Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 18 maja 2025 20:24
  • Data zakończenia: 18 maja 2025 20:41

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jaki rodzaj czujnika wykorzystuje się do pomiaru odległości w zastosowaniach przemysłowych?

A. Ultradźwiękowy
B. Piezoelektryczny
C. Temperaturowy
D. Magnetyczny
Czujniki ultradźwiękowe są często używane do pomiaru odległości w zastosowaniach przemysłowych. Działają one na zasadzie emitowania fal dźwiękowych o wysokiej częstotliwości i mierzenia czasu, jaki zajmuje odbicie tych fal od obiektu do czujnika. Dzięki temu można precyzyjnie określić odległość do badanego obiektu. Czujniki ultradźwiękowe są bardzo uniwersalne i mogą mierzyć odległości od kilku centymetrów do kilku metrów, w zależności od specyfikacji urządzenia. W przemyśle stosuje się je w automatyzacji procesów produkcyjnych, takich jak kontrola poziomu cieczy, wykrywanie obecności obiektów czy nawet w systemach bezpieczeństwa do detekcji zbliżających się obiektów. Znajdują one zastosowanie w różnych branżach, od motoryzacyjnej po spożywczą. Istotnym atutem tych czujników jest ich niezależność od koloru i materiału obiektu, co czyni je bardziej uniwersalnymi w porównaniu z czujnikami optycznymi. Ważne jest również to, że czujniki ultradźwiękowe są odporne na kurz i brud, co jest istotne w trudnych warunkach przemysłowych.

Pytanie 3

Badanie szczelności układu hydraulicznego powinno być wykonane przy ciśnieniu

A. wyższym o 100% od ciśnienia roboczego
B. równym ciśnieniu roboczemu
C. niższym o 20% od ciśnienia roboczego
D. wyższym o 50% od ciśnienia roboczego
Ocena szczelności układu hydraulicznego przy ciśnieniu większym o 50% od ciśnienia roboczego jest kluczowym standardem w branży inżynieryjnej. Taki test ma na celu zapewnienie, że układ jest w stanie wytrzymać wszelkie potencjalne przeciążenia, które mogą wystąpić w trakcie normalnej eksploatacji. Przykładowo, w aplikacjach przemysłowych, takich jak maszyny hydrauliczne czy systemy transportu cieczy, presja robocza często osiąga wysokie wartości, dlatego ważne jest, aby podczas testów przekroczyć te wartości o 50%. Takie podejście jest zgodne z normami takimi jak ISO pressures standaryzacja, które zalecają przeprowadzanie testów na ciśnienie wyższe niż robocze w celu eliminacji ryzyka awarii. Dzięki temu można zidentyfikować potencjalne nieszczelności lub słabości w konstrukcji układu, co przyczynia się do zwiększenia bezpieczeństwa i niezawodności systemu. Umożliwia to również wcześniejsze wykrycie problemów, co może zaoszczędzić znaczne koszty związane z naprawami i przestojami w produkcji.

Pytanie 4

Podczas korzystania z urządzenia podłączonego do sieci jednofazowej 230 V z odpowiednim wyłącznikiem instalacyjnym, po zakończeniu pracy zauważono, że wtyczka oraz gniazdo są mocno rozgrzane. Najbardziej prawdopodobnym powodem tego zjawiska jest

A. luźne zaciski gniazda lub poluzowane kable zasilające
B. zwarcie w urządzeniu
C. przerwa w obwodzie zasilającym gniazdo wtyczkowe
D. zwarcie w instalacji zasilającej gniazdo wtyczkowe
Myśląc o nagrzewaniu się wtyczki czy gniazda, nie zawsze trzeba od razu myśleć o zwarciach w urządzeniach lub instalacji. Rzeczywiście, zwarcie w urządzeniu może powodować większe zużycie prądu, ale zazwyczaj to kończy się wyłączeniem zabezpieczeń, jak wyłączniki nadprądowe. Kiedy mamy zwarcie w instalacji, to wyłącznik też zadziała, co sprawia, że urządzenie się zatrzymuje i nie nagrzewa. Jak jest przerwa w obwodzie gniazda, to tym bardziej nie ma nagrzewania, bo nie ma prądu. Więc myślenie, że to może powodować nagrzewanie, jest nie do końca prawidłowe. Często mylimy ciepło z problemami w działaniu sprzętu, podczas gdy to może być przez niedokładne połączenie elektryczne. Zrozumienie tych rzeczy jest bardzo ważne, żeby dobrze diagnozować problemy z instalacjami elektrycznymi i zapewnić ich bezpieczeństwo, bo to się zgadza z normami i dobrymi praktykami.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jaki czujnik powinien zostać zainstalowany na obudowie siłownika, aby monitorować położenie tłoczyska z magnesem?

