Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 7 maja 2025 21:15
  • Data zakończenia: 7 maja 2025 21:27

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z podanych komponentów zawieszenia ma funkcję sprężynującą?

A. Łącznik stabilizatora
B. Resor piórowy
C. Zakończenie drążka kierowniczego
D. Tłumik
Resor piórowy jest kluczowym elementem zawieszenia, który pełni funkcję sprężynującą w pojazdach. Jego zadaniem jest absorpcja sił działających na pojazd podczas jazdy, co poprawia komfort podróżowania oraz stabilność pojazdu. Resory piórowe składają się z kilku warstw sprężystych, które rozkładają obciążenia na większą powierzchnię, co przyczynia się do ich efektywności. W praktyce, resory piórowe są często stosowane w pojazdach użytkowych oraz w samochodach terenowych, gdzie wymagane są wysokie osiągi w trudnych warunkach. Dobrą praktyką jest regularne sprawdzanie stanu resorów, ponieważ ich zużycie może prowadzić do pogorszenia właściwości jezdnych oraz zwiększenia ryzyka awarii. W standardach branżowych, jak ISO 9001, zaleca się prowadzenie systematycznej konserwacji oraz wymiany elementów zawieszenia w celu zapewnienia bezpieczeństwa i wydajności pojazdu.

Pytanie 2

Rezystancję oblicza się jako

A. iloraz napięcia do natężenia prądu elektrycznego
B. iloczyn napięcia oraz natężenia prądu elektrycznego
C. sumę natężenia oraz napięcia prądu elektrycznego
D. różnicę natężenia oraz napięcia prądu elektrycznego
Wartość rezystancji jest definiowana przez prawo Ohma, które mówi, że rezystancja (R) jest równa ilorazowi napięcia (U) do natężenia prądu (I). Matematycznie można to zapisać jako R = U/I. Ta zależność jest kluczowa w elektroenergetyce i inżynierii elektrycznej, gdzie pozwala na projektowanie i analizowanie obwodów elektrycznych. Przykładem zastosowania tej zasady jest obliczanie wartości rezystorów w układach elektronicznych, aby zapewnić odpowiednie działanie komponentów elektronicznych, takich jak diody czy tranzystory. W praktyce, zrozumienie tego związku umożliwia również dobieranie odpowiednich wartości komponentów do określonych zastosowań, co jest niezwykle istotne w kontekście projektowania układów zasilania oraz systemów automatyki. Wiedza na temat rezystancji i jej obliczania jest również niezbędna w kontekście oceny efektywności energetycznej, co jest istotne dla zrównoważonego rozwoju oraz oszczędności energetycznych w różnych aplikacjach przemysłowych oraz domowych.

Pytanie 3

Jakie urządzenie wykorzystuje się do pomiaru ciśnienia sprężania w silniku?

A. manometr
B. stetoskop
C. stroboskop
D. oscyloskop
Manometr jest narzędziem służącym do pomiaru ciśnienia, które jest kluczowe w diagnostyce silników spalinowych. W przypadku badania ciśnienia sprężania silnika, manometr umożliwia precyzyjny pomiar ciśnienia w cylindrach, co pozwala na ocenę stanu uszczelek zaworów oraz pierścieni tłokowych. Pomiar ten jest istotny, ponieważ niskie ciśnienie sprężania może wskazywać na zużycie silnika lub uszkodzenia, co może prowadzić do spadku mocy i zwiększonego zużycia paliwa. W praktyce, manometr umieszcza się w gnieździe świecy zapłonowej i uruchamia się silnik, aby uzyskać wynik pomiaru. W branży motoryzacyjnej, regularne sprawdzanie ciśnienia sprężania jest zalecane jako część rutynowych przeglądów, co jest zgodne z dobrymi praktykami diagnostyki silników. Przykładem zastosowania manometru może być diagnoza problemów z silnikiem w warsztatach samochodowych, gdzie mechanicy stosują ten przyrząd do identyfikacji usterki i planowania napraw. Wiedza o ciśnieniu sprężania jest również kluczowa dla entuzjastów motoryzacji, którzy dbają o osiągi swoich pojazdów.

Pytanie 4

Podejmując się głównej naprawy ciągnika siodłowego, na początku należy

A. zdemontować ciągnik na poszczególne części
B. odprowadzić płyny eksploatacyjne
C. poddać cały pojazd czyszczeniu
D. rozłączyć naczepę z ciągnikiem
Odłączenie naczepy od ciągnika siodłowego jest kluczowym krokiem przed przystąpieniem do naprawy głównej pojazdu. Właściwe procedury bezpieczeństwa nakładają obowiązek na mechaników, aby upewnili się, że pojazd jest stabilny i bezpieczny do pracy. Rozłączenie naczepy minimalizuje ryzyko przypadkowego przewrócenia się lub przesunięcia ciągnika podczas dokonywania napraw. Praktyka ta jest zgodna z ogólnymi standardami BHP w warsztatach mechanicznych, które podkreślają znaczenie zabezpieczenia pojazdu przed nieautoryzowanym ruchem. Dodatkowo, brak naczepy ułatwia dostęp do silnika oraz układów mechanicznych, co jest niezbędne do przeprowadzenia dokładnej inspekcji oraz wymiany podzespołów. Zgodnie z dobrą praktyką, przed rozpoczęciem jakiejkolwiek pracy, mechanik powinien również sprawdzić, czy pojazd jest odpowiednio zablokowany, co dodatkowo zwiększa bezpieczeństwo pracy. Znajomość procedur oraz stosowanie się do nich jest nie tylko zalecane, ale wręcz niezbędne dla zapewnienia efektywności oraz bezpieczeństwa w warsztacie.

Pytanie 5

Jak długo trwa całkowita regulacja zbieżności przedniej osi na urządzeniu czterogłowicowym, jeśli kompensacja bicia jednego koła zajmuje 5 minut, a regulacja zbieżności kół przednich 10 minut?

A. 35 minut
B. 30 minut
C. 40 minut
D. 20 minut
Wybór innej odpowiedzi może być wynikiem nieprecyzyjnego zrozumienia procesu regulacji zbieżności kół oraz jak czas potrzebny na wykonanie poszczególnych czynności wpływa na całkowity czas operacji. Odpowiedzi takie jak 40 minut czy 35 minut mogą sugerować, że osoba odpowiadająca zsumowała czas kompensacji bicia oraz czas regulacji zbieżności w sposób nieodpowiedni, myląc całkowity czas operacyjny z czasem potrzebnym na każdą czynność. W rzeczywistości, na urządzeniu czterogłowicowym procedura regulacji kół jest zoptymalizowana, co pozwala na jednoczesne działanie na wszystkich kołach, a nie ich sekwencyjne regulowanie. Z kolei odpowiedzi 20 minut i 40 minut wskazują na błędne założenia dotyczące długości czasu, który jest niezbędny do wykonania pełnej regulacji. W przypadku regulacji zbieżności kół, kluczowe jest zrozumienie, że czas działania nie jest liniowy, a każda operacja ma swoje specyficzne wymagania czasowe. Zrozumienie tych zasad jest istotne nie tylko dla prawidłowego przeprowadzenia regulacji, ale również dla odpowiedniego planowania czasu pracy w warsztacie, co wpływa na efektywność i obciążenie pracowników.

