Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 22 maja 2025 22:41
  • Data zakończenia: 22 maja 2025 22:54

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie danych w tabeli oblicz wartość kosztorysową prac montażowych instalacji urządzeń energetyki odnawialnej.

Rodzaj kosztówRobociznaMateriałSprzęt
Koszty bezpośrednie2 0005 0004 000
Koszty pośrednie 80%1 600-3 200
Koszty zakupu 10%-500-
Wartość kosztorysowa bez zysku

A. 16 300 zł
B. 10 800 zł
C. 15 800 zł
D. 9 100 zł
Wybierając jedną z niepoprawnych odpowiedzi, można zauważyć, że kluczowym błędem jest niedoszacowanie całkowitych kosztów prac montażowych. Wiele osób może skupić się jedynie na bezpośrednich wydatkach związanych z robocizną czy materiałami, pomijając istotny element, jakim są koszty pośrednie. Koszty pośrednie, które wynoszą 80% kosztów bezpośrednich, odgrywają fundamentalną rolę w procesie kalkulacji, ponieważ uwzględniają wszystkie dodatkowe wydatki, takie jak narzędzia, transport, a także ogólne koszty operacyjne. Ponadto, oszacowanie kosztów zakupu materiałów na poziomie 10% kosztów bezpośrednich materiałów jest często niewystarczające, co prowadzi do dalszych rozbieżności w finalnym kosztorysie. Przyjmując zaniżone wartości, można łatwo dojść do wniosku, że całkowite koszty są znacznie niższe, co jest mylące i może prowadzić do problemów finansowych w trakcie realizacji projektu. Tego typu błędne wyliczenia są często wynikiem braku zrozumienia całego procesu kosztorysowania. Dlatego ważne jest, aby zawsze uwzględniać wszystkie kategorie kosztów oraz stosować uznawane w branży metody kalkulacji, które pomogą uniknąć pułapek budżetowych i zapewnią rzetelność projektu.

Pytanie 2

Elektrownie wodne, które czerpią energię z ruchu wody, nazywamy elektrowniami

A. przepływowymi
B. szczytowo-pompowymi
C. cieplnymi
D. regulacyjnymi
Elektrownie wodne przepływowe są kluczowym elementem systemów energetycznych, wykorzystując naturalny przepływ wody w rzekach do generowania energii elektrycznej. Działają na zasadzie zainstalowania turbin w miejscach, gdzie woda porusza się z odpowiednią prędkością, co pozwala na bezpośrednie przekształcenie energii kinetycznej w energię elektryczną. Przykłady takich elektrowni obejmują elektrownie usytuowane na rzekach, gdzie nie ma potrzeby budowy dużych zbiorników, co zmniejsza wpływ na środowisko i pozwala na minimalizację kosztów budowy i eksploatacji. Przepływowe elektrownie wodne są często preferowane, gdyż ich działanie nie wymaga skomplikowanych systemów magazynowania wody, a generowana energia jest bardziej stabilna w porównaniu do innych typów elektrowni, co jest zgodne z najlepszymi praktykami w branży energetycznej, takimi jak zrównoważony rozwój i efektywność energetyczna.

Pytanie 3

Aby transportować elementy siłowni wiatrowych w Polsce, konieczne jest uzyskanie zgody od GDDKiA. Jaki jest maksymalny dozwolony nacisk na jedną oś napędową pojazdu przewożącego ładunek?

A. 10,5 t
B. 11,5 t
C. 9,5 t
D. 12,5 t
Wybór odpowiedzi 12,5 t, 10,5 t, czy 9,5 t jest wynikiem nieporozumienia dotyczącego regulacji dotyczących transportu ładunków wielkogabarytowych w Polsce. Maksymalny dopuszczalny nacisk na jedną oś napędową pojazdu określony na 12,5 t jest stosunkowo rzadko spotykany i dotyczy standardowych pojazdów ciężarowych w ruchu drogowym. W kontekście transportu elementów siłowni wiatrowych, które mają większe wymiary i wagę, obowiązują specjalne przepisy. Wybór 10,5 t lub 9,5 t również nie uwzględnia aktualnych norm, które definiują maksymalne obciążenia osi w kontekście transportu nadgabarytowego. Typowe błędy myślowe obejmują mylenie standardowych nacisków osi dla pojazdów transportowych z obciążeniem specyficznym dla ładunków wielkogabarytowych. Alternatywne odpowiedzi mogą wynikać z mylnego założenia, że ogólne przepisy dotyczące transportu ciężarowego są wystarczające dla wszelkich form przewozu. W praktyce, przy planowaniu transportu komponentów siłowni wiatrowych, istotne jest konsultowanie się z odpowiednimi regulacjami prawnymi i normami, aby uniknąć problemów z przepisami oraz zapewnić bezpieczeństwo zarówno przewożonym ładunkom, jak i infrastrukturze drogowej.

Pytanie 4

Jakie rury powinny być chronione przed wpływem promieniowania słonecznego?

A. Z miedzi
B. Ze stali ocynkowanej
C. Z cienkościennej stali
D. Z żeliwa
Wybór odpowiedzi związanych z rurami stalowymi, miedzianymi lub ocynkowanymi jest błędny, ponieważ te materiały nie są tak podatne na negatywne skutki promieniowania słonecznego jak rury żeliwne. Rury ze stali cienkościennej, mimo że mogą być narażone na korozję, są zazwyczaj stosunkowo odporne na wysokie temperatury, o ile są odpowiednio zabezpieczone. Miedź, jako materiał stosowany głównie w instalacjach hydraulicznych, nie wykazuje wrażliwości na promieniowanie UV, a jej trwałość zapewnia długotrwałą niezawodność. Z kolei stal ocynkowana, dzięki dodatkowej warstwie cynku, jest odporna na korozję, co czyni ją bardziej stabilną w zmiennych warunkach atmosferycznych. Często występuje nieporozumienie dotyczące tego, że wszystkie materiały metalowe wymagają takiego samego poziomu ochrony. Kluczowe jest zrozumienie, że różne materiały mają różne progi odporności na czynniki zewnętrzne. Przykładowo, błędne jest założenie, że wszystkie rury wymagają tego samego rodzaju zabezpieczeń przed słońcem, co może prowadzić do niepotrzebnych wydatków na dodatkowe osłony, które są nieefektywne w przypadku bardziej odpornych materiałów.

Pytanie 5

W Katalogach Nakładów Rzeczowych (KNR) jednostką miary nakładów pracy sprzętu jest

A. r-g
B. godzina
C. m-g
D. robocizna
M-g, czyli miesiąc roboczy, jest standardową jednostką nakładów pracy sprzętu w Katalogach Nakładów Rzeczowych (KNR). Umożliwia ona precyzyjne określenie czasu, jaki sprzęt powinien być wykorzystywany w danym projekcie. Przy obliczaniu kosztów inwestycji budowlanych, m-g staje się kluczowym elementem, gdyż pozwala na efektywne planowanie zasobów i harmonogramów. Przykładowo, jeśli w projekcie budowy drogi oszacowano wykorzystanie koparki na 3 m-g, oznacza to, że sprzęt powinien być cały czas dostępny przez trzy miesiące robocze. W praktyce, takie oszacowania są niezwykle ważne, aby uniknąć opóźnień i nadmiernych kosztów związanych z wynajmem lub obsługą sprzętu. Stosowanie m-g jako jednostki nakładów pracy pozwala również na lepsze porównanie efektywności różnych sprzętów oraz optymalizację ich wykorzystania w różnych projektach budowlanych, co jest zgodne z najlepszymi praktykami zarządzania projektami.

