Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 3 maja 2025 13:00
  • Data zakończenia: 3 maja 2025 13:14

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Dla układu o parametrach U0 = 230 V, Ia = 100 A oraz Zs = 3,1 Ω działającego w systemie TN-C nie działa efektywnie dodatkowa ochrona przed porażeniem prądem, ponieważ

A. opór uziemienia jest zbyt niski
B. opór izolacji miejsca pracy jest zbyt duży
C. impedancja pętli zwarcia jest zbyt duża
D. impedancja sieci zasilającej jest zbyt niska
Odpowiedzi wskazujące na problemy z rezystancją izolacji stanowiska oraz rezystancją uziomu bazują na niepełnym zrozumieniu mechanizmów ochrony przed porażeniem prądem elektrycznym w kontekście układów TN-C. Rezystancja izolacji odnosi się do zdolności izolacji przewodów do zapobiegania przepływowi prądu do ziemi, co jest istotne, ale nie wpływa bezpośrednio na skuteczność działania zabezpieczeń w przypadku zwarcia. Niska rezystancja izolacji może być korzystna, ale nie rozwiązuje problemu, jeśli impedancja pętli zwarcia jest zbyt wysoka, co jest kluczowe dla prawidłowego działania zabezpieczeń. Z kolei rezystancja uziomu, która jest zbyt mała, również nie jest czynnikiem wpływającym na bezpieczeństwo w tym kontekście, gdyż może prowadzić do sytuacji, w której prąd zwarciowy nie osiągnie wymaganych wartości do zadziałania zabezpieczeń. Typowym błędem myślowym jest utożsamianie niskiej rezystancji uziomu z poprawnością działania ochrony, podczas gdy to właśnie impedancja pętli zwarcia ma zasadnicze znaczenie. Zrozumienie, że to impedancja pętli zwarcia wpływa na czas reakcji zabezpieczeń, a nie pojedyncze elementy systemu, jest kluczowe dla prawidłowego projektowania i eksploatacji instalacji elektrycznych.

Pytanie 2

Podczas wymiany uzwojeń w jednofazowym transformatorze o parametrach: SN = 200 VA , U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i mniejszej liczbie zwojów w porównaniu do uzwojenia wtórnego
C. o tej samej średnicy i większej liczbie zwojów niż uzwojenie wtórne
D. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
Udzielenie odpowiedzi dotyczącej większej średnicy i mniejszej liczby zwojów niż uzwojenie wtórne, czy jakiejkolwiek innej nieprawidłowej odpowiedzi, opiera się na zrozumieniu podstawowych zasad działania transformatorów. Prawidłowe projektowanie uzwojeń wymaga znajomości zależności między napięciem, liczbą zwojów oraz prądem. Uzwojenie pierwotne musi mieć większą liczbę zwojów, aby zapewnić odpowiedni spadek napięcia, gdyż transformator działa na zasadzie indukcji elektromagnetycznej, gdzie stosunek napięcia do liczby zwojów jest kluczowy. W transformatorze, na podstawie wzoru: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia uzwojeń, a N1 i N2 to liczby zwojów, możemy zobaczyć, że musimy mieć więcej zwojów w uzwojeniu pierwotnym. Ponadto, koncepcja zastosowania drutu mniejszej średnicy w uzwojeniu pierwotnym prowadzi do problemów z wytrzymałością na prąd oraz ciepłem, co może skutkować przeciążeniem i awarią transformatora. W praktyce, stosowanie odpowiednich norm, takich jak IEC 60076, pozwala na zapobieganie takim błędom projektowym poprzez określenie minimalnych wymagań dotyczących materiałów i konstrukcji uzwojeń. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się projektowaniem systemów elektroenergetycznych.

Pytanie 3

W jakim zakresie powinien znajdować się zmierzony rzeczywisty prąd różnicowy IΔN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby mógł być dopuszczony do użytkowania?

A. Od 0,3 IΔN do 1,0 IΔN
B. Od 0,5 IΔN do 1,2 IΔN
C. Od 0,3 IΔN do 0,8 IΔN
D. Od 0,5 IΔN do 1,0 IΔN
Odpowiedź "Od 0,5 IΔN do 1,0 IΔN" jest jak najbardziej ok, bo mówi o zakresie prądu różnicowego, który wyłączniki różnicowoprądowe typu AC powinny mieć. Z normami, takimi jak PN-EN 61008-1, mamy pewność, że wyłącznik nie zareaguje zbyt szybko w normalnych warunkach, a jednocześnie ochrona przed porażeniem prądem jest na dobrym poziomie. Wiesz, gdyby ten prąd był za mały, to mogą pojawić się problemy z izolacją. Z kolei zbyt wysoka wartość mogłaby wyłączyć urządzenie przez zakłócenia, co jest niebezpieczne. Dlatego ważne, żeby przed włączeniem wyłącznika upewnić się, że prąd mieści się w tym zakresie. Dobrym przykładem jest wyłącznik w domu, który daje dodatkową ochronę dla domowników.

Pytanie 4

W celu oceny stanu technicznego silnika prądu stałego dokonano jego oględzin i pomiarów. Na podstawie wyników pomiarów zamieszczonych w tabeli określ stan techniczny tego silnika.

Wartość rezystancji pomiędzy zaciskami:
A1-A2D1-D2E1-E2A1-PED1-PEE1-PE
0,8 Ω0,9 Ω4,7 Ω123,1 MΩ102,5 MΩ166,6 MΩ

A. Pogorszony stan izolacji między uzwojeniem szeregowym, a obudową.
B. Zwarcie międzyzwojowe w uzwojeniu bocznikowym.
C. Przebicie izolacji uzwojenia bocznikowego do obudowy.
D. Pogorszony stan połączeń uzwojenia twornika w tabliczce zaciskowej.
Zwarcie międzyzwojowe w uzwojeniu bocznikowym to sytuacja, w której dwa lub więcej zwojów w tym samym uzwojeniu stykają się ze sobą, co prowadzi do zmiany odpowiednich parametrów elektrycznych silnika. W analizowanym przypadku, niskie wartości rezystancji między zaciskami A1-A2 oraz D1-D2 sugerują, że uzwojenia te są sprawne i nie mają problemów z połączeniami. Jednak podwyższona rezystancja E1-E2, wynosząca 4,7 Ω, wskazuje na potencjalny problem. W praktyce, zwarcia międzyzwojowe mogą prowadzić do przegrzewania się silnika, co w efekcie skraca jego żywotność oraz wpływa na wydajność. W standardach dotyczących konserwacji silników prądu stałego, takich jak IEC 60034-1, podkreśla się konieczność regularnych pomiarów rezystancji oraz analizy wyników, aby zapobiegać poważniejszym uszkodzeniom. Zrozumienie i identyfikacja zwarć międzyzwojowych to kluczowy element w zarządzaniu stanem technicznym silników elektrycznych, co pozwala na wczesne wykrycie problemów i ich skuteczne usunięcie.

Pytanie 5

Jakie numery wskazano na schemacie z dokumentacji techniczno-ruchowej elementów zamiennych, które są częścią silnika szlifierki?

A. Od 1 do 6
B. Od 47 do 52
C. Od 7 do 14
D. Od 19 do 26
Odpowiedź 'Od 7 do 14' jest jak najbardziej trafna. Te numery odnoszą się do konkretnych części zamiennych w silniku szlifierki, które są mega ważne dla jej działania. W dokumentacji techniczno-ruchowej znajdziesz, że przypisane są do takich elementów jak wirnik czy chłodzenie. Bez nich, szlifierka raczej nie zadziała tak, jak powinna. Na przykład, wirnik odpowiada za ruch obrotowy, co bezpośrednio przekłada się na to, jak skutecznie szlifujemy. Wiedza o tych częściach i ich numerach jest kluczowa, bo pozwala szybko znaleźć odpowiednie zamienniki w razie awarii. Takie podejście naprawdę ułatwia życie nie tylko inżynierom, ale i tym, którzy zajmują się konserwacją maszyn. Dobrze jest też pamiętać, że poprawna identyfikacja części wpływa na bezpieczeństwo i sprawność operacyjną szlifierki.

