych w danym litrze wody. W praktyce, pomiar ten jest kluczowy w takich obszarach jak analiza jakości wody, zarządzanie zasobami wodnymi oraz ocena wpływu różnych czynników na ekosystemy wodne. Na przykład, w procesie uzdatniania wody, dokładne określenie jej mineralizacji pozwala na dobranie odpowiednich metod filtracji i oczyszczania, co jest zgodne z normami ustalonymi przez organizacje takie jak WHO czy EPA. Zastosowanie jednostki mg/l jest również istotne w kontekście gospodarki wodnej, gdzie monitorowanie mineralizacji pozwala na ocenę stanu wód gruntowych i powierzchniowych. Dodatkowo, w przemyśle spożywczym, dokładne oznaczanie mineralizacji wody jest niezbędne, aby zapewnić odpowiednią jakość produktów oraz spełnić wymogi regulacyjne. W związku z tym, znajomość i umiejętność posługiwania się jednostką mg/l jest niezbędna w wielu dziedzinach związanych z ochroną środowiska oraz zdrowiem publicznym.

Pytanie 38

Podstawą do stworzenia szczegółowego kosztorysu instalacji pompy ciepła są

A. aprobacje techniczne
B. katalogi nakładów rzeczowych
C. harmonogramy prac
D. atestacje higieniczne
Podstawą opracowania kosztorysu szczegółowego instalacji pompy ciepła są katalogi nakładów rzeczowych, które stanowią kluczowe narzędzie dla inżynierów i kosztorysantów. Katalogi te zawierają szczegółowe informacje na temat kosztów materiałów, robocizny i innych nakładów, co pozwala na precyzyjne oszacowanie całkowitego kosztu inwestycji. Przykładowo, przy instalacji pompy ciepła ważne jest uwzględnienie kosztów nie tylko samej pompy, ale także materiałów niezbędnych do montażu, takich jak rury, izolacje, czy armatura. Korzystanie z aktualnych katalogów, takich jak KNR (Katalogi Nakładów Rzeczowych) lub ZK (Zbiory Kosztorysowe), zapewnia, że kosztorys będzie zgodny z rynkowymi standardami i rzeczywistymi cenami, co jest niezbędne dla efektywnego zarządzania budżetem projektu. Dobre praktyki w tej dziedzinie obejmują również regularne aktualizowanie danych w kosztorysach oraz analizowanie cen rynkowych, co umożliwia dostosowanie kosztorysu do zmieniających się warunków rynkowych.

Pytanie 39

Kotły z paleniskiem są odpowiednie do spalania materiałów charakteryzujących się wysoką zawartością żużla?

A. korytkowym
B. przednim
C. narzutowym
D. rusztowym
Paleniska przednie, korytkowe i narzutowe, mimo że mogą być stosowane w różnych aplikacjach, nie są optymalnym rozwiązaniem dla materiałów o wysokiej zawartości żużla. Paleniska przednie charakteryzują się inną konstrukcją, która nie sprzyja efektywnemu odprowadzaniu powstałego żużla. W przypadku materiałów o dużej zawartości popiołu, zjawisko nagromadzenia żużla może prowadzić do blokady systemu, co obniża efektywność spalania oraz zwiększa ryzyko awarii. Paleniska korytkowe, z kolei, są bardziej odpowiednie dla paliw o niższej popielatości, a ich konstrukcja nie przystosowuje się dobrze do intensywnego odprowadzania żużla. Ponadto, paleniska narzutowe, które działają na zasadzie podawania paliwa z góry, również mogą prowadzić do podobnych problemów, ponieważ proces spalania nie jest wystarczająco kontrolowany, co skutkuje nieefektywnym wykorzystaniem paliwa. Warto zrozumieć, że dobór odpowiedniego typu paleniska jest kluczowy dla efektywności energetycznej oraz minimalizacji emisji zanieczyszczeń, co powinno być zgodne z aktualnymi standardami branżowymi. Typowe błędy związane z wyborem nieodpowiedniego paleniska wynikają z niepełnej analizy właściwości materiału i niezrozumienia wymagań dotyczących spalania, co prowadzi do nieefektywności energetycznej i potencjalnych problemów eksploatacyjnych.

Pytanie 40

Do podłączenia paneli fotowoltaicznych o mocy 135 W do regulatora ładowania powinno się zastosować przewód elektryczny

A. DYt 2x4 mm2
B. YAKY 3x4 mm2
C. OMY 3x1,5 mm2
D. LgY 4 mm2
Wybór niewłaściwego przewodu do połączenia paneli fotowoltaicznych może prowadzić do wielu problemów zarówno z efektywnością, jak i bezpieczeństwem całego systemu. Przewody OMY 3x1,5 mm2 oraz YAKY 3x4 mm2 są niewłaściwe, ponieważ nie spełniają wymagań dotyczących odpowiedniego przekroju, co w konsekwencji może skutkować dużymi stratami energii. Przewód OMY 3x1,5 mm2, ze względu na niewystarczający przekrój, będzie zbyt wąski dla mocy paneli, co prowadzi do ich przegrzewania się, a nawet uszkodzenia. Z kolei YAKY 3x4 mm2, mimo że ma większy przekrój, nie jest przewodem odpowiednim do zastosowań w instalacjach fotowoltaicznych, ponieważ jest przeznaczony głównie do stosowania w budownictwie i nie zapewnia elastyczności oraz odporności na warunki atmosferyczne, które są kluczowe w instalacjach zewnętrznych. Przewód DYt 2x4 mm2 również nie jest optymalnym rozwiązaniem, gdyż jego konstrukcja nie jest dostosowana do specyficznych wymagań instalacji fotowoltaicznych. Stosowanie niewłaściwych przewodów jest typowym błędem, który może wynikać z braku zrozumienia potrzeb systemu oraz norm, takich jak PN-EN 60228, które sugerują odpowiednie parametry dla przewodów stosowanych w instalacjach elektrycznych. Właściwy dobór przewodów jest kluczowym elementem w zapewnieniu długotrwałego i bezpiecznego działania systemu fotowoltaicznego.