Pytanie 6

Na podstawie danych zawartych w tabeli oblicz koszt materiałów niezbędnych do wymiany 50 metrów sieci biogazu uzbrojonej w 3 zasuwy i 2 trójniki.

Nazwa urządzeniaJednostka miaryCena jednostkowa (zł)
Rura PEm30,00
Zasuwaszt.300,00
Trójnikszt.250,00

A. 500 zł
B. 1 500 zł
C. 2 900 zł
D. 900 zł
Poprawna odpowiedź to 2900 zł, co zostało obliczone na podstawie dokładnej analizy kosztów materiałów do wymiany sieci biogazu. W przypadku takich projektów kluczowe jest precyzyjne określenie ilości oraz cen jednostkowych materiałów, co pozwala na dokładne oszacowanie całkowitych kosztów. W tym przypadku, 50 metrów sieci biogazu wymagało zakupu rur, zasuw oraz trójników. Zastosowanie zasuw umożliwia kontrolowanie przepływu biogazu, co jest niezbędne w wielu instalacjach biogazowych. Z kolei trójniki są istotne, gdyż pozwalają na rozgałęzianie instalacji, co jest często wymagane w praktycznych zastosowaniach. Przy planowaniu takich projektów warto zwrócić uwagę na standardy branżowe, takie jak normy dotyczące jakości materiałów oraz ich zgodności z przepisami budowlanymi. Dobre praktyki obejmują także uwzględnienie potencjalnych kosztów serwisowania i konserwacji, co może wpłynąć na całkowity budżet projektu.

Pytanie 7

Najwyższą efektywność energetyczną uzyskują panele fotowoltaiczne

A. amorficzne
B. polikrystaliczne
C. organiczne
D. monokrystaliczne
Monokrystaliczne fotoogniwa to naprawdę świetna opcja, mają najwyższą sprawność energetyczną. Dzieje się tak głównie przez ich strukturę i materiały, jakie wykorzystuje się do ich produkcji. W zasadzie są robione z pojedynczych kryształów krzemu, przez co lepiej zamieniają energię słoneczną na elektryczną. Ich sprawność często przekracza 22%, co sprawia, że są idealne w miejscach, gdzie trzeba maksymalnie wykorzystać dostępne miejsce, jak dachy domów czy farmy słoneczne. W branży często wybiera się monokrystaliczne ogniwa tam, gdzie miejsca jest mało, a ich dłuższy czas życia oraz mniejsze straty energii w wysokich temperaturach sprawiają, że długoterminowo są opłacalne. Co więcej, monokrystaliczne ogniwa są bardziej odporne na degradację, co zwiększa ich niezawodność i wydajność w długim okresie. Widać to szczególnie w nowoczesnej architekturze, gdzie stosuje się zintegrowane systemy fotowoltaiczne.

Pytanie 8

Realizacja budowy hybrydowej latarni ulicznej o wysokości 10 metrów oraz mocy 40W

A. wymaga akceptacji sąsiadów
B. wymaga zgłoszenia budowy
C. wymaga pozwolenia na budowę
D. może być przeprowadzona bez uzgodnień
Stwierdzenie, że budowa latarni hybrydowej może być realizowana bez zgody, jest mylne, ponieważ ignoruje kluczowe aspekty regulacyjne związane z inwestycjami budowlanymi. W każdym przypadku, nawet jeśli wydaje się, że obiekt jest niewielki lub nieinwazyjny, jego obecność wpływa na otoczenie, co obliguje inwestora do uzyskania zgody. Zgoda sąsiadów jest często mylnie postrzegana jako kluczowy element, jednak w rzeczywistości sama jej obecność nie wystarcza. Nawet jeśli sąsiedzi nie mają obiekcji, brak formalnego pozwolenia na budowę skutkuje naruszeniem przepisów prawa budowlanego. Zgłoszenie budowlane to kolejny nieprawidłowy kierunek myślenia, ponieważ dotyczy sytuacji, w których inwestycje są na tyle małe, że mogą nie wymagać pełnego pozwolenia, co nie ma zastosowania w przypadku latarni hybrydowej. Wszelkie prace budowlane, które mają wpływ na użytkowanie terenu, powinny być zgodne z normami budowlanymi oraz zasadami ochrony środowiska, co wiąże się z koniecznością uzyskania pozwolenia na budowę. Należy zatem zawsze konsultować się z lokalnymi władzami, aby upewnić się, że spełnione są wszystkie wymagania prawne i techniczne.

Pytanie 9

Kocioł na biomasę powinien być poddany konserwacji w najbardziej odpowiednim czasie, czyli w trakcie

A. realizacji remontu zbiornika CWU
B. przerw w dostawie paliwa do kotła
C. zaplanowanego postoju pracy kotłowni
D. wzrostu efektywności cieplnej kotła
Odpowiedź wskazująca na planowany przestój pracy kotłowni jako najkorzystniejszy okres na przeprowadzenie konserwacji kotła na biomasę jest właściwa, ponieważ w tym czasie urządzenie nie jest eksploatowane, co pozwala na dokładne przeprowadzenie niezbędnych działań serwisowych bez wpływu na jego wydajność i funkcjonalność. Przykładowo, podczas przestoju można przeprowadzić inspekcję elementów krytycznych, takich jak wymienniki ciepła, palniki czy układy podawania paliwa, co jest zgodne z zaleceniami producentów oraz standardami branżowymi, które nakładają obowiązek regularnej konserwacji w celu zapewnienia efektywności energetycznej oraz bezpieczeństwa pracy. Regularne przeglądy i konserwacje mogą również przyczynić się do wydłużenia żywotności kotła oraz zmniejszenia ryzyka awarii, co w dłuższej perspektywie jest korzystne pod względem ekonomicznym. Przykładem może być planowanie prac konserwacyjnych w okresach letnich, kiedy zapotrzebowanie na ciepło jest minimalne, co zapewnia optymalne warunki do przeprowadzenia takich działań.

Pytanie 10

Jaką wartość należy wpisać w pozycji przedmiarowej dla dolnego przewodu źródła ciepła, który na mapie w skali 1:1000 ma długość 2 cm?

A. 0,2 m
B. 200 m
C. 20 m
D. 2 m
Odpowiedź 20 m jest prawidłowa, ponieważ w skali 1:1000 każdy 1 cm na mapie odpowiada 10 m w rzeczywistości. Zatem, mając długość 2 cm na mapie, należy pomnożyć tę wartość przez 10, co daje 20 m. Tego typu przeliczenia są kluczowe w projektowaniu instalacji grzewczych i wodno-kanalizacyjnych, gdzie precyzyjne odwzorowanie długości jest niezbędne dla obliczeń technicznych oraz do zapewnienia efektywności systemów. W praktyce, użytkownicy muszą zwracać uwagę na skalę rysunków technicznych, aby poprawnie interpretować rozmiary i wymiary instalacji. Ponadto, zgodnie z normami branżowymi, takie przeliczenia są standardową praktyką w zakresie przygotowywania dokumentacji projektowej, co wpływa na jakość i dokładność realizacji inwestycji budowlanych.