Pytanie 6

Drutówka stanowi element

A. opony
B. obręczy koła
C. zaworu powietrza
D. dętki
Drutówka jest integralną częścią opony, stanowiącą jej zewnętrzną warstwę. Opony samochodowe są zbudowane z kilku warstw materiałów, a drutówka, wykonana z włókien stalowych lub syntetycznych, ma kluczowe znaczenie dla zapewnienia stabilności i wytrzymałości konstrukcji opony. Jej główną funkcją jest ochrona wewnętrznych warstw opony przed uszkodzeniami mechanicznymi oraz zapewnienie odpowiedniego kształtu opony podczas eksploatacji. Technologia produkcji drutówki opiera się na standardach określonych przez organizacje takie jak ISO oraz SAE, co gwarantuje wysoką jakość i bezpieczeństwo użytkowania. Przykładowo, w oponach do pojazdów ciężarowych, drutówka jest zaprojektowana tak, aby wytrzymać znaczne obciążenia, co minimalizuje ryzyko uszkodzeń podczas transportu. Dobrze zaprojektowana drutówka wpływa na osiągi opony, w tym przyczepność, odporność na zużycie oraz efektywność paliwową, co czyni ją kluczowym elementem w nowoczesnym inżynierii motoryzacyjnej.

Pytanie 7

W jakich jednostkach mierzy się pojemność akumulatora?

A. amperogodzinach [Ah]
B. woltach [V]
C. amperach [A]
D. omach [Ohm]
Pojemność akumulatora mierzona jest w amperogodzinach [Ah], co odzwierciedla jego zdolność do przechowywania energii elektrycznej. Jedno amperogodzina oznacza, że akumulator może dostarczać prąd o natężeniu 1 ampera przez 1 godzinę. W praktyce oznacza to, że im większa pojemność akumulatora, tym dłużej może on zasilać urządzenia elektryczne. W kontekście zastosowań, akumulatory o dużej pojemności są wykorzystywane w systemach zasilania awaryjnego, pojazdach elektrycznych oraz w magazynach energii odnawialnej, takich jak systemy fotowoltaiczne. W branży akumulatorowej stosowane są standardy, takie jak IEC 61960, które definiują metody testowania pojemności akumulatorów oraz ich cykli ładowania i rozładowania. Zrozumienie pojemności akumulatora jest kluczowe dla projektowania systemów zasilania, gdyż pozwala na odpowiednie skalowanie urządzeń do wymagań energetycznych.

Pytanie 8

Jaką wartość minimalną powinien mieć wskaźnik TWI w oponie całorocznej?

A. 1,0 mm
B. 4,0 mm
C. 1,6 mm
D. 3,0 mm
Minimalny wymagany wskaźnik głębokości bieżnika opony wynosi 1,6 mm. Ta wartość jest zgodna z normami prawnymi w wielu krajach, co ma na celu zapewnienie bezpieczeństwa jazdy, zwłaszcza w warunkach deszczowych. Opona z minimalną głębokością bieżnika poniżej 1,6 mm nie zapewnia odpowiedniego odprowadzania wody, co zwiększa ryzyko aquaplaningu. Z praktycznego punktu widzenia, opony powinny być regularnie kontrolowane pod kątem głębokości bieżnika, aby zapewnić optymalną przyczepność i stabilność pojazdu. Warto pamiętać, że im głębszy bieżnik, tym lepsza wydajność opony, szczególnie w trudnych warunkach atmosferycznych. Dlatego zaleca się wymianę opon, gdy ich głębokość bieżnika zbliża się do tej wartości, aby zapewnić sobie i innym uczestnikom ruchu drogowego maksymalne bezpieczeństwo na drodze.

Pytanie 9

Jakim narzędziem dokonujemy pomiaru grubości zębów kół zębatych w skrzyni biegów?

A. średnicówki mikrometrycznej
B. liniału
C. suwmiarki modułowej
D. czujnika zegarowego
Suwmiarka modułowa jest narzędziem pomiarowym o dużej precyzji, które idealnie nadaje się do pomiaru grubości zębów kół zębatych w skrzyniach biegów. Dzięki swojej konstrukcji, suwmiarka pozwala na dokładne zmierzenie odległości w różnych płaszczyznach, co jest kluczowe przy ocenie geometrie elementów zębatych. Umożliwia pomiar wymiarów wewnętrznych i zewnętrznych, co jest istotne w kontekście montażu i synchronizacji zębatek w układzie napędowym. Przykładem zastosowania może być kontrola wymiarów kół zębatych w trakcie produkcji, gdzie tolerancje muszą być ściśle przestrzegane zgodnie z obowiązującymi normami, takimi jak ISO 1328 dla zębów kół zębatych. Użycie suwmiarki modułowej pozwala na szybkie i efektywne pomiary, co przyspiesza proces produkcyjny oraz zapewnia wysoką jakość elementów mechanicznych. Dodatkowo, w przypadku zdiagnozowania nieprawidłowości, suwmiarka umożliwia wprowadzenie korekt w procesie technologicznym, co przekłada się na oszczędności i lepszą wydajność produkcji.

Pytanie 10

Podczas montażu nowego łańcucha rozrządu konieczna jest również wymiana

A. oleju silnikowego
B. obudowy napędu łańcuchowego
C. napinaczy rolkowych
D. kół łańcuchowych
Wielu mechaników i właścicieli pojazdów może być skłonnych sądzić, że wymiana oleju silnikowego, napinaczy rolkowych lub obudowy napędu łańcuchowego w trakcie montażu nowego łańcucha rozrządu jest wystarczająca dla zapewnienia prawidłowej pracy całego układu. Jednakże, nie należy pomijać wymiany kół łańcuchowych, gdyż to one są bezpośrednio odpowiedzialne za przekazywanie napędu. W przypadku wymiany oleju silnikowego, choć jest to istotny element konserwacji silnika, nie rozwiązuje to problemu z napędem rozrządu, który może prowadzić do poważnych awarii. Napinacze rolkowe również pełnią ważną rolę, jednak ich wymiana nie jest wystarczająca, jeśli koła łańcuchowe są zużyte. Dodatkowo, wymiana obudowy napędu łańcuchowego w ogóle nie jest konieczna, o ile nie ma widocznych uszkodzeń. Typowym błędem myślowym jest przekonanie, że wystarczy wymienić tylko jeden element układu, co może prowadzić do sytuacji, w której nowy łańcuch szybko ulegnie uszkodzeniu przez zużyte koła. Właściwe podejście do konserwacji silnika powinno uwzględniać kompleksową diagnostykę oraz wymianę wszystkich elementów, które mogą wpływać na jego sprawność, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 11

