Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 maja 2025 17:49
  • Data zakończenia: 25 maja 2025 18:09

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Aby zmierzyć nieznaną rezystancję z wysoką precyzją przy użyciu trzech rezystorów odniesienia o znanych wartościach, jaki przyrząd powinno się zastosować?

A. megaomomierz
B. mostek Wheatstone'a
C. mostek Thomsona
D. omomierz
Omomierz, mimo że na pierwszy rzut oka wydaje się odpowiednim narzędziem do pomiaru rezystancji, ma swoje ograniczenia, zwłaszcza w kontekście bardzo dokładnych pomiarów. Jego działanie opiera się na bezpośrednim pomiarze rezystancji, co może prowadzić do błędów wynikających z wpływu temperatury, pojemności czy indukcyjności. Ponadto, omomierze mogą mieć ograniczoną dokładność w przypadku pomiarów bardzo niskich lub wysokich wartości rezystancji, co czyni je mniej skutecznymi niż mostek Wheatstone'a. Megaomomierz, chociaż jest narzędziem do pomiaru dużych rezystancji, również może nie zapewniać wystarczającej precyzji w pomiarze wartości nieznanych, ponieważ jego zastosowanie jest głównie ograniczone do testów izolacji. Mostek Thomsona, z kolei, jest bardziej skomplikowanym układem, który nie jest powszechnie stosowany w praktycznych zastosowaniach w porównaniu do mostka Wheatstone'a. Typowe błędy myślowe prowadzące do wyboru tych narzędzi obejmują niedocenienie znaczenia równowagi w pomiarze oraz niezrozumienie wpływu czynników zewnętrznych na wyniki pomiarów. Dlatego istotne jest, aby przed dokonaniem wyboru narzędzia pomiarowego zrozumieć różnice między nimi oraz ich zastosowania w kontekście wymaganych standardów dokładności.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. magnetooptyczne (Faradaya)
B. piezoelektryczne
C. zwane efektem Dopplera
D. magnotorezystancji (Gaussa)
Zjawisko magnotorezystancji (Gaussa) jest szeroko stosowane w czujnikach przekształcających przemieszczenie liniowe na sygnał elektryczny ze względu na swoją wysoką czułość i precyzję. Magnotorezystancja polega na zmianie oporu elektrycznego materiału w wyniku działania pola magnetycznego. W praktyce, czujniki te mogą być wykorzystane w różnych aplikacjach, takich jak automatyka przemysłowa, robotyka oraz systemy pomiarowe. W standardach branżowych, takich jak IEC 61131, podkreśla się znaczenie precyzyjnych pomiarów w systemach automatyzacji, co czyni rozwiązania bazujące na magnotorezystancji preferowanym wyborem. Przykładem może być zastosowanie w czujnikach położenia w silnikach elektrycznych, gdzie dokładne informacje o przemieszczeniu są kluczowe dla efektywności i bezpieczeństwa operacji. Ponadto, magnotorezystancyjne czujniki są odporne na zakłócenia elektromagnetyczne, co zwiększa ich niezawodność w trudnych warunkach przemysłowych. Z tego względu, ich wykorzystanie w nowoczesnych systemach pomiarowych stanowi standard w wielu branżach.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Filtr o charakterystyce pasmowo-zaporowej