Pytanie 11

Powietrzna pompa ciepła uzyskuje najwyższą efektywność

A. w dodatnich temperaturach
B. przy temperaturze 0°C
C. w ujemnych temperaturach
D. bez względu na temperaturę zewnętrzną
Powietrzne pompy ciepła działają na zasadzie przesyłania ciepła z jednego miejsca do drugiego, wykorzystując różnice temperatur. W dodatnich temperaturach zewnętrznych sprawność tych urządzeń osiąga optymalne wartości, ponieważ różnica temperatur między źródłem ciepła, a miejscem, do którego ciepło jest transportowane, jest stosunkowo niewielka. Dzięki temu pompy ciepła mogą pracować bardziej efektywnie, co przekłada się na niższe zużycie energii elektrycznej i niższe koszty eksploatacji. Na przykład, w instalacjach grzewczych, stosujących powietrzne pompy ciepła w sezonie wiosennym lub jesiennym, można zauważyć znaczną oszczędność kosztów ogrzewania. Dobrą praktyką jest także regularne serwisowanie urządzeń oraz dbanie o ich odpowiednie ustawienia, co pozwala utrzymać wysoką sprawność przez długi czas. Warto także zwrócić uwagę na dobór odpowiedniej pompy ciepła do specyfiki danego budynku, co może wpłynąć na dalszą optymalizację jej pracy.

Pytanie 12

Tabela przedstawia kalkulację kosztów związanych z montażem 12 instalacji solarnych. Jaki będzie jednostkowy koszt montażu jednej instalacji solarnej?

Rodzaj kosztówWartość [zł]
Materiały wraz z narzutami75 650,00
Wynagrodzenia dla robotników wraz z narzutami45 680,00
Koszty ogólne budowy8 900,00
Koszty pośrednie firmy2 100,00

A. 11 027,50 zł
B. 10 110,83 zł
C. 10 852,50 zł
D. 6 304,17 zł
Poprawna odpowiedź to 11 027,50 zł, ponieważ jednostkowy koszt montażu jednej instalacji solarnej obliczamy poprzez zsumowanie wszystkich kosztów związanych z montażem i podzielenie tej kwoty przez liczbę instalacji. W praktyce, dokładne obliczenia finansowe są kluczowym elementem każdej inwestycji w energię odnawialną. Przykładowo, jeśli całkowity koszt montażu 12 instalacji wynosi 132 330 zł, to dzieląc tę kwotę przez 12 otrzymamy jednostkowy koszt montażu wynoszący 11 027,50 zł na jedną instalację. Takie obliczenia pomagają w ocenie rentowności inwestycji oraz w porównywaniu ofert różnych wykonawców. Wiedza na temat kalkulacji kosztów pozwala na lepsze zarządzanie budżetem projektu oraz podejmowanie świadomych decyzji w zakresie wyboru technologii i wykonawców, co jest zgodne z najlepszymi praktykami w branży energii odnawialnej.

Pytanie 13

Po jakim czasie użytkowania zasobnika ciepła powinno się wymienić anodę magnezową?

A. Po 2 miesiącach
B. Po 6 miesiącach
C. Po 36 miesiącach
D. Po 18 miesiącach
Odpowiedź "Po 18 miesiącach" jest poprawna, ponieważ anoda magnezowa w zasobnikach ciepła pełni kluczową rolę w ochronie przed korozją. W ciągu eksploatacji, ze względu na procesy elektrochemiczne, anoda ulega stopniowemu zużyciu. Zgodnie z zaleceniami producentów oraz normami branżowymi, zaleca się wymianę anody co 18 miesięcy, aby zapewnić optymalną ochronę zbiornika i przedłużyć jego żywotność. Na przykład, jeśli anoda nie jest wymieniana w odpowiednim czasie, może to doprowadzić do zwiększonej korozji zasobnika, co w dłuższym czasie skutkuje koniecznością wymiany całego urządzenia. Regularna kontrola stanu anody jest istotnym elementem konserwacji, a jej wymiana powinna być przeprowadzana przez wykwalifikowany personel, który zgodnie z procedurami zapewni prawidłowe działanie systemu grzewczego. Dobrą praktyką jest również monitorowanie stanu wody w zasobniku, co może wpływać na tempo zużycia anody oraz efektywność całego systemu grzewczego.

Pytanie 14

Warunkiem, który nie wpływa na ważność gwarancji na system solarny, jest

A. właściwie uzupełniona karta gwarancyjna
B. rachunek za zrealizowaną instalację
C. złożony protokół uruchomienia
D. dokumentacja fotograficzna instalacji
Wszystkie wymienione elementy, z wyjątkiem dokumentacji fotograficznej, są kluczowe dla prawidłowego funkcjonowania gwarancji na instalację solarną. Prawidłowo wypełniona karta gwarancyjna jest podstawowym dokumentem, który identyfikuje zarówno wykonawcę, jak i użytkownika, a także specyfikacje systemu. Bez tego dokumentu producent może nie uznać gwarancji. Wypełniony protokół uruchomienia jest niezbędny, ponieważ potwierdza, że system został poprawnie zainstalowany i skonfigurowany zgodnie z zaleceniami producenta. Jest to kluczowy krok, ponieważ nieprawidłowe uruchomienie może prowadzić do awarii, które nie będą objęte gwarancją. Faktura za wykonaną instalację jest równie ważna, gdyż stanowi potwierdzenie zakupu i wykonania usługi, co jest niezbędne do zgłaszania wszelkich roszczeń gwarancyjnych. Nieuzasadnione poleganie na dokumentacji fotograficznej, jako środka potwierdzającego spełnienie wymogów gwarancyjnych, może prowadzić do mylnych wniosków, że wystarczy tylko udokumentować instalację wizualnie, co jest błędnym podejściem. Tego rodzaju błędy myślowe mogą wynikać z niepełnego zrozumienia standardów branżowych oraz możliwości, jakie stawiają przed użytkownikami oraz wykonawcami instalacji solarnych. Ważne jest, aby stosować się do wytycznych, aby zapewnić pełne wsparcie w zakresie gwarancji.

Pytanie 15

Jakiego rodzaju instalację PV należy zbudować, aby móc sprzedawać energię elektryczną do sieci energetycznej?

A. On-grid
B. Off-grid
C. Wyspową
D. Autonomiczną
Wybór odpowiedzi związanych z instalacjami wyspowymi, off-grid czy autonomicznymi jest błędny, ponieważ te typy instalacji są projektowane z myślą o niezależności od sieci elektroenergetycznej. Instalacje wyspowe są samowystarczalne, co oznacza, że nie są podłączone do sieci i nie mają możliwości odsprzedaży nadwyżek energii. Takie rozwiązania są stosowane w odległych lokalizacjach, gdzie dostęp do sieci jest ograniczony. Z kolei instalacje off-grid są podobne do wyspowych, ale często wykorzystują dodatkowe źródła energii, takie jak generatory spalinowe lub magazyny energii, aby zapewnić ciągłość zasilania. W obydwu tych przypadkach, użytkownicy nie mogą sprzedawać energii do sieci, co jest kluczowym aspektem w kontekście zadania. Instalacje autonomiczne również nie są podłączone do sieci i są skoncentrowane na samodzielnym zaspokajaniu potrzeb energetycznych użytkowników. Błędem jest myślenie, że każda instalacja PV może służyć do odsprzedaży energii. Kluczowym elementem, który odróżnia instalacje on-grid od pozostałych, jest ich zdolność do współpracy z siecią elektroenergetyczną, co umożliwia sprzedaż nadwyżek i korzystanie z systemu rozliczeniowego. Warto zauważyć, że planując instalację PV, należy uwzględnić regulacje prawne oraz techniczne wymagania dotyczące podłączenia do sieci, aby uniknąć błędnych wyborów i nieefektywnych rozwiązań.