Pytanie 6

Którego z poniższych pomiarów eksploatacyjnych instalacji oświetleniowej nie jest możliwe przeprowadzić przy użyciu typowego miernika uniwersalnego?

A. Rezystancji izolacji przewodów
B. Napięcia w poszczególnych fazach
C. Prądu, który jest pobierany przez odbiornik
D. Ciągłości przewodów ochronnych
Rezystancja izolacji przewodów jest kluczowym pomiarem w ocenie bezpieczeństwa instalacji elektrycznych i oświetleniowych. Typowe mierniki uniwersalne, takie jak multimetrowe, są przeznaczone głównie do pomiarów prądu, napięcia i oporu, jednak nie są wystarczające do pomiaru rezystancji izolacji. Pomiar ten wymaga zastosowania specjalistycznych urządzeń, takich jak megomierze, które generują znacznie wyższe napięcia (zazwyczaj w zakresie 250V, 500V lub 1000V) w celu oceny jakości izolacji. W praktyce, taki pomiar pozwala na wykrycie uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji, takich jak przebicia elektryczne. Normy takie jak PN-IEC 60364 podkreślają konieczność regularnego przeprowadzania pomiarów rezystancji izolacji, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz trwałości instalacji. Przykładowo, w przypadku instalacji w obiektach publicznych, pomiar ten jest obligatoryjny, aby zapewnić spełnienie określonych standardów bezpieczeństwa elektrycznego.

Pytanie 7

Jak często powinno się przeprowadzać przeglądy okresowe sprzętu ochronnego, takiego jak: drążki izolacyjne do manipulacji, kleszcze oraz uchwyty izolacyjne, a także dywaniki i chodniki gumowe?

A. Co 2 lata
B. Co 3 lata
C. Co 1 rok
D. Co 5 lat
Badania okresowe sprzętu ochronnego, takiego jak drążki izolacyjne manipulacyjne, kleszcze i uchwyty izolacyjne, dywaniki i chodniki gumowe, powinny być przeprowadzane co 2 lata. Taki cykl jest zgodny z normami branżowymi oraz zaleceniami producentów, które mają na celu zapewnienie maksymalnego bezpieczeństwa użytkowników. Regularne przeglądy pozwalają na wczesne wykrycie ewentualnych uszkodzeń lub degradacji materiałów, co jest kluczowe w kontekście ochrony przed porażeniem prądem elektrycznym. Przykładowo, drążki izolacyjne powinny być sprawdzane pod kątem pęknięć czy ubytków materiału, które mogą znacząco obniżyć ich właściwości izolacyjne. Co więcej, aby utrzymać sprzęt w dobrym stanie technicznym, zaleca się także prowadzenie dokumentacji dotyczącej przeprowadzonych przeglądów oraz wyników badań, co wpisuje się w praktyki zarządzania jakością w organizacjach zajmujących się pracami elektrycznymi. Dzięki systematycznym kontrolom, pracownicy są lepiej chronieni przed wypadkami, co w dłuższej perspektywie przekłada się na obniżenie kosztów związanych z ewentualnymi wypadkami oraz poprawę kultury bezpieczeństwa w miejscu pracy.

Pytanie 8

Do zadań realizowanych w trakcie inspekcji podczas pracy silnika elektrycznego prądu stałego nie wchodzi kontrolowanie

A. intensywności drgań
B. stanu szczotek
C. konfiguracji zabezpieczeń
D. odczytów aparatury kontrolno-pomiarowej
Odpowiedź "stanu szczotek" jest w porządku. Wiesz, że podczas przeglądania silnika elektrycznego prądu stałego nie sprawdza się bezpośrednio stanu szczotek. Sprawdzanie ich to część konserwacji, a to z kolei oznacza, że trzeba je wymieniać co jakiś czas i kontrolować. Zmiana szczotek powinna być robiona według tego, co mówi producent oraz z zachowaniem odpowiednich zasad bezpieczeństwa. Oczywiście, kontrola stanu szczotek jest ważna, ale nie robi się tego na co dzień, gdy silnik pracuje. W trakcie oględzin silnika trzeba zwrócić uwagę na parametry robocze, takie jak to, co pokazuje aparatura kontrolno-pomiarowa, poziom drgań i ustawienia zabezpieczeń. Te rzeczy mają ogromny wpływ na bezpieczeństwo i wydajność silnika. Na przykład, regularne sprawdzanie parametrów przez system monitoringu i ich analiza mogą pomóc uniknąć większych awarii i poprawić efektywność działania.

Pytanie 9

Kontrolę instalacji elektrycznej, znajdującej się w miejscach o podwyższonej wilgotności (75-100%), pod kątem efektywności zabezpieczeń przeciwporażeniowych należy przeprowadzać nie rzadziej niż co

A. 4 lata
B. 1 rok
C. 3 lata
D. 2 lata
Zgodnie z polskimi normami oraz przepisami związanymi z instalacjami elektrycznymi w pomieszczeniach wilgotnych, inspekcje i kontrole instalacji powinny być przeprowadzane nie rzadziej niż co 1 rok. Wilgoć w takich pomieszczeniach może znacząco wpływać na bezpieczeństwo użytkowników, prowadząc do zwiększonego ryzyka porażenia prądem. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek oraz degradacji materiałów izolacyjnych, co jest kluczowe dla zapewnienia skutecznej ochrony przeciwporażeniowej. Przykładowo, w łazienkach, które są klasyfikowane jako pomieszczenia wilgotne, należy regularnie sprawdzać stan gniazdek, włączników oraz przewodów elektrycznych. Warto pamiętać, że nieprzestrzeganie tych zasad może prowadzić do poważnych wypadków, dlatego organizacje i osoby odpowiedzialne za instalacje muszą stosować się do takich wytycznych, aby zapewnić bezpieczeństwo użytkowników.

Pytanie 10

Aby zmierzyć rezystancję izolacji w instalacji elektrycznej, trzeba wyłączyć zasilanie, zablokować włączniki instalacyjne oraz

A. odłączyć odbiorniki
B. uziemić instalację
C. odłączyć uziemienie
D. podłączyć odbiorniki
Odpowiedź "odłączyć odbiorniki" jest prawidłowa, ponieważ podczas pomiaru rezystancji izolacji instalacji elektrycznej kluczowe jest zapewnienie, że nie ma żadnych elementów, które mogłyby wpływać na wyniki pomiaru. Odbiorniki, takie jak urządzenia elektryczne i inne obciążenia, mogą wprowadzać dodatkowe ścieżki przewodzenia prądu, co zafałszowałoby wyniki pomiaru rezystancji izolacji. Odłączenie odbiorników umożliwia dokładne zbadanie stanu izolacji przewodów bez zakłóceń. Przykładem zastosowania tej praktyki może być pomiar izolacji w budynku przed oddaniem go do użytku, gdzie należy upewnić się, że instalacja nie ma zwarć ani innych usterek, co jest zgodne z normami PN-IEC 60364. Przeprowadzanie takich pomiarów zapewnia bezpieczeństwo użytkowników oraz trwałość instalacji. Warto również pamiętać, że pomiar izolacji powinien być wykonywany za pomocą odpowiednich narzędzi, takich jak megger, które są zaprojektowane do tego celu.

Pytanie 11

Które z poniższych zjawisk nie wpływa na pogorszenie jakości energii elektrycznej?