A. tłumi sygnały o częstotliwościach w obrębie określonego pasma częstotliwości.
B. tłumi sygnały o niskich częstotliwościach.
C. przepuszcza sygnały o niskich częstotliwościach.
D. przepuszcza sygnały w zakresie określonego pasma częstotliwości.
W przypadku filtrów pasmowo-zaporowych istnieje wiele nieporozumień dotyczących ich funkcji i zastosowań. Odpowiedzi, które sugerują, że filtr ten przepuszcza sygnały o częstotliwościach wewnątrz wyznaczonego pasma częstotliwości, są zasadniczo mylne. Takie określenie odnosiłoby się raczej do filtrów pasmowych, które mają za zadanie przepuszczać sygnały w określonym zakresie częstotliwości, a nie ich tłumienie. Również te odpowiedzi, które wskazują na tłumienie sygnałów o małej częstotliwości, są błędne, ponieważ filtry pasmowo-zaporowe nie koncentrują się jedynie na niskich częstotliwościach, ale na eliminowaniu określonego zakresu częstotliwości, niezależnie od tego, czy są one niskie, średnie, czy wysokie. Typowe błędy myślowe prowadzące do tych błędnych wniosków często wynikają z nieporozumienia dotyczącego terminologii związanej z filtracją sygnałów. Zrozumienie, że filtry pasmowo-zaporowe aktywnie eliminują sygnały w określonym paśmie, a nie je przepuszczają, jest kluczowe dla poprawnego zastosowania tej teorii w praktyce inżynieryjnej. Dlatego ważne jest, aby przed przystąpieniem do projektowania lub analizy systemów wykorzystujących filtrację sygnałów, dokładnie zrozumieć działanie i właściwości różnych typów filtrów oraz ich zastosowanie w praktyce.

Pytanie 12

Które z wymienionych materiałów sztucznych jest najbardziej odpowiednie do wytwarzania kół zębatych?

A. Poliuretan
B. Lateks
C. Silikon
D. Poliamid
Wybór nieodpowiednich tworzyw sztucznych do produkcji kół zębatych może prowadzić do znacznych problemów w funkcjonowaniu całego systemu. Poliuretan, choć elastyczny i odporny na ścieranie, ma ograniczone właściwości mechaniczne, które mogą prowadzić do deformacji pod wpływem obciążeń, co jest nieakceptowalne w przypadku kół zębatych wymagających precyzyjnego dopasowania. Silikon, z kolei, jest materiałem charakteryzującym się doskonałą odpornością na wysokie temperatury i chemikalia, ale jego niska wytrzymałość na rozciąganie i kruchość czynią go niewłaściwym wyborem dla elementów narażonych na intensywne obciążenia mechaniczne. Lateks, mimo że jest elastyczny, nie zapewnia odpowiedniej twardości i odporności na ścieranie, co czyni go mało praktycznym w zastosowaniach wymagających dużej precyzji i trwałości. Wybierając materiał do produkcji kół zębatych, kluczowe jest zrozumienie, że odpowiednie właściwości mechaniczne, takie jak wytrzymałość, odporność na ścieranie oraz niskie tarcie, są niezbędne dla zapewnienia ich długowieczności i efektywności, co w przypadku wymienionych materiałów nie jest spełnione.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Wskaź prawidłową sekwencję montażu składników w systemie przygotowania sprężonego powietrza?

A. Reduktor, smarownica, filtr powietrza
B. Smarownica, filtr powietrza, reduktor
C. Filtr powietrza, reduktor, smarownica
D. Reduktor, filtr powietrza, smarownica
Filtr powietrza, reduktor, smarownica to prawidłowa kolejność montażu elementów składowych w zespole przygotowania sprężonego powietrza. Rozpoczynamy od filtra powietrza, który jest kluczowy w procesie oczyszczania powietrza z zanieczyszczeń, takich jak pyły, woda i oleje, aby zapewnić wysoką jakość sprężonego powietrza. Następnie, po filtracji, powietrze trafia do reduktora ciśnienia, który obniża ciśnienie powietrza do pożądanego poziomu, co jest niezbędne do dalszej obróbki i właściwego działania urządzeń pneumatycznych. Ostatnim elementem jest smarownica, która dostarcza odpowiednią ilość oleju do sprężonego powietrza, co zmniejsza tarcie w narzędziach pneumatycznych i wydłuża ich żywotność. Takie podejście jest zgodne z najlepszymi praktykami w branży pneumatycznej, co pozwala na osiągnięcie optymalnej efektywności i bezpieczeństwa w operacjach z wykorzystaniem sprężonego powietrza.