Pytanie 16

Z kolektora słonecznego o powierzchni 3 m² oraz efektywności przekazywania energii cieplnej wynoszącej 80% przy nasłonecznieniu 1000 W/m² można uzyskać moc równą

A. 1600 W
B. 800 W
C. 2400 W
D. 3000 W
Kolektor słoneczny o powierzchni 3 m² i sprawności 80% przy nasłonecznieniu 1000 W/m² rzeczywiście może generować moc 2400 W. Aby zrozumieć ten proces, warto przyjrzeć się, jak obliczamy moc, którą kolektor jest w stanie przekazać. Mnożymy powierzchnię kolektora przez natężenie promieniowania słonecznego oraz sprawność urządzenia. W tym przypadku obliczenia wyglądają następująco: 3 m² x 1000 W/m² = 3000 W, a następnie uwzględniając sprawność 80%, otrzymujemy 3000 W x 0,8 = 2400 W. W kontekście praktycznym, moc uzyskana z kolektora słonecznego może być wykorzystywana do podgrzewania wody w systemach grzewczych, co jest ekologicznym rozwiązaniem redukującym emisję CO2. Warto również zauważyć, że efektywność kolektorów słonecznych została potwierdzona w standardach branżowych, takich jak Solar Keymark, co dodatkowo podkreśla ich wiarygodność i wydajność w zastosowaniach komercyjnych i przemysłowych.

Pytanie 17

Największy współczynnik przewodzenia ciepła w systemach grzewczych posiada

A. polibutylen
B. stal
C. PEX/AL/PEX
D. miedź
Miedź jest materiałem o najwyższym współczynniku przewodności cieplnej spośród wymienionych opcji, co sprawia, że jest idealnym wyborem w instalacjach grzewczych. Jej przewodność cieplna wynosi około 401 W/(m·K), co jest znacząco wyższe niż w przypadku polibutylenu, stali czy PEX/AL/PEX. Dzięki tej właściwości, miedź szybko i efektywnie przekazuje ciepło, co przekłada się na lepszą wydajność systemów grzewczych. W praktyce, zastosowanie rur miedzianych w instalacjach CO (centralnego ogrzewania) pozwala na szybsze osiągnięcie pożądanej temperatury w pomieszczeniach, co jest kluczowe w kontekście komfortu użytkowników oraz oszczędności energetycznych. Miedź jest również odporna na korozję, co sprawia, że ma długą żywotność, a jej zastosowanie jest zgodne z normami branżowymi, takimi jak PN-EN 1057, regulującymi właściwości rur miedzianych. Dodatkowo, miedź posiada dobre właściwości mechaniczne, co czyni ją atrakcyjnym wyborem w różnych warunkach eksploatacyjnych.

Pytanie 18

Na placu budowy nie można przenosić kolektorów słonecznych

A. łapiąc za obudowę kolektora
B. w układzie poziomym
C. w układzie pionowym
D. za króćce przyłączeniowe
Odpowiedź "za króćce przyłączeniowe" jest poprawna, ponieważ zapewnia najbezpieczniejszy sposób transportu kolektorów słonecznych, minimalizując ryzyko ich uszkodzenia. Króćce przyłączeniowe to miejsca, w których kolektory są podłączane do systemu hydraulicznego, a ich chwytanie w trakcie przenoszenia pozwala na utrzymanie stabilności oraz uniknięcie nadmiernego obciążenia na delikatne elementy strukturalne. W praktyce, stosując tę metodę, operatorzy mogą uniknąć uszkodzenia paneli słonecznych, które mogą być wrażliwe na nacisk i uderzenia. Dobrą praktyką jest także korzystanie z odpowiednich sprzętów transportowych, takich jak wózki o regulowanej wysokości, które umożliwiają przenoszenie kolektorów w kontrolowanych warunkach. Warto również pamiętać, że podczas przenoszenia kolektorów nie powinno się ich obracać ani przechylać, co mogłoby prowadzić do uszkodzenia wewnętrznych komponentów. Rekomendacje te są zgodne z normami branżowymi, które stawiają na bezpieczeństwo i skuteczność w pracy z urządzeniami solarnymi.

Pytanie 19

W trakcie transportu kolektory słoneczne powinny być chronione przed uszkodzeniami mechanicznymi?

A. folią ochronną i kołkami świadkami
B. folią ochronną i obudową drewnianą
C. obudową stalową i kołkami świadkami
D. obudową drewnianą i taśmą bitumiczną
Folia ochronna oraz drewniana obudowa to genialne rozwiązanie, żeby dobrze zabezpieczyć kolektory słoneczne podczas transportu. Folia świetnie chroni delikatne elementy przed różnymi rysami, kurzem i innymi brudami, które mogą się przydarzyć w drodze. Z kolei drewniana obudowa, to już coś solidniejszego, co świetnie ochroni kolektory przed mechanicznymi uderzeniami i zapewni stabilność w trakcie przewozu. Takie podejście jest zgodne z tym, co mówi branża, bo stosowanie odpowiednich materiałów ochronnych naprawdę zmniejsza ryzyko uszkodzenia sprzętu. W praktyce niektóre firmy zajmujące się instalacją kolektorów słonecznych korzystają z takich rozwiązań, co pozwala im utrzymać jakość i ograniczyć reklamacje. Dobrze zabezpieczone kolektory to też lepsza reputacja firmy w oczach klientów, a to w dłuższym czasie przekłada się na sukces biznesowy.

Pytanie 20

Turbina akcyjna to turbina

A. Peltona
B. X
C. Kaplana
D. Francisa
Wybór odpowiedzi Kaplana, Francisa czy X prowadzi do nieporozumień związanych z klasyfikacją turbin wodnych. Turbina Kaplana jest przykładem turbiny osiowej, która jest zaprojektowana do pracy w warunkach niskiego spadku, gdzie przepływ wody jest duży. Jej działanie opiera się na zasadzie pracy w ruchu ciągłym, co różni ją zasadniczo od turbin akcyjnych. Z kolei turbina Francisa, będąca kombinacją turbin osowych i akcyjnych, działa efektywnie w średnim zakresie spadków. Jest to turbina, która wykorzystuje zarówno energię potencjalną, jak i kinetyczną wody. Wybór X, który nie jest klasycznym przykładem turbiny wodnej, również wskazuje na brak zrozumienia podstawowych podziałów turbin. Typowe błędy myślowe, prowadzące do tych błędnych odpowiedzi, często wynikają z nieznajomości funkcji i zastosowań różnych typów turbin. Kluczowe dla poprawnego identyfikowania turbin jest zrozumienie mechanizmu ich działania oraz odpowiednich warunków, w jakich będą one najbardziej efektywne. Niezrozumienie tej problematyki prowadzi do niepoprawnych wniosków, które mogą wpływać na dalsze decyzje inżynieryjne oraz projektowe w dziedzinie hydroenergetyki.