A. Wahania napięcia
B. Przepięcia
C. Czystość powietrza
D. Obecność harmonicznych
Czystość powietrza nie jest czynnikiem wpływającym na jakość energii elektrycznej, ponieważ nie ma bezpośredniego związku z parametrami elektrycznymi sieci. Jakość energii elektrycznej określana jest przez stabilność napięcia, częstotliwość, zawartość harmonicznych oraz obecność przepięć i zapadów napięcia. Czystość powietrza może mieć wpływ na inne aspekty funkcjonowania instalacji, takie jak chłodzenie urządzeń czy ochrona przed korozją, ale nie bezpośrednio na jakość samej energii. W kontekście eksploatacji maszyn, urządzeń i instalacji elektrycznych, czystość powietrza jest bardziej istotna z punktu widzenia utrzymania sprzętu w dobrej kondycji, a nie jakości energii elektrycznej jako takiej. W praktyce, osoby zajmujące się eksploatacją instalacji powinny zwracać uwagę na zanieczyszczenia, które mogą osadzać się na urządzeniach, powodując ich przegrzewanie lub przyspieszoną korozję.

Pytanie 12

Jaka powinna być minimalna wartość znamionowego prądu wyłącznika nadprądowego chroniącego obwód zasilający jednofazowy piekarnik oporowy, aby przy napięciu 230 V mógł on pobierać moc elektryczną równą 2 kW?

A. 16 A
B. 20 A
C. 13 A
D. 10 A
Wybór zbyt wysokiej wartości znamionowego prądu wyłącznika nadprądowego może prowadzić do niewłaściwego zabezpieczenia obwodu. Jeżeli na przykład zdecydujemy się na wyłącznik o wartości 16 A, 20 A lub 13 A, może to doprowadzić do sytuacji, w której obwód nie będzie odpowiednio chroniony przed przeciążeniem. Wyłącznik nadprądowy ma na celu ochronę obwodu przed nadmiernym prądem, który może wystąpić w wyniku zwarcia lub przeciążenia. Zbyt wysoka wartość znamionowa wyłącznika może skutkować tym, że nie zadziała on, gdy prąd przekroczy bezpieczny poziom, co może prowadzić do uszkodzenia urządzeń lub nawet pożaru. Z drugiej strony, wybór wyłącznika o wartościach poniżej 10 A mógłby prowadzić do częstych wyłączeń w obwodzie, co jest niepożądane w normalnym użytkowaniu. W praktyce, dostosowanie wartości wyłącznika do mocy obciążenia oraz uwzględnienie marginesów bezpieczeństwa jest kluczowe. Ponadto, w kontekście dobrych praktyk, zaleca się konsultację z elektrykiem podczas doboru odpowiednich zabezpieczeń, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznej, zgodnie z normami obowiązującymi w danym kraju.

Pytanie 13

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. gR
B. aL
C. aM
D. gB
Wybór wkładek bezpiecznikowych z oznaczeniami gR, aL lub gB dla ochrony silników i urządzeń rozdzielczych jest błędny z kilku fundamentalnych powodów. Oznaczenie gR wskazuje na bezpieczniki używane w obwodach z dużą zdolnością do przerywania, przeznaczone głównie dla obciążenia rezystancyjnego, a nie dla silników. Takie bezpieczniki nie są przystosowane do obsługi przeciążeń, które mogą występować podczas rozruchu silników, dlatego ich zastosowanie w tym kontekście może prowadzić do uszkodzenia urządzeń. Oznaczenie aL odnosi się do bezpieczników, które są bardziej uniwersalne, ale również nie są odpowiednie dla silników, gdyż nie są w stanie poradzić sobie z charakterystyką prądową, jaką generują silniki przy uruchamianiu. Z kolei wkładki gB są zaprojektowane dla obwodów z ładunkami indukcyjnymi, ale także nie nadają się do zabezpieczania silników, ponieważ nie zapewniają odpowiedniego czasu reakcji w przypadku przeciążenia. Wybierając niewłaściwy typ wkładki bezpiecznikowej, można nie tylko narazić urządzenia na uszkodzenia, ale także stwarzać zagrożenie dla bezpieczeństwa całego systemu elektrycznego, co podkreśla znaczenie znajomości norm i właściwych zastosowań dla różnych typów zabezpieczeń. W praktyce, brak zrozumienia tych oznaczeń może prowadzić do poważnych awarii, co z kolei może generować znaczne koszty napraw oraz przestoje w pracy urządzeń.

Pytanie 14

Podczas intensywnych opadów śniegu w jednym z rejonów napowietrznej linii niskiego napięcia zaobserwowano zanik napięcia w jednej fazie. Monterzy wymienili uszkodzony bezpiecznik w stacji transformatorowej na słupie, ale po ponownym uruchomieniu zasilania bezpiecznik natychmiast znowu uległ awarii. Jakie mogą być najprawdopodobniejsze przyczyny tej usterki?

A. Przeciążenie obwodu linii spowodowane dogrzewaniem elektrycznym mieszkań
B. Zwarcie doziemne jednej fazy
C. Zbyt duża asymetria obciążenia odbiornikami u jednego z odbiorców
D. Zawilgocenie izolacji przewodów AFL do odbiorców
Zwarcie doziemne jednej fazy jest najprawdopodobniejszą przyczyną opisanego problemu. W przypadku gęstych opadów śniegu, woda może gromadzić się na izolacji przewodów, co prowadzi do obniżenia ich właściwości izolacyjnych. Jeżeli następuje kontakt przewodu fazowego z ziemią lub innym przewodem o potencjale ziemi, tworzy się obwód, przez który może płynąć prąd, co skutkuje zadziałaniem zabezpieczeń, takich jak bezpieczniki. Wymiana uszkodzonego bezpiecznika w tym przypadku nie rozwiązuje problemu, ponieważ zwarcie doziemne nadal występuje. Aby zapobiec takim sytuacjom, ważne jest regularne sprawdzanie stanu technicznego linii oraz ich ochrony przed warunkami atmosferycznymi. W praktyce, stosowanie odpowiednich zabezpieczeń nadprądowych oraz regularne inspekcje mogą znacznie zmniejszyć ryzyko wystąpienia takich awarii. Dobrą praktyką jest również zapewnienie odpowiedniej odległości między przewodami a ziemią oraz stosowanie odpowiednich systemów uziemiających, co zwiększa bezpieczeństwo systemów elektrycznych.

Pytanie 15

W jakim celu stosuje się kompensację mocy biernej w instalacjach przemysłowych?

A. Zmniejszenia strat energii i poprawy współczynnika mocy
B. Zwiększenia częstotliwości prądu
C. Zmniejszenia prędkości obrotowej silników
D. Zwiększenia napięcia znamionowego
Wśród błędnych koncepcji dotyczących kompensacji mocy biernej, często pojawia się przekonanie, że ma ona wpływ na częstotliwość prądu w instalacji. W rzeczywistości częstotliwość prądu jest określana przez dostawcę energii i nie jest bezpośrednio związana z działaniami kompensacyjnymi. Podobnie, kompensacja mocy biernej nie wpływa na napięcie znamionowe w instalacji. Napięcie znamionowe to wartość określona przez specyfikacje sieci energetycznej i urządzeń, które są do niej podłączone. Zwiększenie napięcia znamionowego wymagałoby zmian w konstrukcji urządzeń lub dostosowania sieci przesyłowej, a nie samej kompensacji mocy biernej. Kolejnym błędnym przekonaniem jest wpływ kompensacji na prędkość obrotową silników. Prędkość ta jest zależna od konstrukcji silnika i częstotliwości zasilania, a nie bezpośrednio od mocy biernej. Kompensacja mocy biernej jest więc działaniem ukierunkowanym na poprawę efektywności energetycznej i zmniejszenie strat energii, a nie na modyfikację parametrów elektrycznych takich jak częstotliwość, napięcie czy prędkość obrotowa silników.

Pytanie 16

Dla urządzenia zasilanego trójfazową instalacją elektryczną o napięciu nominalnym 400 V maksymalny pobór mocy wynosi 13 kW. Określ minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego, przyjmując rezystancyjny charakter odbiorników i pomijając problem selektywności zabezpieczeń?