A. Kontaktronowy
B. Optyczny
C. Piezoelektryczny
D. Ultradźwiękowy
Czujnik kontaktronowy jest idealnym rozwiązaniem do wykrywania położenia tłoczyska z magnesem w siłownikach. Działa na zasadzie zjawiska magnetycznego, co oznacza, że gdy magnes znajdujący się na tłoczysku zbliża się do czujnika, jego styk zamyka się, co pozwala na precyzyjne określenie pozycji. Kontaktrony charakteryzują się dużą wytrzymałością na warunki atmosferyczne i mechaniczne, co czyni je niezawodnymi w trudnych warunkach pracy. W praktyce są szeroko stosowane w automatyce przemysłowej, gdzie precyzyjne pomiary położenia są kluczowe. Dodatkowo, zgodnie z normami ISO 13849 dotyczącymi bezpieczeństwa maszyn, czujniki kontaktronowe mogą być wykorzystywane w systemach bezpieczeństwa, co zwiększa ich wszechstronność. Wybór czujnika kontaktronowego na korpusie siłownika jest zatem zgodny z najlepszymi praktykami branżowymi i zapewnia niezawodność oraz bezpieczeństwo systemów automatyki.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Wskaż, jaka czynność powinna zostać zrealizowana przed przystąpieniem do konserwacji instalacji sprężonego powietrza, zaraz po wyłączeniu i odpowietrzeniu sprężarki oraz opróżnieniu zbiorników powietrza?

A. Otworzyć zawory odwadniaczy spustowych i upewnić się o braku ciśnienia w instalacji
B. Zakryć części i otwory czystą szmatką lub taśmą klejącą
C. Oczyścić części odpowiednimi środkami chemicznymi
D. Wymienić uszkodzone elementy instalacji oraz wszystkie uszczelki
Otwieranie zaworów odwadniaczy przed każdymi pracami konserwacyjnymi to mega ważna sprawa. Dzięki temu usuwamy wilgoć, która może się zbierać w zbiornikach i przewodach. A to jest kluczowe, żeby system działał sprawnie i dłużej. Jak woda lub jakieś zanieczyszczenia dostaną się do instalacji, to mogą spowodować korozję, co w efekcie może prowadzić do awarii, a nawet niebezpiecznych sytuacji, jak wybuchy. Musimy też pamiętać, że upewnienie się, że ciśnienie w instalacji jest na zero, to podstawa bezpieczeństwa. Jeśli zaczniemy działać pod ciśnieniem, to naprawdę może być bardzo niebezpiecznie dla osób obsługujących system. Standardy BHP w przemyśle mówią głośno o tym, jak ważne jest przestrzeganie procedur bezpieczeństwa, czyli regularne usuwanie wilgoci i kontrolowanie ciśnienia. Dobrze też wiedzieć, że odpowiednie zarządzanie instalacją sprężonego powietrza poprawia nie tylko bezpieczeństwo, ale też efektywność całego systemu.

Pytanie 12

Jakimi literami oznaczane są analogowe wyjścia w sterownikach PLC?

A. Q
B. I
C. AQ
D. AI
Odpowiedź AQ jest prawidłowa, ponieważ symbol ten jest szeroko stosowany w branży automatyki przemysłowej do oznaczania wyjść analogowych w sterownikach PLC. Wyjścia analogowe są kluczowe w kontekście przetwarzania sygnałów, które mogą przyjmować różne wartości w określonym zakresie, co pozwala na precyzyjne sterowanie procesami technologicznymi. Na przykład, w systemach sterowania temperaturą, wyjścia analogowe umożliwiają regulację wartości na podstawie pomiarów z czujników, co jest niezbędne w wielu aplikacjach przemysłowych. Warto zaznaczyć, że standard ISO 61131-3 definiuje klasyfikację sygnałów w systemach PLC, a AQ jako oznaczenie wyjść analogowych jest zgodne z tą normą. Dobrą praktyką jest również stosowanie jednolitych konwencji w projektowaniu schematów elektrycznych, co ułatwia ich interpretację i współpracę między różnymi specjalistami.