Zamiana klocków hamulcowych na tylnej osi w pojazdach z EPB lub SBC wiąże się z

A. wymianą płynu hamulcowego
B. dezaktywacją zacisków hamulcowych
C. odpowietrzeniem układu hamulcowego
D. jednoczesną wymianą tarcz i klocków hamulcowych
Wymiana klocków hamulcowych tylnej osi w pojazdach z systemami EPB i SBC wymaga specjalistycznych procedur, które niestety nie są odpowiednio odzwierciedlone w innych odpowiedziach. Równoczesna wymiana tarcz i klocków hamulcowych jest często zalecana, ale nie jest wymagana w każdym przypadku. Tarczę hamulcową należy wymieniać tylko wtedy, gdy jest zużyta lub uszkodzona. Odpowietrzenie układu hamulcowego jest procedurą, która stosuje się zazwyczaj po wymianie elementów hydraulicznych lub w przypadku zassania powietrza do układu, a nie w kontekście wymiany klocków hamulcowych. Wymiana płynu hamulcowego jest również istotna, ale nie jest bezpośrednio związana z wymianą klocków w systemach EPB lub SBC. Płyn hamulcowy powinien być wymieniany regularnie, zazwyczaj co dwa lata, ale nie jest to wymóg związany z samą wymianą klocków. Te niepoprawne założenia mogą prowadzić do niepotrzebnych komplikacji i kosztów, a także do ryzykownych sytuacji na drodze, jeżeli nie zostaną uwzględnione odpowiednie procedury. Kluczową kwestią jest zrozumienie, że systemy hamulcowe w nowoczesnych pojazdach wymagają precyzyjnych działań i stosowania się do zaleceń producentów, aby zapewnić maksymalne bezpieczeństwo i efektywność działania. Ignorowanie tych zasad może prowadzić do poważnych awarii oraz obniżenia efektywności hamowania.

Pytanie 12

Jednym z powodów, dla których nie następuje ładowanie (włączona czerwona lampka kontrolna ładowania akumulatora) przy pracującym silniku, może być

A. spalona żarówka świateł mijania
B. zwarcie w obwodzie sygnałowym akustycznym
C. kompletnie naładowany akumulator
D. zacięta szczotka w szczotkotrzymaczu alternatora
Zwarcie w obwodzie sygnału akustycznego raczej nie wpływa na ładowanie akumulatora, bo to zupełnie inny obwód i nie ma połączenia z systemem ładowania. Klakson działa na zasadzie przerywania, więc nie ma tu nic wspólnego z tym, jak alternator produkuje energię. Ponadto, naładowany akumulator nie powinien być przyczyną problemów z ładowaniem; jego stan nie ma wpływu na to, co robi alternator, dopóki wszystko działa jak należy. Jak świeci czerwona kontrolka ładowania, to raczej znaczy, że coś jest nie tak w systemie ładowania, a nie z akumulatorem. Przepalona żarówka świateł mijania też nie ma związku z ładowaniem. Warto zrozumieć, że elektryka w samochodzie to skomplikowana sprawa, a wszystkie części muszą ze sobą współpracować, żeby wszystko działało jak należy. Często ludzie mylą przyczyny i skutki; dużo osób myśli, że problem z ładowaniem może być winą akumulatora, mimo że to może być zupełnie inna rzecz. Zrozumienie, jak działa alternator i jak współpracuje z akumulatorem, to klucz do skutecznej diagnostyki i dbania o elektrykę w autach.

Pytanie 13

Czujnik zegarowy ma zastosowanie w pomiarze

A. grubości okładziny klocka hamulcowego
B. średnicy trzonka zaworu
C. średnicy czopa wału korbowego
D. bicia osiowego tarczy hamulcowej
Czujnik zegarowy, znany również jako wskaźnik zegarowy lub wskaźnik mikrometryczny, jest precyzyjnym narzędziem pomiarowym, które służy do mierzenia bicia osiowego tarczy hamulcowej. Ten typ czujnika wykorzystywany jest w mechanice precyzyjnej do oceny niewielkich odchyleń w poziomie lub w pionie. W przypadku tarczy hamulcowej, monitorowanie bicia osiowego jest kluczowe, ponieważ nadmierne bicie może prowadzić do nierównomiernego zużycia klocków hamulcowych oraz obniżenia efektywności hamowania. Standardy branżowe, takie jak normy SAE (Society of Automotive Engineers) oraz ISO, zalecają regularne kontrole bicia osiowego elementów układu hamulcowego, aby zapewnić maksymalne bezpieczeństwo i wydajność. Przykładem zastosowania czujnika zegarowego może być diagnostyka stanu układu hamulcowego w warsztatach samochodowych, gdzie technicy wykorzystują to narzędzie do oceny i eliminacji problemów z drganiami tarcz, co przedłuża żywotność komponentów oraz zwiększa bezpieczeństwo pojazdów.

Pytanie 14

Jakie narzędzie pomiarowe powinno być zastosowane do określenia wartości zużycia tulei cylindrowej?

A. Suwmiarki
B. Średnicówki zegarowej
C. Mikrometru
D. Sprawdzianu do otworów
Średnicówka zegarowa jest narzędziem pomiarowym o wysokiej precyzji, które jest szczególnie przydatne w pomiarach średnic otworów, zarówno cylindrycznych, jak i innych kształtów. Jej konstrukcja pozwala na dokładne i łatwe odczytywanie wyników dzięki zastosowaniu mechanizmu zegarowego, co znacznie ułatwia pracę. W przypadku pomiaru tulei cylindra, świetnie sprawdza się, ponieważ dokładność pomiaru jest kluczowa dla zapewnienia odpowiedniego luzu oraz prawidłowego dopasowania elementów silnika. Używając średnicówki zegarowej, można wykryć nawet niewielkie odchylenia od normy, co pozwala na wczesne wykrycie potencjalnych problemów w procesie produkcji lub remontu silnika. W praktyce, pomiar za pomocą tego narzędzia jest często stosowany w warsztatach mechanicznych i w przemyśle motoryzacyjnym, gdzie precyzja ma krytyczne znaczenie. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów w procesach produkcyjnych, co tylko potwierdza wybór średnicówki zegarowej jako narzędzia właściwego w tym kontekście.

Pytanie 15

Pierwsza cyfra w oznaczeniu "9.8" widocznym na śrubach wskazuje

A. klasę wytrzymałości, która określa wytrzymałość na rozciąganie równą 900 N/mm2
B. kod producenta
C. moment dokręcenia 90 Nm
D. klasę wytrzymałości, która definiuje stosunek granicy plastyczności do wytrzymałości wynoszący 90 N/mm2
Wybierając odpowiedzi, które nie dotyczą wytrzymałości na rozciąganie, można popełnić kilka kluczowych błędów. Odpowiedzi wskazujące na klasę wytrzymałości z granicą plastyczności 90 N/mm2 błędnie interpretują oznaczenia, ponieważ nie są one zgodne z rzeczywistymi standardami klasyfikacji. Klasa wytrzymałości 9.8 jednoznacznie odnosi się do wytrzymałości na rozciąganie wynoszącej 900 N/mm2, a nie do granicy plastyczności. Moment dokręcenia 90 Nm z kolei jest związany z praktyką montażu, a nie z klasyfikacją materiału, co wyraźnie wskazuje na brak zrozumienia różnicy między parametrami mechanicznymi a wymaganiami montażowymi. Dodatkowo, twierdzenie, że '9.8' to kod producenta, jest mylne, ponieważ oznaczenia te są ustandaryzowane i nie są indywidualnymi kodami. W przemyśle, znajomość klasy wytrzymałości śrub jest kluczowa dla zapewnienia bezpieczeństwa konstrukcji, a niepoprawne interpretacje mogą prowadzić do niewłaściwego doboru komponentów, co w konsekwencji może zagrażać całym projektom inżynieryjnym.