A. 25 A
B. 10 A
C. 20 A
D. 16 A
Wybór niewłaściwej wartości prądu znamionowego zabezpieczenia przedlicznikowego może wynikać z błędnych założeń dotyczących obliczeń oraz zrozumienia charakterystyki instalacji trójfazowej. Przykładowo, wybór 25 A może wydawać się uzasadniony w kontekście zabezpieczenia przed przeciążeniem, jednak przekracza on obliczoną wartość prądu znamionowego, co może prowadzić do nieodpowiedniej ochrony. Przy wyborze zabezpieczeń istotne jest, aby były one dostosowane do rzeczywistych warunków pracy. Zbyt wysoka wartość prądu zabezpieczenia zwiększa ryzyko uszkodzenia odbiorników, ponieważ nie będą one odpowiednio chronione przed przeciążeniami, a ich praca może stać się niestabilna. Z kolei wybór 16 A oraz 10 A jest niebezpieczny, ponieważ nie zapewniają one wystarczającej mocy dla zasilania odbiorników o mocy 13 kW. Zabezpieczenia te mogą działać w trybie wyzwolenia zbyt często, co prowadzi do niepożądanych przerw w zasilaniu i mogą skutkować uszkodzeniami urządzeń. Przy doborze wartości prądu zabezpieczenia, warto również wziąć pod uwagę normy branżowe, takie jak PN-IEC 60364, które zalecają dobór zabezpieczeń z odpowiednim marginesem, aby zapewnić bezpieczeństwo i stabilność pracy instalacji. Dlatego kluczowe jest zrozumienie zasadności doboru odpowiednich zabezpieczeń i ich wpływu na pracę całej instalacji elektrycznej.

Pytanie 17

Możliwość przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do korpusu można ustalić przez pomiar

A. symetrii uzwojeń
B. prądu upływu
C. rezystancji przewodu ochronnego
D. rezystancji uzwojeń stojana
Prąd upływu jest kluczowym wskaźnikiem stanu izolacji uzwojeń silnika indukcyjnego trójfazowego. W momencie wystąpienia przebicia izolacji, prąd upływu wzrasta, co może prowadzić do niebezpiecznych sytuacji, w tym uszkodzenia silnika oraz zagrożeń dla użytkowników. Pomiar prądu upływu pozwala na wykrycie niewłaściwych warunków izolacyjnych oraz wczesną identyfikację problemów, zanim dojdzie do poważniejszych awarii. W praktyce, stosuje się urządzenia pomiarowe, takie jak mierniki izolacji czy detektory prądu upływu, które mogą zarówno diagnozować stan izolacji, jak i monitorować jej zmiany w czasie. W myśl dobrych praktyk, regularne kontrole stanu izolacji silników są zalecane przez standardy branżowe, takie jak IEC 60034, co podkreśla znaczenie zapobiegania awariom oraz zapewnienia bezpieczeństwa eksploatacji urządzeń elektrycznych.

Pytanie 18

Jakie metody zapewniają ochronę przed porażeniem w instalacji fotowoltaicznej na stronie prądu stałego w przypadku uszkodzenia?

A. umieszczenie wszystkich komponentów na izolowanym podłożu
B. użycie automatycznego wyłączenia zasilania przez zastosowanie bezpieczników topikowych
C. użycie automatycznego wyłączenia zasilania poprzez wyłączniki nadprądowe
D. wykonanie wszystkich elementów w II klasie ochronności
Wykonanie urządzeń w II klasie ochronności oznacza, że są one zaprojektowane w taki sposób, aby zapewnić odpowiedni poziom bezpieczeństwa użytkownikom. Urządzenia te mają dodatkowe izolacje oraz nie wymagają podłączenia do uziemienia, co jest kluczowe w instalacjach fotowoltaicznych, gdzie prąd stały może stanowić zagrożenie w przypadku awarii. Przykładem zastosowania tego rozwiązania może być montaż paneli słonecznych, w których zastosowane komponenty są certyfikowane jako spełniające normy II klasy ochronności. W przypadku uszkodzenia instalacji, takie urządzenia zminimalizują ryzyko porażenia prądem, ponieważ są one zaprojektowane tak, by nie dopuścić do wystąpienia niebezpiecznych napięć na obudowie. Dodatkowo, stosowanie urządzeń w II klasie ochronności jest zgodne z normami IEC 61140, które definiują wymagania dotyczące ochrony osób przed porażeniem elektrycznym, co potwierdza ich praktyczną wartość na etapie projektowania i wdrażania instalacji fotowoltaicznych.

Pytanie 19

Podaj, jaką wartość nie może przewyższać spodziewane napięcie dotykowe na dostępnej części przewodzącej urządzenia działającego w normalnych warunkach środowiskowych, podczas samoczynnego wyłączenia wynoszącego 5 s, przy prawidłowo dobranych przewodach oraz zabezpieczeniach w elektrycznej instalacji do 1 kV.

A. 110 V
B. 50 V
C. 70 V
D. 220 V
Wartości takie jak 70 V, 220 V oraz 110 V są nieprawidłowe w kontekście maksymalnego dopuszczalnego napięcia dotykowego. W pierwszym przypadku, przepisy określają, że napięcie dotykowe na częściach dostępnych przewodzących nie może przekraczać 50 V, co ma na celu ochronę przed porażeniem prądem elektrycznym. Odpowiedź 70 V może wynikać z błędnego rozumienia klasyfikacji napięć w instalacjach elektrycznych, gdzie wiele osób myli różne poziomy napięcia roboczego z dopuszczalnymi wartościami napięcia dotykowego. Z drugiej strony, wartości 110 V i 220 V są dalekie od norm, ponieważ przekraczają ustaloną granicę bezpieczeństwa. Wartości te odpowiadają typowym napięciom zasilającym w gniazdkach elektrycznych w wielu krajach, jednak w kontekście napięcia dotykowego nie mają zastosowania. Przekroczenie 50 V w przypadku urządzeń elektrycznych może prowadzić do niebezpiecznych sytuacji, szczególnie w przypadku długotrwałego kontaktu z elementami przewodzącymi. Ważne jest zrozumienie, że projektowanie instalacji elektrycznych powinno opierać się na standardach bezpieczeństwa, które minimalizują ryzyko uszkodzenia ciała w wyniku porażenia prądem. Podstawowym błędem myślowym może być niedocenienie ryzyka, jakie niesie ze sobą nieodpowiednie zabezpieczenie urządzeń elektrycznych, co może prowadzić do tragicznych skutków w przypadku awarii lub uszkodzenia systemu. Stąd kluczowe jest przestrzeganie norm oraz wdrażanie odpowiednich procedur zabezpieczających w każdej instalacji elektrycznej.

Pytanie 20

Jaką wielkość należy zmierzyć, aby ocenić skuteczność zabezpieczeń podstawowych w elektrycznej instalacji o napięciu znamionowym do 1 kV?

A. Impedancji zwarciowej
B. Rezystancji uziomu
C. Rezystancji izolacji
D. Napięcia krokowego
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony podstawowej w instalacjach elektrycznych, szczególnie w tych o napięciu znamionowym do 1 kV. Odpowiedni poziom rezystancji izolacji zapewnia, że nie występują niepożądane przepływy prądu do ziemi, co mogłoby prowadzić do porażenia prądem lub uszkodzenia urządzeń. Zgodnie z normą PN-EN 60364-6, minimalna rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla systemów o napięciu do 1 kV, co gwarantuje odpowiednie bezpieczeństwo. Przykładem zastosowania tego pomiaru jest przeprowadzanie testów przed oddaniem do użytkowania nowej instalacji, a także regularne kontrole w celu wykrycia degradacji izolacji na skutek starzenia się materiałów, wilgoci czy innych czynników zewnętrznych. Dzięki tym pomiarom można zminimalizować ryzyko awarii, co jest szczególnie istotne w obiektach użyteczności publicznej oraz w środowiskach przemysłowych, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 21

Jakiego rodzaju zabezpieczenie powinno być zastosowane, gdy rozruch silnika indukcyjnego pierścieniowego bez urządzeń rozruchowych jest niedopuszczalny?