Pytanie 15

Kiedy należy dokonać wymiany filtrów standardowych w systemie przygotowania powietrza?

A. W trakcie przeglądu konserwacyjnego przeprowadzanym raz w roku lub kiedy spadek ciśnienia na filtrze przekroczy 0,5 bara
B. W trakcie przeglądu konserwacyjnego przeprowadzanego co pół roku
C. W trakcie przeglądu konserwacyjnego przeprowadzanego co miesiąc
D. W trakcie przeglądu konserwacyjnego przeprowadzanego co dwa lata i kiedy spadek ciśnienia na filtrze przekroczy 1 bar
Wybór odpowiedzi sugerującej wymianę filtrów standardowych podczas przeglądu konserwacyjnego raz w miesiącu lub co dwa lata jest nieodpowiedni i wskazuje na brak zrozumienia dynamiki pracy systemów wentylacyjnych oraz ich wpływu na jakość powietrza. Konieczność wymiany filtrów co miesiąc jest niewłaściwa, ponieważ w większości zastosowań przemysłowych i komercyjnych filtry są projektowane do pracy przez dłuższy okres, a ich częsta wymiana może być nie tylko kosztowna, ale również nieefektywna. Ponadto, takie podejście prowadzi do niepotrzebnego generowania odpadów, co jest sprzeczne z zasadami zrównoważonego rozwoju i ochrony środowiska. Z kolei sugestia, aby wymieniać filtry co dwa lata, ignoruje kluczowy wskaźnik, jakim jest spadek ciśnienia. Filtry powinny być wymieniane nie tylko na podstawie czasu, ale przede wszystkim na podstawie ich stanu, co jest potwierdzone pomiarem ciśnienia. Właściwe podejście do zarządzania filtrami w systemach wentylacyjnych polega na ich cyklicznej ocenie i wymianie w zależności od rzeczywistych warunków operacyjnych. Takie praktyki są zgodne z zaleceniami międzynarodowych standardów, takich jak ISO 16890, które kładą duży nacisk na efektywność filtracji oraz odpowiednie zarządzanie jakością powietrza w pomieszczeniach. Właściwe monitorowanie stanu filtrów oraz ich wymiana w odpowiednich odstępach czasowych lub w zależności od spadku ciśnienia to kluczowe elementy zapewniające nieprzerwaną i efektywną pracę systemów uzdatniania powietrza.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. przeprowadzić reanimację poszkodowanego i wezwać pomoc
B. wezwać pomoc i przeprowadzić sztuczne oddychanie
C. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
D. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
Inne odpowiedzi, które zaznaczyłeś, mają błędne podejście do tego, co jest najważniejsze w sytuacji wypadku. Pamiętaj, że nie można najpierw robić sztucznego oddychania, gdy drogi oddechowe są zablokowane, bo to jest naprawdę niebezpieczne. Jak coś zablokuje drogi, to powietrze się nie dostanie do płuc i tylko pogorszymy sytuację. Odpowiedź, w której zostawiasz poszkodowanego w pozycji, w jakiej go znalazłeś, jest też zła, bo może prowadzić do kompikacji jak aspiracja. No i w resuscytacji najważniejsze jest, by najpierw otworzyć drogi oddechowe, a potem wezwać pomoc. Każdy, kto chce być ratownikiem, powinien to wiedzieć. Ignorowanie tych zasad może naprawdę zaszkodzić osobie, która potrzebuje pomocy.