Pytanie 16

Zniekształcenie powierzchni przylegania głowicy silnika następuje w wyniku

A. luźnych łożysk wału rozrządu
B. niedostatecznego smarowania
C. nieprawidłowego dokręcenia śrub
D. zużytych gniazd zaworów
Jak wiesz, dobrze dokręcone śruby w układzie mocującym głowicę silnika są mega ważne. Jeśli nie dokręcisz ich odpowiednio, siły rozkładają się nierównomiernie i to może prowadzić do deformacji płaszczyzny. W efekcie może być problem z szczelnością komory spalania, co wpływa na to, jak działają układy zaworowe. Podczas montażu głowicy lepiej trzymać się sprawdzonych procedur, które opisują, jak dokręcać śruby - czasem są tam konkretne wartości momentu obrotowego i sekwencje. W motoryzacji mamy normy jak ISO 898-1, które mówią, jakie materiały i cechy mechaniczne powinny mieć śruby. Więc pamiętaj, żeby o to zadbać, bo to kluczowe dla długiej i bezawaryjnej pracy silnika, a co za tym idzie, bezpieczeństwo i wydajność twojego auta. Jeśli spróbujesz to zlekceważyć, możesz się zmierzyć z poważnymi problemami, takimi jak przegrzewanie silnika albo uszkodzenie uszczelki pod głowicą, a to może być naprawdę kosztowne.

Pytanie 17

Aby zredukować tarcie w mechanizmie różnicowym, stosuje się

A. olej przekładniowy
B. smar stały
C. olej silnikowy
D. płyn hydrauliczny
Olej przekładniowy to substancja smarująca, która została zaprojektowana z myślą o specyficznych wymaganiach mechanizmów różnicowych w pojazdach. Jego główną funkcją jest redukcja tarcia między ruchomymi częściami, co z kolei minimalizuje zużycie i wydłuża żywotność podzespołów. W przeciwieństwie do innych rodzajów olejów, olej przekładniowy zawiera dodatki, które poprawiają jego właściwości smarne oraz zapobiegają pienieniu się, co jest kluczowe w warunkach dużych obciążeń i zmiennych prędkości pracy. Zastosowanie oleju przekładniowego jest zgodne z zaleceniami producentów układów napędowych, co wpływa na ich niezawodność i efektywność. Dobór właściwego oleju jest istotny, ponieważ niewłaściwy może prowadzić do przegrzewania się przekładni, co skutkuje uszkodzeniem mechanizmu różnicowego. W praktyce, regularna wymiana oleju przekładniowego jest kluczowym elementem konserwacji pojazdów, co jest zgodne z najlepszymi praktykami utrzymania pojazdów.

Pytanie 18

Skrót TPMS na desce rozdzielczej samochodu oznacza, że pojazd jest wyposażony w

A. układ przeciwpoślizgowy
B. diagnostyczne złącze komunikacyjne
C. system monitorowania ciśnienia w oponach kół
D. system sterowania aktywnym zawieszeniem
Skrót TPMS, czyli Tire Pressure Monitoring System, oznacza system monitorowania ciśnienia w oponach kół. Jego głównym celem jest zapewnienie bezpieczeństwa i optymalnej wydajności pojazdu poprzez monitorowanie ciśnienia w oponach podczas jazdy. Niski poziom ciśnienia w oponach może prowadzić do zwiększonego zużycia paliwa, pogorszenia przyczepności oraz większego ryzyka uszkodzenia opon. W przypadku wykrycia niskiego ciśnienia, system TPMS aktywuje kontrolkę na tablicy rozdzielczej, co informuje kierowcę o konieczności sprawdzenia i ewentualnego uzupełnienia ciśnienia. Zgodnie z regulacjami prawnymi w wielu krajach, w tym w Unii Europejskiej i Stanach Zjednoczonych, nowe pojazdy muszą być wyposażone w takie systemy, co podkreśla ich znaczenie w poprawie bezpieczeństwa na drogach. W praktyce, regularne monitorowanie ciśnienia opon za pomocą TPMS może przyczynić się do przedłużenia ich żywotności i poprawy komfortu jazdy, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 19

W trakcie serwisowania pojazdów obowiązkowe jest noszenie okularów ochronnych podczas

A. ładowania akumulatorów.
B. wymiany płynu chłodzącego.
C. naprawy opon.
D. prac związanych ze szlifowaniem.
Odpowiedź dotycząca obowiązkowego stosowania okularów ochronnych podczas prac szlifierskich jest prawidłowa, ponieważ tego typu działalność generuje znaczną ilość pyłu oraz drobnych cząstek, które mogą stanowić zagrożenie dla oczu. Podczas szlifowania materiałów, takich jak metal czy drewno, detale mogą być odrzucane z dużą prędkością, co zwiększa ryzyko urazu wzroku. Standardy BHP oraz zalecenia dotyczące ochrony osobistej wskazują na konieczność stosowania okularów ochronnych w takich sytuacjach, aby zminimalizować ryzyko uszkodzeń. Przykładem mogą być prace w warsztatach mechanicznych, gdzie szlifowanie komponentów silnika lub nadwozia pojazdów jest na porządku dziennym. Używanie okularów ochronnych nie tylko chroni oczy przed zranieniami, ale także przed działaniem pyłów chemicznych, które mogą występować w niektórych materiałach. Pracownicy powinni być również szkoleni w zakresie właściwego doboru okularów, które powinny spełniać normy ochrony osobistej PN-EN 166.

Pytanie 20

Amortyzatory, które zostały poddane badaniu metodą Eusama, mają współczynnik tłumienia drgań na poziomie 60%

A. kwalifikują się do wymiany
B. są w 40% uszkodzone
C. są w stanie dostatecznym
D. są w dobrym stanie
Amortyzatory badane metodą Eusama z 60% współczynnikiem tłumienia drgań to naprawdę nieźle działające elementy. To oznacza, że dobrze radzą sobie z wygładzaniem jazdy i ogólnie poprawiają komfort. Dzięki temu wstrząsy są lepiej absorbowane i to jest mega ważne, jak chodzi o prowadzenie auta. Jak amortyzatory są w takiej formie, to mają szansę, że wszystko będzie działać sprawnie, a zawieszenie będzie miało dłuższą żywotność. Wiesz, w branży auto zawsze zwracamy uwagę na takie normy jak SAE czy ISO, bo to potwierdza, że sprawne amortyzatory to podstawa. Jak masz 60% współczynnika tłumienia, to możesz być pewny, że wszystko jest w porządku z bezpieczeństwem i wygodą jazdy.