A. Zabezpieczenia nadnapięciowego
B. Zabezpieczenia podnapięciowego
C. Zabezpieczenia zwarciowego
D. Zabezpieczenia przeciążeniowego
Zabezpieczenie podnapięciowe w systemach rozruchu silników indukcyjnych pierścieniowych jest naprawdę istotne, jak dla ich bezpieczeństwa, tak i dla samego działania urządzenia. Działa to tak, że jak napięcie spada poniżej pewnego poziomu, to układ nie pozwala na uruchomienie silnika. Bo wiesz, w przypadku silników pierścieniowych, które często używa się tam, gdzie potrzebny jest duży moment obrotowy, jeśli nie zastosujesz dobrego zabezpieczenia, możesz doprowadzić do przeciążenia i w efekcie uszkodzenia silnika. Takie zabezpieczenie ma na celu to, żeby silnik nie wystartował, gdy napięcie jest za niskie, bo to może prowadzić do przegrzania uzwojeń i innych poważnych problemów. W przemyśle takie zabezpieczenia są standardem, bo niewłaściwa praca silnika może wywołać dodatkowe koszty i przestoje. Często też normy, jak IEC 60947-4-1, mówią, że warto mieć takie zabezpieczenia, żeby chronić silniki przed złymi warunkami zasilania, co jest zgodne z tym, jak to się robi w branży.

Pytanie 22

Podstawowa ochrona przed porażeniem prądem za pomocą przegród lub obudów jest realizowana dzięki

A. zastosowaniu osłon chroniących przed zamierzonym dotykiem
B. całkowitemu i trwałemu pokryciu części czynnych materiałem izolacyjnym
C. wprowadzeniu barier chroniących przed przypadkowym kontaktem
D. umieszczeniu elementów aktywnych poza zasięgiem ręki
Odpowiedź dotycząca zastosowania osłon chroniących przed celowym dotykiem jest poprawna, ponieważ wskazuje na kluczowy aspekt ochrony przeciwporażeniowej. Osłony te mają za zadanie zabezpieczyć dostęp do części czynnych urządzeń elektrycznych, które mogłyby być narażone na nieautoryzowany kontakt. Przykładami takich osłon są obudowy ochronne, które stosuje się w instalacjach elektrycznych na zewnątrz budynków, a także osłony w rozdzielnicach, które zapobiegają przypadkowemu dotykowi osób postronnych. Zgodnie z normami IEC 61439 oraz PN-EN 60529, które definiują stopnie ochrony obudów, ważne jest, aby urządzenia były projektowane z myślą o bezpieczeństwie użytkowników. Takie podejście nie tylko zabezpiecza przed przypadkowym porażeniem prądem, ale także minimalizuje ryzyko świadomego kontaktu z urządzeniami, co jest szczególnie istotne w miejscach publicznych. Prawidłowe zastosowanie osłon przyczynia się do zwiększenia bezpieczeństwa w środowisku pracy oraz w przestrzeni publicznej, co jest zgodne z dobrymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 23

Jakie urządzenie powinno zostać użyte do zasilenia obwodu SELV z sieci 230 V, 50 Hz?

A. Transformator bezpieczeństwa
B. Autotransformator
C. Dzielnik napięcia
D. Przekładnik
Transformator bezpieczeństwa jest kluczowym urządzeniem stosowanym do zasilania obwodów SELV (Safety Extra Low Voltage) z sieci 230 V, 50 Hz. Jego główną funkcją jest zapewnienie izolacji galwanicznej pomiędzy wysokim napięciem a niskim napięciem, co znacząco minimalizuje ryzyko porażenia prądem elektrycznym. Transformator bezpieczeństwa działa na zasadzie obniżania napięcia do poziomu, który jest bezpieczny dla użytkowników. Przykładem zastosowania transformatora bezpieczeństwa może być oświetlenie w obiektach, gdzie wymagana jest szczególna ochrona przed porażeniem, takie jak baseny, łazienki czy miejsca z dużą wilgotnością. Zgodnie z normą IEC 61140, urządzenia te muszą spełniać określone wymagania dotyczące bezpieczeństwa, co czyni je niezastąpionymi w instalacjach niskonapięciowych. Transformator bezpieczeństwa, w przeciwieństwie do innych urządzeń, zapewnia nie tylko redukcję napięcia, ale i odpowiednie zabezpieczenie przed skutkami awarii, co czyni go odpowiednim wyborem w kontekście bezpieczeństwa użytkowników.

Pytanie 24

Jakie są dopuszczalne maksymalne terminy między kolejnymi kontrolami instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi?

A. 1 rok dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 5 lat dla weryfikacji rezystancji izolacji
B. 5 lat dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 5 lat dla weryfikacji rezystancji izolacji
C. 5 lat dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 1 rok dla weryfikacji rezystancji izolacji
D. 1 rok dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 1 rok dla weryfikacji rezystancji izolacji
Często ludzie myślą, że rzadziej można robić kontrole instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi, ale to absolutnie błędne podejście. Na przykład, sugerowanie 5-letnich okresów dla sprawdzania ochrony przeciwporażeniowej i rezystancji izolacji jest po prostu niebezpieczne. Jak wiadomo, w pomieszczeniach, gdzie są chemikalia, które uszkadzają izolację, ryzyko awarii jest większe. Regularne kontrole są kluczowe, żeby uniknąć kłopotów. Jak ktoś myśli, że instalacja wygląda dobrze na pierwszy rzut oka, to nie znaczy, że nie wymaga częstych przeglądów. Takie założenie może prowadzić do tego, że uszkodzona izolacja albo zepsuta ochrona przeciwporażeniowa nie zostaną wykryte, co może skończyć się poważnymi wypadkami. Normy, takie jak PN-EN 60079 czy PN-IEC 60364, mówią jasno o tym, że trzeba robić kontrole częściej w takich warunkach. Naprawdę lepiej jest przestrzegać krótszych okresów kontroli, żeby zminimalizować ryzyko i zapewnić bezpieczeństwo wszystkim użytkownikom.

Pytanie 25

Kontrolne pomiary w instalacji elektrycznej niskiego napięcia powinny być wykonane po każdym

A. zadziałaniu wyłącznika różnicowoprądowego
B. rozbudowaniu instalacji
C. zadziałaniu bezpiecznika
D. zamontowaniu w oprawach nowych źródeł światła
Przeprowadzenie pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia jako odpowiedź na inne sytuacje, takie jak zadziałanie bezpiecznika czy wyłącznika różnicowoprądowego, nie jest zgodne z najlepszymi praktykami w zakresie eksploatacji i bezpieczeństwa instalacji elektrycznych. Zadziałanie bezpiecznika zazwyczaj oznacza, że wystąpił jakiś problem w obwodzie, jednak nie daje to pełnego obrazu stanu całej instalacji. Pomiar kontrolny w tym przypadku nie jest konieczny, ponieważ może to prowadzić do fałszywego poczucia bezpieczeństwa, a problem może wynikać z wadliwej instalacji lub nieodpowiedniej ochrony. Z kolei zadziałanie wyłącznika różnicowoprądowego wskazuje na wykrycie upływu prądu, co sugeruje, że instalacja ma niedoskonałości, ale ponownie nie wymaga to przeprowadzania pełnych pomiarów, które są istotne po zmianach w instalacji. Natomiast zamontowanie nowych źródeł światła, choć również może być istotne, nie powinno być traktowane jako wyzwalacz do przeprowadzenia kompleksowych pomiarów, jeśli nie wiąże się z dalszymi zmianami w obwodzie elektrycznym. Dlatego też, kluczowe jest zrozumienie, że pomiary kontrolne powinny być przeprowadzane głównie w kontekście istotnych modyfikacji instalacji, a nie sporadycznych zdarzeń eksploatacyjnych.