Pytanie 19

Podczas działania silnika prądu stałego zauważono intensywne iskrzenie na komutatorze spowodowane nagromadzeniem pyłu ze szczotek. Aby naprawić tę awarię, należy wyłączyć silnik, a następnie

A. wykonać szlifowanie komutatora
B. przetrzeć komutator olejem
C. posmarować olejem szczotki
D. umyć komutator wodą
Przetrwanie komutatora olejem, umycie go wodą lub smarowanie szczotek olejem to podejścia, które nie adresują podstawowego problemu, jakim jest iskrzenie spowodowane zanieczyszczeniami. Przetarcie komutatora olejem może chwilowo zmniejszyć tarcie, jednak nie eliminuje zanieczyszczeń, a wręcz może prowadzić do ich utrwalenia, co pogarsza sytuację. Woda, choć skutecznie usunie brud, nie jest odpowiednia do czyszczenia komutatorów silników elektrycznych, ponieważ może spowodować korozję oraz uszkodzić izolację. Dodatkowo, wprowadzenie wilgoci do wnętrza silnika może prowadzić do poważnych uszkodzeń. Smarowanie szczotek olejem również nie jest właściwym rozwiązaniem, ponieważ olej może osadzać się na komutatorze, co z kolei zwiększa ryzyko iskrzenia. To podejście pomija fundamentalny problem, jakim jest niewłaściwe działanie komutatora. Istotne jest zrozumienie, że każdy z wymienionych sposobów nie eliminuje problemu z iskrzeniem, a jedynie maskuje objawy, co może prowadzić do dalszego zużycia i uszkodzeń. Kluczowe w konserwacji silników prądu stałego jest regularne sprawdzanie stanu komutatora oraz jego szlifowanie, co jest uznawane za najlepszą praktykę w branży.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jakiego typu oprogramowanie powinno być zastosowane do monitorowania przebiegu procesów w przemyśle?

A. CAM
B. CAE
C. CAD
D. SCADA
Odpowiedzi CAM (Computer-Aided Manufacturing), CAD (Computer-Aided Design) oraz CAE (Computer-Aided Engineering) odnoszą się do różnych aspektów procesów inżynieryjnych, które nie są przeznaczone do nadzorowania procesów przemysłowych. CAM skupia się na automatyzacji procesów produkcyjnych, umożliwiając konwersję projektów CAD na instrukcje maszynowe, co jest kluczowe w produkcji, ale nie w samym monitorowaniu. CAD zajmuje się projektowaniem, dostarczając narzędzia do tworzenia precyzyjnych rysunków i modeli 3D, co również nie obejmuje funkcji nadzoru. CAE koncentruje się na analizach inżynieryjnych, wspierając procesy projektowania przez symulacje i analizy wydajności, jednak nie ma na celu monitorowania rzeczywistych procesów w czasie rzeczywistym. Wybór tych opcji może wynikać z mylnego przekonania, że wszystkie te technologie obejmują aspekty zarządzania procesami, co jest nieprawidłowe. Kluczowym błędem jest nieodróżnianie funkcji projektowania i produkcji od nadzoru i kontroli. Zrozumienie różnic między tymi systemami jest kluczowe, aby skutecznie je stosować w odpowiednich kontekstach przemysłowych, i pomoże uniknąć nieefektywnego wykorzystania narzędzi inżynieryjnych w procesach, które wymagają monitorowania i kontroli.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Nitowanie
B. Spawanie
C. Zgrzewanie
D. Klejenie
Wybór metod takich jak zgrzewanie, spawanie czy nitowanie do łączenia szkła z metalem opiera się na błędnym założeniu, że te procesy mogą efektywnie łączyć materiały o tak odmiennych właściwościach. Zgrzewanie, które jest procesem polegającym na miejscowym stopieniu materiałów, nie jest możliwe w przypadku szkła, ponieważ jego struktura krucha sprawia, że pod wpływem wysokiej temperatury może pęknąć. Spawanie, które również wymaga wysokich temperatur, prowadzi do tak samo niepożądanych efektów, a dodatkowo może spowodować uszkodzenie metalowych komponentów, jeśli nie są one odpowiednio przygotowane. Nitowanie jest kolejną nieodpowiednią metodą, ponieważ polega na mechanicznych połączeniach, które nie mogą zapewnić szczelności ani elastyczności wymaganej w przypadku łączenia szkła z metalem. Typowym błędem myślowym jest założenie, że wszystkie materiały można łączyć za pomocą tradycyjnych metod spajania, co często prowadzi do nieefektywnych i nietrwałych rozwiązań. W praktyce, ignorowanie odpowiednich metod łączenia szkła z metalem może prowadzić do awarii struktur oraz niskiej jakości wykonania, co jest niezgodne z najlepszymi praktykami inżynieryjnymi i normami budowlanymi.