Pytanie 21

Ciśnienie definiujemy jako siłę działającą na jednostkę

A. gęstości
B. wagi
C. powierzchni
D. długości
Ciśnienie definiuje się jako siłę działającą na jednostkę powierzchni. Jest to kluczowa koncepcja w fizyce i inżynierii, mająca zastosowanie w wielu dziedzinach, od mechaniki płynów po budownictwo. Przykładem praktycznym może być analiza sił działających na konstrukcje, takie jak mosty czy budynki, gdzie inżynierowie muszą uwzględniać ciśnienie wywierane przez wiatr, śnieg czy inne czynniki zewnętrzne. Zgodnie z zasadą Pascala, zmiany ciśnienia w zamkniętym płynie są przenoszone wszędzie równomiernie, co ma istotne znaczenie w hydraulice. Ciśnienie jest również kluczowe w medycynie, gdzie monitorowanie ciśnienia krwi może dostarczać informacji o stanie zdrowia pacjenta. W przemyśle, ciśnienie jest ważne w procesach takich jak pakowanie, gdzie odpowiednia siła musi być zastosowana do uzyskania szczelności opakowań. W myśl norm ISO, pomiar ciśnienia wymaga stosowania odpowiednich instrumentów, takich jak manometry, które muszą być kalibrowane zgodnie z międzynarodowymi standardami.

Pytanie 22

Jakie są metody weryfikacji efektywności działania hamulca roboczego po dokonaniu naprawy?

A. na płycie testowej
B. na stanowisku do badania podwozi
C. przeprowadzając symulację
D. podczas próby na drodze
Odpowiedź 'podczas testu drogowego' jest poprawna, ponieważ testy drogowe są kluczowym elementem weryfikacji skuteczności hamulców roboczych po ich naprawie. W trakcie takiego testu można ocenić rzeczywiste zachowanie pojazdu w warunkach rzeczywistych, co pozwala na uwzględnienie zmiennych takich jak obciążenie, przyczepność nawierzchni czy interakcje z innymi systemami pojazdu. Test drogowy pozwala na monitorowanie czasu reakcji hamulców, ich efektywności w różnych prędkościach oraz na różnorodnych nawierzchniach. W praktyce, mechanicy oraz technicy często przeprowadzają takie testy na zamkniętych torach lub w warunkach kontrolowanych, aby zapewnić bezpieczeństwo. Dobrą praktyką jest również stosowanie procedur opisanych w normach technicznych, takich jak ISO 17215, które dotyczą testowania systemów hamulcowych. Tylko poprzez kompleksowe testy drogowe można w pełni ocenić efektywność i bezpieczeństwo działania hamulców po ich naprawie.

Pytanie 23

Czas wymiany uszczelki podgłowicowej w silniku wynosi 2,3 rbg, a całkowity koszt części zamiennych to 339,00 zł netto. Jaki jest całkowity koszt brutto naprawy (VAT 23%), przy założeniu, że cena za 1 rbg to 70,00 zł netto?

A. 595,00 zł
B. 600,00 zł
C. 500,00 zł
D. 615,00 zł
Aby obliczyć całkowity koszt naprawy, należy uwzględnić zarówno koszt pracy, jak i koszt części zamiennych. Czas wymiany uszczelki podgłowicowej wynosi 2,3 roboczogodziny (rbg), co przy stawce 70,00 zł netto za rbg daje 161,00 zł (2,3 rbg * 70,00 zł/rbg). Następnie dodajemy do tego koszt części zamiennych, który wynosi 339,00 zł netto. Łączny koszt netto naprawy wynosi więc 500,00 zł (161,00 zł + 339,00 zł). Aby uzyskać koszt brutto, musimy doliczyć VAT w wysokości 23%. Obliczamy VAT: 500,00 zł * 0,23 = 115,00 zł. Zatem całkowity koszt brutto wynosi 615,00 zł (500,00 zł + 115,00 zł). Tym samym, poprawna odpowiedź to 615,00 zł, co jest zgodne z praktykami w branży, gdzie zawsze należy uwzględniać VAT w kalkulacjach kosztów naprawy oraz usług. Zrozumienie tego procesu jest kluczowe dla zarządzania finansami w warsztatach samochodowych oraz dla przejrzystości w kosztorysowaniu usług.

Pytanie 24

Akronim ASR w zakresie parametrów technicznych pojazdu wskazuje, że pojazd jest wyposażony w

A. układ recyrkulacji spalin
B. reaktor katalityczny oraz sondę lambda w systemie wydechowym pojazdu
C. system przeciwdziałania poślizgowi kół spowodowanemu przenoszeniem przez nie siły napędowej
D. napęd na cztery koła
Odpowiedź dotycząca systemu zapobiegania poślizgowi kół jest poprawna, ponieważ skrót ASR (Acceleration Slip Regulation) odnosi się do zaawansowanego systemu kontroli trakcji, który zapobiega poślizgowi kół napędowych. Działa on na zasadzie detekcji różnicy w prędkości obrotowej kół, co jest szczególnie istotne w warunkach niskiej przyczepności, takich jak śliska nawierzchnia czy błoto. System ASR automatycznie ogranicza moc silnika lub aktywuje hamulce na określonym kole, aby poprawić stabilność pojazdu i zapewnić lepszą kontrolę podczas przyspieszania. Dzięki temu kierowca zyskuje zwiększone bezpieczeństwo oraz komfort jazdy, co jest zgodne z obecnymi standardami bezpieczeństwa w motoryzacji, takimi jak normy Euro NCAP. W praktyce, system ASR może być szczególnie przydatny w trudnych warunkach pogodowych, takich jak deszcz czy śnieg, gdzie ryzyko poślizgu kół jest znacznie wyższe.

Pytanie 25

Rozmontowanie pełnej kolumny McPhersona na pojedyncze części przeprowadza się przy użyciu

A. prasy hydraulicznej
B. ręcznej prasy
C. ściągacza do sprężyn
D. specjalnie uformowanej dźwigni
Ściągacz do sprężyn jest narzędziem niezbędnym do demontażu kolumny McPhersona, ponieważ umożliwia on bezpieczne i skuteczne usunięcie sprężyny zawieszenia, która jest elementem pod dużym ciśnieniem. W trakcie demontażu ważne jest, aby sprężynę odpowiednio ściągnąć, aby zminimalizować ryzyko uszkodzenia innych komponentów oraz zapewnić bezpieczeństwo osoby wykonującej tę operację. Ściągacze do sprężyn są dostępne w różnych wersjach, w tym ręcznych oraz hydraulicznych, co pozwala na dostosowanie narzędzia do konkretnych warunków pracy. Zastosowanie ściągacza do sprężyn jest zgodne z najlepszymi praktykami w branży motoryzacyjnej, które podkreślają znaczenie używania odpowiednich narzędzi do przeprowadzania prac serwisowych. Warto zauważyć, że niewłaściwe lub nieodpowiednie narzędzia mogą prowadzić do uszkodzenia kolumny McPhersona, co zwiększa koszty naprawy oraz czas przestoju pojazdu.

Pytanie 26

Do jakich pomiarów stosuje się wakuometry?