Pytanie 26

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Jaka jest najbardziej prawdopodobna przyczyna zwiększonej wartości Zs w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość ZS:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω

A. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
B. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.
C. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
D. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
Poprawna odpowiedź dotyczy poluzowanego przewodu liniowego zasilającego gniazda w obwodzie, co może prowadzić do zwiększonej wartości impedancji pętli zwarcia (Zs). W praktyce, poluzowanie przewodu wpływa na zwiększenie rezystancji, co z kolei podnosi wartość Zs. W sytuacji awaryjnej, wysoka impedancja pętli zwarcia oznacza, że w przypadku wystąpienia zwarcia prąd zwarcia będzie niższy, co może prowadzić do opóźnienia w działaniu zabezpieczeń, takich jak wyłączniki nadprądowe, co naraża instalację na potencjalne uszkodzenia. Standardy, takie jak PN-IEC 60364, podkreślają znaczenie zapewnienia odpowiedniej wartości Zs dla bezpieczeństwa użytkowania instalacji. Warto regularnie przeprowadzać pomiary Zs w obiektach, aby upewnić się, że wartości te są zgodne z wymaganiami normatywnymi i praktykami branżowymi, co zapobiega ryzyku pożarów oraz uszkodzeń urządzeń elektrycznych.

Pytanie 27

Zidentyfikuj uszkodzenie jednofazowego transformatora redukującego napięcie, jeśli jego znamionowa przekładnia napięciowa wynosi 5, a zmierzone w trybie jałowym napięcia na uzwojeniu pierwotnym i wtórnym wyniosły odpowiednio 230 V oraz 460 V?

A. Zwarcie w uzwojeniu pierwotnym
B. Zwarcie w uzwojeniu wtórnym
C. Przerwa w uzwojeniu wtórnym
D. Przerwa w uzwojeniu pierwotnym
Odpowiedzi sugerujące przerwę w uzwojeniu wtórnym lub pierwotnym są błędne z kilku powodów. Przerwa w uzwojeniu wtórnym spowodowałaby brak napięcia na uzwojeniu wtórnym, co w tym przypadku nie jest zgodne z wynikami pomiarów. Zmierzona wartość napięcia wtórnego w wysokości 460 V wskazuje, że uzwojenie wtórne jest sprawne i nie ma przerwy. Podobnie, przerwa w uzwojeniu pierwotnym skutkowałaby brakiem napięcia na uzwojeniu pierwotnym, a zatem napięcie 230 V, które zmierzono, również wskazuje na jego sprawność. Dodatkowo, zwarcie w uzwojeniu wtórnym, które mogłoby występować, prowadziłoby do dużego przepływu prądu, co jest sprzeczne z obserwowanymi wynikami pomiarów. Zrozumienie działania transformatorów obniżających napięcie oraz ich struktury jest kluczowe dla diagnostyki takich uszkodzeń. Interpretacja wyników pomiarów wymaga znajomości podstawowych zasad rządzących przekładnią napięciową, które determinują stosunek napięć na uzwojeniach. Dlatego ważne jest, by przedstawić poprawne rozumienie stanu transformatora w kontekście jego funkcjonalności oraz wykonać odpowiednie testy w celu zweryfikowania stanu technicznego urządzenia.

Pytanie 28

Zabezpieczenie bezpiecznej pracy grzejnika trójfazowego zapewnia

A. wyprowadzenie punktu neutralnego elementów grzejnych
B. regulacja mocy grzejnej
C. wymuszony obieg powietrza
D. osłona elementów grzejnych
Osłona elementów grzejnych jest kluczowym elementem zapewniającym bezpieczną eksploatację grzejnika trójfazowego. Tego rodzaju osłona chroni użytkowników przed bezpośrednim kontaktem z elementami grzejnymi, które mogą osiągać wysokie temperatury. W praktyce, stosowanie osłon jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60335, które regulują wymagania dotyczące bezpieczeństwa urządzeń elektrycznych. Osłony mogą być wykonane z materiałów odpornych na działanie wysokiej temperatury i powinny być zamocowane w sposób uniemożliwiający ich przypadkowe zdjęcie. Dobrze zaprojektowana osłona nie tylko chroni przed poparzeniami, ale także minimalizuje ryzyko pożaru. Przykładem zastosowania osłon mogą być grzejniki stosowane w domach, które często wyposażane są w dodatkowe elementy zabezpieczające, aby zminimalizować ryzyko wypadków. Oprócz osłon, ważne jest również regularne sprawdzanie stanu technicznego urządzenia oraz jego instalacji, co jest podstawą odpowiedzialnej eksploatacji grzejników.

Pytanie 29

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych Ib wynosi 21 A, a maksymalne dopuszczalne obciążenie tych przewodów Id to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji?

A. B25
B. B20
C. B10
D. B16
Wybór wyłącznika nadprądowego, który jest niższy niż prąd obciążenia, to nie najlepszy pomysł. Na przykład, B10, B16 czy B20 będą za słabe dla twojego 21 A. Wyłącznik B10 z nominalną wartością 10 A po prostu nie dałby rady i często by się wyłączał. Co do B16, choć trochę bliżej, to nadal nie spełniłby wymagań, bo ma zbyt niską wartość nominalną (16 A) w porównaniu do obciążalności przewodów. Gdyby przewody się przegrzewały, to też byłoby kiepsko. Wybór wyłącznika powinien być zgodny z normą PN-EN 60898-1, która wskazuje, żeby dobrać go na podstawie maksymalnych wartości prądowych, a także stosować zasadę 80% obciążalności. Jeśli wybierzesz B20, ryzykujesz przeciążenie, bo prąd roboczy mocno zbliża się do maksymalnej wartości wyłącznika. Tego typu błędy mogą naprawdę zaszkodzić instalacji i nie są zgodne z dobrymi praktykami. Dlatego tak ważne jest, żeby zrozumieć, jak dobierać odpowiednie zabezpieczenia dla bezpieczeństwa całej instalacji.

Pytanie 30

Jakie urządzenie służy do pomiaru obrotów wału silnika?

A. Przekładnik napięciowy
B. Anemometr
C. Induktor
D. Prądnica tachometryczna
Prądnica tachometryczna to urządzenie, które służy do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do szybkości obrotu. Działa na zasadzie indukcji elektromagnetycznej, co oznacza, że obracający się wał silnika powoduje zmiany w strumieniu magnetycznym, co z kolei generuje napięcie. Jest to kluczowe w aplikacjach, gdzie precyzyjny pomiar prędkości obrotowej jest niezbędny, na przykład w automatyce przemysłowej, napędach elektrycznych oraz inżynierii mechanicznej. Użycie prądnicy tachometrycznej pozwala na ciągłe monitorowanie prędkości, co jest istotne dla zapewnienia optymalnego przebiegu procesów, jak również dla ochrony urządzeń przed przeciążeniem. W standardach przemysłowych, takich jak ISO 9001, zaleca się stosowanie takich rozwiązań dla zwiększenia niezawodności i efektywności operacyjnej.

Pytanie 31

W celu oceny stanu technicznego silnika indukcyjnego trójfazowego zasilanego napięciem 230/400 V, który nie był uruchamiany od dłuższego czasu, dokonano jego oględzin i pomiarów. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ stan techniczny tego silnika.