Pytanie 21

Paliwo uzyskane z kompresji trocin, które są generowane podczas obróbki drewna oraz innych procesów związanych z jego przetwarzaniem, to

A. zrębki
B. ekogroszek
C. pelet
D. ziarno
Pelet to paliwo stałe, które powstaje poprzez sprasowanie trocin, wiórów oraz innych odpadów drzewnych. Jest to produkt ściśle związany z wykorzystaniem surowców drzewnych w sposób efektywny i ekologiczny. Pelet charakteryzuje się wysoką gęstością energetyczną, co sprawia, że jest chętnie stosowany w piecach i kotłach na biomasę. Dzięki odpowiedniej technologii produkcji, pelet cechuje się niską wilgotnością oraz stałą wielkością, co ułatwia jego transport i magazynowanie. Zastosowanie peletu w systemach grzewczych przyczynia się do redukcji emisji spalin oraz wykorzystania odnawialnych źródeł energii. Warto również zauważyć, że pelet podlega różnym normom jakościowym, co zapewnia jego wysoką efektywność spalania oraz minimalizację osadów popiołu, co jest istotne w kontekście ochrony środowiska. Pelet może być wykorzystywany w domach jednorodzinnych, a także w przemyśle, gdzie coraz częściej zastępuje tradycyjne paliwa kopalne.

Pytanie 22

Podczas instalowania systemu fotowoltaicznego stosuje się złączki, które zapewniają całkowitą hermetyczność oraz zapobiegają niewłaściwemu podłączeniu biegunów paneli słonecznych do akumulatora

A. MPX
B. WAGO
C. MC4
D. HDMI
Złączki MC4 są standardem w instalacjach fotowoltaicznych, służącym do łączenia paneli słonecznych z systemem zasilania. Dzięki swojej konstrukcji, złączki te zapewniają pełną hermetyczność, co jest kluczowe w kontekście ochrony przed wilgocią i zanieczyszczeniami. W praktyce oznacza to, że stosując złączki MC4, minimalizuje się ryzyko wystąpienia korozji oraz uszkodzeń, które mogą prowadzić do obniżenia wydajności systemu. Dodatkowo, złączki te wyposażone są w mechanizm blokujący, który uniemożliwia przypadkowe rozłączenie połączenia, co jest niezwykle istotne oraz zapewnia bezpieczeństwo w eksploatacji. Zgodnie z normami IEC 62109 oraz IEC 61730, przy wyborze komponentów do instalacji fotowoltaicznych, należy kierować się ich niezawodnością i odpornością na ekstremalne warunki atmosferyczne, co złączki MC4 z pewnością spełniają. Dlatego są one powszechnie stosowane zarówno w instalacjach domowych, jak i komercyjnych, co potwierdza ich skuteczność i popularność w branży.

Pytanie 23

Kolektory słoneczne umieszczone na gruncie, w przeciwieństwie do tych instalowanych na dachach, są bardziej podatne na

A. częstsze uszkodzenia mechaniczne.
B. większe pokrycie śniegiem.
C. gorsze warunki nasłonecznienia.
D. większe straty ciepła.
Kolektory słoneczne montowane na powierzchni terenu rzeczywiście są bardziej narażone na uszkodzenia mechaniczne. W porównaniu z instalacjami dachowymi, które korzystają z naturalnej ochrony budynku, kolektory na gruncie mogą być narażone na różnorodne zagrożenia. Przykładowo, mogą być łatwym celem dla zwierząt, które mogą próbować zniszczyć instalację w poszukiwaniu schronienia lub pożywienia. Dodatkowo, na poziomie terenu, kolektory mogą być uszkodzone przez ruch ludzi czy pojazdów, zwłaszcza w miejscach publicznych. Ekstremalne warunki atmosferyczne, takie jak silny wiatr i grad, również mogą prowadzić do uszkodzeń, ponieważ kolektory są bezpośrednio wystawione na te czynniki. W praktyce, aby zminimalizować ryzyko uszkodzeń mechanicznych, zaleca się stosowanie osłon lub lokalizowanie kolektorów w obszarach, gdzie są mniej narażone na takie zagrożenia. Dobre praktyki instalacyjne uwzględniają również analizę lokalnych warunków środowiskowych, co może pomóc w wyborze odpowiedniej lokalizacji dla kolektorów.

Pytanie 24

Jak należy przechowywać kolektory słoneczne ułożone w poziomie?

A. Szybą w dół bez przykrycia
B. Szybą do góry i przykryte kartonem
C. Szybą w dół i ułożone na listwach drewnianych
D. Szybą do góry bez przykrycia
Odpowiedź 'szybą do góry i przełożone kartonem' jest poprawna, ponieważ zapewnia optymalne warunki przechowywania kolektorów słonecznych, które są delikatnymi urządzeniami narażonymi na uszkodzenia mechaniczne oraz działanie czynników atmosferycznych. Ułożenie ich szyba do góry pozwala na uniknięcie kontaktu z powierzchnią, która mogłaby zarysować lub uszkodzić powłokę ochronną. Dodatkowe zabezpieczenie w postaci kartonu działa jako amortyzator, chroniąc sprzęt przed uderzeniami i wstrząsami. Storage w ten sposób jest zgodne z najlepszymi praktykami branżowymi, które zalecają przechowywanie kolektorów w suchym, czystym miejscu, gdzie nie są narażone na działanie ekstremalnych temperatur czy wilgoci. W praktyce, jeśli kolektory będą przechowywane w ten sposób, ich trwałość i efektywność energetyczna będą dłuższe, co jest kluczowe dla inwestycji w energię odnawialną. Dobre przechowywanie jest również istotne w kontekście serwisowania i konserwacji, co może przyczynić się do uniknięcia kosztownych napraw w przyszłości.

Pytanie 25

Jakie rury są najbardziej odpowiednie do wykonania instalacji ogrzewania podłogowego?

A. stalowe
B. miedziane
C. PP-HD
D. PEX-AL-PEX
Rury PEX-AL-PEX to jeden z najlepszych wyborów do budowy instalacji ogrzewania podłogowego. PEX-AL-PEX to rura wielowarstwowa, która łączy w sobie zalety polietylenu (PEX) i aluminium. Warstwa aluminiowa zapewnia wysoką odporność na wysokie ciśnienia oraz wzmocnienie strukturalne, co minimalizuje ryzyko pęknięć i deformacji. Dodatkowo, rury te charakteryzują się doskonałymi właściwościami termicznymi, co wpływa na efektywność ogrzewania podłogowego. Dzięki ich elastyczności łatwo je układać, co pozwala na łatwe dostosowanie do kształtu pomieszczeń. PEX-AL-PEX jest również odporny na korozję, co zwiększa trwałość instalacji. W praktyce, rury te są szeroko stosowane w nowoczesnych systemach grzewczych, spełniając wymagania norm europejskich oraz krajowych, takich jak PN-EN 1264. Dzięki tym właściwościom, rury PEX-AL-PEX są preferowane w instalacjach, gdzie niezawodność i efektywność są kluczowe.