Pytanie 13

Młot pneumatyczny, który jest częścią robota frezarskiego, ma zamontowane urządzenie do smarowania. Jakie z zaleceń dotyczących uzupełnienia oleju, jeśli nie zostanie spełnione, może prowadzić do obrażeń pracownika obsługującego?

A. Warto sprawdzić, czy wąż doprowadzający sprężone powietrze oraz jego złącza są w dobrym stanie, a także upewnić się, że wszystkie połączenia zostały wykonane prawidłowo.
B. Najpierw należy oczyścić powierzchnię wokół korka wlewu oleju, a następnie przystąpić do jego odkręcania.
C. Należy wlać do młota zalecaną ilość oleju, tak aby poziom oleju nie przekraczał najniższego zwoju gwintu, a następnie umieścić korek wlewu oleju i dokręcić go.
D. Przed odkręceniem korka wlewu oleju konieczne jest odcięcie dopływu sprężonego powietrza oraz spuścić powietrze z wnętrza młota.
Odpowiedź jest poprawna, ponieważ odcięcie dopływu sprężonego powietrza oraz spuszczenie powietrza z wnętrza młota pneumatycznego to kluczowe kroki, które mają na celu zapewnienie bezpieczeństwa podczas uzupełniania oleju. W przypadku braku tych działań, ciśnienie wewnętrzne może spowodować nagłe uwolnienie, co prowadzi do potencjalnie niebezpiecznych sytuacji, takich jak wyrzucenie korka z dużą siłą, co może narażać obsługującego na poważne obrażenia. Przykład praktyczny: w standardach BHP oraz przy użytkowaniu narzędzi pneumatycznych, zawsze przed jakąkolwiek interwencją serwisową należy zadbać o bezpieczeństwo, co obejmuje również sprawdzenie, czy nie ma ciśnienia w systemie. Dobre praktyki branżowe zalecają stosowanie etykiet informujących o konieczności wyłączenia sprężarki oraz spuszczenia powietrza z urządzeń przed ich serwisowaniem, co ma na celu minimalizację ryzyka wystąpienia wypadków.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakie elementy mechanizmów mechatronicznych są zabezpieczane i konserwowane poprzez proces cynkowania?

A. Elementy konstrukcyjne
B. Elementy napędowe
C. Elementy sterujące
D. Elementy sygnalizacyjne
Konstrukcyjne elementy urządzeń mechatronicznych, takie jak ramy, wsporniki i inne elementy nośne, są szczególnie narażone na działanie czynników zewnętrznych, co może prowadzić do ich korozji. Cynkowanie jest skuteczną metodą ochrony przed tym procesem, ponieważ tworzy na powierzchni warstwę cynku, która działa jako bariera dla wilgoci i innych korozjogennych substancji. Dzięki cynkowaniu, elementy te mogą zachować swoje właściwości mechaniczne oraz estetyczne przez długi czas, co jest kluczowe w wielu zastosowaniach przemysłowych. Przykładem może być przemysł budowlany, gdzie elementy konstrukcyjne, takie jak belki czy słupy, muszą być odporne na trudne warunki atmosferyczne. Dobre praktyki branżowe zalecają regularne przeglądy oraz konserwację takich elementów, aby zapewnić ich długowieczność i niezawodność. W standardzie ISO 1461 opisano wymagania dotyczące cynkowania ogniowego, co zapewnia zgodność z międzynarodowymi normami jakości.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Aby umożliwić wymianę informacji między urządzeniami sieciowymi, niezbędne jest zaangażowanie wszystkich elementów w sieci komunikacyjnej o określonej topologii