Wartość rezystancji pomiędzy zaciskami:
U1-U2V1-V2W1-W2U1-PEV1-PEW1-PE
5,1 Ω4,9 Ω4,7 Ω8,0 MΩ9,5 MΩ7,6 MΩ

A. Uszkodzona izolacja uzwojenia W.
B. Wyniki pomiarów pozytywne.
C. Zbyt duża rezystancja uzwojenia U.
D. Zbyt duża asymetria rezystancji uzwojeń.
Wyniki pomiarów są pozytywne, co oznacza, że silnik indukcyjny trójfazowy jest w dobrym stanie technicznym. Podczas oceny stanu technicznego silnika, kluczowe jest sprawdzenie rezystancji uzwojeń oraz izolacji. Rezystancje uzwojeń powinny być zbliżone do siebie, co świadczy o prawidłowym funkcjonowaniu silnika. W tym przypadku wartości rezystancji uzwojeń wynoszą 5,1 Ω, 4,9 Ω oraz 4,7 Ω, co wskazuje na ich równowagę i prawidłowość. Dodatkowo, rezystancja izolacji jest również bardzo wysoka, co jest niezwykle istotne, ponieważ niska rezystancja może prowadzić do zwarć i uszkodzeń silnika. Wartości izolacji wynoszą 8,0 MΩ, 9,5 MΩ oraz 7,6 MΩ, co wskazuje na dobrą kondycję izolacji i brak potencjalnych uszkodzeń. Przykładem dobrych praktyk w przemyśle jest regularne monitorowanie stanu technicznego maszyn, co pozwala na wczesne wykrywanie problemów i ich naprawę przed wystąpieniem poważniejszych awarii. Warto również przestrzegać standardów, takich jak PN-EN 60034-1, które definiują wymagania dotyczące silników elektrycznych.

Pytanie 32

Który z wymienionych parametrów przewodów nie wpływa na wartość spadku napięcia w instalacji elektrycznej?

A. Przekrój żył
B. Typ materiału żyły
C. Długość przewodu
D. Typ materiału izolacji
Długość przewodu ma kluczowe znaczenie dla wartości spadku napięcia, ponieważ im dłuższy przewód, tym większy opór, co prowadzi do większych strat napięcia. Zgubną jest więc myśl, że długość przewodu nie wpływa na spadek napięcia, ponieważ w rzeczywistości jest to jeden z głównych czynników, które należy uwzględnić przy projektowaniu instalacji elektrycznych. Z kolei przekrój żył również odgrywa istotną rolę; większy przekrój zmniejsza opór i w konsekwencji spadek napięcia. Materiał żyły jest również kluczowy, ponieważ miedź ma lepsze właściwości przewodzące niż aluminium, co wpływa na efektywność przesyłania energii. Odpowiedni dobór materiałów i parametrów przewodów jest istotny z punktu widzenia norm branżowych i dobrych praktyk inżynieryjnych, które mają na celu zapewnienie bezpieczeństwa oraz efektywności energetycznej instalacji. Niekiedy pomija się te czynniki, co prowadzi do nieefektywnego projektowania systemów elektrycznych i może skutkować niepożądanym spadkiem napięcia, a w konsekwencji obniżeniem jakości zasilania urządzeń elektrycznych. W efekcie, wynikiem tych błędnych założeń może być nie tylko obniżona wydajność systemu, ale także uszkodzenia urządzeń, co wiąże się z kosztami napraw i przestojów w pracy urządzeń. Warto więc zwracać uwagę na wszystkie aspekty, które wpływają na efektywność i bezpieczeństwo instalacji elektrycznych.

Pytanie 33

Podczas wymiany gniazdka trójfazowego w instalacji przemysłowej należy

A. utrzymać odpowiednią kolejność przewodów fazowych w zaciskach gniazda
B. zmienić przewody na nowe o większym przekroju
C. zagiąć oczka na końcach przewodów
D. zamontować końcówki oczkowe na przewodach
Zachowanie kolejności przewodów fazowych w zaciskach gniazda trójfazowego jest kluczowym aspektem bezpieczeństwa i prawidłowego działania instalacji. W układach trójfazowych, każdy z przewodów fazowych (L1, L2, L3) ma przypisane określone funkcje oraz wartości napięć, które powinny być utrzymywane w odpowiedniej sekwencji. Niezachowanie tej kolejności może prowadzić do problemów z równowagą obciążenia, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych, a nawet zagrożeniem pożarowym. W praktyce, np. w przypadku podłączania silników elektrycznych, niewłaściwa kolejność faz może spowodować, że silnik będzie działał w odwrotnym kierunku, co może prowadzić do poważnych uszkodzeń. Zgodnie z normami PN-IEC 60364, zachowanie odpowiedniej kolejności połączeń jest niezbędne dla zapewnienia właściwej funkcjonalności oraz bezpieczeństwa instalacji elektrycznych.

Pytanie 34

Jakie styczniki z podanych kategorii powinny być użyte podczas modernizacji szafy sterowniczej z szyną TH 35, zasilającej urządzenie napędzane silnikami indukcyjnymi klatkowym?

A. AC-1
B. DC-2
C. AC-3
D. DC-4
Wybór stycznika AC-3 do sterowania silnikami indukcyjnymi klatkowym jest uzasadniony jego specyfiką oraz przeznaczeniem. Klasyfikacja AC-3 jest dedykowana do zastosowań związanych z silnikami asynchronicznymi, w szczególności w momentach ich rozruchu, co wiąże się z dużymi prądami rozruchowymi. Styki AC-3 są zaprojektowane do pracy z prądami roboczymi, a ich konstrukcja pozwala na skuteczne rozłączanie i załączanie obwodów z silnikami, co jest kluczowe w kontekście wydajności energetycznej i bezpieczeństwa systemu. Przykładem zastosowania AC-3 może być szafa sterownicza w zakładzie przemysłowym, gdzie stycznik ten obsługuje silnik napędzający taśmociąg. Zgodnie z normami IEC 60947-4-1, styczniki klasy AC-3 są także przystosowane do pracy z dużymi cyklami załączania, co czyni je odpowiednimi w aplikacjach o dużym obciążeniu. Wybór ten jest zgodny z najlepszymi praktykami branżowymi, zapewniając nie tylko efektywność, ale i długowieczność komponentów w zautomatyzowanych systemach.

Pytanie 35

Kto jest zobowiązany do opracowania planów regularnych przeglądów oraz konserwacji instalacji elektrycznej w obiekcie mieszkalnym?

A. Właściciel lub zarządca nieruchomości
B. Użytkownicy mieszkań
C. Organ inspekcji technicznej
D. Dostawca energii elektrycznej
Rozważając inne dostępne odpowiedzi, można zauważyć, że przypisanie odpowiedzialności za kontrolę i naprawy instalacji elektrycznej do Urzędów Dozoru Technicznego jest nieprawidłowe, ponieważ ich rola ogranicza się do nadzoru oraz certyfikacji, a nie do sporządzania planów kontroli. Urząd ten zajmuje się jedynie weryfikacją zgodności z przepisami i normami, ale to właściciel lub zarządca budynku ma obowiązek wprowadzenia odpowiednich działań w zakresie konserwacji. Z kolei sugestia, że dostawca energii elektrycznej miałby ponosić odpowiedzialność, jest mylna, gdyż jego zadaniem jest jedynie dostarczenie energii oraz zapewnienie sprawności infrastruktury przesyłowej, ale nie zarządzanie instalacjami w budynkach. Co więcej, idea, że użytkownicy lokali mogliby być odpowiedzialni za planowanie tych działań, jest również błędna. Użytkownicy nie mają dostępu do pełnych informacji o stanie instalacji ani kompetencji do podejmowania decyzji w zakresie ich konserwacji, co może prowadzić do poważnych zagrożeń dla bezpieczeństwa. Właściwe podejście do zarządzania instalacjami elektrycznymi wymaga zrozumienia, że to właściciele lub zarządcy budynków są odpowiedzialni za utrzymanie standardów bezpieczeństwa, a ich brak może skutkować poważnymi konsekwencjami, w tym wypadkami związanymi z porażeniem prądem lub pożarami. Dlatego kluczowe jest, aby właściciele byli świadomi swojej roli i obowiązków w tym zakresie.