Pytanie 26

Za montaż urządzeń z zakresu energetyki odnawialnej oraz realizację dostaw zgodnych z projektem odpowiada

A. kierownik budowy
B. użytkownik
C. inwestor
D. projektant
Kierownik budowy odgrywa kluczową rolę w procesie montażu urządzeń energetyki odnawialnej, ponieważ to on odpowiada za koordynację wszystkich działań na placu budowy. Dobrze zorganizowane i zgodne z projektem dostawy są niezbędne do prawidłowego przebiegu robót. Kierownik budowy ma za zadanie nadzorować realizację prac montażowych, zapewniając, że wszelkie urządzenia są instalowane zgodnie z obowiązującymi normami oraz wytycznymi projektowymi. Na przykład, w przypadku instalacji paneli fotowoltaicznych, kierownik budowy musi zadbać o odpowiednie przygotowanie miejsca montażu, sprawdzenie zgodności z projektem oraz zapewnienie, że wszystkie niezbędne materiały i urządzenia dotrą na czas. Przykłady dobrych praktyk obejmują regularne spotkania z zespołem projektowym oraz dostawcami, co pozwala na bieżąco monitorować postęp prac i ewentualnie wprowadzać niezbędne korekty. Dzięki takim działaniom kierownik budowy minimalizuje ryzyko opóźnień oraz błędów, które mogą wpłynąć na efektywność instalacji.

Pytanie 27

Na jakim dokumencie oferent przetargu na montaż instalacji fotowoltaicznej w budynku szkoły opiera swoją propozycję?

A. Specyfikacja istotnych warunków zamówienia
B. Plan zagospodarowania przestrzennego
C. Projekt budowlany szkoły
D. Rachunki za energię elektryczną szkoły
Specyfikacja istotnych warunków zamówienia (SIWZ) jest kluczowym dokumentem w procesie przetargowym, który szczegółowo określa wymagania dotyczące przedmiotu zamówienia, w tym wypadku montażu instalacji fotowoltaicznej. Dokument ten zawiera nie tylko opis zamówienia, ale także kryteria oceny ofert, warunki udziału w postępowaniu oraz inne istotne informacje, które są niezbędne do przygotowania oferty. Przykładowo, SIWZ może zawierać specyfikacje techniczne dotyczące parametrów instalacji, wymagane certyfikaty, oraz wymogi dotyczące dokumentacji powykonawczej. Dzięki temu, oferent ma pełną wiedzę na temat oczekiwań zamawiającego, co pozwala na składanie ofert zgodnych z wymaganiami oraz na właściwe oszacowanie kosztów. W praktyce, stosowanie SIWZ jako podstawy do opracowania oferty jest zgodne z ustawą Prawo zamówień publicznych, co zapewnia transparentność i uczciwość postępowań przetargowych.

Pytanie 28

Na podstawie tabeli dołączonej do instrukcji dobierz średnicę rury, jeżeli w słonecznej instalacji grzewczej przewidziano montaż 16 kolektorów.

Średnica ruryIlość czynnika w 1 mb rury [dm³/mb]Ilość podłączonych kolektorów
15 x 1,00,131 – 3
18 x 1,00,24 – 6
22 x 1,00,317 – 9
28 x 1,50,4910 – 20
35 x 1,50,821 – 30
42 x 1,51,231 – 40

A. 28 x 1,0
B. 35 x 1,5
C. 18 x 1,0
D. 28 x 1,5
Odpowiedź 28 x 1,5 jest poprawna, ponieważ zgodnie z tabelą, dla instalacji z 16 kolektorami, odpowiednia średnica rury powinna wynosić 28 mm, przy grubości ścianki 1,5 mm. Tego rodzaju rury są najczęściej stosowane w instalacjach solarnych, ponieważ zapewniają odpowiedni przepływ medium grzewczego oraz minimalizują straty ciśnienia. Użycie rury o tej średnicy pozwala na efektywne zbieranie energii ze słońca i jej późniejsze wykorzystanie w systemie grzewczym budynku. W praktyce, stosując rury o odpowiedniej średnicy, zapewniasz zarówno bezpieczeństwo, jak i efektywność energetyczną instalacji. Według norm branżowych, dobór średnicy rur powinien być oparty na analizie przepływu oraz liczbie kolektorów, co pozwala uniknąć problemów z przegrzewaniem lub zbyt słabym przepływem. Dlatego też, w przypadku 16 kolektorów, wybór rury 28 x 1,5 jest zgodny z najlepszymi praktykami w dziedzinie instalacji solarnych.

Pytanie 29

Podczas przewozu pompy ciepła szczególnie ważne jest, aby zwrócić uwagę na jej wrażliwość na

A. promienie słoneczne
B. przechylania
C. niską temperaturę
D. wilgotność powietrza
Podczas transportu pompy ciepła szczególnie istotne jest unikanie ich przechylania, ponieważ te urządzenia są wrażliwe na zmiany pozycji, które mogą prowadzić do uszkodzenia ich wewnętrznych komponentów. Przechylanie pompy ciepła może powodować przesunięcia lub uszkodzenia sprężarki, wymienników ciepła oraz systemu chłodzenia. W praktyce, zaleca się transport pompy w pozycji pionowej, aby zminimalizować ryzyko takich uszkodzeń. Warto również pamiętać, że podczas załadunku i rozładunku urządzenia, należy stosować odpowiednie uchwyty i podpory, aby zapewnić stabilność. Dobre praktyki w branży dotyczące transportu pomp ciepła obejmują również stosowanie specjalistycznych opakowań, które amortyzują wstrząsy i drgania. W przypadku transportu na dłuższych dystansach, warto również monitorować warunki atmosferyczne, aby zapewnić, że urządzenie nie jest narażone na niekorzystne czynniki zewnętrzne, ale kluczowe pozostaje zachowanie odpowiedniej pozycji podczas transportu.

Pytanie 30

Jakich informacji nie jest konieczne zawarcie w "Księdze obmiaru" przy instalacji ogniwa fotowoltaicznego?

A. Liczby zainstalowanych urządzeń
B. Jednostki pomiarowej
C. Kubatury pomieszczenia
D. Typu urządzeń
Książka obmiaru dla montażu ogniwa fotowoltaicznego jest dokumentem, który ma za zadanie szczegółowe zarejestrowanie informacji dotyczących zamontowanych urządzeń oraz ich parametrów technicznych. W kontekście tej książki, informacje dotyczące ilości zamontowanych urządzeń, rodzaju urządzeń oraz jednostek miary są kluczowe. Ilość zamontowanych paneli fotowoltaicznych oraz ich rodzaj (np. monokrystaliczne, polikrystaliczne) mają bezpośredni wpływ na efektywność systemu oraz jego zgodność z przyjętymi normami. Jednostki miary są istotne do precyzyjnego określenia wydajności, mocy oraz rozmiarów komponentów instalacji. Natomiast kubatura pomieszczenia, w którym znajdują się urządzenia, nie jest informacją niezbędną w kontekście księgi obmiaru, ponieważ nie ma bezpośredniego wpływu na funkcjonowanie paneli fotowoltaicznych. Przykładowo, w przypadku montażu paneli na dachu, kubatura pomieszczenia nie ma znaczenia dla samej wydajności instalacji. Zgodnie z najlepszymi praktykami branżowymi, Książka obmiaru powinna być starannie prowadzona, aby zapewnić zgodność z wymaganiami prawnymi oraz normami jakości.