Pytanie 24

Aby maksymalnie zwiększyć zasięg przesyłania danych oraz ograniczyć wpływ zakłóceń elektromagnetycznych na transmisję w systemie mechatronicznym przy realizacji sterowania sieciowego, jaki kabel należy wykorzystać?

A. koncentryczny
B. symetryczny nieekranowany (tzw. skrętka nieekranowana)
C. symetryczny ekranowany (tzw. skrętka ekranowana)
D. światłowodowy
Wybór innych typów kabli, jak kable symetryczne ekranowane czy koncentryczne, to nie najlepsze rozwiązanie, jeśli chodzi o przesył danych na długie dystansy i ochronę przed zakłóceniami. Kable symetryczne ekranowane mogą bronić sygnał przed zakłóceniami, ale nie są tak dobre jak światłowody na dłuższych trasach. Wynika to z tego, że w kablach miedzianych przesył opiera się na sygnałach elektrycznych, które są łatwo zakłócane. Kable koncentryczne, chociaż używa się ich w różnych aplikacjach, mają ograniczenia długości przesyłu i są bardziej narażone na zakłócenia. Z kolei kable symetryczne nieekranowane mogą działać lepiej w sprzyjających warunkach, ale w zgiełku elektromagnetycznym ich efektywność spada. Wybór złego kabla może prowadzić do problemów z komunikacją, większych opóźnień, a czasem nawet do całkowitej utraty sygnału. Zrozumienie tych różnic to kluczowa sprawa dla inżynierów, którzy tworzą systemy mechatroniczne, żeby wszystko działało jak należy.

Pytanie 25

Co należy zrobić w przypadku urazu kolana u pracownika po upadku z wysokości?

A. umieścić poszkodowanego w ustalonej pozycji bocznej.
B. wyregulować nogę, lekko ciągnąc ją w dół.
C. nałożyć bandaż na kolano po delikatnym wyprostowaniu nogi.
D. unieruchomić staw kolanowy na jakimkolwiek podparciu, nie zmieniając jego pozycji.
W przypadku urazu kolana, szczególnie po upadku z wysokości, kluczowe jest unieruchomienie stawu w jego naturalnym ustawieniu. Ta technika ma na celu ograniczenie dalszego uszkodzenia tkanek oraz zmniejszenie bólu. Gdy kości stawu kolanowego są unieruchomione w ich fizjologicznym położeniu, minimalizujemy ryzyko przemieszczenia uszkodzonych struktur oraz ewentualnych powikłań związanych z nieprawidłowym ułożeniem. Praktyczne zastosowanie tej metody obejmuje użycie szyn, bandaży czy innych dostępnych materiałów, które stabilizują staw. Warto podkreślić, że według wytycznych organizacji zajmujących się pierwszą pomocą, tak jak np. Czerwony Krzyż, unieruchomienie powinno być wykonane jak najszybciej i z zachowaniem ostrożności. Istotne jest także, aby nie próbować prostować lub manipulować urazem, co może prowadzić do dalszych urazów i komplikacji. Po unieruchomieniu należy jak najszybciej wezwać pomoc medyczną, aby zapewnić dalszą opiekę nad poszkodowanym.