A. ciśnienia paliwa
B. ciśnienia atmosferycznego
C. podciśnienia w układzie dolotowym
D. wydajności pompy paliwowej
Wakuometry są instrumentami służącymi do pomiaru ciśnienia, a ich głównym zastosowaniem jest pomiar podciśnienia w układzie dolotowym silników spalinowych. Podciśnienie w tym kontekście jest kluczowym parametrem, ponieważ wpływa na proces mieszania paliwa z powietrzem oraz na eficjencję pracy silnika. Przykładowo, prawidłowe ustawienie podciśnienia zapewnia optymalne warunki do spalania, co przekłada się na lepszą wydajność i oszczędność paliwa. W branży motoryzacyjnej, wakuometry są często wykorzystywane do diagnostyki układów dolotowych i mogą pomóc zidentyfikować problemy, takie jak nieszczelności w systemie dolotowym czy niewłaściwe ustawienia gaźnika. Standardy przemysłowe sugerują użycie wakuometrów w regularnych przeglądach technicznych, co zapewnia utrzymanie silników w dobrej kondycji. W związku z tym, umiejętność interpretacji wyników pomiarów wakuometrycznych jest kluczowa dla mechaników i techników samochodowych.

Pytanie 27

Duża ilość węglowodorów w spalinach sugeruje

A. o wysokiej liczbie oktanowej paliwa
B. o niewłaściwym spalaniu paliwa
C. o efektywnym spalaniu paliwa
D. o samozapłonie paliwa
Odpowiedzi sugerujące, że wysoka zawartość węglowodorów w spalinach świadczy o samozapłonie paliwa, dobrym spalaniu paliwa czy wysokiej liczbie oktanowej, są niepoprawne i opierają się na nieporozumieniach dotyczących procesu spalania. Samozapłon paliwa zachodzi, gdy temperatura i ciśnienie w cylindrze silnika są wystarczająco wysokie, co prowadzi do zapłonu mieszanki bez potrzeby użycia iskry. W takim przypadku nie oczekuje się, aby węglowodory były obecne w spalinach w dużych ilościach, ponieważ proces spalania jest całkowity. Z kolei dobre spalanie paliwa wiąże się z efektywną konwersją paliwa na energię, co powinno skutkować minimalizacją emisji węglowodorów. Wysoka liczba oktanowa paliwa oznacza, że jest ono bardziej odporne na samozapłon, co wprowadza zamieszanie w kontekście jakości spalania. W rzeczywistości, liczba oktanowa odnosi się do zdolności paliwa do opierania się przedwczesnemu zapłonowi w silnikach o zapłonie iskrowym, a nie do ilości węglowodorów w spalinach. Takie błędne rozumienie może prowadzić do niewłaściwej diagnozy problemów z silnikiem oraz nieefektywnego zarządzania emisjami. Warto zatem zgłębić temat procesów spalania, aby właściwie interpretować wyniki analizy spalin oraz wdrażać odpowiednie działania naprawcze.

Pytanie 28

Wałek napędowy oraz koło talerzowe stanowią element mechanizmu w pojeździe

A. przekładni głównej
B. przekładni kierowniczej
C. napędu układu rozrządu
D. napędu wycieraczek
Twoje odpowiedzi na temat napędu wycieraczek, przekładni kierowniczej i napędu układu rozrządu pokazują, że jest pewne nieporozumienie z podstawami działania tych systemów w autach. Napęd wycieraczek nie ma nic wspólnego z przekładnią główną, bo jego zadanie to poruszanie ramionami wycieraczek, żeby mogły zmywać wodę z szyby. To zupełnie inny układ, który nie ma wpływu na to, jak moc silnika trafia do kół. Jeśli chodzi o przekładnię kierowniczą, to ona odpowiada za kierowanie autem, przekształcając ruch kierownicy w ruch kół przednich. I znów - nie ma to związku z wałkiem atakującym ani kołem talerzowym. A napęd układu rozrządu reguluje, kiedy zawory silnika się otwierają i zamykają, co jest istotne dla działania silnika, ale też nie ma bezpośredniej relacji z przekładnią główną. Jeśli źle rozumiesz te funkcje, to może się zdarzyć, że będziesz miał problem z diagnostyką i zarządzaniem procesami w pojeździe, co w dłuższej perspektywie może prowadzić do drogich napraw. Dobrze jest zrozumieć, jak te różne mechanizmy współdziałają, żeby auto działało sprawnie i bezpiecznie.

Pytanie 29

Który z poniższych elementów jest częścią układu dolotowego samochodu?

A. Filtr powietrza
B. Sworzeń wahacza
C. Bęben hamulcowy
D. Uszczelka miski olejowej
Filtr powietrza to kluczowy element układu dolotowego w samochodzie. Jego głównym zadaniem jest oczyszczanie powietrza zasysanego do silnika z zanieczyszczeń takich jak kurz, pyłki czy inne drobne cząsteczki. Dzięki temu chroni wnętrze silnika przed przedwczesnym zużyciem i uszkodzeniami. Filtr powietrza znajduje się zazwyczaj w obudowie filtra, która jest częścią układu dolotowego, i jest umiejscowiony przed przepustnicą. W praktyce, regularna wymiana filtra powietrza jest niezbędna do zapewnienia optymalnej pracy silnika oraz ekonomii spalania. Zaniedbanie tej czynności może prowadzić do zwiększonego zużycia paliwa, spadku mocy silnika oraz potencjalnych uszkodzeń mechanicznych. Współczesne samochody są wyposażone w różne typy filtrów powietrza, w tym papierowe, bawełniane czy piankowe, każdy z nich ma swoje specyficzne właściwości i wymagania serwisowe. Filtr powietrza spełnia także rolę w redukcji emisji szkodliwych związków do atmosfery, co jest zgodne z coraz bardziej restrykcyjnymi normami ekologicznymi na całym świecie.

Pytanie 30

System kontroli trakcji ma na celu utrzymanie przyczepności

A. poprzeczną opon napędowych
B. wzdłużną wszystkich opon.
C. wzdłużną i poprzeczną opon napędowych.
D. wzdłużną opon napędowych.
Zrozumienie funkcji układu kontroli trakcji jest kluczowe dla oceny, dlaczego inne odpowiedzi są niepoprawne. Odpowiedzi wskazujące na kontrolę przyczepności wzdłużnej wszystkich kół nie uwzględniają faktu, że układ TCS koncentruje się głównie na kołach napędowych, które mają za zadanie przeniesienie napędu. Koła te są narażone na większe obciążenia podczas przyspieszania, co sprawia, że kontrola ich przyczepności jest kluczowa dla zapewnienia stabilności. Odniesienie do poprzecznej kontroli kół napędowych w odpowiedziach również jest mylące. Poprzeczna stabilność pojazdu jest bardziej związana z układem ESP (Electronic Stability Program), który działa w sytuacjach, gdy pojazd zaczyna się ślizgać lub obracać, a nie podczas przyspieszania. Ostatnia odpowiedź, sugerująca kontrolę zarówno wzdłużną, jak i poprzeczną kół napędowych, także jest nieprawidłowa, ponieważ wprowadza zamieszanie między funkcjami różnych systemów. To rozróżnienie między przyczepnością i stabilnością jest kluczowe dla zrozumienia, jak różne systemy wspierają bezpieczeństwo w pojazdach. Typowym błędem myślowym jest dezinformacja dotycząca roli układów wspomagających, które działają w różnych warunkach jazdy i powinny być stosowane w odpowiednich kontekstach, aby efektywnie poprawić bezpieczeństwo pojazdu.