Pytanie 31

Który rodzaj kosztorysu tworzony na podstawie przedmiaru robót, jest wykorzystywany do określenia kosztów całej planowanej inwestycji przez ustalenie cen materiałów budowlanych oraz wynagrodzenia za pracę sprzętu i ludzi?

A. Inwestorski
B. Ślepy
C. Powykonawczy
D. Dodatkowy
Odpowiedź 'Inwestorski' jest prawidłowa, ponieważ kosztorys inwestorski jest kluczowym dokumentem w procesie planowania i realizacji inwestycji budowlanych. Sporządzany na podstawie przedmiaru robót, kosztorys ten pozwala na oszacowanie całkowitych kosztów projektu, uwzględniając ceny materiałów budowlanych, wynagrodzenie pracowników oraz koszty eksploatacji sprzętu. Jego poprawne przygotowanie jest niezbędne do zabezpieczenia finansowania oraz do podejmowania świadomych decyzji inwestycyjnych. Przykładowo, w przypadku budowy nowego obiektu komercyjnego, kosztorys inwestorski pozwala inwestorowi zrozumieć, jakie będą całkowite wydatki związane z realizacją projektu, co umożliwia efektywne zarządzanie budżetem oraz planowanie harmonogramu robót. Dobre praktyki branżowe zalecają, aby kosztorys inwestorski był regularnie aktualizowany w miarę postępu prac, co pomaga w monitorowaniu ewentualnych odchyleń od pierwotnych założeń finansowych oraz w identyfikowaniu potencjalnych oszczędności.

Pytanie 32

Aby instalacja solarna osiągnęła maksymalną wydajność cieplną w okresie letnim, kolektor słoneczny powinien być zainstalowany na

A. południowej stronie dachu pod kątem 60°
B. południowej stronie dachu pod kątem 30°
C. północnej stronie dachu pod kątem 60°
D. północnej stronie dachu pod kątem 30°
Usytuowanie kolektora słonecznego na południowej połaci dachu w kącie nachylenia 30° jest optymalne dla maksymalizacji wydajności cieplnej instalacji solarnej w okresie letnim. Południowa ekspozycja zapewnia najlepszy dostęp do promieni słonecznych w ciągu dnia, co jest kluczowe dla generowania energii cieplnej. Kąt nachylenia 30° umożliwia efektywne wychwytywanie promieniowania słonecznego, minimalizując jednocześnie straty spowodowane odbiciem światła. Dodatkowo, taki kąt nachylenia jest zgodny z najlepszymi praktykami inżynieryjnymi, które wskazują, że dla instalacji solarnych montowanych w strefie umiarkowanej, kąt nachylenia powinien wynosić od 30° do 45°, co zwiększa efektywność absorpcji energii słonecznej. W praktyce, zastosowanie tego typu konfiguracji skutkuje wyższą temperaturą czynnika grzewczego i większą produkcją energii, co pozwala na lepsze zaspokojenie potrzeb cieplnych budynków w okresie letnim, a także na oszczędności w kosztach energii.

Pytanie 33

Energia petrotermiczna jest gromadzona w

A. suchych porowatych skałach
B. warstwie wodonośnej
C. wodzie gruntowej
D. parze
Odpowiedź 'suchych porowatych skałach' jest prawidłowa, ponieważ zasoby energii petrotermicznej są związane z geotermalnymi systemami, w których ciepło zgromadzone w suchych porowatych skałach może być wykorzystane do produkcji energii. Te skały, często nazywane skałami zbiornikowymi, charakteryzują się zdolnością do gromadzenia wody i pary, co czyni je idealnym medium do transportu ciepła. Przykłady zastosowania obejmują instalacje geotermalne, gdzie ciepło z tych skał jest wykorzystywane do ogrzewania budynków lub generowania energii elektrycznej. W praktyce, dobrze zaprojektowane systemy geotermalne mogą znacząco przyczynić się do zrównoważonego rozwoju energetycznego, redukując emisję CO2 i minimalizując zależność od paliw kopalnych. Istotne jest, aby inżynierowie i specjaliści zajmujący się energią odnawialną przestrzegali standardów takich jak ISO 14001, które dotyczą zarządzania środowiskowego oraz efektywności energetycznej w kontekście takich projektów.

Pytanie 34

Turbina wiatrowa typu VAWT charakteryzuje się osią obrotu

A. zmienną
B. kośną
C. pionową
D. poziomą
Turbina wiatrowa typu VAWT (Vertical Axis Wind Turbine) jest zaprojektowana w taki sposób, aby jej oś obrotu była pionowa. Taki układ konstrukcyjny ma kilka istotnych zalet, które czynią go atrakcyjnym rozwiązaniem w zastosowaniach wiatrowych. Przede wszystkim, pionowa oś obrotu pozwala na efektywniejsze wykorzystywanie wiatru z różnych kierunków, co jest szczególnie ważne w obszarach, gdzie kierunek wiatru jest zmienny. Dodatkowo, turbiny VAWT są mniej wrażliwe na turbulencje, co zwiększa ich wydajność w warunkach miejskich. Można je instalować w miejscach o ograniczonej przestrzeni, a ich konstrukcja zwykle nie wymaga skomplikowanych systemów kierowania, jak ma to miejsce w turbinach HAWT (Horizontal Axis Wind Turbines). Przykłady zastosowania turbin typu VAWT obejmują instalacje na dachach budynków oraz w parkach wiatrowych w miastach, gdzie tradycyjne turbiny mogą być mniej efektywne.

Pytanie 35

Zgodnie z danymi zawartymi w przedstawionej w tabeli suma długości 2 obiegów w instalacji z pompą ciepła DHP-C wielkości 8 nie może przekraczać

Maksymalne długości obiegu
DHP-H,
DHP-C,
DHP-L
Obliczona, maksymalna długość obiegów w m
Wielkość1 obieg2 obiegi3 obiegi4 obiegi
6< 390< 2 x 425
8< 300< 2 x 325
10< 270< 2 x 395
12< 190< 2 x 350
16< 70< 2 x 175< 3 x 1834 x 197

A. 700 m
B. 650 m
C. 630 m
D. 690 m
Wybór odpowiedzi 650 m jako maksymalnej długości dwóch obiegów dla pompy ciepła DHP-C o wielkości 8 jest poprawny. Dane w tabeli jasno określają, iż dla tej konkretnej wielkości pompy, długość obiegów nie powinna przekraczać 650 metrów, aby zapewnić efektywność i prawidłowe działanie systemu grzewczego. Przekroczenie tej długości może prowadzić do spadku efektywności energetycznej oraz zwiększenia zużycia energii, co jest niekorzystne zarówno z ekonomicznego, jak i ekologicznego punktu widzenia. W praktyce, odpowiednia długość obiegów ma kluczowe znaczenie dla optymalizacji pracy pompy ciepła, co potwierdzają normy oraz zalecenia branżowe, takie jak te zawarte w dokumentacji producentów i standardach instalacyjnych. Na przykład, zbyt długie obiegi mogą skutkować większym oporem hydraulicznych, co wpływa na obniżenie wydajności systemu i może prowadzić do jego uszkodzenia. Utrzymanie odpowiedniej długości obiegów jest zatem kluczowe dla długotrwałego działania instalacji grzewczej.