A. drzewa
B. pierścienia
C. magistrali
D. gwiazdy
Wybór innej topologii niż pierścień wiąże się z pewnymi nieporozumieniami co do sposobu wymiany informacji w sieciach. Topologia drzewa, choć zapewnia hierarchiczne połączenia, nie wymaga udziału wszystkich urządzeń w każdym etapie przesyłania danych, co oznacza, że może wystąpić sytuacja, w której jeden z segmentów sieci jest w stanie działać niezależnie. Podobnie, w topologii magistrali wszystkie urządzenia są podłączone do jednego wspólnego kabla, co sprawia, że dane są przesyłane w obie strony, ale mogą być odbierane tylko przez te urządzenia, które są aktywne w danym momencie. Ta konstrukcja również nie wymaga pełnej współpracy wszystkich urządzeń, co może prowadzić do opóźnień w komunikacji i trudności w utrzymaniu sieci. W topologii gwiazdy każde urządzenie jest podłączone do centralnego węzła, co oznacza, że awaria jednego z urządzeń nie wpływa na pozostałe, a przesyłanie danych odbywa się przez centralny punkt. To może być korzystne z punktu widzenia zarządzania, ale nie zapewnia tak bezpośredniej i w pełni zintegrowanej wymiany danych jak w topologii pierścienia. Dlatego ważne jest, aby przy projektowaniu sieci uwzględniać specyfikę oraz wymagania konkretnej aplikacji, co pozwala na wybranie odpowiedniej topologii w zależności od potrzeb organizacji.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Z jakiego systemu zasilania powinno korzystać urządzenie mechatroniczne, jeśli na schemacie sieci energetycznej zaznaczono symbol 400 V ~ 3/N/PE?

A. TI
B. TT
C. TN - S
D. TN - C
Wybór układów TT, TI i TN-C nie jest odpowiedni w kontekście zasilania urządzenia mechatronicznego, gdyż każdy z tych układów ma swoje ograniczenia, które nie spełniają wymagań przedstawionych w pytaniu. Układ TT, w którym odbiorca posiada niezależne uziemienie, może prowadzić do problemów z stabilnością zasilania, zwłaszcza w sytuacjach, gdy wystąpią różnice potencjałów pomiędzy uziemieniem transformatora a uziemieniem odbiorcy. Takie różnice mogą powodować niebezpieczne warunki pracy dla urządzeń mechatronicznych, które wymagają precyzyjnego i stabilnego napięcia. Z kolei układ TI, czyli sieć izolowana, jest stosunkowo rzadko używany w zasilaniu urządzeń mechatronicznych, ponieważ brak ziemi neutralnej sprawia, że w przypadku awarii, nie ma możliwości skutecznego odłączenia urządzenia. Ostatecznie, układ TN-C, który łączy przewody neutralne i ochronne, nie spełnia standardów bezpieczeństwa wymaganych dla nowoczesnych aplikacji, w których potrzebna jest separacja tych przewodów. Taki stan rzeczy może prowadzić do niebezpiecznych sytuacji, zwłaszcza w obecności zakłóceń czy awarii sprzętu. Dlatego konieczne jest stosowanie układu TN-S, aby zapewnić odpowiedni poziom bezpieczeństwa oraz niezawodności działania urządzeń mechatronicznych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Na podstawie przedstawionych danych katalogowych narzędzia skrawającego wskaż wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej.

Rodzaj obróbkiDokładność obróbkiChropowatość powierzchni
(Ra) μm
Zakres posuwów
mm/obr
Zakres
głębokości
mm
Obróbka dokładnaIT6-IT90,32÷1,250,05÷0,30,5÷2
Obróbka średniodokładnaIT9-IT112,5÷50,2÷0,52÷4
Obróbka zgrubnaIT12-IT1410÷40≥0,4≥4