Pytanie 31

Refraktometr jest wykorzystywany do oceny możliwości dalszej eksploatacji

A. płynu hamulcowego
B. klocków hamulcowych
C. oleju silnikowego
D. łożysk tocznych
Refraktometr jest kluczowym narzędziem w ocenie jakości płynów eksploatacyjnych, zwłaszcza płynów hamulcowych. Jego główną funkcją jest pomiar współczynnika załamania światła, co umożliwia określenie stanu chemicznego i fizycznego badanego płynu. W przypadku płynów hamulcowych, ich właściwości są krytyczne dla bezpieczeństwa pojazdów. W miarę starzenia się płynu, jego właściwości mogą ulec zmianie, co prowadzi do obniżenia efektywności hamowania. Wartości te można porównywać z danymi od producentów, co pozwala na zaplanowanie wymiany płynu w odpowiednim czasie. Przykładem zastosowania refraktometru jest pomiar, który powinien być przeprowadzany regularnie, szczególnie w pojazdach użytkowanych w trudnych warunkach. Standardy branżowe, takie jak DOT 3, DOT 4 i DOT 5.1, określają wymagania dotyczące właściwości płynów hamulcowych, a refraktometr dostarcza praktycznych informacji pomocnych w ich monitorowaniu.

Pytanie 32

Stan naładowania akumulatora ustalamy za pomocą pomiaru

A. gęstości elektrolitu
B. objętości elektrolitu
C. masy elektrolitu
D. lepkości elektrolitu
Pomiar objętości elektrolitu nie dostarcza informacji o stopniu naładowania akumulatora, ponieważ objętość pozostaje względnie stała, niezależnie od stanu naładowania. W przypadku akumulatorów kwasowo-ołowiowych, zmiany w ilości dostępnego elektrolitu mogą wynikać z odparowania lub wycieku, co nie jest bezpośrednio związane ze stanem naładowania. Lepkość elektrolitu oraz masa elektrolitu również nie są miarodajnymi wskaźnikami stanu naładowania. Lepkość może się zmieniać pod wpływem temperatury, ale nie wskazuje na ilość zgromadzonej energii. Masa elektrolitu, z kolei, jest stała dla danego akumulatora, a jej pomiar nie informuje o jakości czy efektywności akumulatora. Błędem w myśleniu jest założenie, że te parametry są w stanie zastąpić właściwy pomiar gęstości. Aby skutecznie ocenić stan akumulatora, należy kierować się sprawdzonymi metodami pomiarowymi, takimi jak wspomniany wcześniej pomiar gęstości elektrolitu, a nie polegać na parametrach, które nie są z nim bezpośrednio związane.

Pytanie 33

Zacisk hamulca stanowi część systemu hamulcowego

A. bębnowego
B. taśmowego
C. elektromagnetycznego
D. tarczowego
Zacisk hamulcowy to mega ważny element w układzie hamulcowym tarczowym, który jest teraz bardzo popularny w autach. Jego główna rola to przytrzymywanie i dociskanie klocków hamulcowych do tarczy, co w rezultacie tworzy siłę hamującą. Kiedy kierowca wciska pedał hamulca, ciśnienie hydrauliczne wędruje do zacisków, co sprawia, że tłoczki przesuwają się i dociskają klocki do obracającej się tarczy. Tak to działa, a efektem jest skuteczne hamowanie. Z mojego doświadczenia, warto regularnie sprawdzać stan klocków hamulcowych i poziom płynu hamulcowego, bo to wpływa na bezpieczeństwo na drodze. Ostatnio w autach często pojawiają się systemy ABS, które współpracują z układem tarczowym, żeby nie blokować kół i stabilizować pojazd podczas hamowania. Warto wiedzieć, że układ tarczowy jest lepszy w sytuacjach, gdzie potrzebne jest mocne hamowanie i lepsze chłodzenie, dlatego często można go spotkać w sportowych i osobowych autach.

Pytanie 34

Jak wykonuje się pomiar wysokości krzywki wałka rozrządu?

A. suwmiarką noniuszową
B. szczelinomierzem
C. mikromierzem do pomiarów wewnętrznych
D. głębokościomierzem
Mikromierz do pomiarów wewnętrznych, głębokościomierz i szczelinomierz to narzędzia, które posiadają różne zastosowania, ale nie są one idealnymi rozwiązaniami do pomiaru wysokości krzywki wałka rozrządu. Mikromierz, choć precyzyjny, jest przeznaczony głównie do pomiarów średnic wewnętrznych lub zewnętrznych, a nie do wysokości. Jego konstrukcja nie pozwala na łatwe i bezbłędne zmierzenie wysokości krzywki, gdyż wymaga on odpowiedniego punktu wsparcia, co może prowadzić do błędów pomiarowych. Głębokościomierz natomiast, jak sama nazwa wskazuje, służy do pomiarów głębokości otworów czy rowków, co nie ma zastosowania w przypadku pomiaru wysokości krzywki. Użycie głębokościomierza do tego celu może skutkować nieprecyzyjnymi wynikami, ponieważ nie jest on dostosowany do pomiarów na płaszczyznach poziomych, a jedynie pionowych. Szczelinomierz, z kolei, służy do pomiaru szczelin i to jest jego główne zastosowanie. Używanie go do pomiaru wysokości krzywek prowadzi do błędnego wnioskowania, ponieważ szczelinomierz nie jest narzędziem do pomiarów wymiarów zewnętrznych i nie daje możliwości uzyskania precyzyjnych odczytów wysokości. Prawidłowe pomiary w inżynierii mechanicznej wymagają odpowiednich narzędzi dostosowanych do specyficznych zadań, co jest kluczowe dla zapewnienia efektywności i bezpieczeństwa w pracy.

Pytanie 35

Zawsze powinno się zaczynać diagnostykę układu kontroli trakcji od

A. balansowania kół pojazdu
B. sprawdzenia poziomu płynu hamulcowego w zbiorniczku
C. potwierdzenia ciśnienia w ogumieniu pojazdu
D. odczytania pamięci błędów sterownika
Praktyka rozpoczynania diagnostyki układu kontroli trakcji od kontroli poziomu płynu hamulcowego, wyważenia kół lub ciśnienia w ogumieniu jest nieuzasadniona, gdyż te czynności nie dostarczają bezpośrednich informacji o stanie systemów elektronicznych pojazdu. Poziom płynu hamulcowego, choć ważny dla ogólnego bezpieczeństwa, nie ma bezpośredniego wpływu na funkcjonowanie systemu kontroli trakcji, który opiera się głównie na danych z czujników i algorytmach sterujących. W przypadku wyważenia kół, to działanie jest istotne dla stabilności pojazdu, ale nie wskazuje na ewentualne problemy z elektroniką, które mogą wpływać na kontrolę trakcji. Ciśnienie w ogumieniu jest równie ważne, gdyż niewłaściwe ciśnienie może wpłynąć na przyczepność, jednak również nie jest to informacja, która poprowadzi technika w stronę usterek w systemie elektronicznym. Typowe błędy w myśleniu polegają na braku zrozumienia różnicy między aspektami mechanicznymi a elektronicznymi, co prowadzi do niewłaściwego kierowania diagnostyki. Odpowiednie podejście diagnostyczne powinno być oparte na analizie elektronicznych danych i pamięci błędów, a nie na rutynowych kontrolach płynów czy ciśnienia, które mogą jedynie zakłócić proces diagnostyczny i wydłużyć czas usunięcia usterki.