Pytanie 26

Aby zdemontować stycznik zamocowany na szynie, należy wykonać czynności w odpowiedniej kolejności:

A. odłączyć napięcie, zdjąć stycznik z szyny, odkręcić przewody
B. zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody
C. odłączyć napięcie, odkręcić przewody, zdjąć stycznik z szyny
D. odkręcić przewody, zdjąć stycznik z szyny, odłączyć napięcie
Poprawna odpowiedź, która wskazuje na odłączenie napięcia, odkręcenie przewodów, a następnie odpięcie stycznika z szyny, jest zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Pierwszym krokiem powinno być zawsze odłączenie zasilania. To kluczowe, aby uniknąć porażenia prądem oraz zapobiec uszkodzeniu sprzętu. Po odłączeniu zasilania można bezpiecznie przystąpić do odkręcania przewodów, co minimalizuje ryzyko zwarcia. Na końcu, po bezpiecznym odłączeniu przewodów, można zdemontować stycznik z szyny. Taki porządek działań jest zgodny z zaleceniami norm międzynarodowych, takich jak IEC 60204-1, które podkreślają znaczenie bezpieczeństwa podczas prac elektrycznych. Wiedza na temat prawidłowego demontażu urządzeń elektrycznych jest nie tylko istotna dla zapewnienia bezpieczeństwa, ale również dla efektywności i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Czym charakteryzuje się filtr dolnoprzepustowy?

A. przepuszcza sygnały sinusoidalne o częstotliwości wyższej od częstotliwości granicznej
B. tłumi sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
C. przepuszcza sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
D. wzmacnia sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
Wiele osób myli funkcję filtrów dolnoprzepustowych, co prowadzi do błędnych wniosków. W przypadku pierwszej odpowiedzi, wskazanie, że filtr dolnoprzepustowy przepuszcza sygnały o częstotliwości większej od granicznej jest sprzeczne z definicją jego działania. Filtr dolnoprzepustowy ma na celu eliminację tych wyższych częstotliwości, a nie ich przepuszczanie. W praktyce, może to prowadzić do poważnych problemów w projektowaniu układów elektronicznych, gdzie konieczne jest zachowanie jakości sygnału. Z kolei odpowiedź mówiąca o wzmacnianiu sygnałów o częstotliwości mniejszej od granicznej jest również myląca. Filtry dolnoprzepustowe nie wzmacniają sygnałów, lecz je tłumią lub przepuszczają w zależności od ich częstotliwości. W realnych zastosowaniach, takie nieporozumienia mogą prowadzić do błędnych decyzji w konstrukcji układów, które nie będą działały zgodnie z zamierzeniem. Zrozumienie pracy filtrów dolnoprzepustowych jest kluczowe w inżynierii sygnałowej, gdzie efektywność filtracji wpływa na jakość końcowego sygnału oraz zgodność z normami branżowymi. Typowe błędy myślowe, takie jak mylenie funkcji wzmacniania z przepuszczaniem, mogą prowadzić do poważnych usterek w projektach elektronicznych, a także do obniżenia jakości usług w systemach komunikacyjnych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jaka jest maksymalna wartość podciśnienia, które może być doprowadzone do zaworu o danych znamionowych zamieszczonych w tabeli?

MS-18-310/2-HN
Zawory elektromagnetyczne 3/2 G1/8
Średnica nominalna : 1,4 mm
Ciśnienie pracy : -0,95 bar...8 bar
Czas zadziałania : 12 ms
Temperatura pracy : -10°C...+70°C
Zabezpieczenie : IP 65 EN 60529
Napięcie sterujące : 12V DC - 230V AC

A. 0,95 bara.
B. 1 bar.
C. 2 bary.
D. 0,75 bara.
Maksymalna wartość podciśnienia, którą może przyjąć zawór, wynosi 0,95 bara, co jest wyraźnie wskazane w tabeli danych znamionowych dla modelu zaworu MS-18-310/2-HN. W praktyce oznacza to, że zawór może efektywnie działać w szerokim zakresie ciśnień, od -0,95 bara do 8 barów. Takie parametry są kluczowe w projektowaniu systemów, w których stosuje się zawory, ponieważ zrozumienie limitów pracy zaworu pozwala na uniknięcie awarii i zapewnienie jego długotrwałej funkcjonalności. Podciśnienie w zakresie 0,95 bara jest typowe w zastosowaniach przemysłowych, takich jak systemy wentylacyjne czy pompy próżniowe, gdzie kontrolowanie ciśnienia ma kluczowe znaczenie dla efektywności operacyjnej. Warto również pamiętać, że przy wyborze zaworu należy kierować się standardami branżowymi, takimi jak norma ISO 9001, które podkreślają znaczenie dokładnych danych technicznych w celu zapewnienia odpowiedniej jakości i bezpieczeństwa pracy urządzeń.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