A. 5,0 mm
B. 0,5 mm
C. 2,0 mm
D. 0,8 mm
Wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej, wynosi 5,0 mm. Zgodnie z danymi katalogowymi, podczas obróbki zgrubnej zaleca się głębokości skrawania wynoszące co najmniej 4 mm, co czyni tę odpowiedź poprawną. Ustalenie optymalnej głębokości skrawania jest kluczowe dla efektywności procesu obróbczy. Zbyt mała głębokość może prowadzić do wydłużenia czasu obróbki oraz niższej efektywności materiałowej, podczas gdy zbyt duża głębokość może powodować nadmierne obciążenie narzędzia, co w skrajnych przypadkach prowadzi do jego uszkodzenia. W praktyce, głębokość skrawania powinna być dostosowywana do rodzaju materiału oraz rodzaju narzędzia. Przykładowo, w obróbce stali narzędziowej często stosuje się głębokości skrawania w zakresie 5-10 mm, co zwiększa wydajność procesu i zmniejsza ryzyko przegrzania narzędzi. Dla zachowania wysokiej jakości obróbki, warto również monitorować stan narzędzia podczas pracy oraz stosować odpowiednie chłodziwa, co wpływa na jego trwałość i efektywność skrawania.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Który kabel w sieci elektrycznej zasilającej silnik trójfazowy jest oznaczony izolacją w kolorze żółto-zielonym?

A. Fazowy
B. Neutralny
C. Sterujący
D. Ochronny
Przewód z izolacją w kolorach żółto-zielonym jest klasycznym przewodem ochronnym, co jest zgodne z normą PN-EN 60446, która określa zasady oznaczania przewodów elektrycznych. Ochrona przed porażeniem prądem elektrycznym jest kluczowym aspektem bezpieczeństwa w instalacjach elektrycznych, zwłaszcza w kontekście urządzeń przemysłowych, takich jak silniki trójfazowe. Przewód ochronny jest odpowiedzialny za uziemienie urządzenia, co minimalizuje ryzyko porażenia w przypadku awarii izolacji. Przykładowo, w przypadku uszkodzenia silnika, przewód ochronny prowadzi niebezpieczny prąd do ziemi, zapobiegając poważnym wypadkom. Stosowanie przewodów ochronnych zgodnie z przyjętymi normami, takimi jak norma IEC 60364, jest niezbędne dla bezpieczeństwa pracowników oraz użytkowników urządzeń elektrycznych. Warto również zwrócić uwagę, że przewody ochronne powinny być regularnie kontrolowane oraz, w miarę potrzeby, wymieniane, by zapewnić ich skuteczność.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Najczęściej stosowaną kategorią cieczy roboczych w hydraulice są

A. oleje pochodzenia roślinnego
B. mieszanki wody i olejów roślinnych
C. mieszanki wody oraz olejów mineralnych
D. oleje mineralne oraz ciecze niepalne
Oleje mineralne i ciecze niepalne są kluczowymi komponentami w hydraulice, ze względu na swoje wyjątkowe właściwości. Ich doskonała lepkość oraz stabilność termiczna sprawiają, że są one w stanie skutecznie przekazywać siłę w systemach hydraulicznych. Oleje mineralne charakteryzują się także niskim poziomem parowania i dużą odpornością na utlenianie, co wydłuża żywotność cieczy roboczych. Przykładem zastosowania olejów mineralnych są systemy hydrauliczne w maszynach budowlanych, takich jak koparki, gdzie niezawodność i efektywność przekazywania energii są kluczowe. W praktyce, stosowanie cieczy niepalnych jest istotne w kontekście bezpieczeństwa oraz ochrony środowiska, szczególnie w aplikacjach wymagających minimalizacji ryzyka pożaru. Zgodnie z normami ISO 6743-4, oleje mineralne klasy HFA, HFB, HFC i HFD są zalecane w różnych zastosowaniach hydraulicznych, co potwierdza ich dominującą pozycję na rynku.

Pytanie 36

Na podstawie harmonogramu czynności serwisowych przedstawionych w tabeli określ, jak często należy przeprowadzać kontrolę działania zaworów bezpieczeństwa.