Pytanie 36

Kształt stożkowy przekroju tarczy hamulcowej kwalifikuje ją do

A. napawania
B. przetoczenia
C. przeszlifowania
D. wymiany
Stożkowatość przekroju tarczy hamulcowej jest oznaką zużycia, które może znacząco wpłynąć na działanie układu hamulcowego. W przypadku, gdy przekrój tarczy hamulcowej staje się stożkowaty, oznacza to, że jedna część tarczy jest bardziej zużyta niż inna. Taka nierównomierność może prowadzić do nieprawidłowego kontaktu między tarczą a klockami hamulcowymi, co skutkuje wydłużeniem drogi hamowania oraz zwiększeniem ryzyka wypadku. W takiej sytuacji wymiana tarczy hamulcowej jest najbezpieczniejszym i najbardziej skutecznym rozwiązaniem. Zgodnie z wytycznymi branżowymi, takie jak dokumenty ASI (Automotive Service Industry), regularne sprawdzanie stanu tarcz hamulcowych i ich wymiana w przypadku stwierdzenia jakichkolwiek deformacji jest kluczowe dla zapewnienia bezpieczeństwa pojazdu. Należy pamiętać, że inwestycja w nowe tarcze hamulcowe przekłada się na lepszą efektywność hamowania oraz długoterminowe oszczędności związane z naprawami.

Pytanie 37

Podczas obsługi urządzenia do piaskowania elementów należy bezwzględnie zakładać

A. rękawice lateksowe
B. okulary ochronne
C. czapkę z daszkiem
D. obuwie ochronne
Użycie okularów ochronnych podczas obsługi urządzenia do piaskowania części jest kluczowe dla zapewnienia bezpieczeństwa operatora. Piaskowanie generuje cząsteczki pyłu oraz drobne cząstki materiału, które mogą łatwo trafić do oczu, powodując poważne urazy. Okulary ochronne, zgodne z normami ochrony osobistej, powinny być wykonane z materiałów odpornych na uderzenia, aby skutecznie chronić oczy przed potencjalnymi projektami. Przykładowo, stosowanie okularów z powłoką antyrefleksyjną i odpornych na zarysowania jest zalecane, aby zwiększyć komfort pracy oraz bezpieczeństwo. Ponadto, w kontekście przestrzegania przepisów BHP, wiele organizacji wymaga stosowania okularów ochronnych jako standardowego wyposażenia podczas wszelkich operacji związanych z obróbką materiałów. Prawidłowe zabezpieczenie oczu jest również elementem kultury bezpieczeństwa w miejscu pracy, co przyczynia się do obniżenia ryzyka wypadków.

Pytanie 38

Po przeprowadzeniu analizy amortyzatorów tylnych pojazdu ustalono, że poziom tłumienia prawego wynosi 35%, a lewego 56%. Wyniki te sugerują, że

A. konieczna jest wymiana obu amortyzatorów
B. prawy amortyzator powinien zostać wymieniony
C. należy zregenerować prawy amortyzator
D. amortyzatory są całkowicie sprawne
Wybór, żeby regenerować prawy amortyzator, jest nietrafiony. Regeneracja ma sens, gdy amortyzator jeszcze działa, ale w tym przypadku jego tłumienie wynosi tylko 35%, co oznacza, że jest w złym stanie. Regeneracja może nie przynieść efektu, a dalsze korzystanie z takiego amortyzatora to ryzyko większych problemów. Też pomysł, że jeden wymieniamy, a drugi zostawiamy, to zła droga. Oba amortyzatory mają wpływ na to, jak auto się prowadzi i różnice w ich wydajności mogą prowadzić do niebezpiecznych sytuacji. Nawet jeśli lewy działa dobrze, to współpraca z tak słabym prawym to za mało. W praktyce mieszanie amortyzatorów z różnych klas to zły pomysł, bo to wprowadza niestabilność i stwarza ryzyko na drodze. Warto pamiętać, że producenci aut oraz przepisy ruchu drogowego mówią, jak ważna jest jednorodność elementów zawieszenia dla bezpieczeństwa i komfortu jazdy.

Pytanie 39

Mieszanka stechiometryczna to taka mieszanka, w której współczynnik nadmiaru powietrza wynosi

A. λ = 1,1
B. λ = 1,0
C. λ = 2,0
D. λ = 0,85
Mieszanka stechiometryczna to taka, w której współczynnik nadmiaru powietrza λ wynosi 1,0. Oznacza to, że ilość powietrza dostarczonego do reakcji jest dokładnie dobrana do zużycia całkowitej ilości paliwa. W praktyce oznacza to optymalne spalanie, które prowadzi do maksymalnej efektywności energetycznej oraz minimalizacji emisji szkodliwych substancji. W kontekście silników spalinowych i pieców przemysłowych, utrzymanie tego stanu jest kluczowe dla zapewnienia prawidłowego działania systemu. W branży energetycznej oraz w procesach chemicznych standardy takie jak ISO 50001 zalecają monitorowanie i optymalizację współczynnika λ w celu zwiększenia efektywności energetycznej. Przykładem zastosowania tej wiedzy może być dobór odpowiednich parametrów pracy pieca w celu osiągnięcia maksymalnej wydajności oraz minimalizacji emisji CO2. Tak więc, zrozumienie współczynnika nadmiaru powietrza jest kluczowe dla inżynierów zajmujących się optymalizacją procesów spalania.

Pytanie 40

Po wymianie czujnika prędkości obrotowej koła konieczne jest przeprowadzenie

A. pomiaru długości drogi hamowania pojazdu
B. testu na stanowisku rolkowym
C. odczytu kodów błędów sterownika ABS
D. testu na szarpaku
Odczyt kodów błędów sterownika ABS po wymianie czujnika prędkości obrotowej koła jest kluczowym krokiem, który pozwala na weryfikację poprawności działania systemu antypoślizgowego. Czujnik ten odgrywa istotną rolę w monitorowaniu prędkości kół, a jego wymiana może prowadzić do błędów komunikacyjnych lub nieuwzględnienia nowych wartości przez system. Odczyt kodów błędów umożliwia diagnostykę ewentualnych problemów, które mogłyby wystąpić po wymianie, takich jak niewłaściwe połączenie, uszkodzenie czujnika czy też problemy z okablowaniem. Po odczycie kodów, technik może podjąć odpowiednie kroki naprawcze, takie jak resetowanie błędów czy dokonanie dalszej diagnostyki. Praktyczne zastosowanie tej procedury jest zgodne z najlepszymi praktykami branżowymi, które zalecają, aby każdy serwis związany z systemami ABS kończył się ich dokładną diagnostyką, co zwiększa bezpieczeństwo i niezawodność pojazdu.