W jakim urządzeniu dochodzi do przemiany energii promieniowania słonecznego na energię elektryczną?

A. Fotodiodzie
B. Fototranzystorze
C. Fotoogniwie
D. Fotorezystorze
Fotodioda, fototranzystor i fotorezystor to urządzenia, które również reagują na światło, ale ich głównym celem nie jest przekształcanie energii promieniowania słonecznego na energię elektryczną w taki sposób, jak ma to miejsce w fotoogniwie. Fotodioda działa na zasadzie generacji prądu w odpowiedzi na naświetlenie, jednak jej zastosowanie jest głównie w detekcji światła i w systemach komunikacji optycznej, a nie w produkcji energii elektrycznej. W przypadku fototranzystora, który jest bardziej zaawansowaną formą fotodiody, także możemy mówić o detekcji światła, ale jego działanie polega na wzmocnieniu sygnału, co czyni go mniej odpowiednim do konwersji energii słonecznej na prąd. Fotorezystor, z drugiej strony, jest elementem, którego oporność zmienia się w zależności od natężenia światła, a jego zastosowanie koncentruje się na detekcji zmian oświetlenia, takich jak w automatycznych systemach oświetleniowych. Warto zauważyć, że mylenie tych technologii z fotoogniwem może wynikać z niepełnego zrozumienia podstawowych różnic w ich funkcjonalności i zastosowaniu. Każde z wymienionych urządzeń ma swoje unikalne zastosowania, ale w kontekście przekształcania energii promieniowania słonecznego w energię elektryczną, to tylko fotoogniwa spełniają tę funkcję.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jaki rodzaj oprogramowania trzeba zainstalować na komputerze, aby mieć możliwość wspierania procesów produkcyjnych związanych z kontrolą maszyn CNC?

A. CAD
B. CAM
C. SCADA
D. CAP
Wybór oprogramowania SCADA, CAD, lub CAP w kontekście wspomagania procesów wytwarzania maszyn CNC jest nietrafiony, ponieważ każde z tych narzędzi pełni inną, specyficzną funkcję, która nie jest bezpośrednio związana z kontrolą maszyn produkcyjnych. SCADA (Supervisory Control and Data Acquisition) jest systemem zarządzania, który służy do monitorowania i sterowania procesami w czasie rzeczywistym, ale nie generuje kodów produkcyjnych ani nie bezpośrednio nie obsługuje maszyn CNC. CAD (Computer-Aided Design) natomiast to narzędzie służące do projektowania i modelowania, ale samo w sobie nie ma zdolności przekształcania projektów w instrukcje ruchu dla maszyn. CAD może współpracować z systemami CAM, jednak nie może ich zastąpić. CAP (Computer-Aided Planning) to oprogramowanie, które wspiera procesy planowania produkcji, ale również nie jest odpowiednie do bezpośredniego sterowania maszynami CNC. Typowe błędy myślowe prowadzące do pomyłki w wyborze tych odpowiedzi obejmują mylenie funkcji różnych rodzajów oprogramowania oraz braku zrozumienia, że skuteczna produkcja wymaga ściśle zdefiniowanych procesów, w których CAM jest niezbędnym elementem. W przypadku maszyn CNC, ważne jest, aby korzystać z odpowiednich narzędzi, które są zaprojektowane do specyficznych zadań, aby zapewnić optymalne wyniki produkcyjne.