Pytanie 36

Wybierz odpowiedni wyłącznik nadprądowy do ochrony przed przeciążeniem w obwodzie jednofazowym o napięciu znamionowym 230 V, z którego jednocześnie będą zasilane grzejnik oporowy o mocy nominalnej 2 kW oraz chłodziarka o mocy nominalnej 560 W i współczynniku mocy cos ? = 0,7?

A. C10
B. B16
C. C20
D. B10
Wybranie wyłącznika nadprądowego B16 jest prawidłowe, ponieważ zapewnia on odpowiednią ochronę dla obwodu jednofazowego o napięciu znamionowym 230 V, w którym zasilane są grzejnik oporowy o mocy 2 kW oraz chłodziarka o mocy 560 W. Łączna moc obciążenia wynosi 2 kW + 0,56 kW = 2,56 kW. Aby obliczyć prąd, możemy skorzystać z wzoru I = P / U, gdzie P to moc, a U to napięcie. Prąd obliczamy: I = 2560 W / 230 V = 11,13 A. Wobec powyższego, wyłącznik B16, który ma nominalny prąd 16 A, jest odpowiedni, ponieważ pozostawia wystarczający margines na przypadkowe przeciążenia. Zastosowanie wyłącznika z wyższym prądem, jak C20, może prowadzić do braku ochrony przed przeciążeniem, co z kolei naraża instalację na uszkodzenia. W praktyce, wyłącznik B16 jest standardowo stosowany w obwodach z urządzeniami o podobnych parametrach, co potwierdzają normy PN-EN 60898, które precyzują zasady doboru zabezpieczeń. Zastosowanie wyłącznika o zbyt wysokim prądzie znamionowym mogłoby prowadzić do uszkodzeń urządzeń zasilanych w wyniku braku odpowiedniej ochrony w przypadku zwarcia lub przeciążenia.

Pytanie 37

Podczas użytkowania instalacji elektrycznych w pobliżu urządzeń elektrycznych znajdujących się pod napięciem niedozwolone są prace (z wyłączeniem prac określonych w instrukcji eksploatacji dotyczących obsługi)?

A. związane z konserwacją i renowacjami instalacji oraz odbiorników elektrycznych
B. przy użyciu specjalnych środków wskazanych w szczegółowych instrukcjach stanowiskowych, zapewniających bezpieczne wykonanie pracy
C. dotyczące wymiany wkładek bezpiecznikowych oraz żarówek lub świetlówek w nienaruszonej obudowie i oprawie
D. przy realizacji prób i pomiarów zgodnie z instrukcjami lub wskazówkami bhp na poszczególnych stanowiskach pracy
Odpowiedź, którą zaznaczyłeś, jest w porządku. Przy pracach nad konserwacją i remontem instalacji elektrycznych rzeczywiście trzeba zawsze wyłączać zasilanie. Bezpieczeństwo jest najważniejsze, a prąd potrafi być groźny, więc lepiej nie ryzykować. Zawsze przed wymianą jakiejkolwiek części warto upewnić się, że napięcie nie płynie. Na przykład, jeśli zmieniasz uszkodzoną instalację, to najlepszym pomysłem jest wyłączenie odpowiednich obwodów. No i procedura Lockout-Tagout (LOTO) jest po prostu kluczowa! Dzięki niej nie ma szans, że ktoś przez przypadek włączy prąd, gdy ty akurat pracujesz. Wydaje mi się, że trzymanie się tych zasad nie tylko chroni ludzi, ale także sprawia, że wszystko jest zgodne z BHP i normami bezpieczeństwa, które są naprawdę ważne w tej branży.

Pytanie 38

Który z poniższych pomiarów potwierdza ciągłość przewodu ochronnego w układzie TN-S?

A. Impedancji pętli zwarcia
B. Prądu upływu w przewodzie ochronnym
C. Rezystancji uziomu
D. Rezystancji izolacji przewodu ochronnego
Odpowiedź dotycząca impedancji pętli zwarcia jest poprawna, ponieważ jest to kluczowy parametr w ocenie ciągłości przewodu ochronnego w systemie TN-S. W systemach ochrony przeciwporażeniowej, takich jak TN-S, impedancja pętli zwarcia odgrywa istotną rolę w zapewnieniu skutecznej i szybkiej reakcji zabezpieczeń na zwarcie. Wysoka jakość przewodu ochronnego wymaga, aby jego impedancja była odpowiednio niska, co pozwala na szybkie załączenie wyłącznika nadprądowego w przypadku wystąpienia zwarcia. Praktyczne zastosowanie tego pomiaru można zobaczyć w trakcie testów instalacji elektrycznych, gdzie zmierzone wartości impedancji pętli zwarcia są porównywane z wymaganiami standardów, takich jak PN-IEC 60364, które wskazują na maksymalne wartości impedancji, aby zapewnić bezpieczeństwo użytkowników. Odpowiednia analiza impedancji pętli zwarcia jest także niezbędna w procesie odbioru instalacji elektrycznych oraz w regularnych przeglądach technicznych, co wpływa na długotrwałe i bezpieczne użytkowanie instalacji elektrycznej.

Pytanie 39

Którego z wymienionych pomiarów eksploatacyjnych w instalacji oświetleniowej nie można zrealizować standardowym miernikiem uniwersalnym?

A. Napięć w poszczególnych fazach
B. Prądu pobieranego przez odbiornik
C. Ciągłości przewodów ochronnych
D. Rezystancji izolacji przewodów
Pomiar rezystancji izolacji przewodów jest kluczowym aspektem utrzymania bezpieczeństwa i niezawodności instalacji elektrycznych. Aby dokładnie wykonać ten pomiar, używa się specjalistycznych mierników zwanych megomierzami, które generują wysokie napięcia (zwykle od 250V do 1000V). Tego rodzaju pomiar jest istotny, ponieważ pozwala ocenić, czy izolacja przewodów nie jest uszkodzona oraz czy nie występują upływy prądu, co mogłoby prowadzić do zagrożenia pożarowego lub porażenia elektrycznego. Standardy takie jak PN-EN 61557-1 opisują wymagania dotyczące testowania rezystancji izolacji, a ich przestrzeganie jest kluczowe w ramach regularnych przeglądów oraz konserwacji instalacji. Przykładowo, podczas testowania instalacji oświetleniowej w budynku użycie megomierza może pomóc w identyfikacji potencjalnych problemów zanim doprowadzą one do awarii lub zagrożenia dla użytkowników.

Pytanie 40

Jaką funkcję pełni bocznik rezystancyjny używany podczas dokonywania pomiarów?

A. Poszerza zakres pomiarowy amperomierza
B. Daje możliwość zdalnego pomiaru energii elektrycznej
C. Umożliwia pomiar upływu prądu przez izolację
D. Zwiększa zakres pomiarowy woltomierza
Boczniki rezystancyjne są kluczowym elementem w pomiarach prądowych, ponieważ umożliwiają rozszerzenie zakresu pomiarowego amperomierzy, co jest szczególnie ważne w przypadku pomiarów dużych prądów. Działają na zasadzie dzielenia prądu na mniejsze wartości, co pozwala na precyzyjniejsze pomiary oraz ochronę urządzenia pomiarowego przed uszkodzeniem. Przykładem zastosowania bocznika rezystancyjnego może być pomiar prądów w instalacjach przemysłowych, gdzie wartości prądów mogą znacznie przekraczać możliwości standardowych amperomierzy. Dzięki zastosowaniu bocznika, możliwe jest przekształcenie dużych prądów na mniejsze napięcia, które mogą być bezpiecznie zmierzone. Dobrze zaprojektowane boczniki powinny być zgodne z normami, takimi jak IEC 61010, co zapewnia ich bezpieczeństwo i niezawodność w trudnych warunkach pracy. Właściwy dobór bocznika oraz jego parametry, takie jak wartość rezystancji i moc, mają kluczowe znaczenie dla dokładności pomiarów i ochrony urządzeń, co jest zgodne z najlepszymi praktykami inżynieryjnymi.