Harmonogram czynności serwisowych (fragment)
Lp.Czynność serwisowaOkres wykonywania
1.Sprawdzanie temperatury pracyCodziennie
2.Kontrola przewodu zasilającegoCodziennie
3.Sprawdzanie podciśnienia generowanego przez sprężarkęCo 3 miesiące
4.Kontrola obiegu oleju w sprężarceCo 3 miesiące
5.Sprawdzanie zaworówCo 6 miesięcy
6.Kontrola działania zaworów bezpieczeństwaCo 6 miesięcy
7.Kontrola ustawień zabezpieczenia przeciążeniowego w sprężarceCo 6 miesięcy
8.Sprawdzanie rurociągu, skraplacza, części chłodniczychCo rok
9.Sprawdzanie łączników i bezpiecznikówCo rok

A. Raz na rok.
B. Raz na kwartał.
C. Raz na pół roku.
D. Raz na dzień.
Kontrola działania zaworów bezpieczeństwa co 6 miesięcy jest kluczowym elementem strategii zarządzania bezpieczeństwem w każdym zakładzie przemysłowym. Zgodnie z normami branżowymi, takimi jak ISO 9001 oraz dyrektywami Unii Europejskiej, regularne inspekcje i konserwacje urządzeń zabezpieczających są niezbędne dla zapewnienia ich prawidłowego działania w sytuacjach kryzysowych. Zawory bezpieczeństwa są zaprojektowane w celu ochrony systemu przed nadmiernym ciśnieniem, a ich awaria może prowadzić do poważnych incydentów, w tym eksplozji. Przykładowo, w przemyśle petrochemicznym, podejmowanie działań prewencyjnych, takich jak systematyczna kontrola zaworów, pozwala na identyfikację potencjalnych problemów zanim dojdzie do ich wystąpienia. Ponadto, zaleca się prowadzenie dokumentacji związanej z każdym przeglądem, co ułatwia późniejsze audyty oraz pozwala na lepsze planowanie konserwacji.

Pytanie 37

Jaką metodę czyszczenia powinno się zastosować podczas montażu elementów hydraulicznych na końcowym etapie?

A. Osuszenia w wysokiej temperaturze
B. Przemycia wodą
C. Przetarcia rozpuszczalnikiem
D. Przedmuchania sprężonym powietrzem
Metoda przedmuchania sprężonym powietrzem jest kluczowym etapem w montażu elementów hydraulicznych, ponieważ pozwala na skuteczne usunięcie wszelkich drobnych zanieczyszczeń, które mogłyby wpłynąć na prawidłowe funkcjonowanie systemu. Zastosowanie sprężonego powietrza umożliwia dotarcie do trudno dostępnych miejsc, gdzie mogą gromadzić się pyły i cząstki stałe. Dobrą praktyką w branży hydraulicznej jest wykonywanie przedmuchania na zakończenie montażu, aby upewnić się, że wszystkie elementy są wolne od zanieczyszczeń przed ich uruchomieniem. W wielu przypadkach, zanieczyszczenia mogą prowadzić do awarii systemu, co z kolei może generować niepotrzebne koszty związane z naprawą i przestojem. Warto również pamiętać, że przedmuchanie sprężonym powietrzem powinno być przeprowadzane zgodnie z odpowiednimi normami BHP, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Ponadto, technika ta jest często stosowana w połączeniu z innymi metodami oczyszczania, co pozwala na uzyskanie jeszcze lepszych rezultatów, zapewniając długowieczność i niezawodność systemów hydraulicznych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

W schemacie układu hydraulicznego przyłącze rury zasilającej rozdzielacza oznaczane jest literą

A. P
B. T
C. A
D. B
Niepoprawne odpowiedzi, jak B, T czy A, wskazują na jakieś nieporozumienia w symbolice hydraulicznej. Symbol B zazwyczaj oznacza odpływ, więc można pomyśleć, że dotyczy przyłącza zasilającego, ale to nie to. Odpływ odprowadza medium robocze, a nie je dostarcza. Symbol T natomiast to powrót oleju do zbiornika, co też nie jest związane z przyłączem zasilającym. Używanie tych symboli w niewłaściwy sposób może powodować błędy w projektowaniu i używaniu układów hydraulicznych, co w praktyce może prowadzić do problemów z maszynami. Co do symboli A i B, to one oznaczają wyjścia robocze, więc też nie mają nic wspólnego z zasilaniem. Rozumienie tych różnic jest naprawdę kluczowe, żeby unikać typowych błędów w analizie schematów hydraulicznych. Jeśli nie ogarniasz tej symboliki, to może być nieefektywna instalacja i wyższe koszty. Dlatego ważne, by każdy, kto z tym pracuje, miał dobry przegląd oznaczeń i ich zastosowania.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.