Pytanie 36

Na podstawie danych zawartych w tabeli określ roczny uzysk energii z elektrowni wiatrowej w instalacji o mocy 1500 kW i średniej prędkości wiatru 7 m/s.

Wielkość instalacjiRoczny uzysk energii w MWh
wirnikmocV = 5 m/s6 m/s7 m/s8 m/s9 m/s
30 m200 kW320500670820950
40 m500 kW610970136017302050
55 m1000 kW11501840257032803920
65 m1500 kW15202600375048605860
80 m2500 kW23804030583077009220
120 m5000 kW53009000130001700020000

A. 2 600 MWh
B. 4 830 MWh
C. 3 750 MWh
D. 1 520 MWh
Roczny uzysk energii z elektrowni wiatrowej można obliczyć, uwzględniając moc instalacji oraz średnią prędkość wiatru. W przypadku instalacji o mocy 1500 kW i średniej prędkości wiatru wynoszącej 7 m/s, roczny uzysk energii wynosi 3750 MWh. Obliczenia bazują na standardzie IEC 61400, który określa metody oceny wydajności turbin wiatrowych. Przykładowo, przy takiej prędkości wiatru, turbiny wiatrowe generują znaczną ilość energii, co czyni je efektywnym rozwiązaniem w zakresie odnawialnych źródeł energii. W praktyce, elektrownie wiatrowe są kluczowe w realizacji celów związanych z ograniczeniem emisji CO2 i przejściem na zrównoważone źródła energii. Warto również wspomnieć o roli analizy zasobów wiatrowych, która jest niezbędna do optymalizacji lokalizacji elektrowni oraz ich wydajności.

Pytanie 37

Instalacja paneli fotowoltaicznych nie wymaga uzyskania pozwolenia na budowę, o ile jej wysokość nie jest większa niż 3 m, a moc elektryczna wynosi mniej niż

A. 40 kW
B. 20 kW
C. 10 kW
D. 30 kW
Montaż instalacji fotowoltaicznej nie wymaga pozwolenia na budowę, jeśli jej wysokość nie przekracza 3 m, a moc elektryczna jest mniejsza niż 40 kW. Odpowiedź 40 kW jest zatem prawidłowa, ponieważ zgodnie z przepisami prawa budowlanego w Polsce, instalacje o mocy do 40 kW mogą być zrealizowane na podstawie zgłoszenia zamiast pozwolenia. To z kolei ułatwia proces instalacji, co jest szczególnie korzystne dla małych systemów, które często są stosowane w gospodarstwach domowych lub małych przedsiębiorstwach. Na przykład, instalacja o mocy 30 kW może pokryć zapotrzebowanie na energię w przeciętnym domu jednorodzinnym, co skutkuje znacznymi oszczędnościami na rachunkach za energię elektryczną. Dodatkowo, stosowanie instalacji fotowoltaicznych o mocy poniżej 40 kW jest zgodne z zasadami zrównoważonego rozwoju i wspiera transformację energetyczną, redukując emisję dwutlenku węgla. Warto także zaznaczyć, że przed przystąpieniem do montażu warto zasięgnąć porady specjalistów oraz sprawdzić lokalne regulacje, aby upewnić się, że instalacja spełnia wszelkie wymagania techniczne i prawne.

Pytanie 38

Oblicz objętość pomieszczenia o wymiarach 4 x 3 m oraz wysokości 3 m?

A. 24 m3
B. 48 m3
C. 15 m3
D. 36 m3
Aby obliczyć kubaturę pomieszczenia, należy zastosować wzór: V = długość x szerokość x wysokość. W przypadku podanych wymiarów, mamy długość 4 m, szerokość 3 m oraz wysokość 3 m. Po podstawieniu wartości do wzoru otrzymujemy V = 4 m x 3 m x 3 m = 36 m³. Ta obliczona kubatura jest kluczowa w wielu zastosowaniach, takich jak określenie objętości powietrza w pomieszczeniu, co wpływa na systemy wentylacyjne i klimatyzacyjne. W praktyce, znajomość kubatury pomieszczeń jest również istotna podczas planowania ogrzewania, ponieważ obliczenia te mogą pomóc w określeniu mocy grzewczej potrzebnej do utrzymania komfortowej temperatury. Dodatkowo, w budownictwie, odpowiednie obliczenie kubatury ma znaczenie dla uzyskania niezbędnych pozwoleń oraz spełnienia norm budowlanych, co jest istotne dla bezpieczeństwa i efektywności energetycznej budynku.

Pytanie 39

Jak należy przechowywać kolektory słoneczne?

A. pod wiatą, umieszczone szybą w dół
B. w zamkniętych pomieszczeniach, umieszczone szybą do góry
C. w zamkniętych pomieszczeniach, umieszczone szybą w dół
D. pod wiatą, umieszczone szybą do góry
Kolektory słoneczne fajnie jest przechowywać w zamkniętych pomieszczeniach, w pozycji szybą do góry. Dzięki temu są mniej narażone na działanie różnych warunków atmosferycznych i uszkodzenia. Jak się je trzyma w suchym i wentylowanym miejscu, to zmniejsza się ryzyko kondensacji i korozji, co jest bardzo ważne, bo wilgoć może zniszczyć te urządzenia. Ułożenie szybą do góry zapobiega zarysowaniom, co jest super ważne, zwłaszcza, że te kolektory są dosyć drogie. Wiele firm, które zajmują się energią odnawialną, sugeruje używanie specjalnych stojaków, żeby je lepiej zabezpieczyć. Dobrze jest też co jakiś czas sprawdzić ich stan, żeby wcześnie zauważyć ewentualne problemy. Wiedza na temat tego, jak dobrze przechowywać kolektory, jest kluczowa dla ich długiego życia i efektywności.

Pytanie 40

Instalacja gruntowej pompy ciepła wymaga zbudowania kolektora poziomego jako dolnego źródła. W tym przypadku kolektor poziomy to

A. wężownica w wymienniku c.w.u.
B. system rurek zakopanych pod powierzchnią gruntu poniżej strefy przemarzania
C. system rur zakopanych pionowo na głębokości około 30 metrów
D. kolektor umiejscowiony płasko na dachu zwrócony w stronę południową
Kolektor poziomy w gruntowej pompie ciepła to system rurek zakopanych na głębokości poniżej strefy przemarzania, co jest kluczowe dla efektywności działania tego typu instalacji. Wysokiej jakości kolektor poziomy umożliwia wymianę ciepła z gruntem, który ma bardziej stabilną temperaturę w porównaniu z powietrzem. Właściwe umiejscowienie kolektora poniżej strefy przemarzania, zazwyczaj na głębokości od 0,8 do 1,5 metra, zapewnia, że ciepło jest odbierane efektywnie przez rurki wypełnione czynnikiem roboczym. Przykłady zastosowania obejmują domy jednorodzinne oraz budynki użyteczności publicznej, gdzie systemy te są projektowane z uwzględnieniem lokalnych warunków klimatycznych. Zgodnie z dobrymi praktykami branżowymi, projektanci instalacji ciepłowniczych powinni również uwzględniać właściwe obliczenia dotyczące długości i zakupu rur, aby zapewnić odpowiednią wydajność energetyczną oraz zgodność z normami EN 14511 i EN 14825.